TWI619063B - Touch sensitive processing method, apparatus and electronic system for reducing interference from pixel update - Google Patents
Touch sensitive processing method, apparatus and electronic system for reducing interference from pixel update Download PDFInfo
- Publication number
- TWI619063B TWI619063B TW105144054A TW105144054A TWI619063B TW I619063 B TWI619063 B TW I619063B TW 105144054 A TW105144054 A TW 105144054A TW 105144054 A TW105144054 A TW 105144054A TW I619063 B TWI619063 B TW I619063B
- Authority
- TW
- Taiwan
- Prior art keywords
- sensing
- values
- electrodes
- value
- sensing values
- Prior art date
Links
Landscapes
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Position Input By Displaying (AREA)
Abstract
本申請提供一種觸控處理方法,用於減少像素更新時的干擾,包含:每隔一間隔時間,對一觸控螢幕上的多條感測電極進行三次感測,以得到多個第一感測值、多個第二感測值與多個第三感測值;將該多個第一感測值、該多個第二感測值與該多個第三感測值分別加總為多個感測值總和;根據該多個感測值總和,判斷該多條感測電極中的第N條感測電極附近有一外部導電物件近接該觸控螢幕;以及根據該多個第一感測值、該多個第二感測值與該多個第三感測值的其中之一來判斷該外部導電物件相對於該多條感測電極的一位置,其中,該多條感測電極與該觸控螢幕的像素橫軸互相平行。 The present invention provides a touch processing method for reducing interference during pixel update, including: performing sensing three times on a plurality of sensing electrodes on a touch screen at intervals of time to obtain a plurality of first senses And measuring the plurality of second sensing values and the plurality of third sensing values; adding the plurality of first sensing values, the plurality of second sensing values, and the plurality of third sensing values to And summing the plurality of sensing values; determining, according to the sum of the plurality of sensing values, an external conductive object adjacent to the touch screen in the vicinity of the Nth sensing electrodes; and determining the plurality of first senses according to the plurality of first sensing electrodes Determining, by the one of the plurality of second sensing values and the plurality of third sensing values, a position of the external conductive object relative to the plurality of sensing electrodes, wherein the plurality of sensing electrodes The horizontal axis of the pixel with the touch screen is parallel to each other.
Description
本發明系關於觸控螢幕,特別系關於減少觸控螢幕在像素更新時對於觸控處理的干擾。 The invention relates to a touch screen, in particular to reducing the interference of the touch screen on the touch processing when the pixel is updated.
觸控螢幕是現代消費性電子系統的主要輸出入裝置。典型的觸控螢幕是在螢幕上方置放觸控面板的電路。也有所謂on-cell形式的觸控螢幕,或者是in-cell形式的觸控螢幕,這些可能適用於本申請的範圍。舉例而言,申請人於2013年十一月15日提交至美國專利商標局的14/081,018專利申請案之內容可以做為本案的參考範例。 The touch screen is the main input and output device of modern consumer electronic systems. A typical touch screen is a circuit in which a touch panel is placed above the screen. There are also touch screens in the form of on-cells, or touch screens in the form of in-cells, which may be applicable to the scope of the present application. For example, the content of the applicant's 14/081,018 patent application filed on November 15, 2013, to the U.S. Patent and Trademark Office, may be incorporated herein by reference.
每個螢幕都具有包含更新率與解析度在內的顯示特性。更新率(refresh rate)通常指的是更新螢幕的頻率,通常是以每秒更新幾次螢幕幀(Frame Per Second,FPS)或影格率作為單位。以美國國家電視系統委員會(National Television System Committee,NTSC)類比電視標準為例,其更新率為59.94Hz,其解析度為440x480。標準的Video Graph Array,VGA的解析度包含640x480、320x200像素(pixel)等,其更新率包含50、60、與70Hz等。而常用的高解析度規格1080P,其解析度為1920x1080,影格率為24、25、30、或60Hz等。 Each screen has display characteristics including update rate and resolution. The refresh rate usually refers to the frequency of updating the screen, usually in units of Frame Per Second (FPS) or frame rate. Take the National Television System Committee (NTSC) analog TV standard as an example, the update rate is 59.94 Hz, and its resolution is 440x480. The standard Video Graph Array, VGA resolution includes 640x480, 320x200 pixels, etc., and its update rate includes 50, 60, and 70Hz. The commonly used high-resolution specification 1080P has a resolution of 1920x1080 and a frame rate of 24, 25, 30, or 60 Hz.
一般而言,現代的液晶螢幕的每個像素都有相應的像素電極用來扭轉液晶的極性,藉以改變該像素之液晶的透光率。據此,就能夠控制液晶下方的各色發光二極體發光的透光量,進一步控制每個像素的顏色。一般來說,螢幕控制器會使用方波進行脈衝寬度調變(PWM,Pulse Width Modulation)。利用脈衝寬度調變來控制像素之液晶的透光率。如美國專利US8421828所提及的,液晶層的極化程度與施加於液晶層之電壓的均方根(Root-Mean-Square)相關。可以在人眼的視覺暫留週期當中,利用脈衝寬度調變固定電壓的信號,施加於像素液晶層,進而控制像素之液晶的極化程度,亦即控制像素液晶的透光率。 In general, each pixel of a modern liquid crystal screen has a corresponding pixel electrode for twisting the polarity of the liquid crystal, thereby changing the transmittance of the liquid crystal of the pixel. According to this, it is possible to control the amount of light transmitted by the respective light-emitting diodes under the liquid crystal, and further control the color of each pixel. In general, the screen controller uses a square wave for Pulse Width Modulation (PWM). The pulse width modulation is used to control the transmittance of the liquid crystal of the pixel. As mentioned in U.S. Patent No. 8,421,828, the degree of polarization of the liquid crystal layer is related to the Root-Mean-Square of the voltage applied to the liquid crystal layer. In the visual persistence period of the human eye, the signal of the fixed voltage can be modulated by the pulse width, and applied to the liquid crystal layer of the pixel, thereby controlling the degree of polarization of the liquid crystal of the pixel, that is, controlling the transmittance of the liquid crystal of the pixel.
在某個解析度時,如640x480,代表螢幕的每一條橫軸有640個像素,而每一條縱軸有480個像素。在更新螢幕時,通常是先對最上方的橫軸像素進行更新,由左至右,由上至下,直到完成所有橫軸像素的更新後,即完成一幀的更新。在更新率60Hz的顯示特性下,螢幕在一秒內需要完成60次螢幕幀的更新。在更新每條橫軸的第一個像素之前與最後一個像素之後,可能會有螢幕停止動作的空白期間,稱之為水平空白(horizontal blank)。在更換下一個螢幕幀時,可能會有螢幕停止動作的空白期間,稱之為垂直空白(vertical blank)。 At a certain resolution, such as 640x480, there are 640 pixels on each horizontal axis representing the screen, and 480 pixels on each vertical axis. When updating the screen, the uppermost horizontal axis pixels are usually updated first, from left to right, from top to bottom, until the update of all horizontal axis pixels is completed, that is, one frame update is completed. At the update rate of 60 Hz, the screen needs to complete 60 screen frame updates in one second. Before updating the first pixel of each horizontal axis and after the last pixel, there may be a blank period in which the screen stops moving, which is called horizontal blank. When replacing the next screen frame, there may be a blank period during which the screen stops moving, which is called vertical blank.
舉例來說,1080P60規格的螢幕的垂直空白會每隔16.667ms出現一次,亦即1/60秒。而由於有1080條橫軸,因此每個水平空白約15.4us出現一次,亦即1/(60*1080)秒。 For example, the vertical blank of the 1080P60 screen will appear every 16.667ms, which is 1/60th of a second. Since there are 1080 horizontal axes, each horizontal blank appears once at about 15.4us, which is 1/(60*1080) seconds.
如圖1所示,一般的觸控電極通常也是沿著觸控螢幕110的橫軸與縱軸分布,假設沿著橫軸延伸的多條平行觸控電極稱之為第一電極 121,沿著縱軸延伸的多條平行觸控電極稱之為第二電極122。這些第一電極與第二電極通常會連接到觸控處理裝置130,由後者進行互電容與/或自電容的觸控偵測。 As shown in FIG. 1 , a general touch electrode is also distributed along the horizontal axis and the vertical axis of the touch screen 110. It is assumed that a plurality of parallel touch electrodes extending along the horizontal axis are referred to as a first electrode. 121. A plurality of parallel touch electrodes extending along the longitudinal axis are referred to as second electrodes 122. The first electrode and the second electrode are usually connected to the touch processing device 130, and the latter performs mutual capacitance and/or self-capacitance touch detection.
由於觸控處理裝置的設計與成本限制,無法接入太多觸控電極,因此第一電極與第二電極的數量通常都少於螢幕的解析度。以50吋左右的觸控螢幕為例,其橫軸長度約為1130mm,其縱軸長度約為670mm。若電極之間的間距設為8mm的話,則約有83條第一電極與141條第二電極。當該觸控螢幕的規格為1080P時,則每個像素的橫軸長度為0.59mm,每個像素的縱軸長度為為0.62mm。換言之,每條第一電極約覆蓋12條左右的像素橫軸。 Due to the design and cost limitation of the touch processing device, too many touch electrodes cannot be accessed, so the number of the first electrode and the second electrode is usually less than the resolution of the screen. For example, a touch screen of about 50 inches has a horizontal axis length of about 1130 mm and a longitudinal axis length of about 670 mm. If the spacing between the electrodes is set to 8 mm, there are about 83 first electrodes and 141 second electrodes. When the size of the touch screen is 1080P, the horizontal axis length of each pixel is 0.59 mm, and the vertical axis length of each pixel is 0.62 mm. In other words, each of the first electrodes covers about 12 horizontal axes of pixels.
如圖2所示,其為觸控螢幕的局部放大圖,上層的互聯菱形電路分別為橫向的第一電極121與縱向的第二電極122。下層包含由個別像素210所組成的像素陣列,由於像素眾多,所以並未全部示出。在更新畫面時,會以像素橫軸220為單位進行更新。可以見到,在圖2當中,每條第一電極121涵蓋六個像素橫軸220。其中,像素橫軸221位於兩個第一電極之間,像素橫軸222位於第一電極的覆蓋範圍內。 As shown in FIG. 2, it is a partial enlarged view of the touch screen. The upper interconnected diamond circuits are a horizontal first electrode 121 and a longitudinal second electrode 122, respectively. The lower layer contains a pixel array composed of individual pixels 210, and since there are many pixels, they are not all shown. When the screen is updated, it is updated in units of the pixel horizontal axis 220. It can be seen that in FIG. 2, each of the first electrodes 121 covers six pixel horizontal axes 220. The pixel horizontal axis 221 is located between the two first electrodes, and the pixel horizontal axis 222 is located within the coverage of the first electrode.
一般來說,連接同一個觸控螢幕110的觸控處理裝置130與螢幕控制器是分別獨立運作的。觸控處理裝置130通常不知道觸控螢幕110的顯示設定值,如解析度與更新率,自然也不知道螢幕控制器更新觸控螢幕110的那一條像素橫軸。而觸控處理裝置130可能進行互電容感測,亦即令某一條平行於像素橫軸的第一電極121發出多個方波作為驅動信號,而令所有條第二電極122接收驅動信號的感測信號。如果恰好觸控處理裝置130同時令被 該條第一電極121所覆蓋的像素橫軸進行更新時,由於觸控的驅動信號是方波,而像素更新也是利用方波的脈衝寬度調變,因此驅動信號將會嚴重干擾到像素液晶的極化程度,致使觸控螢幕的使用者可能看到該條第一電極121附近出現異常暗亮的情況。不過由於觸控控制器的偵測週期與螢幕更新的週期很快,兩者交會的時間小於人類視覺暫留的週期,所以使用者察覺互電容感測時所發生異常暗亮的機率不高。 Generally, the touch processing device 130 and the screen controller connected to the same touch screen 110 operate independently of each other. The touch processing device 130 generally does not know the display setting values of the touch screen 110, such as the resolution and the update rate, and naturally does not know the horizontal axis of the pixel on which the screen controller updates the touch screen 110. The touch processing device 130 may perform mutual capacitance sensing, that is, the first electrode 121 parallel to the horizontal axis of the pixel emits a plurality of square waves as a driving signal, and the sensing of the driving signals by all the second electrodes 122 is received. signal. If the touch processing device 130 happens to be at the same time When the horizontal axis of the pixel covered by the first electrode 121 is updated, since the driving signal of the touch is a square wave, and the pixel update is also modulated by the pulse width of the square wave, the driving signal will seriously interfere with the pixel liquid crystal. The degree of polarization causes the user of the touch screen to see an abnormally bright situation near the first electrode 121. However, since the detection cycle of the touch controller and the update period of the screen are fast, the time for the intersection of the two is less than the period of the human visual persistence, so the probability that the user is aware of the abnormal darkness when the mutual capacitance is sensed is not high.
在進行互電容式偵測時,觸控處理裝置130會輪流令觸控驅動電極發出驅動信號,而令觸控感測電極感測驅動信號。由於處理器的感測電路比驅動電路需要較大的成本,所以在上述的設計中,設計者可能會令數量較少的第一電極作為觸控感測電極,數量較多的第二電極作為觸控驅動電極。 During the mutual capacitance detection, the touch processing device 130 rotates the touch driving electrodes to generate driving signals, and causes the touch sensing electrodes to sense the driving signals. Since the sensing circuit of the processor requires a larger cost than the driving circuit, in the above design, the designer may use a smaller number of first electrodes as the touch sensing electrodes, and a larger number of second electrodes as Touch drive electrode.
當第二電極作為觸控驅動電極時,進行全螢幕的互電容式偵測,觸控處理裝置130會輪流令第二電極發出交流的脈衝信號,或為方波或為弦波。當交流脈衝信號的頻率為200KHz,且每個脈衝發出30個週期時,則每條第二電極發出信號的時間約為0.15ms或150us,亦即30/200,000秒。由於有141條第二電極,且更換第二電極需要處理時間,所以進行一次全螢幕的互電容偵測至少需要0.02115s或21.15ms或21150us左右,遠長於每條像素橫軸更新的時間15.4us。當交流脈衝信號的頻率為100KHz,且每個脈衝發出30個週期時,則每條第二電極發出信號的時間約為0.33ms,亦即30/100,000秒。由於有141條第二電極,且更換第二電極需要處理時間,所以進行一次全螢幕的互電容偵測需要0.04653s或46.53ms或46530us左右,遠長於每條像素橫軸更新的時間15.4ms。 When the second electrode is used as the touch driving electrode, the full-screen mutual capacitance detection is performed, and the touch processing device 130 rotates the second electrode to emit an alternating pulse signal, which is a square wave or a sine wave. When the frequency of the AC pulse signal is 200 KHz, and each pulse emits 30 cycles, the time for each second electrode to emit a signal is about 0.15 ms or 150 us, that is, 30/200,000 seconds. Since there are 141 second electrodes, and the replacement of the second electrode requires processing time, it takes at least 0.02115s or 21.15ms or 21150us to perform a full-screen mutual capacitance detection, which is much longer than the update time of each pixel horizontal axis. . When the frequency of the AC pulse signal is 100 kHz and each pulse is issued for 30 cycles, the time for each second electrode to emit a signal is about 0.33 ms, that is, 30/100,000 seconds. Since there are 141 second electrodes, and the replacement of the second electrode requires processing time, it takes 0.04653s or 46.53ms or 46530us to perform a full-screen mutual capacitance detection, which is much longer than the update time of each pixel horizontal axis of 15.4ms.
