TW202238343A - Touch sensitive processing apparatus and touch system and method thereof - Google Patents

Touch sensitive processing apparatus and touch system and method thereof Download PDF

Info

Publication number
TW202238343A
TW202238343A TW110110127A TW110110127A TW202238343A TW 202238343 A TW202238343 A TW 202238343A TW 110110127 A TW110110127 A TW 110110127A TW 110110127 A TW110110127 A TW 110110127A TW 202238343 A TW202238343 A TW 202238343A
Authority
TW
Taiwan
Prior art keywords
sensing
electrodes
horizontal
touch
values
Prior art date
Application number
TW110110127A
Other languages
Chinese (zh)
Other versions
TWI761144B (en
Inventor
張欽富
葉尚泰
Original Assignee
禾瑞亞科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 禾瑞亞科技股份有限公司 filed Critical 禾瑞亞科技股份有限公司
Priority to TW110110127A priority Critical patent/TWI761144B/en
Priority to CN202110396816.0A priority patent/CN115113755A/en
Priority to US17/335,554 priority patent/US11474640B2/en
Application granted granted Critical
Publication of TWI761144B publication Critical patent/TWI761144B/en
Publication of TW202238343A publication Critical patent/TW202238343A/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04186Touch location disambiguation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04182Filtering of noise external to the device and not generated by digitiser components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

A touch sensitive processing method for reducing interference from pixel refresh, comprising: sensing horizontal electrodes of a touch screen three times for gathering three sensing values, the sensing steps are separated by a time period; summing the three sensing values as sums; according to the sums, determining an external conductive object is disposed near a N-th horizontal electrode among the horizontal electrode of the touch screen; emitting driving signal from the N-th horizontal electrode and sensing the driving signal via vertical electrodes of the touch screen for gathering an N-th sensing array; and calculating a position of a touch event according to the N-th sensing array and the position of the N-th horizontal electrode.

Description

觸控處理裝置與觸控系統及其觸控處理方法 Touch processing device, touch system and touch processing method thereof

本發明系關於觸控螢幕,特別系關於減少觸控螢幕在像素更新時對於觸控處理的干擾。 The present invention relates to touch screens, in particular to reducing the touch screen's interference with touch processing when pixels are updated.

觸控螢幕是現代消費性電子系統的主要輸出入裝置。典型的觸控螢幕是在螢幕上方置放觸控面板的電路。也有所謂on-cell形式的觸控螢幕,或者是in-cell形式的觸控螢幕,這些可能適用於本申請的範圍。舉例而言,申請人於2013年十一月15日提交至美國專利商標局的14/081,018專利申請案之內容可以做為本案的參考範例。 Touch screens are the primary input and output devices in modern consumer electronics systems. A typical touch screen is a circuit that places a touch panel on top of the screen. There are also so-called on-cell touch screens, or in-cell touch screens, which may be applicable to the scope of this application. For example, the content of patent application 14/081,018 submitted by the applicant to the US Patent and Trademark Office on November 15, 2013 can be used as a reference example for this case.

每個螢幕都具有包含更新率與解析度在內的顯示特性。更新率(refresh rate)通常指的是更新螢幕的頻率,通常是以每秒更新幾次螢幕幀(Frame Per Second,FPS)或影格率作為單位。以美國國家電視系統委員會(National Television System Committee,NTSC)類比電視標準為例,其更新率為59.94Hz,其解析度為440x480。標準的Video Graph Array,VGA的解析度包含640x480、320x200像素(pixel)等,其更新率包含50、60、與70Hz等。而常用的高解析度規格1080P,其解析度為1920x1080,影格率為24、25、30、或60Hz等。 Each screen has display characteristics including refresh rate and resolution. Refresh rate (refresh rate) usually refers to the frequency of updating the screen, usually in units of several screen frames per second (Frame Per Second, FPS) or frame rate. Taking the analog TV standard of the National Television System Committee (NTSC) of the United States as an example, the update rate is 59.94 Hz, and the resolution is 440×480. For the standard Video Graph Array, the resolution of VGA includes 640x480, 320x200 pixels (pixel), etc., and its update rate includes 50, 60, and 70Hz, etc. The commonly used high-resolution specification 1080P has a resolution of 1920x1080 and a frame rate of 24, 25, 30, or 60 Hz.

一般而言,現代的液晶螢幕的每個像素都有相應的像素電極用來扭轉液晶的極性,藉以改變該像素之液晶的透光率。據此,就能夠控制液晶下方的各色發光二極體發光的透光量,進一步控制每個像素的顏色。一般來說,螢幕控制器會使用方波進行脈衝寬度調變(PWM,Pulse Width Modulation)。利用脈衝寬度調變來控制像素之液晶的透光率。如美國專利US8421828所提及的,液晶層的極化程度與施加於液晶層之電壓的均方根(Root-Mean-Square)相關。可以在人眼的視覺暫留週期當中,利用脈衝寬度調變固定電壓的信號,施加於像素液晶層,進而控制像素之液晶的極化程度,亦即控制像素液晶的透光率。 Generally speaking, each pixel of a modern LCD screen has a corresponding pixel electrode used to reverse the polarity of the liquid crystal, thereby changing the light transmittance of the liquid crystal of the pixel. Accordingly, it is possible to control the amount of light transmitted by the light-emitting diodes of each color under the liquid crystal, and further control the color of each pixel. Generally speaking, the screen controller will use a square wave for pulse width modulation (PWM, Pulse Width Modulation). The light transmittance of the liquid crystal of the pixel is controlled by pulse width modulation. As mentioned in US Pat. No. 8,421,828, the degree of polarization of the liquid crystal layer is related to the root mean square (Root-Mean-Square) of the voltage applied to the liquid crystal layer. During the duration of vision of the human eye, pulse width modulation can be used to apply a fixed voltage signal to the pixel liquid crystal layer to control the polarization of the pixel liquid crystal, that is, to control the light transmittance of the pixel liquid crystal.

在某個解析度時,如640x480,代表螢幕的每一條橫軸有640個像素,而每一條縱軸有480個像素。在更新螢幕時,通常是先對最上方的橫軸像素進行更新,由左至右,由上至下,直到完成所有橫軸像素的更新後,即完成一幀的更新。在更新率60Hz的顯示特性下,螢幕在一秒內需要完成60次螢幕幀的更新。在更新每條橫軸的第一個像素之前與最後一個像素之後,可能會有螢幕停止動作的空白期間,稱之為水平空白(horizontal blank)。在更換下一個螢幕幀時,可能會有螢幕停止動作的空白期間,稱之為垂直空白(vertical blank)。 At a certain resolution, such as 640x480, it means that each horizontal axis of the screen has 640 pixels, and each vertical axis has 480 pixels. When updating the screen, usually the uppermost horizontal axis pixels are updated first, from left to right, from top to bottom, until all the horizontal axis pixels are updated, one frame of update is completed. Under the display characteristics with a refresh rate of 60Hz, the screen needs to complete 60 screen frame updates within one second. Before updating the first pixel and after the last pixel of each horizontal axis, there may be a blank period during which the screen stops moving, which is called horizontal blank. When changing to the next screen frame, there may be a blank period during which the screen stops moving, which is called vertical blank.

舉例來說,1080P60規格的螢幕的垂直空白會每隔16.667ms出現一次,亦即1/60秒。而由於有1080條橫軸,因此每個水平空白約15.4us出現一次,亦即1/(60*1080)秒。 For example, a vertical blank on a 1080P60 screen will appear every 16.667ms, which is 1/60th of a second. Since there are 1080 horizontal axes, each horizontal blank appears once in about 15.4us, that is, 1/(60*1080) seconds.

如圖1所示,一般的觸控電極通常也是沿著觸控螢幕110的橫軸與縱軸分布,假設沿著橫軸延伸的多條平行觸控電極稱之為第一電極 121,沿著縱軸延伸的多條平行觸控電極稱之為第二電極122。這些第一電極與第二電極通常會連接到觸控處理裝置130,由後者進行互電容與/或自電容的觸控偵測。 As shown in FIG. 1 , common touch electrodes are usually distributed along the horizontal axis and the vertical axis of the touch screen 110 , assuming that a plurality of parallel touch electrodes extending along the horizontal axis are called first electrodes. 121 , a plurality of parallel touch electrodes extending along the longitudinal axis are referred to as second electrodes 122 . These first electrodes and second electrodes are usually connected to the touch processing device 130 , and the latter performs mutual capacitance and/or self capacitance touch detection.

由於觸控處理裝置的設計與成本限制,無法接入太多觸控電極,因此第一電極與第二電極的數量通常都少於螢幕的解析度。以50吋左右的觸控螢幕為例,其橫軸長度約為1130mm,其縱軸長度約為670mm。若電極之間的間距設為8mm的話,則約有83條第一電極與141條第二電極。當該觸控螢幕的規格為1080P時,則每個像素的橫軸長度為0.59mm,每個像素的縱軸長度為為0.62mm。換言之,每條第一電極約覆蓋12條左右的像素橫軸。 Due to the design and cost constraints of the touch processing device, too many touch electrodes cannot be connected, so the number of the first electrodes and the second electrodes are usually less than the resolution of the screen. Taking a touch screen of about 50 inches as an example, the length of the horizontal axis is about 1130 mm, and the length of the vertical axis is about 670 mm. If the distance between the electrodes is set to 8mm, there are about 83 first electrodes and 141 second electrodes. When the specification of the touch screen is 1080P, the horizontal axis length of each pixel is 0.59 mm, and the vertical axis length of each pixel is 0.62 mm. In other words, each first electrode covers approximately 12 horizontal axes of pixels.

如圖2所示,其為觸控螢幕的局部放大圖,上層的互聯菱形電路分別為橫向的第一電極121與縱向的第二電極122。下層包含由個別像素210所組成的像素陣列,由於像素眾多,所以並未全部示出。在更新畫面時,會以像素橫軸220為單位進行更新。可以見到,在圖2當中,每條第一電極121涵蓋六個像素橫軸220。其中,像素橫軸221位於兩個第一電極之間,像素橫軸222位於第一電極的覆蓋範圍內。 As shown in FIG. 2 , which is a partially enlarged view of the touch screen, the interconnected diamond-shaped circuits on the upper layer are respectively the first electrodes 121 in the horizontal direction and the second electrodes 122 in the vertical direction. The lower layer includes a pixel array composed of individual pixels 210, not all of which are shown due to the large number of pixels. When the screen is updated, the horizontal axis 220 of pixels is used as the unit for updating. It can be seen that in FIG. 2 , each first electrode 121 covers six pixel horizontal axes 220 . Wherein, the pixel horizontal axis 221 is located between the two first electrodes, and the pixel horizontal axis 222 is located within the coverage of the first electrodes.

一般來說,連接同一個觸控螢幕110的觸控處理裝置130與螢幕控制器是分別獨立運作的。觸控處理裝置130通常不知道觸控螢幕110的顯示設定值,如解析度與更新率,自然也不知道螢幕控制器更新觸控螢幕110的那一條像素橫軸。而觸控處理裝置130可能進行互電容感測,亦即令某一條平行於像素橫軸的第一電極121發出多個方波作為驅動信號,而令所有條第二電極122接收驅動信號的感測信號。如果恰好觸控處理裝置130同時令被 該條第一電極121所覆蓋的像素橫軸進行更新時,由於觸控的驅動信號是方波,而像素更新也是利用方波的脈衝寬度調變,因此驅動信號將會嚴重干擾到像素液晶的極化程度,致使觸控螢幕的使用者可能看到該條第一電極121附近出現異常暗亮的情況。不過由於觸控控制器的偵測週期與螢幕更新的週期很快,兩者交會的時間小於人類視覺暫留的週期,所以使用者察覺互電容感測時所發生異常暗亮的機率不高。 Generally speaking, the touch processing device 130 and the screen controller connected to the same touch screen 110 operate independently. The touch processing device 130 usually does not know the display settings of the touch screen 110 , such as resolution and update rate, and naturally does not know which horizontal pixel axis of the touch screen 110 is updated by the screen controller. The touch processing device 130 may perform mutual capacitance sensing, that is, to make a certain first electrode 121 parallel to the horizontal axis of the pixel emit a plurality of square waves as a driving signal, and make all the second electrodes 122 receive the driving signal. Signal. If the touch processing device 130 happens to be When the horizontal axis of the pixel covered by the first electrode 121 is updated, since the touch drive signal is a square wave, and the pixel update also uses the pulse width modulation of the square wave, the drive signal will seriously interfere with the pixel liquid crystal. Due to the degree of polarization, the user of the touch screen may see abnormally dark and bright conditions near the first electrode 121 . However, since the detection cycle of the touch controller and the update cycle of the screen are very fast, the intersection time of the two is shorter than the duration of human vision, so the probability of the user noticing abnormal dimness during mutual capacitance sensing is not high.

在進行互電容式偵測時,觸控處理裝置130會輪流令觸控驅動電極發出驅動信號,而令觸控感測電極感測驅動信號。由於處理器的感測電路比驅動電路需要較大的成本,所以在上述的設計中,設計者可能會令數量較少的第一電極作為觸控感測電極,數量較多的第二電極作為觸控驅動電極。 When performing mutual capacitance detection, the touch processing device 130 will make the touch driving electrodes send out driving signals in turn, and make the touch sensing electrodes sense the driving signals. Since the sensing circuit of the processor requires a larger cost than the driving circuit, in the above design, the designer may use a small number of first electrodes as touch sensing electrodes, and a large number of second electrodes as touch sensing electrodes. Touch drive electrodes.