在利用第一電極與第二電極進行自電容式偵測時,觸控處理裝置130會分別令所有的第一電極與所有的第二電極發出驅動信號,並且令所有的第一電極與所有的第二電極量測信號。若同樣使用200KHz的30個週期的交流脈衝信號,則所有第一電極耗用時間為0.15ms,所有第二電極耗用時間也為0.15ms,兩者合為0.3ms或300us,遠長於每條像素橫軸更新的時間15.4us。 When self-capacitance detection is performed by using the first electrode and the second electrode, the touch processing device 130 respectively causes all the first electrodes and all the second electrodes to emit driving signals, and all the first electrodes and all the The second electrode measures the signal. If the AC pulse signal of 30 cycles of 200KHz is also used, all the first electrodes consume 0.15ms, and all the second electrodes consume 0.15ms, which is 0.3ms or 300us, which is much longer than each. The pixel horizontal axis update time is 15.4us.
另一種偵測模式為先進行自電容偵測,再根據自電容偵測的結果進行互電容偵測。比方說,觸控處理器先利用所有的第一電極進行自電容偵測,耗用時間為0.15ms,發現有N條第一電極被觸碰。接著,觸控處理器再輪流驅動該N條第一電極,並且根據所有第二電極的感測結果找出觸控區域。在此條件下,所耗用的時間約為(N+1)*0.15ms。即便是在十一指同時觸碰的情況下,令N為11,其所耗用時間約為1.8ms,遠長於每條像素橫軸更新的時間15.4us。 Another detection mode is to perform self-capacitance detection first, and then perform mutual capacitance detection according to the result of self-capacitance detection. For example, the touch processor first uses all of the first electrodes for self-capacitance detection, and the elapsed time is 0.15 ms, and it is found that N first electrodes are touched. Then, the touch processor drives the N first electrodes in turn, and finds the touch area according to the sensing results of all the second electrodes. Under this condition, the elapsed time is approximately (N + 1) * 0.15 ms. Even if the eleven fingers touch at the same time, let N be 11 and the elapsed time is about 1.8ms, which is much longer than the update time of each pixel on the horizontal axis of 15.4us.
除了進行外部導電物體的偵測之外,觸控處理器可以類似自電容的方式,同時令所有的第一電極與第二電極偵測發出電磁信號的主動觸控筆。假設主動觸控筆所發出的電信號與前述的驅動信號相同,則全部觸控電極所需的偵測時間約為0.15ms,長於每條像素橫軸更新的時間15.4us。 In addition to detecting external conductive objects, the touch processor can be similar to the self-capacitance method, and all the first electrodes and the second electrodes detect the active stylus that emits electromagnetic signals. Assuming that the electrical signal emitted by the active stylus is the same as the aforementioned driving signal, the detection time required for all the touch electrodes is about 0.15 ms, which is longer than the update time of each pixel on the horizontal axis of 15.4 us.
在更新某一條像素橫軸時,新的像素資料會送到該橫軸中相應的像素電極。因此在該條橫軸附近的液晶螢幕,會比其他地方的液晶螢幕發出較大的電磁干擾,而此電磁干擾現象會對觸控電極造成影響。在上述的範例中,由於一條第一電極約覆蓋12條左右的像素橫軸,所以大多數的像素橫軸只會對單一條第一電極造成嚴重干擾,如圖2的像素橫軸222。少 數的像素橫軸位於兩條第一電極之間,如圖2的像素橫軸221,會對這兩條第一電極造成干擾而不會對較遠的第一電極造成嚴重的干擾。 When a horizontal axis of a pixel is updated, new pixel data is sent to the corresponding pixel electrode in the horizontal axis. Therefore, the liquid crystal screen near the horizontal axis of the strip will emit greater electromagnetic interference than the liquid crystal screen in other places, and the electromagnetic interference phenomenon will affect the touch electrode. In the above example, since one first electrode covers about 12 horizontal axes of pixels, most of the horizontal axis of the pixel will only cause severe interference to a single first electrode, such as the pixel horizontal axis 222 of FIG. less The horizontal axis of the pixel is located between the two first electrodes, such as the pixel horizontal axis 221 of FIG. 2, which causes interference between the two first electrodes without causing severe interference to the farther first electrode.
由於負責觸控感測的觸控處理裝置與負責顯示的顯示處理器並未連接在一起,所以觸控處理裝置並沒有辦法避免在某一條像素橫軸更新時,對覆蓋該條像素橫軸的第一電極進行觸控感測,以避免接收到該像素更新時所發出的電磁干擾。 Since the touch processing device responsible for touch sensing is not connected to the display processor responsible for display, the touch processing device has no way to avoid covering the horizontal axis of the pixel when the horizontal axis of a certain pixel is updated. The first electrode performs touch sensing to avoid receiving electromagnetic interference generated when the pixel is updated.
因此,本申請的目的之一,在於提供一種觸控處理裝置的觸控處理方法,利用適當間隔時間進行的多次橫向電極的感測結果,判斷出哪一橫向電極的感測結果確實與觸控相關,或者判斷出哪一橫向電極的感測結果與觸控無關,並且將其感測結果排除在觸控計算之外,使得觸控計算能夠免於或至少減少受到像素更新的電磁干擾影響。本申請的目的之另一,在於提供一種觸控處理裝置的觸控處理方法,用於找出上述適當間隔時間。 Therefore, one of the purposes of the present application is to provide a touch processing method for a touch processing device, which utilizes sensing results of a plurality of lateral electrodes performed at appropriate intervals to determine which sensing result of the lateral electrodes is indeed touched. Control the correlation, or determine which lateral electrode sensing result is independent of the touch, and exclude the sensing result from the touch calculation, so that the touch calculation can avoid or at least reduce the electromagnetic interference affected by the pixel update. . Another object of the present application is to provide a touch processing method for a touch processing device for finding the appropriate interval time.
在一實施例中,本申請提供一種觸控處理方法,用於減少像素更新時的干擾,包含:對一觸控螢幕上的多條感測電極進行第一次感測,以得到多個第一感測值;於一間隔時間之後,對該多條感測電極進行第二次感測,以得到多個第二感測值;於該間隔時間之後,對該多條感測電極進行第三次感測,以得到多個第三感測值;將相應於該多條感測電極的該多個第一感測值、該多個第二感測值與該多個第三感測值分別加總為多個感測值總和;根據該多個感測值總和,判斷該多條感測電極中的第N條感測電極附近有一外部導電物件近接該觸控螢幕;以及根據該多個第一感測 值、該多個第二感測值與該多個第三感測值的其中之一來判斷該外部導電物件相對於該多條感測電極的一位置,其中,該多條感測電極與該觸控螢幕的像素橫軸互相平行。 In an embodiment, the present application provides a touch processing method for reducing interference when a pixel is updated, including: performing a first sensing on a plurality of sensing electrodes on a touch screen to obtain a plurality of a sensing value; after an interval time, performing a second sensing on the plurality of sensing electrodes to obtain a plurality of second sensing values; after the interval time, performing the plurality of sensing electrodes Three times of sensing to obtain a plurality of third sensing values; the plurality of first sensing values corresponding to the plurality of sensing electrodes, the plurality of second sensing values, and the plurality of third sensing The values are respectively added to the sum of the plurality of sensing values; determining, according to the sum of the plurality of sensing values, an external conductive object adjacent to the touch screen in the vicinity of the Nth sensing electrodes of the plurality of sensing electrodes; Multiple first sensing Determining, by the one of the plurality of second sensing values and the plurality of third sensing values, a position of the external conductive object relative to the plurality of sensing electrodes, wherein the plurality of sensing electrodes are The horizontal axes of the pixels of the touch screen are parallel to each other.
在一範例中,其中判斷該位置的步驟更包含:忽略該多個第一感測值當中相應於第N-1條感測電極的該第一感測值;以及根據該多個第一感測值來判斷該外部導電物件相對於該多條感測電極的該位置。 In an example, the step of determining the location further includes: ignoring the first sensed value corresponding to the N-1th sense electrode among the plurality of first sensed values; and according to the plurality of first senses The measured value is used to determine the position of the external conductive object relative to the plurality of sensing electrodes.
在一範例中,其中判斷該位置的步驟更包含:忽略該多個第三感測值當中相應於第N+1條感測電極的該第三感測值;以及根據該多個第三感測值來判斷該外部導電物件相對於該多條感測電極的該位置。 In an example, the step of determining the location further includes: ignoring the third sensing value corresponding to the (N+1)th sensing electrode among the plurality of third sensing values; and according to the plurality of third senses The measured value is used to determine the position of the external conductive object relative to the plurality of sensing electrodes.
在一範例中,其中判斷該位置的步驟更包含:找出相應於第N條感測電極的該第一感測值、該第二感測值與該第三感測值當中的最小者;找出該最小者所對應之該多個第一感測值、該多個第二感測值或該多個第三感測值的其中之一;忽略該最小者所對應之該多個第一感測值、該多個第二感測值或該多個第三感測值的其中之一當中,相應於第N-1條感測電極與第N+1條感測電極的感測值;以及根據該最小者所對應之該多個第一感測值、該多個第二感測值或該多個第三感測值的其中之一,來判斷該外部導電物件相對於該多條感測電極的該位置。 In an example, the step of determining the location further includes: finding a first one of the first sensing value, the second sensing value, and the third sensing value corresponding to the Nth sensing electrode; Finding one of the plurality of first sensing values, the plurality of second sensing values, or the plurality of third sensing values corresponding to the smallest one; ignoring the plurality of the corresponding ones Sensing corresponding to the (N-1)th sensing electrode and the (N+1th)th sensing electrode among one of the sensing values, the plurality of second sensing values, or the plurality of third sensing values And determining, according to one of the plurality of first sensing values, the plurality of second sensing values, or the plurality of third sensing values corresponding to the minimum one, the external conductive object relative to the The position of the plurality of sensing electrodes.
在一範例中,其中判斷該位置的步驟更包含:忽略該最小者所對應之該多個第一感測值、該多個第二感測值或該多個第三感測值的其中之一當中,相應於第N-2條感測電極與第N+2條感測電極的感測值。 In an example, the step of determining the location further includes: ignoring the plurality of first sensing values, the plurality of second sensing values, or the plurality of third sensing values corresponding to the minimum one One of the sensing values corresponding to the N-2th sensing electrode and the N+2th sensing electrode.
在一實施例中,本申請提供一種觸控處理裝置,用於減少像素更新時的干擾,包含一感測電路與連接至該感測電路的一處理器。該感 測電路用於:對一觸控螢幕上的多條感測電極進行第一次感測,以得到多個第一感測值;於一間隔時間之後,對該多條感測電極進行第二次感測,以得到多個第二感測值;以及於該間隔時間之後,對該多條感測電極進行第三次感測,以得到多個第三感測值。該處理器用於:將相應於該多條感測電極的該多個第一感測值、該多個第二感測值與該多個第三感測值分別加總為多個感測值總和;根據該多個感測值總和,判斷該多條感測電極中的第N條感測電極附近有一外部導電物件近接該觸控螢幕;根據該多個第一感測值、該多個第二感測值與該多個第三感測值的其中之一來判斷該外部導電物件相對於該多條感測電極的一位置。其中,該多條感測電極與該觸控螢幕的像素橫軸互相平行。 In one embodiment, the present application provides a touch processing device for reducing interference when a pixel is updated, including a sensing circuit and a processor connected to the sensing circuit. The feeling The measuring circuit is configured to: perform a first sensing on the plurality of sensing electrodes on a touch screen to obtain a plurality of first sensing values; and after the interval time, perform a second sensing on the plurality of sensing electrodes Sub-sensing to obtain a plurality of second sensing values; and after the interval time, performing a third sensing on the plurality of sensing electrodes to obtain a plurality of third sensing values. The processor is configured to add the plurality of first sensing values, the plurality of second sensing values, and the plurality of third sensing values corresponding to the plurality of sensing electrodes to each of the plurality of sensing values And summing, according to the sum of the plurality of sensing values, an external conductive object in the vicinity of the Nth sensing electrodes of the plurality of sensing electrodes is adjacent to the touch screen; and the plurality of first sensing values, the plurality of The second sensing value and one of the plurality of third sensing values determine a position of the external conductive object relative to the plurality of sensing electrodes. The plurality of sensing electrodes and the horizontal axis of the pixel of the touch screen are parallel to each other.
在一範例中,上述的處理器更用於:忽略該多個第一感測值當中相應於第N-1條感測電極的該第一感測值;以及根據該多個第一感測值來判斷該外部導電物件相對於該多條感測電極的該位置。 In an example, the processor is further configured to: ignore the first sensing value corresponding to the N-1th sensing electrodes among the plurality of first sensing values; and according to the plurality of first sensing The value is used to determine the position of the outer conductive object relative to the plurality of sensing electrodes.
在另一範例中,上述的處理器更用於:忽略該多個第三感測值當中相應於第N+1條感測電極的該第三感測值;以及根據該多個第三感測值來判斷該外部導電物件相對於該多條感測電極的該位置。 In another example, the processor is further configured to: ignore the third sensing value corresponding to the (N+1)th sensing electrode among the plurality of third sensing values; and according to the plurality of third senses The measured value is used to determine the position of the external conductive object relative to the plurality of sensing electrodes.
在更一範例中,上述的處理器更用於:找出相應於第N條感測電極的該第一感測值、該第二感測值與該第三感測值當中的最小者;找出該最小者所對應之該多個第一感測值、該多個第二感測值或該多個第三感測值的其中之一;忽略該最小者所對應之該多個第一感測值、該多個第二感測值或該多個第三感測值的其中之一當中,相應於第N-1條感測電極與第N+1條感測電極的感測值;以及根據該最小者所對應之該多個第一感測 值、該多個第二感測值或該多個第三感測值的其中之一,來判斷該外部導電物件相對於該多條感測電極的該位置。 In a further example, the processor is further configured to: find a first one of the first sensing value, the second sensing value, and the third sensing value corresponding to the Nth sensing electrode; Finding one of the plurality of first sensing values, the plurality of second sensing values, or the plurality of third sensing values corresponding to the smallest one; ignoring the plurality of the corresponding ones Sensing corresponding to the (N-1)th sensing electrode and the (N+1th)th sensing electrode among one of the sensing values, the plurality of second sensing values, or the plurality of third sensing values a value; and the plurality of first sensings corresponding to the minimum one The value, the plurality of second sensed values, or one of the plurality of third sensed values is used to determine the position of the outer conductive object relative to the plurality of sense electrodes.