當第二電極作為觸控驅動電極時,進行全螢幕的互電容式偵測,觸控處理裝置130會輪流令第二電極發出交流的脈衝信號,或為方波或為弦波。當交流脈衝信號的頻率為200KHz,且每個脈衝發出30個週期時,則每條第二電極發出信號的時間約為0.15ms或150us,亦即30/200,000秒。由於有141條第二電極,且更換第二電極需要處理時間,所以進行一次全螢幕的互電容偵測至少需要0.02115s或21.15ms或21150us左右,遠長於每條像素橫軸更新的時間15.4us。當交流脈衝信號的頻率為100KHz,且每個脈衝發出30個週期時,則每條第二電極發出信號的時間約為0.33ms,亦即30/100,000秒。由於有141條第二電極,且更換第二電極需要處理時間,所以進行一次全螢幕的互電容偵測需要0.04653s或46.53ms或46530us左右,遠長於每條像素橫軸更新的時間15.4ms。 When the second electrode is used as a touch driving electrode, full-screen mutual capacitance detection is performed, and the touch processing device 130 will make the second electrode send out an AC pulse signal in turn, either as a square wave or as a sine wave. When the frequency of the AC pulse signal is 200KHz, and each pulse sends out 30 cycles, the time for each second electrode to send out the signal is about 0.15ms or 150us, that is, 30/200,000 seconds. Since there are 141 second electrodes, and it takes processing time to replace the second electrodes, it takes at least 0.02115s or 21.15ms or 21150us to perform a full-screen mutual capacitance detection, which is much longer than the 15.4us for updating the horizontal axis of each pixel. . When the frequency of the AC pulse signal is 100 KHz, and each pulse sends out 30 cycles, the time for each second electrode to send out the signal is about 0.33 ms, that is, 30/100,000 seconds. Since there are 141 second electrodes, and it takes processing time to replace the second electrodes, it takes about 0.04653s or 46.53ms or 46530us to perform a full-screen mutual capacitance detection, which is much longer than the 15.4ms time for updating the horizontal axis of each pixel.

在利用第一電極與第二電極進行自電容式偵測時,觸控處理裝置130會分別令所有的第一電極與所有的第二電極發出驅動信號,並且令所有的第一電極與所有的第二電極量測信號。若同樣使用200KHz的30個週期的交流脈衝信號,則所有第一電極耗用時間為0.15ms,所有第二電極耗用時間也為0.15ms,兩者合為0.3ms或300us,遠長於每條像素橫軸更新的時間15.4us。 When using the first electrodes and the second electrodes to perform self-capacitance detection, the touch processing device 130 will respectively make all the first electrodes and all the second electrodes send driving signals, and make all the first electrodes and all the The second electrode measures the signal. If the same 200KHz 30-period AC pulse signal is used, the time spent by all the first electrodes is 0.15ms, and the time spent by all the second electrodes is also 0.15ms. The combination of the two is 0.3ms or 300us, which is much longer than each The update time of the pixel horizontal axis is 15.4us.

在更新某一條像素橫軸時,新的像素資料會送到該橫軸中相應的像素電極。因此在該條橫軸附近的液晶螢幕,會比其他地方的液晶螢幕發出較大的電磁干擾,而此電磁干擾現象會對觸控電極造成影響。在上述的範例中,由於一條第一電極約覆蓋12條左右的像素橫軸,所以大多數的像素橫軸只會對單一條第一電極造成嚴重干擾,如圖2的像素橫軸222。少數的像素橫軸位於兩條第一電極之間,如圖2的像素橫軸221,會對這兩條第一電極造成干擾而不會對較遠的第一電極造成嚴重的干擾。 When updating a horizontal axis of pixels, new pixel data will be sent to the corresponding pixel electrodes in the horizontal axis. Therefore, the liquid crystal screen near the horizontal axis will emit greater electromagnetic interference than the liquid crystal screens in other places, and this electromagnetic interference phenomenon will affect the touch electrodes. In the above example, since one first electrode covers about 12 pixel horizontal axes, most of the pixel horizontal axes will only seriously interfere with a single first electrode, such as the pixel horizontal axis 222 in FIG. 2 . A small number of pixel horizontal axes are located between the two first electrodes, such as the pixel horizontal axis 221 in FIG. 2 , which will cause interference to these two first electrodes without causing serious interference to the far first electrodes.

由於負責觸控感測的觸控處理裝置與負責顯示的顯示處理器並未連接在一起,所以觸控處理裝置並沒有辦法避免在某一條像素橫軸更新時,對覆蓋該條像素橫軸的第一電極進行觸控感測,以避免接收到該像素更新時所發出的電磁干擾。 Since the touch processing device responsible for touch sensing and the display processor responsible for display are not connected together, there is no way for the touch processing device to avoid updating the horizontal axis of a certain pixel from updating the horizontal axis of the pixel. The first electrode performs touch sensing, so as to avoid the electromagnetic interference emitted when receiving the update of the pixel.

因此,本申請所欲解決的問題在於,如何分辨哪些橫向電極的觸控感測與觸控相關,並且針對這些橫向電極進行更進一步的偵測,以便測得更準確的觸控位置。。 Therefore, the problem to be solved in the present application is how to distinguish which lateral electrodes are related to touch sensing, and to perform further detection on these lateral electrodes, so as to measure a more accurate touch position. .

根據本申請的一面向,提供一種觸控處理方法,用於減少像 素更新時的干擾。該觸控處理方法包含:對一觸控螢幕上的多條橫向電極進行第一次感測,以得到多個第一感測值;於一間隔時間之後,對該多條橫向電極進行第二次感測,以得到多個第二感測值;於該間隔時間之後,對該多條橫向電極進行第三次感測,以得到多個第三感測值;將相應於該多條橫向電極的該多個第一感測值、該多個第二感測值與該多個第三感測值分別加總為多個感測值總和;根據該多個感測值總和,判斷該多條橫向電極中的第N條橫向電極附近有一外部導電物件近接該觸控螢幕;自該第N條橫向電極發出驅動信號,以及自該觸控螢幕的多條縱向電極互電容感測該驅動信號以得到一條第N感測值陣列;以及根據該條第N感測值陣列與該第N條橫向電極的位置,計算一觸控事件的位置,其中,該多條橫向電極與該觸控螢幕的像素橫軸互相平行,該多條縱向電極與該觸控螢幕的像素橫軸互相垂直,且該多條縱向電極與該多條橫向電極互相交疊形成多個交疊區,N為大於1的自然數。 According to an aspect of the present application, a touch processing method is provided for reducing image Interference during element update. The touch processing method includes: performing first sensing on a plurality of horizontal electrodes on a touch screen to obtain a plurality of first sensing values; Sensing for the second time to obtain a plurality of second sensing values; after the interval time, the plurality of horizontal electrodes are sensed for the third time to obtain a plurality of third sensing values; corresponding to the plurality of horizontal electrodes The plurality of first sensing values, the plurality of second sensing values and the plurality of third sensing values of the electrodes are respectively summed into a plurality of sums of sensing values; according to the sum of the plurality of sensing values, it is judged that the There is an external conductive object close to the touch screen near the Nth horizontal electrode among the multiple horizontal electrodes; a driving signal is sent from the Nth horizontal electrode, and the driving signal is sensed from the mutual capacitance of the multiple vertical electrodes of the touch screen signal to obtain an Nth sensing value array; and calculate the position of a touch event according to the position of the Nth sensing value array and the Nth horizontal electrode, wherein the plurality of horizontal electrodes and the touch The transverse axes of the pixels of the screen are parallel to each other, the plurality of longitudinal electrodes are perpendicular to the transverse axes of the pixels of the touch screen, and the plurality of longitudinal electrodes and the plurality of transverse electrodes overlap each other to form a plurality of overlapping regions, and N is greater than The natural number of 1.

更進一步的,為了更精準地定位該觸控事件,該觸控處理方法更包含:分別自第N-1條與第N+1條橫向電極發出驅動信號,以及自該多條縱向電極互電容感測該驅動信號以分別得到一條第N-1感測值陣列與一條第N+1感測值陣列;以及根據該條第N-1感測值陣列、該條第N感測值陣列、該條第N+1感測值陣列與該第N-1條至該第N+1條橫向電極的位置,計算該觸控事件的位置。 Furthermore, in order to locate the touch event more precisely, the touch processing method further includes: sending driving signals from the N-1th and N+1th horizontal electrodes respectively, and mutual capacitance from the plurality of vertical electrodes Sensing the driving signal to respectively obtain an N-1th sensing value array and an N+1th sensing value array; and according to the N-1th sensing value array, the Nth sensing value array, The position of the N+1th sensing value array and the N−1th to the N+1th horizontal electrodes is used to calculate the position of the touch event.

根據本申請的一面向,提供一種觸控處理裝置,用於減少像素更新時的干擾,包含:一驅動電路模組;一感測電路模組;以及連接至該驅動電路模組與該感測電路模組的一處理器模組,用於執行非揮發性記 憶體當中的指令,以實現以下步驟:令該感測電路模組對一觸控螢幕上的多條橫向電極進行第一次感測,以得到多個第一感測值;於一間隔時間之後,令該感測電路模組對該多條橫向電極進行第二次感測,以得到多個第二感測值;於該間隔時間之後,令該感測電路模組對該多條橫向電極進行第三次感測,以得到多個第三感測值;將相應於該多條橫向電極的該多個第一感測值、該多個第二感測值與該多個第三感測值分別加總為多個感測值總和;根據該多個感測值總和,判斷該多條橫向電極中的第N條橫向電極附近有一外部導電物件近接該觸控螢幕;令該驅動電路模組對該第N條橫向電極發出驅動信號,以及令該感測電路模組自該觸控螢幕的多條縱向電極互電容感測該驅動信號以得到一條第N感測值陣列;以及根據該條感測值陣列與該第N條橫向電極的位置,計算一觸控事件的位置,其中,該多條橫向電極與該觸控螢幕的像素橫軸互相平行,該多條縱向電極與該觸控螢幕的像素橫軸互相垂直,且該多條縱向電極與該多條橫向電極互相交疊形成多個交疊區,N為大於1的自然數。 According to an aspect of the present application, a touch processing device is provided, which is used to reduce the interference when updating pixels, including: a driving circuit module; a sensing circuit module; and a sensor module connected to the driving circuit module and the sensing A processor module of the circuit module for performing non-volatile memory instructions in the memory to implement the following steps: make the sensing circuit module perform the first sensing on a plurality of horizontal electrodes on a touch screen to obtain a plurality of first sensing values; Afterwards, make the sensing circuit module conduct second sensing on the multiple horizontal electrodes to obtain multiple second sensing values; after the interval time, make the sensing circuit module sense the multiple horizontal electrodes The electrodes are sensed for the third time to obtain a plurality of third sensing values; the plurality of first sensing values corresponding to the plurality of horizontal electrodes, the plurality of second sensing values and the plurality of third sensing values The sensing values are respectively summed into a plurality of sensing value sums; according to the plurality of sensing value sums, it is judged that there is an external conductive object close to the touch screen near the Nth transverse electrode among the plurality of transverse electrodes; The circuit module sends a driving signal to the Nth horizontal electrode, and makes the sensing circuit module sense the driving signal from the mutual capacitance of the plurality of vertical electrodes of the touch screen to obtain an Nth sensing value array; and According to the position of the sensing value array and the Nth horizontal electrode, the position of a touch event is calculated, wherein the multiple horizontal electrodes are parallel to the horizontal axis of the pixel of the touch screen, and the multiple vertical electrodes are parallel to the horizontal axis of the pixel of the touch screen. The horizontal axes of the pixels of the touch screen are perpendicular to each other, and the plurality of vertical electrodes and the plurality of horizontal electrodes overlap each other to form a plurality of overlapping regions, and N is a natural number greater than 1.

更進一步的,為了更精準地定位該觸控事件,該處理器模組更用於:分別令該驅動電路模組自第N-1條與第N+1條橫向電極發出驅動信號,以及令該感測電路模組自多條縱向電極互電容感測該驅動信號以分別得到一條第N-1感測值陣列與一條第N+1感測值陣列;以及根據該條第N-1感測值陣列、該條第N感測值陣列、該條第N+1感測值陣列與該第N-1條至該第N+1條橫向電極的位置,計算該觸控事件的位置。 Furthermore, in order to locate the touch event more precisely, the processor module is further used to: respectively make the driving circuit module send a driving signal from the N-1th and N+1th horizontal electrodes, and make the The sensing circuit module senses the drive signal from a plurality of longitudinal electrode mutual capacitances to respectively obtain an N-1 array of sensing values and an array of N+1 sensing values; and according to the N-1 array of sensing values Positions of the measured value array, the Nth sensed value array, the N+1th sensed value array, and the N−1th to the N+1th horizontal electrodes are used to calculate the position of the touch event.

根據本申請的一面向,提供一種觸控處理方法,用於減少像素更新時的干擾,包含:對一觸控螢幕上的多條橫向電極進行第一次感測, 以得到多個第一感測值;於一間隔時間之後,對該多條橫向電極進行第二次感測,以得到多個第二感測值;於該間隔時間之後,對該多條橫向電極進行第三次感測,以得到多個第三感測值;將相應於該多條橫向電極的該多個第一感測值、該多個第二感測值與該多個第三感測值分別加總為多個感測值總和;根據該多個感測值總和,判斷該多條橫向電極中的兩條相鄰的第N條與第N+1條橫向電極附近有一外部導電物件近接該觸控螢幕;以及分別自該第N條與該第N+1條橫向電極發出驅動信號,以及自該觸控螢幕的多條縱向電極互電容感測該驅動信號以得到一條第N感測值陣列與一條第N+1感測值陣列;以及根據該條第N感測值陣列、該條第N+1感測值陣列、該第N條橫向電極的位置與該第N+1條橫向電極的位置,計算一觸控事件的位置,其中,該多條橫向電極與該觸控螢幕的像素橫軸互相平行,該多條縱向電極與該觸控螢幕的像素橫軸互相垂直,且該多條縱向電極與該多條橫向電極互相交疊形成多個交疊區,N為大於1的自然數。 According to an aspect of the present application, a touch processing method is provided, which is used to reduce interference when updating pixels, including: first sensing multiple horizontal electrodes on a touch screen, to obtain a plurality of first sensing values; after an interval time, the plurality of horizontal electrodes are sensed for the second time to obtain a plurality of second sensing values; after the interval time, the plurality of horizontal electrodes The electrodes are sensed for the third time to obtain a plurality of third sensing values; the plurality of first sensing values corresponding to the plurality of horizontal electrodes, the plurality of second sensing values and the plurality of third sensing values The sensing values are respectively summed into a plurality of sums of sensing values; according to the sum of the plurality of sensing values, it is judged that there is an external The conductive object is close to the touch screen; and the drive signal is respectively sent from the Nth and the N+1th horizontal electrodes, and the drive signal is sensed by the mutual capacitance of a plurality of vertical electrodes of the touch screen to obtain a first N sensing value array and an N+1th sensing value array; and according to the Nth sensing value array, the N+1th sensing value array, the position of the Nth lateral electrode and the Nth The position of +1 horizontal electrode is used to calculate the position of a touch event, wherein the multiple horizontal electrodes are parallel to the horizontal axis of the pixel of the touch screen, and the multiple vertical electrodes are mutually parallel to the horizontal axis of the pixel of the touch screen. vertical, and the plurality of vertical electrodes and the plurality of horizontal electrodes overlap each other to form a plurality of overlapping regions, and N is a natural number greater than 1.

更進一步的,為了更精準地定位該觸控事件,該觸控處理方法更包含:分別自第N-1條與第N+2條橫向電極發出驅動信號,以及自該多條縱向電極互電容感測該驅動信號以分別得到一條第N-1感測值陣列與一條第N+2感測值陣列;以及根據該條第N-1感測值陣列、該條第N感測值陣列、該條第N+1感測值陣列、該條第N+2感測值陣列與該第N-1條至該第N+2條橫向電極的位置,計算該觸控事件的位置。 Furthermore, in order to locate the touch event more precisely, the touch processing method further includes: sending driving signals from the N-1th and N+2th horizontal electrodes respectively, and mutual capacitance from the plurality of vertical electrodes Sensing the driving signal to respectively obtain an N-1th sensing value array and an N+2th sensing value array; and according to the N-1th sensing value array, the Nth sensing value array, The position of the N+1th sensing value array, the N+2th sensing value array and the N−1th to the N+2th horizontal electrodes is used to calculate the position of the touch event.

根據本申請的一面向,提供一種觸控處理裝置,用於減少像素更新時的干擾,包含:一驅動電路模組;一感測電路模組;以及連接至該驅動電路模組與該感測電路模組的一處理器模組,用於執行非揮發性記 憶體當中的指令,以實現以下步驟:令該感測電路模組對一觸控螢幕上的多條橫向電極進行第一次感測,以得到多個第一感測值;於一間隔時間之後,令該感測電路模組對該多條橫向電極進行第二次感測,以得到多個第二感測值;於該間隔時間之後,令該感測電路模組對該多條橫向電極進行第三次感測,以得到多個第三感測值;將相應於該多條橫向電極的該多個第一感測值、該多個第二感測值與該多個第三感測值分別加總為多個感測值總和;根據該多個感測值總和,判斷該多條橫向電極中的兩條相鄰的第N條與第N+1條橫向電極附近有一外部導電物件近接該觸控螢幕;以及分別令該驅動電路模組自該第N條與該第N+1條橫向電極發出驅動信號,以及令該感測電路模組自該觸控螢幕的多條縱向電極互電容感測該驅動信號以得到一條第N感測值陣列與一條第N+1感測值陣列;以及根據該條第N感測值陣列、該條第N+1感測值陣列、該第N條橫向電極的位置與該第N+1條橫向電極的位置,計算一觸控事件的位置,其中,該多條橫向電極與該觸控螢幕的像素橫軸互相平行,該多條縱向電極與該觸控螢幕的像素橫軸互相垂直,且該多條縱向電極與該多條橫向電極互相交疊形成多個交疊區,N為大於1的自然數。 According to an aspect of the present application, a touch processing device is provided, which is used to reduce the interference when updating pixels, including: a driving circuit module; a sensing circuit module; and a sensor module connected to the driving circuit module and the sensing A processor module of the circuit module for performing non-volatile memory instructions in the memory to implement the following steps: make the sensing circuit module perform the first sensing on a plurality of horizontal electrodes on a touch screen to obtain a plurality of first sensing values; Afterwards, make the sensing circuit module conduct second sensing on the multiple horizontal electrodes to obtain multiple second sensing values; after the interval time, make the sensing circuit module sense the multiple horizontal electrodes The electrodes are sensed for the third time to obtain a plurality of third sensing values; the plurality of first sensing values corresponding to the plurality of horizontal electrodes, the plurality of second sensing values and the plurality of third sensing values The sensing values are respectively summed into a plurality of sums of sensing values; according to the sum of the plurality of sensing values, it is judged that there is an external The conductive object is close to the touch screen; and the driving circuit module is respectively made to send a driving signal from the Nth and the N+1th horizontal electrodes, and the sensing circuit module is sent from a plurality of the touch screen. The longitudinal electrodes sense the driving signal by mutual capacitance to obtain an Nth sensing value array and an N+1th sensing value array; and according to the Nth sensing value array, the N+1th sensing value array , the position of the Nth horizontal electrode and the position of the N+1th horizontal electrode, and calculate the position of a touch event, wherein the multiple horizontal electrodes are parallel to the horizontal axis of the pixel of the touch screen, and the multiple The vertical electrodes are perpendicular to the horizontal axis of the pixels of the touch screen, and the multiple vertical electrodes overlap with the multiple horizontal electrodes to form multiple overlapping regions, and N is a natural number greater than 1.

更進一步的,為了更精準地定位該觸控事件,該處理器模組更用於:分別令該驅動電路模組自第N-1條與第N+2條橫向電極發出驅動信號,以及令該感測電路模組自該多條縱向電極互電容感測該驅動信號以分別得到一條第N-1感測值陣列與一條第N+2感測值陣列;以及根據該條第N-1感測值陣列、該條第N感測值陣列、該條第N+1感測值陣列、該條第N+2感測值陣列與該第N-1條至該第N+2條橫向電極的位置,計算該觸控事件的位 置。 Furthermore, in order to locate the touch event more precisely, the processor module is further used to: respectively make the driving circuit module send a driving signal from the N-1th and N+2th horizontal electrodes, and make the The sensing circuit module senses the drive signal from the plurality of vertical electrodes to obtain an N-1th sensing value array and an N+2th sensing value array respectively; and according to the N-1th sensing value array Sensing value array, the Nth sensing value array, the N+1th sensing value array, the N+2th sensing value array and the N-1th to the N+2th horizontal The position of the electrode, the bit to calculate the touch event place.

根據本申請的一面向,提供一種觸控系統,用於減少像素更新時的干擾,包含:如前所述的觸控處理裝置;以及該觸控處理裝置所連接的一觸控螢幕。 According to an aspect of the present application, a touch control system is provided for reducing interference during pixel update, including: the touch processing device as described above; and a touch screen connected to the touch processing device.

本申請提供了觸控處理裝置或觸控系統極其觸控處理方法,利用間隔適當時間進行的多次橫向電極的感測結果,判斷出哪一橫向電極的感測結果確實與觸控相關,或者判斷出哪一橫向電極的感測結果與觸控無關,並且將其感測結果排除在觸控計算之外,或是根據其感測結果另作一次以上的縱向電極感測,使得觸控計算能夠免於或至少減少受到像素橫軸更新的電磁干擾影響。 The present application provides a touch processing device or a touch system and a touch processing method thereof, using the sensing results of multiple lateral electrodes at appropriate intervals to determine which sensing result of the lateral electrode is indeed related to touch, or Determine which horizontal electrode's sensing result has nothing to do with touch, and exclude its sensing result from the touch calculation, or perform more than one vertical electrode sensing based on its sensing result, so that the touch calculation It is possible to avoid or at least reduce the influence of electromagnetic interference caused by updating the horizontal axis of pixels.

100:電子系統 100: Electronic systems

110:觸控螢幕 110:Touch screen

121:第一電極 121: the first electrode

122:第二電極 122: second electrode

130:觸控處理裝置 130: Touch processing device

140:主機 140: Host

141:輸出入介面模組 141: I/O interface module

142:中央處理器模組 142: CPU module

143:圖形處理器模組 143: Graphics processor module

144:記憶體模組 144:Memory module

145:網路介面模組 145: Network interface module

146:存儲器模組 146:Memory module

210:像素 210: pixels

220:像素橫軸 220: pixel horizontal axis

221:像素橫軸 221: pixel horizontal axis

222:像素橫軸 222: pixel horizontal axis

300:觸控系統 300: Touch system

310:觸控處理裝置 310: touch processing device

311:連接網路模組 311:Connect to the network module

312:驅動電路模組 312:Drive circuit module

313:感測電路模組 313: Sensing circuit module

314:處理器模組 314: processor module

315:介面模組 315: interface module

330:觸控筆 330: stylus

335:觸控板擦 335: touchpad eraser

400:觸控處理方法 400: Touch processing method

410~469:步驟 410~469: Steps

500:觸控處理方法 500: Touch processing method

550~560:步驟 550~560: steps

600:觸控處理方法 600: Touch processing method

610~670:步驟 610~670: Steps

700:觸控處理方法 700: Touch processing method

710~775:步驟 710~775: Steps

圖1為傳統觸控電子系統的一示意圖。 FIG. 1 is a schematic diagram of a traditional touch electronic system.

圖2為圖1之觸控螢幕的一局部放大圖。 FIG. 2 is a partially enlarged view of the touch screen in FIG. 1 .

圖3為根據本發明一實施例的觸控系統300的一方塊示意圖。 FIG. 3 is a schematic block diagram of a touch control system 300 according to an embodiment of the invention.

圖4A為根據本申請一實施例的觸控處理方法400的一流程示意圖。 FIG. 4A is a schematic flowchart of a touch processing method 400 according to an embodiment of the present application.

圖4B~4D分別為步驟460的一流程示意圖。 4B-4D are respectively a schematic flowchart of step 460.

圖5A為根據本申請一實施例的觸控處理方法500的一流程示意圖。 FIG. 5A is a schematic flowchart of a touch processing method 500 according to an embodiment of the present application.

圖5B~5D分別為步驟560的一流程示意圖。 5B-5D are respectively a schematic flowchart of step 560.

圖6為根據本申請一實施例的觸控處理方法600的一流程示意圖。 FIG. 6 is a schematic flowchart of a touch processing method 600 according to an embodiment of the present application.

圖7A為根據本申請一實施例的觸控處理方法700的一流程示意圖。 FIG. 7A is a schematic flowchart of a touch processing method 700 according to an embodiment of the present application.

圖7B為根據本申請一實施例的觸控處理方法700的一流程示意圖。 FIG. 7B is a schematic flowchart of a touch processing method 700 according to an embodiment of the present application.

圖7C為根據本申請一實施例的觸控處理方法700的一流程示意圖。 FIG. 7C is a schematic flowchart of a touch processing method 700 according to an embodiment of the present application.

圖7D為根據本申請一實施例的觸控處理方法700的一流程示意圖。 FIG. 7D is a schematic flowchart of a touch processing method 700 according to an embodiment of the present application.

本發明將詳細描述一些實施例如下。然而,除了所揭露的實施例外,本發明亦可以廣泛地運用在其他的實施例施行。本發明的範圍並不受該些實施例的限定,乃以其後的申請專利範圍為準。而為提供更清楚的描述及使熟悉該項技藝者能理解本發明的發明內容,圖示內各部分並沒有依照其相對的尺寸而繪圖,某些尺寸與其他相關尺度的比例會被突顯而顯得誇張,且不相關的細節部分亦未完全繪出,以求圖示的簡潔。 The present invention will be described in detail in some embodiments as follows. However, the invention can be broadly implemented in other embodiments besides the disclosed ones. The scope of the present invention is not limited by these embodiments, but is subject to the scope of subsequent patent applications. In order to provide a clearer description and enable those skilled in the art to understand the content of the invention, the various parts in the illustrations are not drawn according to their relative sizes, and the ratio of certain sizes to other related dimensions will be highlighted and It appears exaggerated, and irrelevant details are not fully drawn in order to simplify the illustration.

請參考圖3所示,其為根據本發明一實施例的觸控系統300的一方塊示意圖。該觸控系統300可以是常見的桌上型、膝上型、平板型個人電腦、工業用控制電腦、智慧型手機或其它形式具有觸控功能的計算機系統。 Please refer to FIG. 3 , which is a schematic block diagram of a touch control system 300 according to an embodiment of the present invention. The touch control system 300 can be a common desktop, laptop, tablet PC, industrial control computer, smart phone or other computer systems with touch function.