在一變化中,該處理器更用於:忽略該最小者所對應之該多個第一感測值、該多個第二感測值或該多個第三感測值的其中之一當中,相應於第N-2條感測電極與第N+2條感測電極的感測值。 In a variation, the processor is further configured to: ignore one of the plurality of first sensing values, the plurality of second sensing values, or the plurality of third sensing values corresponding to the minimum one Corresponding to the sensing value of the N-2th sensing electrode and the N+2th sensing electrode.
在一實施例中,本申請提供一種電子系統,用於減少像素更新時的干擾,包含:一觸控螢幕與連接該觸控螢幕的一觸控處理裝置。該觸控處理裝置包含一感測電路與連接至該感測電路的一處理器。該感測電路用於:對該觸控螢幕上的多條感測電極進行第一次感測,以得到多個第一感測值;於一間隔時間之後,對該多條感測電極進行第二次感測,以得到多個第二感測值;以及於該間隔時間之後,對該多條感測電極進行第三次感測,以得到多個第三感測值。該處理器用於:將相應於該多條感測電極的該多個第一感測值、該多個第二感測值與該多個第三感測值分別加總為多個感測值總和;根據該多個感測值總和,判斷該多條感測電極中的第N條感測電極附近有一外部導電物件近接該觸控螢幕;根據該多個第一感測值、該多個第二感測值與該多個第三感測值的其中之一來判斷該外部導電物件相對於該多條感測電極的一位置。其中,該多條感測電極與該觸控螢幕的像素橫軸互相平行。 In an embodiment, the present application provides an electronic system for reducing interference when a pixel is updated, including: a touch screen and a touch processing device connected to the touch screen. The touch processing device includes a sensing circuit and a processor coupled to the sensing circuit. The sensing circuit is configured to: perform a first sensing on the plurality of sensing electrodes on the touch screen to obtain a plurality of first sensing values; and after an interval time, perform the plurality of sensing electrodes The second sensing is performed to obtain a plurality of second sensing values; and after the interval time, the plurality of sensing electrodes are subjected to a third sensing to obtain a plurality of third sensing values. The processor is configured to add the plurality of first sensing values, the plurality of second sensing values, and the plurality of third sensing values corresponding to the plurality of sensing electrodes to each of the plurality of sensing values And summing, according to the sum of the plurality of sensing values, an external conductive object in the vicinity of the Nth sensing electrodes of the plurality of sensing electrodes is adjacent to the touch screen; and the plurality of first sensing values, the plurality of The second sensing value and one of the plurality of third sensing values determine a position of the external conductive object relative to the plurality of sensing electrodes. The plurality of sensing electrodes and the horizontal axis of the pixel of the touch screen are parallel to each other.
在一實施例中,本申請提供一種觸控處理方法,用於減少像素更新時的干擾,包含:對一觸控螢幕上的多條感測電極進行第一次感測,以得到多個第一感測值;於一間隔時間之後,對該多條感測電極進行第二次感測,以得到多個第二感測值;於該間隔時間之後,對該多條感測電極 進行第三次感測,以得到多個第三感測值;將相應於該多條感測電極的該多個第一感測值、該多個第二感測值與該多個第三感測值分別加總為多個感測值總和;根據該多個感測值總和,判斷該多條感測電極中的至少兩條相鄰的感測電極附近有一外部導電物件近接該觸控螢幕;以及根據該多個第一感測值、該多個第二感測值與該多個第三感測值的其中之一來判斷該外部導電物件相對於該多個感測電極的一位置,其中,該多條感測電極與該觸控螢幕的像素橫軸互相平行。 In an embodiment, the present application provides a touch processing method for reducing interference when a pixel is updated, including: performing a first sensing on a plurality of sensing electrodes on a touch screen to obtain a plurality of a sensing value; after an interval time, performing a second sensing on the plurality of sensing electrodes to obtain a plurality of second sensing values; after the interval time, the plurality of sensing electrodes Performing a third sensing to obtain a plurality of third sensing values; the plurality of first sensing values corresponding to the plurality of sensing electrodes, the plurality of second sensing values, and the plurality of third The sensing values are respectively added to the sum of the plurality of sensing values; determining, according to the sum of the plurality of sensing values, that an external conductive object is adjacent to the touch in the vicinity of at least two adjacent sensing electrodes of the plurality of sensing electrodes And determining, according to the plurality of first sensing values, the plurality of second sensing values and the plurality of third sensing values, one of the external conductive objects relative to the plurality of sensing electrodes a position, wherein the plurality of sensing electrodes and the horizontal axis of the pixel of the touch screen are parallel to each other.
在一範例中,其中判斷該位置的步驟更包含:根據該至少兩條感測電極之一隔鄰感測電極所對應的該第一感測值、該第二感測值與該第三感測值當中的最大者,判斷該最大者對應至該第一次感測、該第二次感測或該第三次感測的何者;忽略該最大者所對應之該第一次感測、該第二次感測或該第三次感測其中之一當中,相應於該隔鄰感測電極的感測值;以及根據該最大者所對應之該第一次感測、該第二次感測或該第三次感測其中之一,來判斷該外部導電物件相對於該多條感測電極的該位置。 In an example, the step of determining the location further includes: the first sensing value, the second sensing value, and the third sensing corresponding to the sensing electrode according to one of the at least two sensing electrodes The largest of the measured values, determining whether the largest one corresponds to the first sensing, the second sensing, or the third sensing; ignoring the first sensing corresponding to the largest one, a sensing value corresponding to the neighboring sensing electrode of the second sensing or the third sensing; and the first sensing, the second time corresponding to the largest one The sensing or the third sensing is performed to determine the position of the external conductive object relative to the plurality of sensing electrodes.
在另一範例中,其中判斷該位置的步驟更包含:根據該至少兩條感測電極之每一條,其該第一感測值、該第二感測值與該第三感測值三者當中與其他兩者之差異最大者,忽略該最大者所對應之該多個第一感測值、該多個第二感測值或該多個第三感測值;根據未被忽略的該多個第一感測值、該多個第二感測值或該多個第三感測值的其中之一,忽略該至少兩條感測電極之一隔鄰感測電極之感測值;以及根據未被忽略的該多個第一感測值、該多個第二感測值或該多個第三感測值的其中之一,判斷該外部導電物件相對於該多條感測電極的該位置。 In another example, the step of determining the location further includes: according to each of the at least two sensing electrodes, the first sensing value, the second sensing value, and the third sensing value Having the largest difference from the other two, ignoring the plurality of first sensed values, the plurality of second sensed values, or the plurality of third sensed values corresponding to the largest one; And sensing one of the plurality of first sensing values, the plurality of second sensing values, or the plurality of third sensing values, ignoring the sensing values of the sensing electrodes of the at least two sensing electrodes; And determining, according to one of the plurality of first sensing values, the plurality of second sensing values or the plurality of third sensing values that are not ignored, the external conductive object relative to the plurality of sensing electrodes The location.
在更一範例中,其中判斷該位置的步驟更包含:根據該至少兩條感測電極之每一條,找出其該第一感測值、該第二感測值與該第三感測值三者當中與其他兩者之差異最大者,並且取其他兩者之平均感測值;以及根據該至少兩條感測電極之每一條感測電極所對應之平均感測值,判斷該外部導電物件相對於該多條感測電極的該位置。 In a further example, the step of determining the location further includes: finding, according to each of the at least two sensing electrodes, the first sensing value, the second sensing value, and the third sensing value. The difference between the other two is the largest, and the average of the other two is measured; and the external conductive is determined according to the average sensed value corresponding to each of the at least two sensing electrodes The position of the object relative to the plurality of sensing electrodes.
在一實施例中,本申請提供一種觸控處理裝置,用於減少像素更新時的干擾,包含:一感測電路以及連接至該感測電路的一處理器。該感測電路用於:對一觸控螢幕上的多條感測電極進行第一次感測,以得到多個第一感測值;於一間隔時間之後,對該多條感測電極進行第二次感測,以得到多個第二感測值;以及於該間隔時間之後,對該多條感測電極進行第三次感測,以得到多個第三感測值。該處理器用於:將相應於該多條感測電極的該多個第一感測值、該多個第二感測值與該多個第三感測值分別加總為多個感測值總和;根據該多個感測值總和,判斷該多條感測電極中的至少兩條相鄰的感測電極附近有一外部導電物件近接該觸控螢幕;以及根據該多個第一感測值、該多個第二感測值與該多個第三感測值的其中之一來判斷該外部導電物件相對於該多個感測電極的一位置,其中,該多條感測電極與該觸控螢幕的像素橫軸互相平行。 In an embodiment, the present application provides a touch processing device for reducing interference when a pixel is updated, including: a sensing circuit and a processor connected to the sensing circuit. The sensing circuit is configured to: perform a first sensing on the plurality of sensing electrodes on a touch screen to obtain a plurality of first sensing values; and after an interval time, perform the plurality of sensing electrodes The second sensing is performed to obtain a plurality of second sensing values; and after the interval time, the plurality of sensing electrodes are subjected to a third sensing to obtain a plurality of third sensing values. The processor is configured to add the plurality of first sensing values, the plurality of second sensing values, and the plurality of third sensing values corresponding to the plurality of sensing electrodes to each of the plurality of sensing values And summing, according to the sum of the plurality of sensing values, determining that an external conductive object is adjacent to the touch screen in the vicinity of at least two adjacent sensing electrodes of the plurality of sensing electrodes; and according to the plurality of first sensing values Determining, by the one of the plurality of second sensing values and the plurality of third sensing values, a position of the external conductive object relative to the plurality of sensing electrodes, wherein the plurality of sensing electrodes and the The pixel horizontal axes of the touch screen are parallel to each other.
在一範例中,該處理器更用於:根據該至少兩條感測電極之一隔鄰感測電極所對應的該第一感測值、該第二感測值與該第三感測值當中的最大者,判斷該最大者對應至該第一次感測、該第二次感測或該第三次感測的何者;忽略該最大者所對應之該第一次感測、該第二次感測或該第三次感測其中之一當中,相應於該隔鄰感測電極的感測值;以及根據該 最大者所對應之該第一次感測、該第二次感測或該第三次感測其中之一,來判斷該外部導電物件相對於該多條感測電極的該位置。 In an example, the processor is further configured to: the first sensing value, the second sensing value, and the third sensing value corresponding to the sensing electrodes of the at least two sensing electrodes The largest of the ones, determining whether the largest one corresponds to the first sensing, the second sensing, or the third sensing; ignoring the first sensing corresponding to the largest one, the first a sensing value corresponding to the neighboring sensing electrode in one of the second sensing or the third sensing; and according to the sensing value The one of the first sensing, the second sensing, or the third sensing corresponding to the largest one determines the position of the external conductive object relative to the plurality of sensing electrodes.
在另一範例中,該處理器更用於:根據該至少兩條感測電極之每一條,其該第一感測值、該第二感測值與該第三感測值三者當中與其他兩者之差異最大者,忽略該最大者所對應之該多個第一感測值、該多個第二感測值或該多個第三感測值;根據未被忽略的該多個第一感測值、該多個第二感測值或該多個第三感測值的其中之一,忽略該至少兩條感測電極之一隔鄰感測電極之感測值;以及根據未被忽略的該多個第一感測值、該多個第二感測值或該多個第三感測值的其中之一,判斷該外部導電物件相對於該多條感測電極的該位置。 In another example, the processor is further configured to: according to each of the at least two sensing electrodes, the first sensing value, the second sensing value, and the third sensing value The largest difference between the other two, ignoring the plurality of first sensing values, the plurality of second sensing values or the plurality of third sensing values corresponding to the largest one; according to the plurality of not ignored One of the first sensing value, the plurality of second sensing values, or the plurality of third sensing values, ignoring the sensing value of the sensing electrode of the at least two sensing electrodes; and Determining, by one of the plurality of first sensing values, the plurality of second sensing values, or the plurality of third sensing values that are not ignored, determining the external conductive object relative to the plurality of sensing electrodes position.
在更一範例中,該處理器更用於:根據該至少兩條感測電極之每一條,找出其該第一感測值、該第二感測值與該第三感測值三者當中與其他兩者之差異最大者,並且取其他兩者之平均感測值;以及根據該至少兩條感測電極之每一條感測電極所對應之平均感測值,判斷該外部導電物件相對於該多條感測電極的該位置。 In a further example, the processor is further configured to: find, according to each of the at least two sensing electrodes, the first sensing value, the second sensing value, and the third sensing value. The difference between the other two is the largest, and the average of the other two sensed values; and the average sensed value corresponding to each of the at least two sensing electrodes is determined, and the external conductive object is determined to be relatively The position of the plurality of sensing electrodes.
在一實施例中,本申請提供一種電子系統,用於減少像素更新時的干擾,包含:一觸控螢幕與連接到該觸控螢幕的一觸控處理裝置。該觸控處理裝置包含:一感測電路;以及連接至該感測電路的一處理器。該感測電路用於:對該觸控螢幕上的多條感測電極進行第一次感測,以得到多個第一感測值;於一間隔時間之後,對該多條感測電極進行第二次感測,以得到多個第二感測值;以及於該間隔時間之後,對該多條感測電極進行第三次感測,以得到多個第三感測值。該處理器,用於:將相應於該 多條感測電極的該多個第一感測值、該多個第二感測值與該多個第三感測值分別加總為多個感測值總和;根據該多個感測值總和,判斷該多條感測電極中的至少兩條相鄰的感測電極附近有一外部導電物件近接該觸控螢幕;以及根據該多個第一感測值、該多個第二感測值與該多個第三感測值的其中之一來判斷該外部導電物件相對於該多個感測電極的一位置,其中,該多條感測電極與該觸控螢幕的像素橫軸互相平行。 In an embodiment, the present application provides an electronic system for reducing interference when a pixel is updated, including: a touch screen and a touch processing device connected to the touch screen. The touch processing device includes: a sensing circuit; and a processor connected to the sensing circuit. The sensing circuit is configured to: perform a first sensing on the plurality of sensing electrodes on the touch screen to obtain a plurality of first sensing values; and after an interval time, perform the plurality of sensing electrodes The second sensing is performed to obtain a plurality of second sensing values; and after the interval time, the plurality of sensing electrodes are subjected to a third sensing to obtain a plurality of third sensing values. The processor is configured to: correspond to the The plurality of first sensing values, the plurality of second sensing values, and the plurality of third sensing values of the plurality of sensing electrodes are respectively summed into a sum of the plurality of sensing values; according to the plurality of sensing values Summarizing, determining that an external conductive object is adjacent to the touch screen in the vicinity of at least two adjacent sensing electrodes of the plurality of sensing electrodes; and the plurality of second sensing values according to the plurality of first sensing values And determining, by one of the plurality of third sensing values, a position of the external conductive object relative to the plurality of sensing electrodes, wherein the plurality of sensing electrodes and the horizontal axis of the touch screen of the touch screen are parallel to each other .
在一實施例中,本申請提供一種觸控處理方法,用於獲得一間隔時間,以利用該間隔時間執行另一觸控處理方法用於減少像素更新時的干擾,包含:設定該間隔時間;確定一觸控螢幕沒有任何近接的外部導電物件;對觸控螢幕上的多條感測電極進行三次感測以分別獲得多個第一感測值、多個第二感測值與多個第三感測值,每次感測都相隔該間隔時間;判斷該多個第一感測值、該多個第二感測值與該多個第三感測值當中,是否都只有單一個最大值;當該多個第一感測值、該多個第二感測值與該多個第三感測值當中都只有單一個最大值時,判斷三個最大值是否相應於相鄰的三條感測電極;以及當三個最大值相應於相鄰的三條感測電極時,儲存該間隔時間,其中,該多條感測電極與該觸控螢幕的像素橫軸互相平行。 In an embodiment, the present application provides a touch processing method for obtaining an interval time for performing another touch processing method for reducing interference during pixel update by using the interval time, including: setting the interval time; Determining that a touch screen does not have any adjacent external conductive objects; performing three sensing on the plurality of sensing electrodes on the touch screen to obtain a plurality of first sensing values, a plurality of second sensing values, and a plurality of a three-sensing value, each time interval is separated by the interval; determining whether the plurality of first sensing values, the plurality of second sensing values, and the plurality of third sensing values are only one maximum a value; when the plurality of first sensing values, the plurality of second sensing values, and the plurality of third sensing values have only a single maximum value, determining whether the three maximum values correspond to the adjacent three Sensing the electrode; and storing the interval when the three maximum values correspond to the adjacent three sensing electrodes, wherein the plurality of sensing electrodes and the horizontal axis of the pixel of the touch screen are parallel to each other.
在一實施例中,本申請提供一種觸控處理裝置,用於獲得一間隔時間,以利用該間隔時間執行一觸控處理方法用於減少像素更新時的干擾,包含:一感測電路以及連接至該感測電路的一處理器。該感測電路用於:對一觸控螢幕上的多條感測電極進行第一次感測,以得到多個第一感測值;於一間隔時間之後,對該多條感測電極進行第二次感測,以得到多個第二感測值;以及於該間隔時間之後,對該多條感測電極進行第三次 感測,以得到多個第三感測值。該處理器用於:判斷該多個第一感測值、該多個第二感測值與該多個第三感測值當中,是否都只有單一個最大值;當該多個第一感測值、該多個第二感測值與該多個第三感測值當中,都只有單一個最大值時,判斷三個最大值是否相應於相鄰的三條感測電極;若三個最大值相應於相鄰的三條感測電極,儲存該間隔時間,其中,該多條感測電極與該觸控螢幕的像素橫軸互相平行。 In one embodiment, the present application provides a touch processing device for obtaining an interval time for performing a touch processing method for reducing interference during pixel update, including: a sensing circuit and a connection. To a processor of the sensing circuit. The sensing circuit is configured to: perform a first sensing on the plurality of sensing electrodes on a touch screen to obtain a plurality of first sensing values; and after an interval time, perform the plurality of sensing electrodes The second sensing is performed to obtain a plurality of second sensing values; and after the interval time, the plurality of sensing electrodes are subjected to the third time Sensing to obtain a plurality of third sensed values. The processor is configured to: determine whether the plurality of first sensing values, the plurality of second sensing values, and the plurality of third sensing values have only a single maximum value; when the plurality of first sensing When the value, the plurality of second sensing values and the plurality of third sensing values have only a single maximum value, determining whether the three maximum values correspond to the adjacent three sensing electrodes; if the three maximum values The interval time is stored corresponding to the adjacent three sensing electrodes, wherein the plurality of sensing electrodes and the horizontal axis of the pixel of the touch screen are parallel to each other.
在一實施例中,本申請提供一種電子系統,用於獲得一間隔時間,以利用該間隔時間執行一觸控處理方法用於減少像素更新時的干擾,包含:一觸控螢幕與連接至該觸控螢幕的一觸控處理裝置。該觸控處理裝置包含:一感測電路;以及連接至該感測電路的一處理器。該感測電路用於:對一觸控螢幕上的多條感測電極進行第一次感測,以得到多個第一感測值;於一間隔時間之後,對該多條感測電極進行第二次感測,以得到多個第二感測值;以及於該間隔時間之後,對該多條感測電極進行第三次感測,以得到多個第三感測值。該處理器用於:判斷該多個第一感測值、該多個第二感測值與該多個第三感測值當中,是否都只有單一個最大值;當該多個第一感測值、該多個第二感測值與該多個第三感測值當中,都只有單一個最大值時,判斷三個最大值是否相應於相鄰的三條感測電極;若三個最大值相應於相鄰的三條感測電極,儲存該間隔時間,其中,該多條感測電極與該觸控螢幕的像素橫軸互相平行。 In an embodiment, the present application provides an electronic system for obtaining an interval time for performing a touch processing method for reducing interference during pixel update, including: a touch screen and connecting to the A touch processing device for a touch screen. The touch processing device includes: a sensing circuit; and a processor connected to the sensing circuit. The sensing circuit is configured to: perform a first sensing on the plurality of sensing electrodes on a touch screen to obtain a plurality of first sensing values; and after an interval time, perform the plurality of sensing electrodes The second sensing is performed to obtain a plurality of second sensing values; and after the interval time, the plurality of sensing electrodes are subjected to a third sensing to obtain a plurality of third sensing values. The processor is configured to: determine whether the plurality of first sensing values, the plurality of second sensing values, and the plurality of third sensing values have only a single maximum value; when the plurality of first sensing When the value, the plurality of second sensing values and the plurality of third sensing values have only a single maximum value, determining whether the three maximum values correspond to the adjacent three sensing electrodes; if the three maximum values The interval time is stored corresponding to the adjacent three sensing electrodes, wherein the plurality of sensing electrodes and the horizontal axis of the pixel of the touch screen are parallel to each other.
總上所述,根據上述實施例所提供的觸控處理方法、裝置與電子系統,可以減少像素更新時的干擾。此外,根據上述實施例所提供的觸控處理方法、裝置與電子系統,用於獲得一間隔時間,以利用該間隔時 間執行一觸控處理方法用於減少像素更新時的干擾。 In summary, according to the touch processing method, apparatus, and electronic system provided by the above embodiments, interference during pixel update can be reduced. In addition, the touch processing method, device, and electronic system provided by the above embodiments are used to obtain an interval time to utilize the interval. A touch processing method is performed to reduce interference when the pixels are updated.
100‧‧‧電子系統 100‧‧‧Electronic system
110‧‧‧觸控螢幕 110‧‧‧ touch screen
121‧‧‧第一電極 121‧‧‧First electrode
122‧‧‧第二電極 122‧‧‧second electrode
130‧‧‧觸控處理裝置 130‧‧‧Touch processing device
210‧‧‧像素 210‧‧ ‧ pixels
220‧‧‧像素橫軸 220‧‧‧pixel horizontal axis
221‧‧‧像素橫軸 221‧‧‧pixel horizontal axis
222‧‧‧像素橫軸 222‧‧‧pixel horizontal axis
300‧‧‧觸控處理方法 300‧‧‧Touch processing method
310~369‧‧‧步驟 310~369‧‧‧Steps
400‧‧‧觸控處理方法 400‧‧‧Touch processing method
460~468‧‧‧步驟 460~468‧‧‧Steps
500‧‧‧觸控處理方法 500‧‧‧Touch processing method
510~570‧‧‧步驟 510~570‧‧‧Steps
圖1為傳統觸控電子系統的一示意圖。 FIG. 1 is a schematic diagram of a conventional touch electronic system.
圖2為圖1之觸控螢幕的一局部放大圖。 2 is a partial enlarged view of the touch screen of FIG. 1.
圖3A為根據本申請一實施例的觸控處理方法300的一流程示意圖。 FIG. 3A is a schematic flow chart of a touch processing method 300 according to an embodiment of the present application.
圖3B~3D分別為步驟360的一流程示意圖。 3B-3D are schematic diagrams of a process of step 360, respectively.
圖4A為根據本申請一實施例的觸控處理方法400的一流程示意圖。 FIG. 4A is a schematic flow chart of a touch processing method 400 according to an embodiment of the present application.
圖4B~4D分別為步驟460的一流程示意圖。 4B~4D are schematic diagrams of a process of step 460, respectively.
圖5為根據本申請一實施例的觸控處理方法500的一流程示意圖。 FIG. 5 is a schematic flow chart of a touch processing method 500 according to an embodiment of the present application.
本發明將詳細描述一些實施例如下。然而,除了所揭露的實施例外,本發明亦可以廣泛地運用在其他的實施例施行。本發明的範圍並不受該些實施例的限定,乃以其後的申請專利範圍為準。而為提供更清楚的描述及使熟悉該項技藝者能理解本發明的發明內容,圖示內各部分並沒有依照其相對的尺寸而繪圖,某些尺寸與其他相關尺度的比例會被突顯而顯得誇張,且不相關的細節部分亦未完全繪出,以求圖示的簡潔。 The invention will be described in detail below with some embodiments. However, the invention may be applied to other embodiments in addition to the disclosed embodiments. The scope of the present invention is not limited by the embodiments, which are subject to the scope of the claims. To provide a clearer description and to enable those skilled in the art to understand the invention, the various parts of the drawings are not drawn according to their relative dimensions, and the ratio of certain dimensions to other related dimensions will be highlighted. The exaggerated and irrelevant details are not completely drawn to illustrate the simplicity of the illustration.
請參考表一所示,其為根據本發明一實施例之觸控感測方法的感測結果。在表一當中,相鄰的橫向電極進行三次感測,每次感測的時間均間隔某一適當時間。表一所指的橫向電極的感測,可以是上述互電容感測,也可以是上述自電容的感測,更可以是上述先進行互電容再進行自電容的感測,還可以是針對主動觸控筆的偵測。本發明並不限定是何種感 測,只要是平行於像素橫軸更新的觸控電極的感測即可。 Please refer to Table 1, which is a sensing result of the touch sensing method according to an embodiment of the invention. In Table 1, adjacent lateral electrodes are subjected to three sensing, and each sensing time is separated by an appropriate time. The sensing of the lateral electrodes in Table 1 may be the mutual capacitance sensing described above, or the sensing of the self-capacitance described above, or the sensing of the self-capacitance by performing mutual capacitance first, or may be directed to active Stylus detection. The invention is not limited to what sense As long as it is a sensing of the touch electrode that is updated parallel to the horizontal axis of the pixel.
在表一當中,第一次感測時,是第N-1條橫向電極受到像素橫軸的更新干擾,因此第N-1條橫向電極具有感測值,或是其感測值大於某一門檻值。此外,第N條橫向電極也有因為真正觸控所引發的觸控信號。如果單就第一次感測結果進行觸控計算,必然會將第N-1條橫向電極所受到的干擾計算在內。 In Table 1, in the first sensing, the N-1th lateral electrode is disturbed by the update of the horizontal axis of the pixel, so the N-1th lateral electrode has a sensed value, or the sensed value is greater than a certain Threshold value. In addition, the Nth lateral electrode also has a touch signal caused by the real touch. If the touch calculation is performed on the first sensing result alone, the interference of the N-1th lateral electrode will be counted.
在某適當間隔時間之後進行第二次感測時,由於螢幕更新的像素橫軸已經隨時間往下移動,所以換成是第N條橫向電極被干擾。在此同時,觸控信號仍然被第N條橫向電極所感應到,所以第N-1條與第N+1條橫向電極均未感測到信號。 When the second sensing is performed after a certain interval time, since the horizontal axis of the pixel updated by the screen has moved down with time, the Nth horizontal electrode is disturbed. At the same time, the touch signal is still sensed by the Nth lateral electrode, so neither the N-1th nor the N+1th lateral electrodes sense the signal.
接著,在某適當間隔時間之後進行第三次感測時,由於螢幕更新的像素橫軸已經隨時間往下移動,所以換成是第N+1條橫向電極被干擾。在此同時,觸控信號仍然被第N條橫向電極所感應到,所以是第N條與第N+1條橫向電極有感測值。 Then, when the third sensing is performed after a certain interval time, since the horizontal axis of the pixel updated by the screen has moved down with time, it is replaced by the N+1th horizontal electrode being interfered. At the same time, the touch signal is still sensed by the Nth lateral electrode, so the Nth and N+1th lateral electrodes have sensed values.
在進行三次感測之後,執行該觸控處理方法之觸控處理裝置 可以根據表一的結果發現,更新干擾的現象隨著時間分別影響第N-1條、第N條、與第N+1條橫向電極。然而,第N條橫向電極在三次感測中,均有感測值,所以可以判斷出第N條橫向電極在第一次與第三次感測的感測值是有效的,可以用來進行觸控計算。 Touch processing device for performing the touch processing method after performing three sensing According to the results of Table 1, it can be found that the phenomenon of updating the interference affects the N-1th, Nth, and N+1th lateral electrodes with time. However, the Nth lateral electrode has a sensed value in three senses, so it can be judged that the sensed value of the Nth lateral electrode in the first and third senses is effective and can be used for Touch calculation.
在另一實施例中,執行該觸控處理方法之觸控處理裝置可以將這三次的感測值加總起來,由於第N條橫向電極的感測值最大,因此可以認為第N條橫向電極的感測值是真正的觸控信號。 In another embodiment, the touch processing device that performs the touch processing method can add the three sensed values together. Since the sensing value of the Nth lateral electrode is the largest, the Nth horizontal electrode can be considered. The sensed value is the true touch signal.
由於第N條橫向電極的三次感測值當中,第二感測值最大,所以可以取第一次或第三次的感測結果進行計算。或者,可以取三次感測值中最小的感測結果進行計算。在計算時,可以把隔鄰橫向電極的感測值視為干擾而忽略不計。比方說,當取第一次或第三次感測結果進行計算時,可以把第N-1條與第N+1條橫向電極的感測結果忽略不計。 Since the second sensed value is the largest among the three sensed values of the Nth lateral electrode, the first or third sensed result can be taken for calculation. Alternatively, the smallest sensing result of the three sensing values may be taken for calculation. In the calculation, the sensed value of the adjacent lateral electrodes can be regarded as interference and ignored. For example, when the first or third sensing results are calculated, the sensing results of the N-1th and N+1th lateral electrodes can be ignored.