該觸控系統300可以包含一觸控處理裝置310、連接至該觸控處理裝置的一觸控面板或螢幕110、以及連接至該觸控處理裝置的一主機140。該觸控系統300可以更包含一或多個觸控筆330與/或觸控板擦335。以下在本申請當中,該觸控面板或螢幕120可以通稱為觸控螢幕120,但若是在缺乏顯示功能的實施例當中,本領域的普通技術人員能夠知道本申請所指的該觸控螢幕為觸控面板。 The touch system 300 may include a touch processing device 310 , a touch panel or screen 110 connected to the touch processing device, and a host 140 connected to the touch processing device. The touch system 300 may further include one or more stylus 330 and/or touchpad eraser 335 . Hereinafter in this application, the touch panel or screen 120 may be commonly referred to as a touch screen 120, but if it is in an embodiment lacking a display function, those skilled in the art can know that the touch screen referred to in this application is touch panel.

該觸控螢幕120包含平行於第一軸的多條第一電極121以及平行於第二軸的多條第二電極122。第一電極121可以與多條第二電極122交錯,以便形成多個感測點或感測區域。同樣地,第二電極122可以與多條第 一電極121交錯,以便形成多個感測點或感測區域。在某些實施例當中,本申請可以將第一電極121稱之為第一觸控電極121,也可以將第二電極122稱之為第二觸控電極122。本申請也統稱第一電極121與第二電極122為觸控電極。在某些觸控螢幕120的實施例當中,該第一電極121與該第二電極122以透明材料所構成。該第一電極121與該第二電極122可以在同一電極層,每一條第一電極121或第二電極122的多個導電片之間係使用跨橋的方式連接。該第一電極121與該第二電極122也可以在不同的上下相疊的電極層。除非特別說明以外,本申請通常可以適用於單一層或多個電極層的實施例當中。該第一軸與該第二軸通常是互相垂直,但本申請並不限定該第一軸必定垂直於該第二軸。在一實施例中,該第一軸可以是水平軸,或是觸控螢幕120的更新軸線。 The touch screen 120 includes a plurality of first electrodes 121 parallel to the first axis and a plurality of second electrodes 122 parallel to the second axis. The first electrodes 121 may intersect with multiple second electrodes 122 to form multiple sensing points or sensing areas. Likewise, the second electrode 122 can be connected with a plurality of first An electrode 121 is interlaced to form a plurality of sensing points or sensing regions. In some embodiments, the application may refer to the first electrode 121 as the first touch electrode 121 , and may also refer to the second electrode 122 as the second touch electrode 122 . This application also collectively refers to the first electrodes 121 and the second electrodes 122 as touch electrodes. In some embodiments of the touch screen 120 , the first electrode 121 and the second electrode 122 are made of transparent materials. The first electrode 121 and the second electrode 122 may be on the same electrode layer, and the plurality of conductive sheets of each first electrode 121 or second electrode 122 are connected by a bridge. The first electrode 121 and the second electrode 122 may also be on different electrode layers stacked one above the other. Unless otherwise specified, the present application is generally applicable to embodiments of a single layer or multiple electrode layers. The first axis and the second axis are generally perpendicular to each other, but the application does not limit the first axis to be perpendicular to the second axis. In one embodiment, the first axis may be a horizontal axis, or an updating axis of the touch screen 120 .

該觸控處理裝置310可以包含以下的硬體電路模組:一連接網路(Interconnection Network)模組311、一驅動電路模組312、一感測電路模組313、一處理器模組314與一介面模組315。該觸控處理裝置310可以實作在單一顆積體電路之內,該積體電路內可以包含一或多個芯片。也可以使用多顆積體電路與承載該多顆積體電路的互聯電路板來實現該觸控處理裝置310。該觸控處理裝置310還可以與上述的主機140實作在同一顆積體電路當中,也可以與上述的主機140實作在同一芯片當中。換言之,本申請並不限定該觸控處理裝置310的實施方式。 The touch processing device 310 may include the following hardware circuit modules: an Interconnection Network module 311, a driving circuit module 312, a sensing circuit module 313, a processor module 314 and An interface module 315 . The touch processing device 310 can be implemented in a single integrated circuit, and the integrated circuit can include one or more chips. The touch processing device 310 can also be realized by using multiple integrated circuits and an interconnected circuit board carrying the multiple integrated circuits. The touch processing device 310 can also be implemented in the same integrated circuit as the above-mentioned host 140 , or can be implemented in the same chip as the above-mentioned host 140 . In other words, the present application does not limit the implementation of the touch processing device 310 .

該連接網路模組311用於分別連接上述觸控螢幕120的多條第一電極121與/或多條第二電極122。該連接網路模組311可以接受該處理器模組314的控制命令,用於連接該驅動電路模組112與任一或多條觸控電極, 也用於連接該感測電路模組313與任一或多條觸控電極。該連接網路模組311可以包含一或多個多工器(MUX)的組合來實施上述的功能。 The connection network module 311 is used to respectively connect the plurality of first electrodes 121 and/or the plurality of second electrodes 122 of the touch screen 120 . The connection network module 311 can accept the control command of the processor module 314 for connecting the driving circuit module 112 with any one or more touch electrodes, It is also used to connect the sensing circuit module 313 with any one or more touch electrodes. The connection network module 311 may include a combination of one or more multiplexers (MUX) to implement the above functions.

該驅動電路模組312可以包含時脈產生器、分頻器、倍頻器、鎖相迴路、功率放大器、直流-直流電壓轉換器、整流器與/或濾波器等元器件,用於依據該處理器模組314的控制命令,透過上述的連接網路模組311提供驅動信號給任一或多條觸控電極。可以針對上述的驅動信號進行各式類比訊號或數位信號調變,以便傳送某些訊息。上述的調變方式包含但不限於調頻(FM)、調相(Phase Modulation)、調幅(AM)、雙邊帶調變(DSB)、單邊帶調變(SSB-AM)、殘邊帶調變(Vestigial Sideband Modulation)、振幅偏移調變(ASK)、相位偏移調變(PSK)、正交振幅調變(QAM)、頻率偏移調變(FSK)、連續相位調變(CPM)、分碼多重進接(CDMA)、分時多重進接(TDMA)、正交分頻多工(OFDM)、脈衝寬度調變(PWM)等技術。該驅動信號可以包含一或多個方波、弦波或任何調變後的波型。該驅動電路模組112可以包含一或多條頻道,每條頻道可以透過該連接網路模組111連接到任一或多條觸控電極。 The driving circuit module 312 may include components such as a clock generator, a frequency divider, a frequency multiplier, a phase-locked loop, a power amplifier, a DC-DC voltage converter, a rectifier and/or a filter, and is used for processing according to the The control command of the device module 314 provides a driving signal to any one or more touch electrodes through the above-mentioned connection network module 311. Various analog signals or digital signal modulations can be performed on the above-mentioned driving signals in order to transmit certain information. The above modulation methods include but are not limited to frequency modulation (FM), phase modulation (Phase Modulation), amplitude modulation (AM), double sideband modulation (DSB), single sideband modulation (SSB-AM), vestigial sideband modulation (Vestigial Sideband Modulation), Amplitude Shift Modulation (ASK), Phase Shift Modulation (PSK), Quadrature Amplitude Modulation (QAM), Frequency Shift Modulation (FSK), Continuous Phase Modulation (CPM), Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Orthogonal Frequency Division Multiplexing (OFDM), Pulse Width Modulation (PWM) and other technologies. The driving signal may comprise one or more square waves, sinusoidal waves or any modulated waveforms. The driving circuit module 112 can include one or more channels, and each channel can be connected to any one or more touch electrodes through the connection network module 111 .

該感測電路模組313可以包含積分器、取樣器、時脈產生器、分頻器、倍頻器、鎖相迴路、功率放大器、乘法器、直流-直流電壓轉換器、整流器與/或濾波器等元器件,用於依據該處理器模組314的控制命令,透過上述的連接網路模組311對任一或多條觸控電極進行感測。當該觸控信號透過上述的一條觸控電極發出時,另一條觸控電極可以感應到該觸控信號。而該感測電路模組313可以配合上述的驅動電路模組312所執行的調變方式,針對該另一條觸控電極所感應到該驅動信號進行相應的解調變,以便 還原該驅動信號所承載的訊息。該感測電路模組313可以包含一或多條頻道,每條頻道可以透過該連接網路模組311連接到任一或多條觸控電極。在同一時間,每條頻道都可以同時進行感測與解調變。 The sensing circuit module 313 may include an integrator, a sampler, a clock generator, a frequency divider, a frequency multiplier, a phase-locked loop, a power amplifier, a multiplier, a DC-DC voltage converter, a rectifier and/or a filter Devices and other components are used to sense any one or more touch electrodes through the above-mentioned connection network module 311 according to the control command of the processor module 314 . When the touch signal is sent through the above-mentioned one touch electrode, the other touch electrode can sense the touch signal. The sensing circuit module 313 can cooperate with the modulation method performed by the above-mentioned driving circuit module 312 to perform corresponding demodulation on the driving signal sensed by the other touch electrode, so that Restore the information carried by the drive signal. The sensing circuit module 313 can include one or more channels, and each channel can be connected to any one or more touch electrodes through the connection network module 311 . At the same time, each channel can be simultaneously sensed and demodulated.

在一實施例當中,上述的驅動電路模組312與感測電路模組313可以包含類比前端(AFE,analog front-end)電路。在另一實施例當中,除了類比前端電路以外,上述的驅動電路模組312與感測電路模組313可以包含數位後端(DBE,digital back-end)電路。當上述的驅動電路模組312與感測電路模組313只包含類比前端電路時,數位後端電路可以實施於該處理器模組314之內。 In one embodiment, the aforementioned driving circuit module 312 and sensing circuit module 313 may include an analog front-end (AFE, analog front-end) circuit. In another embodiment, in addition to the analog front-end circuit, the above-mentioned driving circuit module 312 and sensing circuit module 313 may include a digital back-end (DBE, digital back-end) circuit. When the above-mentioned driving circuit module 312 and sensing circuit module 313 only include analog front-end circuits, digital back-end circuits can be implemented in the processor module 314 .

該處理器模組314可以包含數位信號處理器,用於分別連接上述的驅動電路模組312與感測電路模組313的類比前端電路,也可以分別連接上述的驅動電路模組312與感測電路模組313的數位後端電路。該處理器模組314可以包含嵌入式處理器、非揮發性記憶體與揮發性記憶體。該非揮發性記憶體可以儲存普通的作業系統或即時(real-time)作業系統,以及在該作業系統下執行的應用程式。前述的作業系統與應用程式包含多個指令與資料,經由該處理器(包含嵌入式處理器與/或數位信號處理器)執行這些指令之後,可以用於控制該觸控處理裝置110的其他模組,包含該連接網路模組311、該驅動電路模組312、該感測電路模組313與該介面模組315。舉例來說,該處理器模組314可以包含業界常用的8051系列處理器、英代爾(Intel)的i960系列處理器、安謀(ARM)的Cortex-M系列處理器等。本申請並不限定該處理器模組314所包含的處理器種類與個數。 The processor module 314 may include a digital signal processor, which is used to respectively connect the analog front-end circuits of the above-mentioned driving circuit module 312 and the sensing circuit module 313, and may also connect the above-mentioned driving circuit module 312 and the sensing circuit module 313 respectively. The digital back-end circuit of the circuit module 313. The processor module 314 may include an embedded processor, non-volatile memory and volatile memory. The non-volatile memory can store a common operating system or a real-time operating system, as well as applications executed under the operating system. The aforementioned operating system and application program include a plurality of instructions and data, which can be used to control other modules of the touch processing device 110 after the processor (including the embedded processor and/or digital signal processor) executes these instructions. set, including the connection network module 311 , the driving circuit module 312 , the sensing circuit module 313 and the interface module 315 . For example, the processor module 314 may include 8051 series processors commonly used in the industry, i960 series processors of Intel, Cortex-M series processors of ARM, and the like. The application does not limit the type and number of processors included in the processor module 314 .

上述的多個指令與資料可以用於實施本申請所提到的各個 步驟,以及由這些步驟所組成的流程與方法。某些指令可以獨立在該處理器模組314內部運作,例如算術邏輯運算(arithmetic and logic operation)。其他指令可以用於控制該觸控處理裝置310的其他模組,這些指令可以包含該處理器模組314的輸出入介面對其他模組進行控制。其他模組也可以透過該處理器模組314的輸出入介面提供訊息給該處理器模組314所執行的作業系統與/或應用程式。本領域的普通技術人員應當具備有計算機結構與架構(computer organization and architecture)的通常知識,可以理解到本申請所提到的流程與方法能夠藉由上述的模組與指令加以實施。 The multiple instructions and materials mentioned above can be used to implement the various steps, and processes and methods composed of these steps. Certain instructions, such as arithmetic and logic operations, can operate independently inside the processor module 314 . Other instructions can be used to control other modules of the touch processing device 310 , and these instructions can include the I/O interface of the processor module 314 to control other modules. Other modules can also provide information to the operating system and/or application program executed by the processor module 314 through the I/O interface of the processor module 314 . Those of ordinary skill in the art should have common knowledge of computer organization and architecture, and can understand that the processes and methods mentioned in this application can be implemented by the above-mentioned modules and instructions.

上述的介面模組315可以包含各式串列或並列式的匯流排,例如通用序列匯流排(USB)、積體電路匯流排(I2C)、外設互聯標準(PCI)、快捷外設互聯標準(PCI-Express)、IEEE 1394等工業標準的輸出入介面。該觸控處理裝置310透過介面模組315連接到該主機140。 The above-mentioned interface module 315 may include various serial or parallel buses, such as Universal Serial Bus (USB), Integrated Circuit Bus (I 2 C), Peripheral Interconnect Standard (PCI), Express Peripheral Interconnect standard (PCI-Express), IEEE 1394 and other industry standard input and output interfaces. The touch processing device 310 is connected to the host 140 through the interface module 315 .