在表一的實施例當中,每次感測的間隔時間可以為事先儲存的數值。比方說在消費性電子產品當中,使用者並無法更動觸控螢幕的解析度,因此觸控處理器可以依照預定儲存的間隔時間進行多次感測。 In the embodiment of Table 1, the interval of each sensing may be a value stored in advance. For example, in a consumer electronic product, the user cannot change the resolution of the touch screen, so the touch processor can perform multiple sensing according to the predetermined storage interval.
在另外的實施例當中,觸控處理裝置或是其驅動程式,可以向電子系統的作業系統索得觸控螢幕的解析度、更新率與尺寸,進而計算像素橫軸更新的時間。並且根據每條橫向電極所覆蓋的像素橫軸數量,將間隔時間設定為大於或等於兩者的乘積,亦即令兩次橫向電極感測的間隔時間,會令不同條橫向電極受到像素橫軸更新的最大干擾。比方在上述的範例當中,當每條第一電極涵蓋12條像素橫軸,每個像素橫軸更新的時間為15.4us,則可以將兩次掃描的間隔時間大於184.8us。 In another embodiment, the touch processing device or the driver thereof can obtain the resolution, the update rate, and the size of the touch screen from the operating system of the electronic system, thereby calculating the time for updating the horizontal axis of the pixel. And according to the number of horizontal axes of pixels covered by each lateral electrode, the interval time is set to be greater than or equal to the product of the two, that is, the interval time between the two lateral electrodes sensing, the different horizontal electrodes are updated by the horizontal axis of the pixel The biggest interference. For example, in the above example, when each first electrode covers 12 horizontal axes of pixels and the horizontal axis update time of each pixel is 15.4 us, the interval between two scans can be greater than 184.8 us.
在某些實施例當中,若觸控處理裝置無法取得上述的觸控螢幕的解析度、更新率與尺寸時,則可以動態的調整間隔時間。比方說,當觸控處理器並未偵測到任何物體時,就可以對間隔時間進行修正,直到出現如表二的結果為止。 In some embodiments, if the touch processing device cannot obtain the resolution, update rate, and size of the touch screen, the interval time can be dynamically adjusted. For example, when the touch processor does not detect any objects, the interval can be corrected until the result of Table 2 appears.
由於這三條橫向電極的感測值經過三次感測的加總以後,大致相等,而且其感測值依序移動,所以觸控處理器可以理解到此時所設定的感測間隔時間是適當的。以後可以使用此間隔時間作為偵測參數。 Since the sensed values of the three lateral electrodes are substantially equal after the summation of the three senses, and the sensed values are sequentially moved, the touch processor can understand that the sensing interval time set at this time is appropriate. . This interval can be used later as a detection parameter.
在表一的實施例中,必須先做三次感測,觸控處理器才能根據正確的結果進行觸控計算,進而向作業系統回報一次正確的觸控點。然而,在另一實施例中,上述的觸控計算與報點可以是管線式(pipeline)。舉例來說,第一次報點是根據第一到第三次感測,第二次報點則是根據第二到第四次感測,第三次報點根據第三到第五次感測,以此類推。所以只有第一次的報點較慢,其餘的報點時機均相應於每一次的感測。 In the embodiment of Table 1, the sensing must be performed three times, and the touch processor can perform the touch calculation according to the correct result, and then return the correct touch point to the operating system. However, in another embodiment, the touch calculation and the report point described above may be a pipeline. For example, the first report is based on the first to third senses, the second report is based on the second to fourth senses, and the third report is based on the third to fifth senses. Test, and so on. Therefore, only the first time the report is slow, and the rest of the time is corresponding to each sense.
請參考表三所示,其為根據本發明另一實施例的感測結果。當一條橫向電極涵蓋多條像素橫軸時,大多數感測的結果會如表一所示。 然而,在少數的情況下,當橫向電極感測時,是由橫向電極之間的像素橫軸進行更新,就會出現如表三的結果。 Please refer to Table 3, which is a sensing result according to another embodiment of the present invention. When a lateral electrode covers multiple horizontal axes of pixels, most of the sensing results will be as shown in Table 1. However, in a few cases, when the lateral electrodes are sensed, they are updated by the horizontal axis of the pixels between the lateral electrodes, and the results as shown in Table 3 occur.
在表三的實施例當中,當第一次感測時,剛好遇上第N-1條與第N條橫向電極之間的像素橫軸更新,因此這兩條橫向電極都感測到部分更新干擾。當第二次感測時,遇上第N條與第N+1條橫向電極之間的像素橫軸更新,因此這兩條橫向電極都感測到部分更新干擾。當最後一次感測時,會遇上第N+1條與第N+2條橫向電極之間的像素橫軸更新,因此這兩條橫向電極感測到部分更新干擾。 In the embodiment of Table 3, when the first sensing is performed, the horizontal axis of the pixel between the N-1th and Nth lateral electrodes is just updated, so both lateral electrodes sense partial updates. interference. When the second sensing occurs, the horizontal axis of the pixel between the Nth and N+1th lateral electrodes is updated, so that both of the lateral electrodes sense partial update interference. When the last sensing, the horizontal axis of the pixel between the N+1th and N+2th lateral electrodes is updated, so the two lateral electrodes sense partial update interference.
在表三的實施例當中,當第一次感測時,剛好遇上第N-1條與第N條橫向電極之間的像素橫軸更新,因此這兩條橫向電極都感測到部分更新干擾。當第二次感測時,遇上第N條與第N+1條橫向電極之間的像素橫軸更新,因此這兩條橫向電極都感測到部分更新干擾。當最後一次感測時, 會遇上第N+1條與第N+2條橫向電極之間的像素橫軸更新,因此這兩條橫向電極感測到部分更新干擾。 In the embodiment of Table 3, when the first sensing is performed, the horizontal axis of the pixel between the N-1th and Nth lateral electrodes is just updated, so both lateral electrodes sense partial updates. interference. When the second sensing occurs, the horizontal axis of the pixel between the Nth and N+1th lateral electrodes is updated, so that both of the lateral electrodes sense partial update interference. When the last time, A pixel horizontal axis update between the N+1th and N+2th lateral electrodes is encountered, so the two lateral electrodes sense partial update interference.
當把這三次感測結果的感測值相加之後,第N條橫向電極的感測值總和仍然會高於其他三條橫向電極,因此觸控處理裝置會把第N條橫向電極當作是收到觸控信號的橫向電極。 When the sensed values of the three sensed results are added, the sum of the sensed values of the Nth lateral electrodes is still higher than the other three lateral electrodes, so the touch processing device treats the Nth lateral electrodes as To the lateral electrode of the touch signal.
同樣地,由於第N條橫向電極的三次感測值當中,第三感測值最小,所以可以取三次感測值中最小的感測結果進行計算,或者是將兩次較接近之感測值忽略不計。在計算時,可以把隔鄰兩條橫向電極的感測值視為干擾而忽略不計。比方說,當取第三次感測結果進行計算時,可以把第N-2、N-1、N+1、N+2條橫向電極的感測結果忽略不計。 Similarly, since the third sensed value is the smallest among the three sensed values of the Nth lateral electrode, the smallest sensed result of the three sensed values may be taken, or two closer sensed values may be obtained. can be ignored. In the calculation, the sensed values of the two adjacent lateral electrodes can be regarded as interference and neglected. For example, when the third sensing result is used for calculation, the sensing results of the N-2, N-1, N+1, and N+2 lateral electrodes can be ignored.
請參考表四與表五所示,其為根據本發明另一實施例的感測結果。由於外部導電物件的尺寸可能較大,也可能橫跨兩條以上的橫向電極,因此可能會出現表四或表五的結果。 Please refer to Tables 4 and 5, which are sensing results according to another embodiment of the present invention. Since the size of the external conductive object may be large, it is also possible to span more than two lateral electrodes, so the results of Table 4 or Table 5 may occur.
在表四的實施例中,第N-1條與第N條橫向電極感測到觸控信號。類似地,在表五的實施例中,第N條與第N+1條橫向電極感測到觸控 信號。 In the embodiment of Table 4, the N-1th and Nth lateral electrodes sense the touch signal. Similarly, in the embodiment of Table 5, the Nth and N+1th lateral electrodes sense the touch signal.
觸控處理裝置可以根據三次感測的加總結果,判斷出有兩條相鄰的橫向電極收到觸控信號。在表四的實施例當中,第N-1條與第N條橫向電極的感測值總和要大於第N+1條橫向電極的感測值總和,所以判斷第N-1條與第N條橫向電極收到觸控信號,第N+1條橫向電極未收到觸控信號。在表五的實施例當中,第N條與第N+1條橫向電極的感測值總和要大於第N-1條橫向電極的感測值總和,所以判斷第N條與第N+1條橫向電極收到觸控信號,第N-1條橫向電極未收到觸控信號。 The touch processing device can determine that two adjacent lateral electrodes receive the touch signal according to the summation result of the three sensings. In the embodiment of Table 4, the sum of the sensed values of the N-1th and Nth lateral electrodes is greater than the sum of the sensed values of the N+1th lateral electrodes, so the N-1th and Nthth clauses are judged. The lateral electrode receives the touch signal, and the N+1th lateral electrode does not receive the touch signal. In the embodiment of Table 5, the sum of the sensed values of the Nth and N+1th lateral electrodes is greater than the sum of the sensed values of the N-1th lateral electrodes, so the Nth and N+1th pieces are judged. The lateral electrode receives the touch signal, and the N-1th lateral electrode does not receive the touch signal.
在某實施例中,可以採取未收到觸控信號的橫向電極被干擾的那一次感測結果,來計算觸控。比方說,在表四的實施例,第N+1條橫向電極未收到觸控信號,它在第三次感測時被干擾而有了感測值,因此採用第三次感測結果來計算觸控,但要將第N+1條橫向電極的感測值略去不計。又比方說,在表五的實施例,第N-1條橫向電極未收到觸控信號,它在第一次感測時被干擾而有了感測值,因此採用第一次感測結果來計算觸控,但要將第N-1條橫向電極的感測值略去不計。 In an embodiment, the touch may be calculated by taking the sensing result that the lateral electrode that has not received the touch signal is disturbed. For example, in the embodiment of Table 4, the N+1th lateral electrode does not receive the touch signal, and it is interfered with the sensed value during the third sensing, so the third sensing result is used. The touch is calculated, but the sensed value of the N+1th lateral electrode is omitted. For example, in the embodiment of Table 5, the N-1th lateral electrode does not receive the touch signal, and it is interfered with the sensed value during the first sensing, so the first sensing result is used. To calculate the touch, but the sensed value of the N-1th lateral electrode is omitted.
在另一實施例中,可以採取收到觸控信號的橫向電極相似的感測值進行計算。比方說,在表四的實施例中,第N-1條橫向電極的後兩次感測結果類似,第N條橫向電極的第一次與第三次感測結果類似,所以採用第三次感測結果來計算。在表五的實施例中,第N條橫向電極的第一次與第三次感測結果類似,第N+1條橫向電極的第一次與第二次感測結果類似,所以採用第一次感測結果來計算。 In another embodiment, the sensing value similar to the lateral electrodes of the received touch signal may be used for calculation. For example, in the embodiment of Table 4, the second two sensing results of the N-1th lateral electrode are similar, and the first and third sensing results of the Nth lateral electrode are similar, so the third time is adopted. Sensing results to calculate. In the embodiment of Table 5, the first and third sensing results of the Nth lateral electrode are similar, and the first and second sensing results of the N+1th lateral electrode are similar, so the first is adopted. The second sensing result is calculated.
在更一實施例中,可以採取收到觸控信號的橫向電極相似的感測值的平均進行計算。比方說,在表四的實施例中,第N-1條橫向電極的後兩次感測結果類似,第N條橫向電極的第一次與第三次感測結果類似,所以採用第N-1條橫向電極的後兩次感測結果的平均,以及第N條橫向電極的第一次與第三次感測結果的來計算。在表五的實施例中,第N條橫向電極的第一次與第三次感測結果類似,第N+1條橫向電極的第一次與第二次感測結果類似,所以採用第N條橫向電極的第一次與第三次感測結果的平均,以及第N+1條橫向電極的第一次與第二次感測結果的平均進行計算。 In a further embodiment, the average of the sensed values of the lateral electrodes receiving the touch signal can be calculated. For example, in the embodiment of Table 4, the second two sensing results of the N-1th lateral electrode are similar, and the first and third sensing results of the Nth lateral electrode are similar, so the N-th is adopted. The average of the last two sensing results of one lateral electrode, and the first and third sensing results of the Nth lateral electrode are calculated. In the embodiment of Table 5, the first and third sensing results of the Nth lateral electrode are similar, and the first and second sensing results of the N+1th lateral electrode are similar, so the Nth is adopted. The average of the first and third sensing results of the strip lateral electrodes, and the average of the first and second sensing results of the N+1th lateral electrodes are calculated.
本領域的普通技術人員可以理解到,雖然在表一到表五的實施例當中,僅使用三次感測作為實施範例,但本發明的範圍並不限於三次感測,可以推廣到三次以上感測的範例。本領域的普通技術人員應該可以依據本發明的內容自行推廣。 It will be understood by those skilled in the art that although only three sensings are used as an example in the embodiments of Tables 1 to 5, the scope of the present invention is not limited to three sensing, and can be extended to three or more sensing. Example. Those of ordinary skill in the art should be able to promote themselves in accordance with the teachings of the present invention.
總上所述,本申請提供了觸控處理器的觸控方法,利用間隔適當時間進行的多次橫向電極的感測結果,判斷出哪一橫向電極的感測結果確實與觸控相關,或者判斷出哪一橫向電極的感測結果與觸控無關,並且將其感測結果排除在觸控計算之外,使得觸控計算能夠免於或至少減少 受到像素橫軸更新的電磁干擾影響。 In summary, the present application provides a touch control method for a touch processor, and determines, by using a plurality of lateral electrodes sensing results at appropriate intervals, which sensing result of the lateral electrode is actually related to the touch, or Determining which sensing result of the lateral electrode is independent of the touch, and excluding the sensing result from the touch calculation, so that the touch calculation can be avoided or at least reduced Affected by electromagnetic interference that is updated by the horizontal axis of the pixel.
請參考圖3A所示,其為根據本發明一實施例的一觸控處理方法300之一流程示意圖,其可以適用於表一與表三的實施例當中。該觸控處理方法300包含但不限於以下的步驟。步驟310:對一觸控螢幕上的多條感測電極進行第一次感測,以得到多個第一感測值;步驟320:於一間隔時間之後,對該多條感測電極進行第二次感測,以得到多個第二感測值;步驟330:於該間隔時間之後,對該多條感測電極進行第三次感測,以得到多個第三感測值;步驟340:將相應於該多條感測電極的該多個第一感測值、該多個第二感測值與該多個第三感測值分別加總為多個感測值總和;步驟350:根據該多個感測值總和,判斷該多條感測電極中的第N條感測電極附近有一外部導電物件近接該觸控螢幕;步驟360:根據該多個第一感測值、該多個第二感測值與該多個第三感測值的其中之一來判斷該外部導電物件相對於該多條感測電極的一位置。其中,該多條感測電極與該觸控螢幕的像素橫軸互相平行。 Please refer to FIG. 3A , which is a schematic flowchart of a touch processing method 300 according to an embodiment of the invention, which can be applied to the embodiments of Table 1 and Table 3. The touch processing method 300 includes, but is not limited to, the following steps. Step 310: Perform a first sensing on the plurality of sensing electrodes on a touch screen to obtain a plurality of first sensing values. Step 320: After an interval time, perform the first sensing electrodes on the plurality of sensing electrodes. Second sensing, to obtain a plurality of second sensing values; Step 330: After the interval time, performing a third sensing on the plurality of sensing electrodes to obtain a plurality of third sensing values; Adding the plurality of first sensing values, the plurality of second sensing values, and the plurality of third sensing values corresponding to the plurality of sensing electrodes to a total of the plurality of sensing values; step 350 And determining, according to the sum of the plurality of sensing values, an external conductive object adjacent to the touch screen in the vicinity of the Nth sensing electrodes of the plurality of sensing electrodes; and step 360: according to the plurality of first sensing values, the Determining a position of the external conductive object relative to the plurality of sensing electrodes by one of the plurality of second sensing values and the plurality of third sensing values. The plurality of sensing electrodes and the horizontal axis of the pixel of the touch screen are parallel to each other.
步驟360可以包含三種不同的實施例。請參考圖3B所示,其為觸控處理方法300之步驟360第一個實施例的一流程示意圖。在第一個實施例當中,步驟361:忽略該多個第一感測值當中相應於第N-1條感測電極的該第一感測值;以及步驟362:根據該多個第一感測值來判斷該外部導電物件相對於該多條感測電極的該位置。請參考圖3C所示,其為觸控處理方法300之步驟360第二個實施例的一流程示意圖。在第二個實施例當中,步驟363:忽略該多個第三感測值當中相應於第N+1條感測電極的該第三感測值;以及步驟364:根據該多個第三感測值來判斷該外部導電物件相對於該多條感測 電極的該位置。請參考圖3D所示,其為觸控處理方法300之步驟360第三個實施例的一流程示意圖。在第三個實施例當中,步驟365:找出相應於第N條感測電極的該第一感測值、該第二感測值與該第三感測值當中的最小者;步驟366:找出該最小者所對應之該多個第一感測值、該多個第二感測值或該多個第三感測值的其中之一;步驟367:忽略該最小者所對應之該多個第一感測值、該多個第二感測值或該多個第三感測值的其中之一當中,相應於第N-1條感測電極與第N+1條感測電極的感測值;可選而未必要執行的步驟368:忽略該最小者所對應之該多個第一感測值、該多個第二感測值或該多個第三感測值的其中之一當中,相應於第N-2條感測電極與第N+2條感測電極的感測值;步驟369:根據該最小者所對應之該多個第一感測值、該多個第二感測值或該多個第三感測值的其中之一,來判斷該外部導電物件相對於該多條感測電極的該位置。 Step 360 can include three different embodiments. Please refer to FIG. 3B , which is a schematic flowchart of the first embodiment of the step 360 of the touch processing method 300 . In the first embodiment, step 361: ignoring the first sensing value corresponding to the N-1th sensing electrodes among the plurality of first sensing values; and step 362: determining the plurality of first senses according to the plurality of first sensing values The measured value is used to determine the position of the external conductive object relative to the plurality of sensing electrodes. Please refer to FIG. 3C , which is a schematic flowchart of a second embodiment of step 360 of the touch processing method 300 . In the second embodiment, step 363: ignoring the third sensing value corresponding to the (N+1)th sensing electrode among the plurality of third sensing values; and step 364: according to the plurality of third senses Measured to determine the external conductive object relative to the plurality of senses This position of the electrode. Please refer to FIG. 3D , which is a schematic flowchart of a third embodiment of the step 360 of the touch processing method 300 . In the third embodiment, step 365: finding the first sensing value corresponding to the Nth sensing electrode, the smallest of the second sensing value and the third sensing value; Step 366: Finding one of the plurality of first sensing values, the plurality of second sensing values, or the plurality of third sensing values corresponding to the minimum one; step 367: ignoring the corresponding one of the minimum ones One of the plurality of first sensing values, the plurality of second sensing values, or the plurality of third sensing values, corresponding to the (N-1)th sensing electrode and the (N+1)th sensing electrode Sensed value; optional but not necessary to perform step 368: ignoring the plurality of first sensed values, the plurality of second sensed values, or the plurality of third sensed values corresponding to the smallest one One of the sensing values of the Nth and 2nd sensing electrodes corresponding to the N-2th sensing electrode; and 369: the plurality of first sensing values corresponding to the minimum one, the plurality of The second sensed value or one of the plurality of third sensed values is used to determine the position of the outer conductive object relative to the plurality of sense electrodes.
根據本發明一實施例,該觸控處理方法300可由圖1的觸控處理裝置130執行。該觸控處理裝置130可以包含一感測電路,用於連接該多個感測電極,負責執行步驟310、320與330。該觸控處理裝置130可以包含一處理器,用於連接到該感測電路,負責執行步驟340、350與360,以及步驟360所包含的三種實施例內的步驟361~369。該處理器可以是嵌入式處理器,也可以是獨立的處理器,利用所執行的軟體或指令來實施上述的步驟。 According to an embodiment of the invention, the touch processing method 300 can be performed by the touch processing device 130 of FIG. 1 . The touch processing device 130 can include a sensing circuit for connecting the plurality of sensing electrodes, and is responsible for performing steps 310, 320, and 330. The touch processing device 130 can include a processor for connecting to the sensing circuit, responsible for performing steps 340, 350, and 360, and steps 361-369 of the three embodiments included in step 360. The processor may be an embedded processor or a stand-alone processor that implements the steps described above using software or instructions executed.
換言之,根據該實施例,本發明提供一種觸控處理裝置,用於減少像素更新時的干擾,包含一感測電路與連接至該感測電路的一處理器。該感測電路用於:對一觸控螢幕上的多條感測電極進行第一次感測,以得到多個第一感測值;於一間隔時間之後,對該多條感測電極進行第二 次感測,以得到多個第二感測值;以及於該間隔時間之後,對該多條感測電極進行第三次感測,以得到多個第三感測值。該處理器用於:將相應於該多條感測電極的該多個第一感測值、該多個第二感測值與該多個第三感測值分別加總為多個感測值總和;根據該多個感測值總和,判斷該多條感測電極中的第N條感測電極附近有一外部導電物件近接該觸控螢幕;根據該多個第一感測值、該多個第二感測值與該多個第三感測值的其中之一來判斷該外部導電物件相對於該多條感測電極的一位置。其中,該多條感測電極與該觸控螢幕的像素橫軸互相平行。 In other words, according to the embodiment, the present invention provides a touch processing device for reducing interference when a pixel is updated, comprising a sensing circuit and a processor connected to the sensing circuit. The sensing circuit is configured to: perform a first sensing on the plurality of sensing electrodes on a touch screen to obtain a plurality of first sensing values; and after an interval time, perform the plurality of sensing electrodes second Sub-sensing to obtain a plurality of second sensing values; and after the interval time, performing a third sensing on the plurality of sensing electrodes to obtain a plurality of third sensing values. The processor is configured to add the plurality of first sensing values, the plurality of second sensing values, and the plurality of third sensing values corresponding to the plurality of sensing electrodes to each of the plurality of sensing values And summing, according to the sum of the plurality of sensing values, an external conductive object in the vicinity of the Nth sensing electrodes of the plurality of sensing electrodes is adjacent to the touch screen; and the plurality of first sensing values, the plurality of The second sensing value and one of the plurality of third sensing values determine a position of the external conductive object relative to the plurality of sensing electrodes. The plurality of sensing electrodes and the horizontal axis of the pixel of the touch screen are parallel to each other.
在一實施例中,上述的處理器更用於:忽略該多個第一感測值當中相應於第N-1條感測電極的該第一感測值;以及根據該多個第一感測值來判斷該外部導電物件相對於該多條感測電極的該位置。在另一實施例中,上述的處理器更用於:忽略該多個第三感測值當中相應於第N+1條感測電極的該第三感測值;以及根據該多個第三感測值來判斷該外部導電物件相對於該多條感測電極的該位置。在更一實施例中,上述的處理器更用於:找出相應於第N條感測電極的該第一感測值、該第二感測值與該第三感測值當中的最小者;找出該最小者所對應之該多個第一感測值、該多個第二感測值或該多個第三感測值的其中之一;忽略該最小者所對應之該多個第一感測值、該多個第二感測值或該多個第三感測值的其中之一當中,相應於第N-1條感測電極與第N+1條感測電極的感測值;以及根據該最小者所對應之該多個第一感測值、該多個第二感測值或該多個第三感測值的其中之一,來判斷該外部導電物件相對於該多條感測電極的該位置。在一變化中,該處理器更用於:忽略該最小者所對應之該多個第一感測值、該多個第二 感測值或該多個第三感測值的其中之一當中,相應於第N-2條感測電極與第N+2條感測電極的感測值。 In an embodiment, the processor is further configured to: ignore the first sensing value corresponding to the N-1th sensing electrodes among the plurality of first sensing values; and according to the plurality of first senses The measured value is used to determine the position of the external conductive object relative to the plurality of sensing electrodes. In another embodiment, the processor is further configured to: ignore the third sensing value corresponding to the (N+1)th sensing electrode among the plurality of third sensing values; and according to the plurality of third The sensed value is used to determine the position of the outer conductive object relative to the plurality of sensing electrodes. In a further embodiment, the processor is further configured to: find the first sensing value corresponding to the Nth sensing electrode, the smallest of the second sensing value and the third sensing value Finding one of the plurality of first sensing values, the plurality of second sensing values, or the plurality of third sensing values corresponding to the smallest one; ignoring the plurality of the corresponding ones Sense of the N-1th sensing electrode and the (N+1th)th sensing electrode among one of the first sensing value, the plurality of second sensing values, or the plurality of third sensing values And determining, according to one of the plurality of first sensing values, the plurality of second sensing values, or the plurality of third sensing values corresponding to the minimum, the external conductive object relative to The position of the plurality of sensing electrodes. In a variation, the processor is further configured to: ignore the plurality of first sensing values corresponding to the minimum one, and the plurality of second One of the sensing value or the plurality of third sensing values corresponds to a sensing value of the N-2th sensing electrode and the N+2th sensing electrode.
根據本發明一實施例,本發明提供一種電子系統,用於減少像素更新時的干擾,包含:一觸控螢幕與連接該觸控螢幕的一觸控處理裝置。該觸控處理裝置包含一感測電路與連接至該感測電路的一處理器。該感測電路用於:對該觸控螢幕上的多條感測電極進行第一次感測,以得到多個第一感測值;於一間隔時間之後,對該多條感測電極進行第二次感測,以得到多個第二感測值;以及於該間隔時間之後,對該多條感測電極進行第三次感測,以得到多個第三感測值。該處理器用於:將相應於該多條感測電極的該多個第一感測值、該多個第二感測值與該多個第三感測值分別加總為多個感測值總和;根據該多個感測值總和,判斷該多條感測電極中的第N條感測電極附近有一外部導電物件近接該觸控螢幕;根據該多個第一感測值、該多個第二感測值與該多個第三感測值的其中之一來判斷該外部導電物件相對於該多條感測電極的一位置。其中,該多條感測電極與該觸控螢幕的像素橫軸互相平行。 According to an embodiment of the invention, the present invention provides an electronic system for reducing interference during pixel update, comprising: a touch screen and a touch processing device connected to the touch screen. The touch processing device includes a sensing circuit and a processor coupled to the sensing circuit. The sensing circuit is configured to: perform a first sensing on the plurality of sensing electrodes on the touch screen to obtain a plurality of first sensing values; and after an interval time, perform the plurality of sensing electrodes The second sensing is performed to obtain a plurality of second sensing values; and after the interval time, the plurality of sensing electrodes are subjected to a third sensing to obtain a plurality of third sensing values. The processor is configured to add the plurality of first sensing values, the plurality of second sensing values, and the plurality of third sensing values corresponding to the plurality of sensing electrodes to each of the plurality of sensing values And summing, according to the sum of the plurality of sensing values, an external conductive object in the vicinity of the Nth sensing electrodes of the plurality of sensing electrodes is adjacent to the touch screen; and the plurality of first sensing values, the plurality of The second sensing value and one of the plurality of third sensing values determine a position of the external conductive object relative to the plurality of sensing electrodes. The plurality of sensing electrodes and the horizontal axis of the pixel of the touch screen are parallel to each other.
請參考圖4A所示,其為根據本發明一實施例的一觸控處理方法400之一流程示意圖,其可以適用於表四與表五的實施例當中。該觸控處理方法400包含但不限於以下的步驟,其中步驟310、320、330與340和圖3A所示步驟相同,在此不再詳述。步驟450:根據該多個感測值總和,判斷該多條感測電極中的至少兩條相鄰的感測電極附近有一外部導電物件近接該觸控螢幕。比方說,當有至少兩個相鄰的感測值大於一門檻值時,可以判斷該相鄰的感測值相應的至少兩條感測電極附近有一外部導電物件近接 該觸控螢幕。又或者是,當有至少兩個相鄰的感測值大於其隔鄰的感測值時,亦即其差大於另一門檻值時,可以判斷該相鄰的感測值相應的至少兩條感測電極附近有一外部導電物件近接該觸控螢幕。接著執行步驟460,根據該多個第一感測值、該多個第二感測值與該多個第三感測值的其中之一來判斷該外部導電物件相對於該多個感測電極的一位置。例如在表四的實施例當中,步驟450可以判斷出第N-1條與第N條感測電極為該至少兩條感測電極,在表五的實施例當中,步驟450可以判斷出第N條與第N+1條感測電極為該至少兩條感測電極。 Please refer to FIG. 4A , which is a schematic flowchart of a touch processing method 400 according to an embodiment of the present invention, which can be applied to the embodiments of Table 4 and Table 5. The touch processing method 400 includes, but is not limited to, the following steps, wherein steps 310, 320, 330, and 340 are the same as those shown in FIG. 3A, and are not described in detail herein. Step 450: Determine, according to the sum of the plurality of sensing values, that an external conductive object is adjacent to the touch screen in the vicinity of at least two adjacent sensing electrodes of the plurality of sensing electrodes. For example, when there are at least two adjacent sensing values greater than a threshold value, it can be determined that the adjacent sensing value has an external conductive object adjacent to the adjacent at least two sensing electrodes. The touch screen. Or, when there are at least two adjacent sensing values greater than the sensing values of the neighboring edges, that is, when the difference is greater than another threshold, the adjacent sensing values may be determined to correspond to at least two An external conductive object is adjacent to the touch screen in the vicinity of the sensing electrode. Then, step 460 is performed to determine, according to the plurality of first sensing values, the plurality of second sensing values, and the plurality of third sensing values, the external conductive object relative to the plurality of sensing electrodes a position. For example, in the embodiment of Table 4, step 450 can determine that the N-1th and Nth sensing electrodes are the at least two sensing electrodes. In the embodiment of Table 5, step 450 can determine the Nth. The strip and the (N+1)th sensing electrode are the at least two sensing electrodes.