該觸控系統300可以包含一或多隻觸控筆330與/或觸控板擦335。上述的觸控筆330或觸控板擦335可以是會發出電信號的發信器,其可以包含主動發出電信號的主動式發信器,也可以是被動發出電信號的被動式發信器,或者稱為反應於外界電信號才發出電信號的反應式發信器。上述的觸控筆330或觸控板擦335可以包含一或多個電極,用於同步或非同步地接收來自於觸控螢幕120的電信號,或是以同步或非同步的方式向觸控螢幕120發出電信號。這些電信號可以採用如上所述的一或多種調變方式。 The touch system 300 can include one or more stylus 330 and/or touchpad eraser 335 . The above-mentioned stylus 330 or touchpad eraser 335 can be a transmitter that sends out electrical signals, which can include an active transmitter that actively sends out electrical signals, or a passive transmitter that passively sends out electrical signals, or It is called a reactive transmitter that sends out electrical signals in response to external electrical signals. The above-mentioned stylus 330 or touchpad eraser 335 may include one or more electrodes for receiving electrical signals from the touch screen 120 synchronously or asynchronously, or sending electrical signals to the touch screen 120 synchronously or asynchronously. 120 sends out an electrical signal. These electrical signals may adopt one or more modulation methods as described above.

上述的觸控筆330或觸控板擦335可以是導體,用於透過使用者的手或身體來傳導驅動信號或接地。上述的觸控筆330或觸控板擦335可以有線或無線的方式連接於該主機140的輸出入介面模組141,或是該輸出入介 面模組141底下的其他模組。 The above-mentioned stylus 330 or touchpad eraser 335 can be a conductor for conducting a driving signal or grounding through the user's hand or body. The above-mentioned stylus 330 or touchpad eraser 335 can be connected to the I/O module 141 of the host 140 in a wired or wireless manner, or the I/O module Other modules under surface module group 141.

該觸控處理裝置310可以藉由該觸控螢幕120來偵測一或多個外部導電物體,例如人體的手指、手掌或是被動的觸控筆330或觸控板擦335,也可以偵測會發出電信號的觸控筆130或觸控板擦135。該觸控處理裝置310可以使用互電容(mutual-capacitance)或自電容(self-capacitance)的方式來進行偵測外部導電物體。上述的觸控筆330或觸控板擦335以及觸控處理裝置310可以使用上述的信號調變與相應的信號解調變的方式,利用電信號來傳遞訊息。該觸控處理裝置310可以利用電信號來偵測該觸控筆330或觸控板擦335靠近或接觸該觸控螢幕120的一或多個近接位置、該觸控筆330或觸控板擦335上的感測器狀態(例如壓力感測器或按鈕)、該觸控筆330或觸控板擦335的指向、或該觸控筆330或觸控板擦335相應於該觸控螢幕120平面的傾斜角等訊息。 The touch processing device 310 can use the touch screen 120 to detect one or more external conductive objects, such as human fingers, palms, or passive stylus 330 or touchpad eraser 335, and can also detect A stylus 130 or a touchpad eraser 135 that emits electrical signals. The touch processing device 310 can use mutual-capacitance or self-capacitance to detect external conductive objects. The above-mentioned stylus 330 or touchpad eraser 335 and the touch processing device 310 can use the above-mentioned signal modulation and corresponding signal demodulation to transmit information by using electrical signals. The touch processing device 310 can use electrical signals to detect one or more proximity positions where the stylus 330 or the touchpad eraser 335 approaches or touches the touch screen 120 , or on the stylus 330 or the touchpad eraser 335 sensor status (such as pressure sensor or button), the direction of the stylus 330 or the touchpad eraser 335, or the inclination angle of the stylus 330 or the touchpad eraser 335 corresponding to the plane of the touch screen 120 Waiting for news.

該主機140為控制該觸控系統300的主要設備,可以包含連接至該介面模組115的一輸出入介面模組141、一中央處理器模組142、一圖形處理器模組143、連接於該中央處理器模組142的一記憶體模組144、連接於該輸出入介面模組141的一網路介面模組145與一存儲器模組146。 The host 140 is the main device for controlling the touch control system 300, and may include an I/O interface module 141 connected to the interface module 115, a central processing unit module 142, a graphics processing unit module 143, connected to the A memory module 144 of the CPU module 142 is connected to a network interface module 145 and a memory module 146 of the I/O interface module 141 .

該存儲器模組146包含非揮發性記憶體,常見的範例為硬碟、電子抹除式可複寫唯讀記憶體(EEPROM)、或快閃記憶體等。該存儲器模組146可以儲存普通的作業系統,以及在該作業系統下執行的應用程式。該網路介面模組145可以包含有線連接與/或無線連接的硬體網路連接介面。該網路介面模組145可以遵循常見的工業標準,例如IEEE 802.11無線區域網路標準、IEEE 802.3有線區域網路標準、3G、4G、與/或5G等無線通訊 網路標準、藍芽無線通訊網路標準等。 The memory module 146 includes non-volatile memory, common examples are hard disk, EEPROM, or flash memory. The memory module 146 can store a common operating system and application programs executed under the operating system. The network interface module 145 may include a hardware network connection interface for wired connection and/or wireless connection. The network interface module 145 can comply with common industrial standards, such as IEEE 802.11 wireless LAN standard, IEEE 802.3 wired LAN standard, 3G, 4G, and/or 5G wireless communication Network standards, Bluetooth wireless communication network standards, etc.

該中央處理器模組142可以直接或間接地連接到上述的輸出入介面模組141、圖形處理器模組143、記憶體模組144、網路介面模組145與一存儲器模組146。該中央處理器模組142可以包含一個或多個處理器或處理器核心。常見的處理器可以包含英代爾、超微、威盛電子的x86與x64指令集的處理器,或是蘋果、高通、聯發科的安謀ARM指令集的處理器,也可以包含其他形式的複雜電腦指令集(CISC)或精簡電腦指令集(RISC)的處理器。前述的作業系統與應用程式包含相應於上述指令集的多個指令與資料,經由該中央處理器模組142執行這些指令之後,可以用於控制該觸控系統300的其他模組。 The CPU module 142 can be directly or indirectly connected to the above-mentioned I/O interface module 141 , graphics processor module 143 , memory module 144 , network interface module 145 and a memory module 146 . The CPU module 142 may include one or more processors or processor cores. Common processors can include processors with x86 and x64 instruction sets from Intel, AMD, and VIA Electronics, or processors with ARM instruction sets from Apple, Qualcomm, and MediaTek, and can also include other forms of complex computers. Instruction Set (CISC) or Reduced Computer Instruction Set (RISC) processor. The aforesaid operating system and application program include a plurality of instructions and data corresponding to the above instruction set, and these instructions can be used to control other modules of the touch control system 300 after being executed by the CPU module 142 .

可選的圖形處理器模組143通常是用於處理與圖形輸出相關的計算部分。該圖形處理器模組143可以連接到上述的觸控螢幕120,用於控制觸控螢幕120的輸出。在某些應用當中,該主機140可以不需要圖形處理器模組143的專門處理,可以直接令該中央處理器模組142執行圖形輸出相關的計算部分。 The optional graphics processor module 143 is usually used to process the calculation part related to the graphics output. The GPU module 143 can be connected to the aforementioned touch screen 120 for controlling the output of the touch screen 120 . In some applications, the host computer 140 may not require special processing by the graphics processor module 143 , and may directly enable the CPU module 142 to execute calculations related to graphics output.

該主機140還可以包含其他圖1未示出的組件或元器件,例如音效輸出入介面、鍵盤輸入介面、滑鼠輸入介面、軌跡球輸入介面與/或其他硬體模組。本領域的普通技術人員應當具備有計算機結構與架構的通常知識,可以理解到本申請所提到的觸控系統300僅為示意般的說明,其餘與本申請所提供的發明技術特徵相關的部分,需要參照說明書與申請專利範圍。 The host 140 may also include other components or components not shown in FIG. 1 , such as an audio input/output interface, a keyboard input interface, a mouse input interface, a trackball input interface and/or other hardware modules. Those of ordinary skill in the art should have common knowledge of computer structure and architecture, and can understand that the touch control system 300 mentioned in this application is only a schematic description, and the rest of the parts related to the technical features of the invention provided by this application , you need to refer to the specification and the scope of the patent application.

請參考表一所示,其為根據本發明一實施例之觸控感測方法 的感測結果。該觸控感測方法可以由圖3的觸控處理裝置310實施。該觸控感測方法還可以是儲存在非揮發性記憶體模組當中的指令,由處理器模組314加以執行。在表一當中,相鄰的橫向電極或第一電極121進行三次感測,每次感測的時間均間隔某一適當時間。表一所指的橫向電極的感測,可以是上述互電容感測,也可以是上述自電容的感測,更可以是上述先進行互電容再進行自電容的感測,還可以是針對主動觸控筆的偵測。本發明並不限定是何種感測,只要是平行於像素橫軸更新的觸控電極的感測即可。 Please refer to Table 1, which is a touch sensing method according to an embodiment of the present invention sensing results. The touch sensing method can be implemented by the touch processing device 310 in FIG. 3 . The touch sensing method can also be instructions stored in the non-volatile memory module and executed by the processor module 314 . In Table 1, the adjacent horizontal electrodes or the first electrodes 121 perform three sensings, and each sensing time is separated by a certain appropriate time. The sensing of the horizontal electrodes referred to in Table 1 can be the above-mentioned mutual capacitance sensing, or the above-mentioned self-capacitance sensing, or the above-mentioned mutual capacitance first and then self-capacitance sensing, or it can be for the active Stylus detection. The present invention does not limit the sensing, as long as it is the sensing of the touch electrodes updated parallel to the horizontal axis of the pixel.

Figure 110110127-A0101-12-0018-1
Figure 110110127-A0101-12-0018-1

在表一當中,第一次感測時,是第N-1條橫向電極受到像素橫軸的更新干擾,因此第N-1條橫向電極具有感測值,或是其感測值大於某一門檻值。此外,第N條橫向電極也有因為真正觸控所引發的觸控信號。如果單就第一次感測結果進行觸控計算,必然會將第N-1條橫向電極所受到的干擾計算在內。 In Table 1, during the first sensing, the N-1th horizontal electrode is disturbed by the update of the horizontal axis of the pixel, so the N-1th horizontal electrode has a sensing value, or its sensing value is greater than a certain value. threshold. In addition, the Nth horizontal electrode also has a touch signal caused by a real touch. If the touch calculation is performed only based on the first sensing result, the interference received by the N-1th horizontal electrode must be included in the calculation.

在某適當間隔時間之後進行第二次感測時,由於螢幕更新的像素橫軸已經隨時間往下移動,所以換成是第N條橫向電極被干擾。在此同時,觸控信號仍然被第N條橫向電極所感應到,所以第N-1條與第N+1條橫向 電極均未感測到信號。 When the second sensing is performed after an appropriate interval time, since the horizontal axis of the pixels updated on the screen has moved down with time, it is the Nth horizontal electrode that is disturbed instead. At the same time, the touch signal is still sensed by the Nth horizontal electrode, so the N-1st and N+1th horizontal electrodes None of the electrodes sensed a signal.

接著,在某適當間隔時間之後進行第三次感測時,由於螢幕更新的像素橫軸已經隨時間往下移動,所以換成是第N+1條橫向電極被干擾。在此同時,觸控信號仍然被第N條橫向電極所感應到,所以是第N條與第N+1條橫向電極有感測值。 Then, when the third sensing is performed after an appropriate interval time, since the horizontal axis of the pixels updated on the screen has moved down with time, it is the N+1th horizontal electrode that is disturbed instead. At the same time, the touch signal is still sensed by the Nth horizontal electrode, so the Nth and N+1th horizontal electrodes have sensing values.

在進行三次感測之後,執行該觸控處理方法之觸控處理裝置可以根據表一的結果發現,更新干擾的現象隨著時間分別影響第N-1條、第N條、與第N+1條橫向電極。然而,第N條橫向電極在三次感測中,均有感測值,所以可以判斷出第N條橫向電極在第一次與第三次感測的感測值是有效的,可以用來進行觸控計算。 After three times of sensing, the touch processing device that implements the touch processing method can be found according to the results in Table 1 that the phenomenon of update interference affects N-1, N, and N+1 respectively over time. horizontal electrodes. However, the Nth horizontal electrode has sensing values in the three sensings, so it can be judged that the sensing values of the Nth horizontal electrode in the first and third sensings are valid and can be used to perform touch computing.

在另一實施例中,執行該觸控處理方法之觸控處理裝置可以將這三次的感測值加總起來,由於第N條橫向電極的感測值最大,因此可以認為第N條橫向電極的感測值是真正的觸控信號。 In another embodiment, the touch processing device implementing the touch processing method can add up the sensing values of the three times. Since the sensing value of the Nth horizontal electrode is the largest, it can be considered that the Nth horizontal electrode The sensed value is the real touch signal.

由於第N條橫向電極的三次感測值當中,第二感測值最大,所以可以取第一次或第三次的感測結果進行計算。或者,可以取三次感測值中最小的感測結果進行計算。在計算時,可以把隔鄰橫向電極的感測值視為干擾而忽略不計。比方說,當取第一次或第三次感測結果進行計算時,可以把第N-1條與第N+1條橫向電極的感測結果忽略不計。 Since the second sensing value is the largest among the three sensing values of the Nth horizontal electrode, the first or third sensing result can be used for calculation. Alternatively, the smallest sensing result among the three sensing values may be used for calculation. When calculating, the sensing value of the adjacent horizontal electrode can be regarded as interference and neglected. For example, when calculating the first or third sensing result, the sensing results of the N−1th and N+1th horizontal electrodes can be ignored.