請參考圖4B,其為步驟460的一實施例之流程示意圖。步驟461:根據該至少兩條感測電極之一隔鄰感測電極所對應的該第一感測值、該第二感測值與該第三感測值當中的最大者,判斷該最大者對應至該第一次感測、該第二次感測或該第三次感測的何者。步驟462:忽略該最大者所對應之該第一次感測、該第二次感測或該第三次感測其中之一當中,相應於該隔鄰感測電極的感測值。步驟463:根據該最大者所對應之該第一次感測、該第二次感測或該第三次感測其中之一,來判斷該外部導電物件相對於該多條感測電極的該位置。例如在表四的實施例當中,步驟461的隔鄰感測電極可以是第N+1條,其該第一感測值、該第二感測值與該第三感測值當中的最大者為第三感測值,因此對應到第三次感測。於步驟462當中,忽略掉該第三次感測中,相應於第N+1條感測電極的感測值(更新干擾值),接著於步驟462當中,根據該多個第三感測值,來判斷該外部導電物件相對於該多條感測電極的該位置。例如在表四的實施例當中,步驟461的隔鄰感測電極可以是第N-1條,其該第一感測值、該第二感測值與該第三感測值當中的 最大者為第一感測值,因此對應到第一次感測。於步驟462當中,忽略掉該第一次感測中,相應於第N-1條感測電極的感測值(更新干擾值),接著於步驟462當中,根據該多個第一感測值,來判斷該外部導電物件相對於該多條感測電極的該位置。 Please refer to FIG. 4B , which is a schematic flowchart of an embodiment of step 460 . Step 461: Determine the largest one of the first sensing value, the second sensing value, and the third sensing value corresponding to one of the at least two sensing electrodes. Corresponding to which of the first sensing, the second sensing, or the third sensing. Step 462: Ignore the sensed value of the neighboring sensing electrode among one of the first sensing, the second sensing, or the third sensing corresponding to the largest one. Step 463: determining, according to the first sensing, the second sensing, or the third sensing corresponding to the largest one, the external conductive object relative to the plurality of sensing electrodes position. For example, in the embodiment of Table 4, the neighboring sensing electrode of step 461 may be the N+1th strip, and the largest of the first sensing value, the second sensing value, and the third sensing value. It is the third sensed value and therefore corresponds to the third sense. In step 462, the sensed value (updated interference value) corresponding to the (N+1)th sensing electrode is ignored in the third sensing, and then in step 462, according to the plurality of third sensing values. And determining the position of the external conductive object relative to the plurality of sensing electrodes. For example, in the embodiment of Table 4, the neighboring sensing electrode of step 461 may be the N-1th, and the first sensing value, the second sensing value, and the third sensing value are The largest is the first sensed value, so it corresponds to the first sense. In step 462, the sensed value corresponding to the (N-1th) sensing electrode (updated interference value) is ignored in the first sensing, and then in step 462, according to the plurality of first sensing values. And determining the position of the external conductive object relative to the plurality of sensing electrodes.
請參考圖4C,其為步驟460的另一實施例之流程示意圖。步驟464:根據該至少兩條感測電極之每一條,其該第一感測值、該第二感測值與該第三感測值三者當中與其他兩者之差異最大者,忽略該最大者所對應之該多個第一感測值、該多個第二感測值或該多個第三感測值。步驟465:根據未被忽略的該多個第一感測值、該多個第二感測值或該多個第三感測值的其中之一,忽略該至少兩條感測電極之一隔鄰感測電極之感測值。步驟466,根據未被忽略的該多個第一感測值、該多個第二感測值或該多個第三感測值的其中之一,判斷該外部導電物件相對於該多條感測電極的該位置。例如在表四的實施例之步驟464當中,第N-1條感測電極的第一感測值與其他兩者之差異最大,故忽略掉該多個第一感測值,第N條感測電極的第二感測值與其他兩者之差異最大,故忽略掉該多個第二感測值。步驟465當中,將未被忽略的該多個第三感測值當中,忽略相應於隔鄰感測電極(第N+1條)的感測值。步驟466當中,根據該多個第三感測值判斷該外部導電物件相對於該多條感測電極的該位置。例如在表五的實施例之步驟464當中,第N條感測電極的第二感測值與其他兩者之差異最大,故忽略掉該多個第二感測值,第N+1條感測電極的第三感測值與其他兩者之差異最大,故忽略掉該多個第三感測值。步驟465當中,將未被忽略的該多個第一感測值當中,忽略相應於隔鄰感測電極(第N-1條)的感測值。步驟466當中,根據該多 個第一感測值,判斷該外部導電物件相對於該多條感測電極的該位置。 Please refer to FIG. 4C , which is a schematic flowchart of another embodiment of step 460 . Step 464: ignoring the difference between the other of the first sensing value, the second sensing value, and the third sensing value according to the at least two sensing electrodes. The plurality of first sensing values, the plurality of second sensing values, or the plurality of third sensing values corresponding to the largest one. Step 465: Ignore one of the at least two sensing electrodes according to one of the plurality of first sensing values, the plurality of second sensing values, or the plurality of third sensing values that are not ignored. Sensing value of the adjacent sensing electrode. Step 466: Determine, according to one of the plurality of first sensing values, the plurality of second sensing values, or the plurality of third sensing values that are not ignored, the external conductive object relative to the plurality of senses This position of the electrode. For example, in step 464 of the embodiment of Table 4, the difference between the first sensing value of the N-1th sensing electrode and the other two is the largest, so the plurality of first sensing values are ignored, the Nth sense The second sensed value of the electrode is the largest difference from the other two, so the plurality of second sensed values are ignored. In step 465, among the plurality of third sensing values that are not to be ignored, the sensing values corresponding to the neighboring sensing electrodes (N+1) are ignored. In step 466, the position of the external conductive object relative to the plurality of sensing electrodes is determined according to the plurality of third sensing values. For example, in step 464 of the embodiment of Table 5, the difference between the second sensing value of the Nth sensing electrode and the other two is the largest, so the plurality of second sensing values are ignored, and the N+1th sense The third sensing value of the measuring electrode is the largest difference from the other two, so the plurality of third sensing values are ignored. In step 465, among the plurality of first sensing values that are not to be ignored, the sensing values corresponding to the neighboring sensing electrodes (the N-1th) are ignored. In step 466, according to the multi The first sensing value determines the position of the external conductive object relative to the plurality of sensing electrodes.
請參考圖4D,其為步驟460的另一實施例之流程示意圖。步驟467:根據該至少兩條感測電極之每一條,找出其該第一感測值、該第二感測值與該第三感測值三者當中與其他兩者之差異最大者,並且取其他兩者之平均感測值。步驟468:根據該至少兩條感測電極之每一條感測電極所對應之平均感測值,判斷該外部導電物件相對於該多條感測電極的該位置。比方說,在表四的實施例中,第N-1條橫向電極的後兩次感測結果類似,第N條橫向電極的第一次與第三次感測結果類似,所以在步驟467當中,採用第N-1條橫向電極的後兩次感測結果的平均,以及第N條橫向電極的第一次與第三次感測結果的來計算。在表五的實施例中,第N條橫向電極的第一次與第三次感測結果類似,第N+1條橫向電極的第一次與第二次感測結果類似,所以在步驟467當中,採用第N條橫向電極的第一次與第三次感測結果的平均,以及第N+1條橫向電極的第一次與第二次感測結果的平均進行計算。 Please refer to FIG. 4D , which is a schematic flowchart of another embodiment of step 460 . Step 467: Find, according to each of the at least two sensing electrodes, a difference between the first sensing value, the second sensing value, and the third sensing value, and the other two, And take the average of the other two sensed values. Step 468: Determine the position of the external conductive object relative to the plurality of sensing electrodes according to an average sensing value corresponding to each sensing electrode of the at least two sensing electrodes. For example, in the embodiment of Table 4, the second two sensing results of the N-1th lateral electrode are similar, and the first and third sensing results of the Nth lateral electrode are similar, so in step 467 Using the average of the last two sensing results of the N-1th lateral electrode and the first and third sensing results of the Nth lateral electrode. In the embodiment of Table 5, the first and third sensing results of the Nth lateral electrode are similar, and the first and second sensing results of the N+1th lateral electrode are similar, so in step 467 The average of the first and third sensing results of the Nth lateral electrode and the average of the first and second sensing results of the N+1th lateral electrode are calculated.
在一實施例中,本申請提供一種觸控處理裝置,用於減少像素更新時的干擾,包含:一感測電路以及連接至該感測電路的一處理器。該感測電路用於:對一觸控螢幕上的多條感測電極進行第一次感測,以得到多個第一感測值;於一間隔時間之後,對該多條感測電極進行第二次感測,以得到多個第二感測值;以及於該間隔時間之後,對該多條感測電極進行第三次感測,以得到多個第三感測值。該處理器用於:將相應於該多條感測電極的該多個第一感測值、該多個第二感測值與該多個第三感測值分別加總為多個感測值總和;根據該多個感測值總和,判斷該多條感測電 極中的至少兩條相鄰的感測電極附近有一外部導電物件近接該觸控螢幕;以及根據該多個第一感測值、該多個第二感測值與該多個第三感測值的其中之一來判斷該外部導電物件相對於該多個感測電極的一位置,其中,該多條感測電極與該觸控螢幕的像素橫軸互相平行。 In an embodiment, the present application provides a touch processing device for reducing interference when a pixel is updated, including: a sensing circuit and a processor connected to the sensing circuit. The sensing circuit is configured to: perform a first sensing on the plurality of sensing electrodes on a touch screen to obtain a plurality of first sensing values; and after an interval time, perform the plurality of sensing electrodes The second sensing is performed to obtain a plurality of second sensing values; and after the interval time, the plurality of sensing electrodes are subjected to a third sensing to obtain a plurality of third sensing values. The processor is configured to add the plurality of first sensing values, the plurality of second sensing values, and the plurality of third sensing values corresponding to the plurality of sensing electrodes to each of the plurality of sensing values Sum; determining the plurality of sensing powers based on the sum of the plurality of sensing values An external conductive object is adjacent to the touch screen in the vicinity of at least two adjacent sensing electrodes of the pole; and the plurality of second sensing values and the plurality of third sensing according to the plurality of first sensing values One of the values determines a position of the external conductive object relative to the plurality of sensing electrodes, wherein the plurality of sensing electrodes and the horizontal axis of the pixel of the touch screen are parallel to each other.
在一範例中,該處理器更用於:根據該至少兩條感測電極之一隔鄰感測電極所對應的該第一感測值、該第二感測值與該第三感測值當中的最大者,判斷該最大者對應至該第一次感測、該第二次感測或該第三次感測的何者;忽略該最大者所對應之該第一次感測、該第二次感測或該第三次感測其中之一當中,相應於該隔鄰感測電極的感測值;以及根據該最大者所對應之該第一次感測、該第二次感測或該第三次感測其中之一,來判斷該外部導電物件相對於該多條感測電極的該位置。 In an example, the processor is further configured to: the first sensing value, the second sensing value, and the third sensing value corresponding to the sensing electrodes of the at least two sensing electrodes The largest of the ones, determining whether the largest one corresponds to the first sensing, the second sensing, or the third sensing; ignoring the first sensing corresponding to the largest one, the first a sensing value corresponding to the neighboring sensing electrode in one of the second sensing or the third sensing; and the first sensing, the second sensing according to the maximum one Or the third sensing is performed to determine the position of the external conductive object relative to the plurality of sensing electrodes.
在另一範例中,該處理器更用於:根據該至少兩條感測電極之每一條,其該第一感測值、該第二感測值與該第三感測值三者當中與其他兩者之差異最大者,忽略該最大者所對應之該多個第一感測值、該多個第二感測值或該多個第三感測值;根據未被忽略的該多個第一感測值、該多個第二感測值或該多個第三感測值的其中之一,忽略該至少兩條感測電極之一隔鄰感測電極之感測值;以及根據未被忽略的該多個第一感測值、該多個第二感測值或該多個第三感測值的其中之一,判斷該外部導電物件相對於該多條感測電極的該位置。 In another example, the processor is further configured to: according to each of the at least two sensing electrodes, the first sensing value, the second sensing value, and the third sensing value The largest difference between the other two, ignoring the plurality of first sensing values, the plurality of second sensing values or the plurality of third sensing values corresponding to the largest one; according to the plurality of not ignored One of the first sensing value, the plurality of second sensing values, or the plurality of third sensing values, ignoring the sensing value of the sensing electrode of the at least two sensing electrodes; and Determining, by one of the plurality of first sensing values, the plurality of second sensing values, or the plurality of third sensing values that are not ignored, determining the external conductive object relative to the plurality of sensing electrodes position.
在更一範例中,該處理器更用於:根據該至少兩條感測電極之每一條,找出其該第一感測值、該第二感測值與該第三感測值三者當中與其他兩者之差異最大者,並且取其他兩者之平均感測值;以及根據該至 少兩條感測電極之每一條感測電極所對應之平均感測值,判斷該外部導電物件相對於該多條感測電極的該位置。 In a further example, the processor is further configured to: find, according to each of the at least two sensing electrodes, the first sensing value, the second sensing value, and the third sensing value. The difference between the other and the other two, and take the average of the other two; and according to the The average sensed value corresponding to each of the sensing electrodes of the two sensing electrodes determines the position of the external conductive object relative to the plurality of sensing electrodes.