在一實施例當中,可以在得知第N條橫向電極附近發生觸控事件之後,透過第N條橫向電極發出驅動信號,利用所有的縱向電極或第二電極122進行互電容感測該驅動信號,以得到一條感測值的陣列,其中每一個陣列的元素是相對於第N條橫向電極與該多條縱向電極其中一條縱向電 極的相疊區。再根據這一條感測值的陣列與第N條橫向電極的位置,計算該觸控事件的位置。由於螢幕更新的像素橫軸已經隨時間往下移動,更新干擾現象已經不在第N條橫向電極附近,因此縱向電極所得到的互電容感測結果應當可以比具有更新干擾現象的第一次或第三次感測結果更準確。而且所有的縱向電極或第二電極122都有會有橫向的更新干擾現象是,它對於所有的縱向電極或第二電極122應當是均值的。所以在計算橫軸位置的方面,並不會受到不平均的影響。 In one embodiment, after knowing that a touch event has occurred near the Nth horizontal electrode, a driving signal can be sent through the Nth horizontal electrode, and the driving signal can be sensed by mutual capacitance using all the vertical electrodes or the second electrode 122 , to obtain an array of sensing values, wherein each element of the array is relative to the Nth horizontal electrode and one of the multiple vertical electrodes. pole overlapping region. Then, the position of the touch event is calculated according to the array of the sensing value and the position of the Nth horizontal electrode. Since the horizontal axis of the pixel refreshed on the screen has moved down with time, the update interference phenomenon is no longer near the Nth horizontal electrode, so the mutual capacitance sensing results obtained by the vertical electrodes should be comparable to the first or the first time with the update interference phenomenon. Triple sensing results are more accurate. Moreover, all the vertical electrodes or the second electrodes 122 have horizontal update interference phenomenon, which should be the average value for all the vertical electrodes or the second electrodes 122 . Therefore, in calculating the position of the horizontal axis, it will not be affected by unevenness.

在另一實施例當中,可以在得知第N條橫向電極是觸控事件相關位置之後,分時對第N-1條、第N條與第N+1條橫向電極發出驅動信號,並且利用所有的縱向電極或第二電極122進行互電容感測該驅動信號,以便得到三條感測值的陣列。再根據這三條感測值的陣列與第N-1條、第N條與第N+1條橫向電極的位置,計算出該觸控事件的位置。由於螢幕更新的像素橫軸已經隨時間往下移動,更新干擾現象已經不在第N-1條至第N+1條橫向電極附近,因此縱向電極所得到的互電容感測結果應當可以比具有更新干擾現象的第一次或第三次感測結果更準確。 In another embodiment, after knowing that the Nth horizontal electrode is the position related to the touch event, the driving signals can be sent to the N-1th, Nth, and N+1th horizontal electrodes in time division, and use All the vertical electrodes or the second electrodes 122 perform mutual capacitive sensing of the driving signal to obtain an array of three sensing values. Then, the position of the touch event is calculated according to the array of the three sensing values and the positions of the N-1, N and N+1 horizontal electrodes. Since the horizontal axis of the pixels updated on the screen has moved down with time, the update interference phenomenon is no longer near the N-1 to N+1th horizontal electrodes, so the mutual capacitance sensing results obtained by the vertical electrodes should be comparable to those with an updated The first or third sensing of disturbing phenomena is more accurate.

在表一的實施例當中,每次感測的間隔時間可以為事先儲存的數值。比方說在消費性電子產品當中,使用者並無法更動觸控螢幕的解析度,因此觸控處理器可以依照預定儲存的間隔時間進行多次感測。 In the embodiment shown in Table 1, the interval time between each sensing can be a value stored in advance. For example, in consumer electronics products, the user cannot change the resolution of the touch screen, so the touch processor can perform multiple sensings according to the preset stored interval time.

在另外的實施例當中,觸控處理裝置310或是其驅動程式,可以向觸控系統300的作業系統索得觸控螢幕120的解析度、更新率與尺寸,進而計算像素橫軸更新的時間。並且根據每條橫向電極所覆蓋的像素橫軸數量,將間隔時間設定為大於或等於兩者的乘積,亦即令兩次橫向電極感 測的間隔時間,會令不同條橫向電極受到像素橫軸更新的最大干擾。比方在上述的範例當中,當每條第一電極121涵蓋12條像素橫軸,每個像素橫軸更新的時間為15.4us,則可以將兩次掃描的間隔時間大於184.8us。 In another embodiment, the touch processing device 310 or its driver can obtain the resolution, update rate and size of the touch screen 120 from the operating system of the touch system 300, and then calculate the update time of the pixel on the horizontal axis. . And according to the number of pixels on the horizontal axis covered by each horizontal electrode, the interval time is set to be greater than or equal to the product of the two, that is, the two horizontal electrodes sense The measurement interval time will make the different horizontal electrodes receive the maximum interference from the update of the horizontal axis of the pixel. For example, in the above example, when each first electrode 121 covers 12 pixel horizontal axes, and the update time of each pixel horizontal axis is 15.4 us, the time interval between two scans can be greater than 184.8 us.

在某些實施例當中,若觸控處理裝置310無法取得上述的觸控螢幕120的解析度、更新率與尺寸時,則可以動態的調整間隔時間。比方說,當觸控處理裝置310並未偵測到任何物體時,就可以對間隔時間進行修正,直到出現如表二的結果為止。 In some embodiments, if the touch processing device 310 cannot obtain the aforementioned resolution, refresh rate and size of the touch screen 120 , the interval time can be dynamically adjusted. For example, when the touch processing device 310 does not detect any object, the interval time can be corrected until the results shown in Table 2 appear.

Figure 110110127-A0101-12-0021-2
Figure 110110127-A0101-12-0021-2

由於這三條橫向電極的感測值經過三次感測的加總以後,大致相等,而且其感測值依序移動,所以觸控處理裝置310可以理解到此時所設定的感測間隔時間是適當的。以後可以使用此間隔時間作為偵測參數。 Since the sensing values of the three horizontal electrodes are roughly equal after the sum of the three sensings, and the sensing values move sequentially, the touch processing device 310 can understand that the sensing interval time set at this time is appropriate. of. You can use this interval later as a detection parameter.

請參考表三所示,其為根據本發明另一實施例的感測結果。當一條橫向電極涵蓋多條像素橫軸時,大多數感測的結果會如表一所示。然而,在少數的情況下,當橫向電極感測時,是由橫向電極之間的像素橫軸進行更新,就會出現如表三的結果。 Please refer to Table 3, which is the sensing result according to another embodiment of the present invention. When one horizontal electrode covers multiple pixel horizontal axes, most of the sensing results will be as shown in Table 1. However, in a few cases, when the horizontal electrodes are sensing, the horizontal axis of the pixel between the horizontal electrodes is updated, and the results shown in Table 3 will appear.

Figure 110110127-A0101-12-0021-3
Figure 110110127-A0101-12-0021-3

Figure 110110127-A0101-12-0022-4
Figure 110110127-A0101-12-0022-4

在表三的實施例當中,當第一次感測時,剛好遇上第N-1條與第N條橫向電極之間的像素橫軸更新,因此這兩條橫向電極都感測到部分更新干擾。當第二次感測時,遇上第N條與第N+1條橫向電極之間的像素橫軸更新,因此這兩條橫向電極都感測到部分更新干擾。當最後一次感測時,會遇上第N+1條與第N+2條橫向電極之間的像素橫軸更新,因此這兩條橫向電極感測到部分更新干擾。 In the embodiment shown in Table 3, when the first sensing occurs, the horizontal axis of the pixel between the N-1th and Nth horizontal electrodes is updated, so both horizontal electrodes sense partial updates interference. During the second sensing, the horizontal axis of the pixel between the N th and N+1 th horizontal electrodes is updated, so the two horizontal electrodes sense partial update interference. During the last sensing, there will be updating of the horizontal axis of the pixel between the N+1th and N+2th horizontal electrodes, so these two horizontal electrodes sense partial update interference.

在表三的實施例當中,當第一次感測時,剛好遇上第N-1條與第N條橫向電極之間的像素橫軸更新,因此這兩條橫向電極都感測到部分更新干擾。當第二次感測時,遇上第N條與第N+1條橫向電極之間的像素橫軸更新,因此這兩條橫向電極都感測到部分更新干擾。當最後一次感測時,會遇上第N+1條與第N+2條橫向電極之間的像素橫軸更新,因此這兩條橫向電極感測到部分更新干擾。 In the embodiment shown in Table 3, when the first sensing occurs, the horizontal axis of the pixel between the N-1th and Nth horizontal electrodes is updated, so both horizontal electrodes sense partial updates interference. During the second sensing, the horizontal axis of the pixel between the N th and N+1 th horizontal electrodes is updated, so the two horizontal electrodes sense partial update interference. During the last sensing, there will be updating of the horizontal axis of the pixel between the N+1th and N+2th horizontal electrodes, so these two horizontal electrodes sense partial update interference.

當把這三次感測結果的感測值相加之後,第N條橫向電極的 感測值總和仍然會高於其他三條橫向電極,因此觸控處理裝置會把第N條橫向電極當作是收到觸控信號的橫向電極。 After adding the sensing values of the three sensing results, the Nth horizontal electrode The sum of the sensing values will still be higher than the other three horizontal electrodes, so the touch processing device will regard the Nth horizontal electrode as the horizontal electrode receiving the touch signal.

同樣地,由於第N條橫向電極的三次感測值當中,第三感測值最小,所以可以取三次感測值中最小的感測結果進行計算,或者是將兩次較接近之感測值忽略不計。在計算時,可以把隔鄰兩條橫向電極的感測值視為干擾而忽略不計。比方說,當取第三次感測結果進行計算時,可以把第N-2、N-1、N+1、N+2條橫向電極的感測結果忽略不計。 Similarly, since the third sensing value is the smallest among the three sensing values of the Nth horizontal electrode, the smallest sensing result among the three sensing values can be used for calculation, or the two closer sensing values can be calculated. can be ignored. During calculation, the sensing values of two adjacent horizontal electrodes can be regarded as interference and ignored. For example, when calculating the third sensing result, the sensing results of the N-2, N-1, N+1, and N+2th horizontal electrodes can be ignored.

在一實施例當中,可以如同表一所述的實施例一樣,在得知觸控事件發生在第N條橫向電極附近時,透過第N條橫向電極發出驅動信號,利用所有的縱向電極或第二電極122進行互電容感測該驅動信號,以得到一條感測值的陣列,其中每一個陣列的元素是相對於第N條橫向電極與該多條縱向電極其中一條縱向電極的相疊區。再根據這一條感測值的陣列與第N條橫向電極的位置,計算該觸控事件的位置。 In one embodiment, as in the embodiment described in Table 1, when it is known that a touch event occurs near the Nth horizontal electrode, a driving signal is sent through the Nth horizontal electrode, and all the vertical electrodes or the Nth horizontal electrode are used. The two electrodes 122 perform mutual capacitance sensing of the driving signal to obtain an array of sensing values, wherein each element of the array corresponds to an overlapping area of the Nth horizontal electrode and one of the plurality of vertical electrodes. Then, the position of the touch event is calculated according to the array of the sensing value and the position of the Nth horizontal electrode.

在另一實施例當中,可以在得知第N條橫向電極是觸控事件相關位置之後,分時對第N-1條、第N條與第N+1條橫向電極發出驅動信號,並且利用所有的縱向電極或第二電極122進行互電容感測該驅動信號,以便得到三條感測值的陣列。再根據這三條感測值的陣列與第N-1條、第N條與第N+1條橫向電極的位置,計算出該觸控事件的位置。由於螢幕更新的像素橫軸已經隨時間往下移動,更新干擾現象已經不在第N-1條至第N+1條橫向電極附近,因此縱向電極所得到的互電容感測結果應當可以比具有更新干擾現象的第一次到第三次感測結果更準確。 In another embodiment, after knowing that the Nth horizontal electrode is the position related to the touch event, the driving signals can be sent to the N-1th, Nth, and N+1th horizontal electrodes in time division, and use All the vertical electrodes or the second electrodes 122 perform mutual capacitive sensing of the driving signal to obtain an array of three sensing values. Then, the position of the touch event is calculated according to the array of the three sensing values and the positions of the N-1, N and N+1 horizontal electrodes. Since the horizontal axis of the pixels updated on the screen has moved down with time, the update interference phenomenon is no longer near the N-1 to N+1th horizontal electrodes, so the mutual capacitance sensing results obtained by the vertical electrodes should be comparable to those with an updated The first to third sensing results of interference phenomena are more accurate.

請參考表四與表五所示,其為根據本發明另一實施例的感測 結果。由於外部導電物件的尺寸可能較大,也可能橫跨兩條以上的橫向電極,因此可能會出現表四或表五的結果。 Please refer to Table 4 and Table 5, which is the sensing according to another embodiment of the present invention result. Since the size of the external conductive object may be large, and it may also straddle more than two lateral electrodes, the results in Table 4 or Table 5 may appear.

Figure 110110127-A0101-12-0024-5
Figure 110110127-A0101-12-0024-5

在表四的實施例中,第N-1條與第N條橫向電極感測到觸控信號。類似地,在表五的實施例中,第N條與第N+1條橫向電極感測到觸控信號。 In the embodiment shown in Table 4, the N-1th and Nth horizontal electrodes sense touch signals. Similarly, in the embodiment shown in Table 5, the Nth and N+1th horizontal electrodes sense touch signals.

Figure 110110127-A0101-12-0024-6
Figure 110110127-A0101-12-0024-6

觸控處理裝置可以根據三次感測的加總結果,判斷出有兩條相鄰的橫向電極收到觸控信號。在表四的實施例當中,第N-1條與第N條橫向電極的感測值總和要大於第N+1條橫向電極的感測值總和,所以判斷第 N-1條與第N條橫向電極收到觸控信號,第N+1條橫向電極未收到觸控信號。在表五的實施例當中,第N條與第N+1條橫向電極的感測值總和要大於第N-1條橫向電極的感測值總和,所以判斷第N條與第N+1條橫向電極收到觸控信號,第N-1條橫向電極未收到觸控信號。 The touch processing device can determine that two adjacent horizontal electrodes receive touch signals according to the summation results of the three sensings. In the embodiment in Table 4, the sum of the sensing values of the N-1th and Nth horizontal electrodes is greater than the sum of the sensing values of the N+1th horizontal electrodes, so it is judged that The N-1 and Nth horizontal electrodes receive the touch signal, and the N+1th horizontal electrode does not receive the touch signal. In the embodiment of Table 5, the sum of the sensing values of the Nth and N+1th horizontal electrodes is greater than the sum of the sensing values of the N-1th horizontal electrodes, so it is judged that the Nth and N+1th The horizontal electrode receives the touch signal, and the N-1th horizontal electrode does not receive the touch signal.

在某實施例中,可以採取未收到觸控信號的橫向電極被干擾的那一次感測結果,來計算觸控。比方說,在表四的實施例,第N+1條橫向電極未收到觸控信號,它在第三次感測時被干擾而有了感測值,因此採用第三次感測結果來計算觸控,但要將第N+1條橫向電極的感測值略去不計。又比方說,在表五的實施例,第N-1條橫向電極未收到觸控信號,它在第一次感測時被干擾而有了感測值,因此採用第一次感測結果來計算觸控,但要將第N-1條橫向電極的感測值略去不計。 In a certain embodiment, the touch calculation can be calculated by taking the sensing result that the horizontal electrode that does not receive the touch signal is disturbed. For example, in the embodiment of Table 4, the N+1th horizontal electrode does not receive the touch signal, it is disturbed in the third sensing and has a sensing value, so the third sensing result is used to The touch is calculated, but the sensing value of the N+1th horizontal electrode is ignored. For example, in the embodiment of Table 5, the N-1th horizontal electrode has not received the touch signal, and it has a sensing value due to interference during the first sensing, so the first sensing result is used to calculate the touch, but the sensing value of the N-1th horizontal electrode is ignored.

在另一實施例中,可以採取收到觸控信號的橫向電極相似的感測值進行計算。比方說,在表四的實施例中,第N-1條橫向電極的後兩次感測結果類似,第N條橫向電極的第一次與第三次感測結果類似,所以採用第三次感測結果來計算。在表五的實施例中,第N條橫向電極的第一次與第三次感測結果類似,第N+1條橫向電極的第一次與第二次感測結果類似,所以採用第一次感測結果來計算。 In another embodiment, similar sensing values of the horizontal electrodes receiving the touch signal can be used for calculation. For example, in the embodiment of Table 4, the results of the last two sensings of the N-1th horizontal electrode are similar, and the results of the first and third sensings of the Nth horizontal electrode are similar, so the third sensing is used. Sensing results are calculated. In the embodiment of Table 5, the first and third sensing results of the Nth horizontal electrode are similar, and the first and second sensing results of the N+1th horizontal electrode are similar, so the first Calculated based on the sensing results.

在更一實施例中,可以採取收到觸控信號的橫向電極相似的感測值的平均進行計算。比方說,在表四的實施例中,第N-1條橫向電極的後兩次感測結果類似,第N條橫向電極的第一次與第三次感測結果類似,所以採用第N-1條橫向電極的後兩次感測結果的平均,以及第N條橫向電極的第一次與第三次感測結果的來計算。在表五的實施例中,第N條橫向電極的 第一次與第三次感測結果類似,第N+1條橫向電極的第一次與第二次感測結果類似,所以採用第N條橫向電極的第一次與第三次感測結果的平均,以及第N+1條橫向電極的第一次與第二次感測結果的平均進行計算。 In yet another embodiment, the calculation may be performed by taking the average of similar sensing values of the horizontal electrodes receiving the touch signal. For example, in the embodiment of Table 4, the last two sensing results of the N-1th horizontal electrode are similar, and the first and third sensing results of the Nth horizontal electrode are similar, so the N-th horizontal electrode is used. The average of the last two sensing results of one horizontal electrode, and the first and third sensing results of the Nth horizontal electrode are calculated. In the embodiment of Table 5, the Nth horizontal electrode The first and third sensing results are similar, and the first and second sensing results of the N+1th horizontal electrode are similar, so the first and third sensing results of the Nth horizontal electrode are used and the average of the first and second sensing results of the N+1th horizontal electrode are calculated.

在一實施例當中,在得知觸控事件發生在第N條與第N+1條橫向電極附近時,透過第N條與第N+1條橫向電極發出驅動信號,利用所有的縱向電極或第二電極122進行互電容感測該驅動信號,以得到兩條感測值的陣列。再根據這兩條感測值的陣列與第N條及第N+1條橫向電極的位置,計算該觸控事件的位置。 In one embodiment, when it is known that the touch event occurs near the Nth and N+1th horizontal electrodes, a driving signal is sent through the Nth and N+1th horizontal electrodes, using all the vertical electrodes or The second electrode 122 performs mutual capacitance sensing of the driving signal to obtain two arrays of sensing values. Then, the position of the touch event is calculated according to the array of the two sensing values and the positions of the Nth and N+1th horizontal electrodes.

在另一實施例當中,可以在得知觸控事件發生在第N條與第N+1條橫向電極之後,分時對第N-1條、第N條、第N+1條與第N+2條橫向電極發出驅動信號,並且利用所有的縱向電極或第二電極122進行互電容感測該驅動信號,以便得到四條感測值的陣列。再根據這三條感測值的陣列與第N-1條、第N條、第N+1條與第N+2條橫向電極的位置,計算出該觸控事件的位置。由於螢幕更新的像素橫軸已經隨時間往下移動,更新干擾現象已經不在第N-1條至第N+2條橫向電極附近,因此縱向電極所得到的互電容感測結果應當可以比具有更新干擾現象的第一次到第三次感測結果更準確。 In another embodiment, after knowing that the touch event occurred on the Nth and N+1th horizontal electrodes, the N-1st, Nth, N+1th, and Nth horizontal electrodes can be time-shared The +2 horizontal electrodes send a driving signal, and all the vertical electrodes or the second electrodes 122 are used for mutual capacitance sensing of the driving signal, so as to obtain an array of four sensing values. Then, the position of the touch event is calculated according to the array of the three sensing values and the positions of the N−1, N, N+1 and N+2 horizontal electrodes. Since the horizontal axis of the pixels updated on the screen has moved down with time, the update interference phenomenon is no longer near the N-1 to N+2th horizontal electrodes, so the mutual capacitance sensing results obtained by the vertical electrodes should be comparable to those with an updated The first to third sensing results of interference phenomena are more accurate.

本領域的普通技術人員可以理解到,雖然在表一到表五的實施例當中,僅使用三次感測作為實施範例,但本發明的範圍並不限於三次感測,可以推廣到三次以上感測的範例。本領域的普通技術人員應該可以依據本發明的內容自行推廣。 Those of ordinary skill in the art can understand that although in the embodiments of Tables 1 to 5, only three sensings are used as an implementation example, the scope of the present invention is not limited to three sensings, and can be extended to more than three sensings example of . Those skilled in the art should be able to self-promote based on the content of the present invention.

總上所述,本申請提供了觸控處理器的觸控方法,利用間隔適當時間進行的多次橫向電極的感測結果,判斷出哪一橫向電極的感測結 果確實與觸控相關,或者判斷出哪一橫向電極的感測結果與觸控無關,並且將其感測結果排除在觸控計算之外,或是根據其感測結果另作一次以上的縱向電極感測,使得觸控計算能夠免於或至少減少受到像素橫軸更新的電磁干擾影響。 In summary, the present application provides a touch control method for a touch processor, which uses the sensing results of multiple horizontal electrodes at appropriate intervals to determine which horizontal electrode has a sensing junction. If it is indeed related to touch, or determine which horizontal electrode has no sensing result related to touch, and exclude its sensing result from the touch calculation, or make more than one vertical survey based on its sensing result Electrode sensing enables touch computing to avoid or at least reduce the influence of electromagnetic interference caused by updates on the horizontal axis of pixels.

請參考圖4A所示,其為根據本發明一實施例的一觸控處理方法400之一流程示意圖,其可以適用於表一與表三的實施例當中。該觸控處理方法400可以由圖3的觸控處理裝置310實施。該觸控處理方法400還可以是儲存在非揮發性記憶體模組當中的指令,由處理器模組314加以執行。該觸控處理方法400包含但不限於以下的步驟。步驟410:對一觸控螢幕上的多條感測電極進行第一次感測,以得到多個第一感測值;步驟420:於一間隔時間之後,對該多條感測電極進行第二次感測,以得到多個第二感測值;步驟430:於該間隔時間之後,對該多條感測電極進行第三次感測,以得到多個第三感測值;步驟440:將相應於該多條感測電極的該多個第一感測值、該多個第二感測值與該多個第三感測值分別加總為多個感測值總和;步驟450:根據該多個感測值總和,判斷該多條感測電極中的第N條感測電極附近有一外部導電物件近接該觸控螢幕;步驟460:根據該多個第一感測值、該多個第二感測值與該多個第三感測值的其中之一來判斷該外部導電物件相對於該多條感測電極的一位置。其中,該多條感測電極與該觸控螢幕的像素橫軸互相平行。 Please refer to FIG. 4A , which is a schematic flowchart of a touch processing method 400 according to an embodiment of the present invention, which can be applied to the embodiments in Table 1 and Table 3. The touch processing method 400 can be implemented by the touch processing device 310 in FIG. 3 . The touch processing method 400 can also be an instruction stored in a non-volatile memory module and executed by the processor module 314 . The touch processing method 400 includes but not limited to the following steps. Step 410: Sensing the plurality of sensing electrodes on a touch screen for the first time to obtain a plurality of first sensing values; Step 420: After an interval time, performing the first sensing on the plurality of sensing electrodes Sensing twice to obtain a plurality of second sensing values; Step 430: after the interval time, performing a third sensing to the plurality of sensing electrodes to obtain a plurality of third sensing values; Step 440 : Summing up the plurality of first sensing values, the plurality of second sensing values, and the plurality of third sensing values corresponding to the plurality of sensing electrodes into a plurality of sensing value sums; step 450 : According to the sum of the plurality of sensing values, it is judged that an external conductive object is close to the touch screen near the Nth sensing electrode among the plurality of sensing electrodes; Step 460: According to the plurality of first sensing values, the One of the plurality of second sensing values and the plurality of third sensing values is used to determine a position of the external conductive object relative to the plurality of sensing electrodes. Wherein, the plurality of sensing electrodes are parallel to the horizontal axes of pixels of the touch screen.

步驟460可以包含三種不同的實施例。請參考圖4B所示,其為觸控處理方法400之步驟460第一個實施例的一流程示意圖。在第一個實施例當中,步驟461:忽略該多個第一感測值當中相應於第N-1條感測電極的該 第一感測值;以及步驟462:根據該多個第一感測值來判斷該外部導電物件相對於該多條感測電極的該位置。請參考圖4C所示,其為觸控處理方法400之步驟460第二個實施例的一流程示意圖。在第二個實施例當中,步驟463:忽略該多個第三感測值當中相應於第N+1條感測電極的該第三感測值;以及步驟464:根據該多個第三感測值來判斷該外部導電物件相對於該多條感測電極的該位置。請參考圖4D所示,其為觸控處理方法400之步驟460第三個實施例的一流程示意圖。在第三個實施例當中,步驟465:找出相應於第N條感測電極的該第一感測值、該第二感測值與該第三感測值當中的最小者;步驟466:找出該最小者所對應之該多個第一感測值、該多個第二感測值或該多個第三感測值的其中之一;步驟467:忽略該最小者所對應之該多個第一感測值、該多個第二感測值或該多個第三感測值的其中之一當中,相應於第N-1條感測電極與第N+1條感測電極的感測值;可選而未必要執行的步驟468:忽略該最小者所對應之該多個第一感測值、該多個第二感測值或該多個第三感測值的其中之一當中,相應於第N-2條感測電極與第N+2條感測電極的感測值;步驟469:根據該最小者所對應之該多個第一感測值、該多個第二感測值或該多個第三感測值的其中之一,來判斷該外部導電物件相對於該多條感測電極的該位置。 Step 460 may include three different embodiments. Please refer to FIG. 4B , which is a schematic flowchart of a first embodiment of step 460 of the touch processing method 400 . In the first embodiment, step 461: ignore the first sensing value corresponding to the N-1th sensing electrode first sensing value; and step 462 : judging the position of the external conductive object relative to the plurality of sensing electrodes according to the plurality of first sensing values. Please refer to FIG. 4C , which is a schematic flowchart of a second embodiment of step 460 of the touch processing method 400 . In the second embodiment, step 463: ignore the third sensing value corresponding to the N+1th sensing electrode among the plurality of third sensing values; and step 464: according to the plurality of third sensing values The measured value is used to determine the position of the external conductive object relative to the plurality of sensing electrodes. Please refer to FIG. 4D , which is a schematic flowchart of a third embodiment of step 460 of the touch processing method 400 . In the third embodiment, step 465: finding the minimum among the first sensing value, the second sensing value and the third sensing value corresponding to the Nth sensing electrode; step 466: Find one of the plurality of first sensing values, the plurality of second sensing values, or the plurality of third sensing values corresponding to the minimum; step 467: ignore the minimum corresponding to the One of the plurality of first sensing values, the plurality of second sensing values, or the plurality of third sensing values corresponds to the N−1th sensing electrode and the N+1th sensing electrode The sensing value of; optional but not necessary step 468: ignore the minimum corresponding to the plurality of first sensing values, the plurality of second sensing values or the plurality of third sensing values among them One of them corresponds to the sensed values of the N-2th sensing electrode and the N+2th sensing electrode; Step 469: According to the plurality of first sensing values corresponding to the smallest one, the plurality of The second sensing value or one of the plurality of third sensing values is used to determine the position of the external conductive object relative to the plurality of sensing electrodes.