在一實施例中,本申請提供一種電子系統,用於減少像素更新時的干擾,包含:一觸控螢幕與連接到該觸控螢幕的一觸控處理裝置。該觸控處理裝置包含:一感測電路;以及連接至該感測電路的一處理器。該感測電路用於:對該觸控螢幕上的多條感測電極進行第一次感測,以得到多個第一感測值;於一間隔時間之後,對該多條感測電極進行第二次感測,以得到多個第二感測值;以及於該間隔時間之後,對該多條感測電極進行第三次感測,以得到多個第三感測值。該處理器,用於:將相應於該多條感測電極的該多個第一感測值、該多個第二感測值與該多個第三感測值分別加總為多個感測值總和;根據該多個感測值總和,判斷該多條感測電極中的至少兩條相鄰的感測電極附近有一外部導電物件近接該觸控螢幕;以及根據該多個第一感測值、該多個第二感測值與該多個第三感測值的其中之一來判斷該外部導電物件相對於該多個感測電極的一位置,其中,該多條感測電極與該觸控螢幕的像素橫軸互相平行。 In an embodiment, the present application provides an electronic system for reducing interference when a pixel is updated, including: a touch screen and a touch processing device connected to the touch screen. The touch processing device includes: a sensing circuit; and a processor connected to the sensing circuit. The sensing circuit is configured to: perform a first sensing on the plurality of sensing electrodes on the touch screen to obtain a plurality of first sensing values; and after an interval time, perform the plurality of sensing electrodes The second sensing is performed to obtain a plurality of second sensing values; and after the interval time, the plurality of sensing electrodes are subjected to a third sensing to obtain a plurality of third sensing values. The processor is configured to: add the plurality of first sensing values, the plurality of second sensing values, and the plurality of third sensing values corresponding to the plurality of sensing electrodes to each of the plurality of sensing values a sum of the measured values; determining, according to the sum of the plurality of sensing values, an external conductive object adjacent to the touch screen in the vicinity of at least two adjacent sensing electrodes; and according to the plurality of first senses Determining, by the one of the plurality of second sensing values and the plurality of third sensing values, a position of the external conductive object relative to the plurality of sensing electrodes, wherein the plurality of sensing electrodes The horizontal axis of the pixel with the touch screen is parallel to each other.
請參考圖5所示,其為根據本發明一實施例的一觸控處理方法500之一流程示意圖,其可以適用於表二的實施例當中,其所得的間隔時間,可以使用於圖3A-D與圖4A-D的實施例當中。步驟510:設定一間隔時間,例如給定一初始值。步驟520:確定觸控螢幕沒有任何近接的外部導電物件。步驟530:對觸控螢幕上的多條感測電極進行三次感測以分別獲得多個第一感測值、多個第二感測值與多個第三感測值,每次感測都相隔該間隔時間。此步驟530與步驟310~330是相同的。步驟540:判斷該多個第一感測 值、該多個第二感測值與該多個第三感測值當中,是否都只有單一個最大值?若是的話,接著進行步驟550,否則進行步驟570。步驟550:判斷三個最大值是否相應於相鄰的三條感測電極?若是的話,接著進行步驟560,否則進行步驟570。步驟560:儲存該間隔時間。步驟570:調整該間隔時間。例如,當三個最大值相應於同一條或兩條相鄰感測電極時,則增加該間隔時間。例如三個最大值相應於三條不相鄰感測電極時,則減少該間隔時間。 Please refer to FIG. 5 , which is a schematic flowchart of a touch processing method 500 according to an embodiment of the present invention, which can be applied to the embodiment of Table 2, and the obtained interval time can be used in FIG. 3A. D is in the embodiment of Figures 4A-D. Step 510: Set an interval time, for example, given an initial value. Step 520: Determine that the touch screen does not have any adjacent external conductive objects. Step 530: Perform three sensing on the plurality of sensing electrodes on the touch screen to obtain a plurality of first sensing values, a plurality of second sensing values, and a plurality of third sensing values, each sensing The interval is separated. This step 530 is the same as steps 310-330. Step 540: Determine the plurality of first sensing Is the value, the plurality of second sensed values, and the plurality of third sensed values having only a single maximum value? If yes, proceed to step 550, otherwise proceed to step 570. Step 550: Determine whether the three maximum values correspond to the adjacent three sensing electrodes? If so, proceed to step 560, otherwise proceed to step 570. Step 560: Store the interval. Step 570: Adjust the interval time. For example, when the three maximum values correspond to the same or two adjacent sensing electrodes, the interval time is increased. For example, when the three maximum values correspond to three non-adjacent sensing electrodes, the interval time is reduced.
在一實施例中,本申請提供一種觸控處理裝置,用於獲得一間隔時間,以利用該間隔時間執行一觸控處理方法用於減少像素更新時的干擾,包含:一感測電路以及連接至該感測電路的一處理器。該感測電路用於:對一觸控螢幕上的多條感測電極進行第一次感測,以得到多個第一感測值;於一間隔時間之後,對該多條感測電極進行第二次感測,以得到多個第二感測值;以及於該間隔時間之後,對該多條感測電極進行第三次感測,以得到多個第三感測值。該處理器用於:判斷該多個第一感測值、該多個第二感測值與該多個第三感測值當中,是否都只有單一個最大值;當該多個第一感測值、該多個第二感測值與該多個第三感測值當中,都只有單一個最大值時,判斷三個最大值是否相應於相鄰的三條感測電極;若三個最大值相應於相鄰的三條感測電極,儲存該間隔時間,其中,該多條感測電極與該觸控螢幕的像素橫軸互相平行。 In one embodiment, the present application provides a touch processing device for obtaining an interval time for performing a touch processing method for reducing interference during pixel update, including: a sensing circuit and a connection. To a processor of the sensing circuit. The sensing circuit is configured to: perform a first sensing on the plurality of sensing electrodes on a touch screen to obtain a plurality of first sensing values; and after an interval time, perform the plurality of sensing electrodes The second sensing is performed to obtain a plurality of second sensing values; and after the interval time, the plurality of sensing electrodes are subjected to a third sensing to obtain a plurality of third sensing values. The processor is configured to: determine whether the plurality of first sensing values, the plurality of second sensing values, and the plurality of third sensing values have only a single maximum value; when the plurality of first sensing When the value, the plurality of second sensing values and the plurality of third sensing values have only a single maximum value, determining whether the three maximum values correspond to the adjacent three sensing electrodes; if the three maximum values The interval time is stored corresponding to the adjacent three sensing electrodes, wherein the plurality of sensing electrodes and the horizontal axis of the pixel of the touch screen are parallel to each other.
在一實施例中,本申請提供一種電子系統,用於獲得一間隔時間,以利用該間隔時間執行一觸控處理方法用於減少像素更新時的干擾,包含:一觸控螢幕;一感測電路;以及連接至該感測電路的一處理器。該感測電路用於:對一觸控螢幕上的多條感測電極進行第一次感測,以得 到多個第一感測值;於一間隔時間之後,對該多條感測電極進行第二次感測,以得到多個第二感測值;以及於該間隔時間之後,對該多條感測電極進行第三次感測,以得到多個第三感測值。該處理器用於:判斷該多個第一感測值、該多個第二感測值與該多個第三感測值當中,是否都只有單一個最大值;當該多個第一感測值、該多個第二感測值與該多個第三感測值當中,都只有單一個最大值時,判斷三個最大值是否相應於相鄰的三條感測電極;若三個最大值相應於相鄰的三條感測電極,儲存該間隔時間,其中,該多條感測電極與該觸控螢幕的像素橫軸互相平行。 In an embodiment, the present application provides an electronic system for obtaining an interval to perform a touch processing method for reducing interference during pixel update, including: a touch screen; a circuit; and a processor coupled to the sensing circuit. The sensing circuit is configured to: perform a first sensing on a plurality of sensing electrodes on a touch screen to obtain a plurality of first sensing values; after an interval time, performing a second sensing on the plurality of sensing electrodes to obtain a plurality of second sensing values; and after the interval, the plurality of sensing The sensing electrode performs a third sensing to obtain a plurality of third sensing values. The processor is configured to: determine whether the plurality of first sensing values, the plurality of second sensing values, and the plurality of third sensing values have only a single maximum value; when the plurality of first sensing When the value, the plurality of second sensing values and the plurality of third sensing values have only a single maximum value, determining whether the three maximum values correspond to the adjacent three sensing electrodes; if the three maximum values The interval time is stored corresponding to the adjacent three sensing electrodes, wherein the plurality of sensing electrodes and the horizontal axis of the pixel of the touch screen are parallel to each other.
Claims (23)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710086788.6A CN107102765B (en) | 2016-02-19 | 2017-02-17 | Touch processing method and device for reducing interference during pixel updating and electronic system |
US15/437,640 US11029786B2 (en) | 2016-02-19 | 2017-02-21 | Touch sensitive method, apparatus and electronic system for reducing interference from pixel refreshing |
US17/335,554 US11474640B2 (en) | 2016-02-19 | 2021-06-01 | Touch sensitive processing apparatus and electronic system and method thereof for reducing interference from pixel refreshing |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662297395P | 2016-02-19 | 2016-02-19 | |
US62/297,395 | 2016-02-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201743182A TW201743182A (en) | 2017-12-16 |
TWI619063B true TWI619063B (en) | 2018-03-21 |
Family
ID=61230193
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105144056A TWI621047B (en) | 2016-02-19 | 2016-12-30 | Method, touch sensitive apparatus and electronic system for reducing interference on touch sensitive lcd from touch driving signals |
TW105144054A TWI619063B (en) | 2016-02-19 | 2016-12-30 | Touch sensitive processing method, apparatus and electronic system for reducing interference from pixel update |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105144056A TWI621047B (en) | 2016-02-19 | 2016-12-30 | Method, touch sensitive apparatus and electronic system for reducing interference on touch sensitive lcd from touch driving signals |
Country Status (1)
Country | Link |
---|---|
TW (2) | TWI621047B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11474640B2 (en) | 2016-02-19 | 2022-10-18 | Egalax_Empia Technology Inc. | Touch sensitive processing apparatus and electronic system and method thereof for reducing interference from pixel refreshing |
TWI761144B (en) * | 2021-03-18 | 2022-04-11 | 禾瑞亞科技股份有限公司 | Touch sensitive processing apparatus and touch system and method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101682625A (en) * | 2007-03-27 | 2010-03-24 | 高通股份有限公司 | Synchronization test for device authentication |
US20120313890A1 (en) * | 2011-06-09 | 2012-12-13 | Maxim Integrated Products, Inc. | Inter-symbol interfence reduction for touch panel systems |
US20130234985A1 (en) * | 2012-03-09 | 2013-09-12 | Orise Technology Co., Ltd. | Driving frequency selection method for capacitive multi-touch system |
TWI433018B (en) * | 2010-10-25 | 2014-04-01 | Raydium Semiconductor Corp | Control device for a touch panel |
CN105224155A (en) * | 2015-09-23 | 2016-01-06 | 深圳信炜科技有限公司 | Capacitance type sensor, sensing device, sensing system and electronic equipment |
TW201714071A (en) * | 2014-08-26 | 2017-04-16 | Lg顯示器股份有限公司 | Apparatus for driving of touch panel |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9645431B2 (en) * | 2008-03-19 | 2017-05-09 | Egalax_Empia Technology Inc. | Touch display and method for driving a plurality of touch driving electrodes of touch display |
TW201120844A (en) * | 2009-12-09 | 2011-06-16 | Intellectual Point Of Technology Shenzhen Co Ltd | Touch-control display capable of removing touch-control impact on display. |
CN102707480B (en) * | 2012-06-28 | 2015-01-07 | 旭曜科技股份有限公司 | Embedded multipoint touch control liquid crystal display panel system |
CN103728761B (en) * | 2013-12-26 | 2016-07-13 | 深圳市华星光电技术有限公司 | A kind of embedded touch array base palte and display panels |
TWI526904B (en) * | 2013-12-31 | 2016-03-21 | Egalax Empia Technology Inc | Capacitive touch device and its chord wave measurement method |
-
2016
- 2016-12-30 TW TW105144056A patent/TWI621047B/en active
- 2016-12-30 TW TW105144054A patent/TWI619063B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101682625A (en) * | 2007-03-27 | 2010-03-24 | 高通股份有限公司 | Synchronization test for device authentication |
TWI433018B (en) * | 2010-10-25 | 2014-04-01 | Raydium Semiconductor Corp | Control device for a touch panel |
US20120313890A1 (en) * | 2011-06-09 | 2012-12-13 | Maxim Integrated Products, Inc. | Inter-symbol interfence reduction for touch panel systems |
US20130234985A1 (en) * | 2012-03-09 | 2013-09-12 | Orise Technology Co., Ltd. | Driving frequency selection method for capacitive multi-touch system |
TW201714071A (en) * | 2014-08-26 | 2017-04-16 | Lg顯示器股份有限公司 | Apparatus for driving of touch panel |
CN105224155A (en) * | 2015-09-23 | 2016-01-06 | 深圳信炜科技有限公司 | Capacitance type sensor, sensing device, sensing system and electronic equipment |
Also Published As
Publication number | Publication date |
---|---|
TW201743182A (en) | 2017-12-16 |
TWI621047B (en) | 2018-04-11 |
TW201741836A (en) | 2017-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10209845B2 (en) | System and method for interference avoidance for a display device comprising an integrated sensing device | |
CN107102765B (en) | Touch processing method and device for reducing interference during pixel updating and electronic system | |
US8970547B2 (en) | Noise-adapting touch sensing window | |
KR101451735B1 (en) | Electronic device and method for driving a touch sensor thereof | |
CN105579943B (en) | Simultaneous display update and capacitive sensing for integrated devices | |
EP2874145B1 (en) | Display device and method for driving the same | |
US9733761B2 (en) | Touch sensor device and display device including the same | |
US20150091864A1 (en) | Frequency shifting for simultaneous active matrix display update and in-cell capacitive touch | |
KR102132867B1 (en) | Touch and gesture sensing system and driving method thereof | |
KR101725134B1 (en) | Apparatus and method for sensing of touch | |
KR102374436B1 (en) | Touch Device And Method Of Driving The Same | |
KR102407966B1 (en) | Bendable display and driving method thereof | |
TWI619063B (en) | Touch sensitive processing method, apparatus and electronic system for reducing interference from pixel update | |
KR20160088528A (en) | Liquid crystal display device and driving method of the same | |
JP2015194983A (en) | Input device and display device | |
CN107102766B (en) | Method, device and system for reducing interference of driving signal on touch liquid crystal screen | |
US11474640B2 (en) | Touch sensitive processing apparatus and electronic system and method thereof for reducing interference from pixel refreshing | |
KR102390595B1 (en) | Touch Device And Method Of Driving The Same | |
KR101904471B1 (en) | Touch sensing apparatus | |
US11816285B2 (en) | Devices and methods for enhancing proximity sensing performance in input-display devices | |
US20180059824A1 (en) | Touch sensor and a display device including the same | |
KR20160067287A (en) | Display device and drving method for display devece using the same | |
KR102016570B1 (en) | Touch sensing system and noise reduction method thereof | |
WO2019113824A1 (en) | Flexible touch display device and touch compensation method | |
TW202238343A (en) | Touch sensitive processing apparatus and touch system and method thereof |