根據本發明一實施例,該觸控處理方法400可由圖3的觸控處理裝置310執行。該感測電路模組313,用於連接該多個感測電極或第一電極121,負責執行步驟410、420與430。該處理器模組314,用於連接到該感測電路模組313,負責執行步驟340、350與360,以及步驟360所包含的三種實施例內的步驟361~369。該處理器模組314可以是嵌入式處理器,也可以是獨 立的處理器,利用所執行的軟體或指令來實施上述的步驟。 According to an embodiment of the present invention, the touch processing method 400 may be executed by the touch processing device 310 in FIG. 3 . The sensing circuit module 313 is used to connect the plurality of sensing electrodes or the first electrodes 121 and is responsible for performing steps 410 , 420 and 430 . The processor module 314 is used to connect to the sensing circuit module 313 and is responsible for executing steps 340 , 350 and 360 , and steps 361 - 369 in the three embodiments included in step 360 . The processor module 314 can be an embedded processor or an independent An independent processor implements the above steps by executing software or instructions.

換言之,根據該實施例,本發明提供一種觸控處理裝置,用於減少像素更新時的干擾,包含一感測電路與連接至該感測電路的一處理器。該感測電路用於:對一觸控螢幕上的多條感測電極進行第一次感測,以得到多個第一感測值;於一間隔時間之後,對該多條感測電極進行第二次感測,以得到多個第二感測值;以及於該間隔時間之後,對該多條感測電極進行第三次感測,以得到多個第三感測值。該處理器用於:將相應於該多條感測電極的該多個第一感測值、該多個第二感測值與該多個第三感測值分別加總為多個感測值總和;根據該多個感測值總和,判斷該多條感測電極中的第N條感測電極附近有一外部導電物件近接該觸控螢幕;根據該多個第一感測值、該多個第二感測值與該多個第三感測值的其中之一來判斷該外部導電物件相對於該多條感測電極的一位置。其中,該多條感測電極與該觸控螢幕的像素橫軸互相平行。 In other words, according to the embodiment, the present invention provides a touch processing device for reducing interference when updating pixels, including a sensing circuit and a processor connected to the sensing circuit. The sensing circuit is used for: first sensing a plurality of sensing electrodes on a touch screen to obtain a plurality of first sensing values; Sensing a second time to obtain a plurality of second sensing values; and after the interval time, performing a third sensing to the plurality of sensing electrodes to obtain a plurality of third sensing values. The processor is used for: summing the plurality of first sensing values, the plurality of second sensing values and the plurality of third sensing values corresponding to the plurality of sensing electrodes into a plurality of sensing values respectively sum; according to the sum of the plurality of sensing values, it is judged that there is an external conductive object near the Nth sensing electrode in the plurality of sensing electrodes approaching the touch screen; according to the plurality of first sensing values, the plurality of One of the second sensing value and the plurality of third sensing values is used to determine a position of the external conductive object relative to the plurality of sensing electrodes. Wherein, the plurality of sensing electrodes are parallel to the horizontal axes of pixels of the touch screen.

在一實施例中,上述的處理器更用於:忽略該多個第一感測值當中相應於第N-1條感測電極的該第一感測值;以及根據該多個第一感測值來判斷該外部導電物件相對於該多條感測電極的該位置。在另一實施例中,上述的處理器更用於:忽略該多個第三感測值當中相應於第N+1條感測電極的該第三感測值;以及根據該多個第三感測值來判斷該外部導電物件相對於該多條感測電極的該位置。在更一實施例中,上述的處理器更用於:找出相應於第N條感測電極的該第一感測值、該第二感測值與該第三感測值當中的最小者;找出該最小者所對應之該多個第一感測值、該多個第二感測值或該多個第三感測值的其中之一;忽略該最小者所對應之該多個第一 感測值、該多個第二感測值或該多個第三感測值的其中之一當中,相應於第N-1條感測電極與第N+1條感測電極的感測值;以及根據該最小者所對應之該多個第一感測值、該多個第二感測值或該多個第三感測值的其中之一,來判斷該外部導電物件相對於該多條感測電極的該位置。在一變化中,該處理器更用於:忽略該最小者所對應之該多個第一感測值、該多個第二感測值或該多個第三感測值的其中之一當中,相應於第N-2條感測電極與第N+2條感測電極的感測值。 In an embodiment, the above-mentioned processor is further configured to: ignore the first sensing value corresponding to the N-1th sensing electrode among the plurality of first sensing values; and The measured value is used to determine the position of the external conductive object relative to the plurality of sensing electrodes. In another embodiment, the above-mentioned processor is further configured to: ignore the third sensing value corresponding to the N+1th sensing electrode among the plurality of third sensing values; and The sensing value is used to determine the position of the external conductive object relative to the plurality of sensing electrodes. In yet another embodiment, the above-mentioned processor is further configured to: find the minimum of the first sensing value, the second sensing value and the third sensing value corresponding to the Nth sensing electrode ; Find one of the plurality of first sensing values, the plurality of second sensing values, or the plurality of third sensing values corresponding to the minimum; ignore the plurality of corresponding minimum values First One of the sensing values, the plurality of second sensing values, or the plurality of third sensing values corresponds to the sensing value of the N−1th sensing electrode and the N+1th sensing electrode ; and according to one of the plurality of first sensing values, the plurality of second sensing values, or the plurality of third sensing values corresponding to the smallest one, it is judged that the external conductive object is relative to the plurality of sensing values. This position of the strip sensing electrode. In a variation, the processor is further configured to: ignore one of the plurality of first sensing values, the plurality of second sensing values, or the plurality of third sensing values corresponding to the minimum , corresponding to the sensing values of the N−2th sensing electrode and the N+2th sensing electrode.

根據本發明一實施例,本發明提供一種電子系統,用於減少像素更新時的干擾,包含:一觸控螢幕與連接該觸控螢幕的一觸控處理裝置。該觸控處理裝置包含一感測電路與連接至該感測電路的一處理器。該感測電路用於:對該觸控螢幕上的多條感測電極進行第一次感測,以得到多個第一感測值;於一間隔時間之後,對該多條感測電極進行第二次感測,以得到多個第二感測值;以及於該間隔時間之後,對該多條感測電極進行第三次感測,以得到多個第三感測值。該處理器用於:將相應於該多條感測電極的該多個第一感測值、該多個第二感測值與該多個第三感測值分別加總為多個感測值總和;根據該多個感測值總和,判斷該多條感測電極中的第N條感測電極附近有一外部導電物件近接該觸控螢幕;根據該多個第一感測值、該多個第二感測值與該多個第三感測值的其中之一來判斷該外部導電物件相對於該多條感測電極的一位置。其中,該多條感測電極與該觸控螢幕的像素橫軸互相平行。 According to an embodiment of the present invention, the present invention provides an electronic system for reducing interference when updating pixels, comprising: a touch screen and a touch processing device connected to the touch screen. The touch processing device includes a sensing circuit and a processor connected to the sensing circuit. The sensing circuit is used for: first sensing the plurality of sensing electrodes on the touch screen to obtain a plurality of first sensing values; after an interval time, performing the sensing on the plurality of sensing electrodes Sensing a second time to obtain a plurality of second sensing values; and after the interval time, performing a third sensing to the plurality of sensing electrodes to obtain a plurality of third sensing values. The processor is used for: summing the plurality of first sensing values, the plurality of second sensing values and the plurality of third sensing values corresponding to the plurality of sensing electrodes into a plurality of sensing values respectively sum; according to the sum of the plurality of sensing values, it is judged that there is an external conductive object near the Nth sensing electrode in the plurality of sensing electrodes approaching the touch screen; according to the plurality of first sensing values, the plurality of One of the second sensing value and the plurality of third sensing values is used to determine a position of the external conductive object relative to the plurality of sensing electrodes. Wherein, the plurality of sensing electrodes are parallel to the horizontal axes of pixels of the touch screen.

請參考圖5A所示,其為根據本發明一實施例的一觸控處理方法500之一流程示意圖,其可以適用於表四與表五的實施例當中。該觸控 處理方法500可以由圖3的觸控處理裝置310實施。該觸控處理方法500還可以是儲存在非揮發性記憶體模組當中的指令,由處理器模組314加以執行。該觸控處理方法500包含但不限於以下的步驟,其中步驟410、420、430與440和圖4A所示步驟相同,在此不再詳述。步驟550:根據該多個感測值總和,判斷該多條感測電極中的至少兩條相鄰的感測電極附近有一外部導電物件近接該觸控螢幕。比方說,當有至少兩個相鄰的感測值大於一門檻值時,可以判斷該相鄰的感測值相應的至少兩條感測電極附近有一外部導電物件近接該觸控螢幕。又或者是,當有至少兩個相鄰的感測值大於其隔鄰的感測值時,亦即其差大於另一門檻值時,可以判斷該相鄰的感測值相應的至少兩條感測電極附近有一外部導電物件近接該觸控螢幕。接著執行步驟560,根據該多個第一感測值、該多個第二感測值與該多個第三感測值的其中之一來判斷該外部導電物件相對於該多個感測電極的一位置。例如在表四的實施例當中,步驟550可以判斷出第N-1條與第N條感測電極為該至少兩條感測電極,在表五的實施例當中,步驟550可以判斷出第N條與第N+1條感測電極為該至少兩條感測電極。 Please refer to FIG. 5A , which is a schematic flowchart of a touch processing method 500 according to an embodiment of the present invention, which can be applied to the embodiments in Table 4 and Table 5 . the touch The processing method 500 can be implemented by the touch processing device 310 in FIG. 3 . The touch processing method 500 can also be an instruction stored in a non-volatile memory module and executed by the processor module 314 . The touch processing method 500 includes but not limited to the following steps, wherein steps 410 , 420 , 430 are the same as 440 and the steps shown in FIG. 4A , and will not be described in detail here. Step 550 : According to the sum of the plurality of sensing values, determine that there is an external conductive object approaching the touch screen near at least two adjacent sensing electrodes among the plurality of sensing electrodes. For example, when at least two adjacent sensing values are greater than a threshold, it can be determined that there is an external conductive object approaching the touch screen near the at least two sensing electrodes corresponding to the adjacent sensing values. Or, when there are at least two adjacent sensing values greater than the adjacent sensing values, that is, when the difference is greater than another threshold value, it can be judged that at least two adjacent sensing values correspond to An external conductive object near the sensing electrode is close to the touch screen. Next, step 560 is executed, according to one of the plurality of first sensing values, the plurality of second sensing values and the plurality of third sensing values, it is judged that the external conductive object is relative to the plurality of sensing electrodes. of a location. For example, in the embodiment of Table 4, step 550 can determine that the N-1th and Nth sensing electrodes are the at least two sensing electrodes, and in the embodiment of Table 5, step 550 can determine that the Nth The bar and the N+1th sensing electrode are the at least two sensing electrodes.

請參考圖5B,其為步驟560的一實施例之流程示意圖。步驟561:根據該至少兩條感測電極之一隔鄰感測電極所對應的該第一感測值、該第二感測值與該第三感測值當中的最大者,判斷該最大者對應至該第一次感測、該第二次感測或該第三次感測的何者。步驟562:忽略該最大者所對應之該第一次感測、該第二次感測或該第三次感測其中之一當中,相應於該隔鄰感測電極的感測值。步驟563:根據該最大者所對應之該第一次感測、該第二次感測或該第三次感測其中之一,來判斷該外部導電物件相對 於該多條感測電極的該位置。例如在表四的實施例當中,步驟561的隔鄰感測電極可以是第N+1條,其該第一感測值、該第二感測值與該第三感測值當中的最大者為第三感測值,因此對應到第三次感測。於步驟462當中,忽略掉該第三次感測中,相應於第N+1條感測電極的感測值(更新干擾值),接著於步驟562當中,根據該多個第三感測值,來判斷該外部導電物件相對於該多條感測電極的該位置。例如在表四的實施例當中,步驟561的隔鄰感測電極可以是第N-1條,其該第一感測值、該第二感測值與該第三感測值當中的最大者為第一感測值,因此對應到第一次感測。於步驟562當中,忽略掉該第一次感測中,相應於第N-1條感測電極的感測值(更新干擾值),接著於步驟563當中,根據該多個第一感測值,來判斷該外部導電物件相對於該多條感測電極的該位置。 Please refer to FIG. 5B , which is a schematic flowchart of an embodiment of step 560 . Step 561: According to the largest among the first sensing value, the second sensing value and the third sensing value corresponding to one of the adjacent sensing electrodes of the at least two sensing electrodes, determine the largest one Corresponding to any one of the first sensing, the second sensing or the third sensing. Step 562 : Ignore the sensing value corresponding to the adjacent sensing electrode among one of the first sensing, the second sensing or the third sensing corresponding to the largest one. Step 563: According to one of the first sensing, the second sensing or the third sensing corresponding to the largest one, determine that the external conductive object is relatively at the position of the plurality of sensing electrodes. For example, in the embodiment of Table 4, the adjacent sensing electrode in step 561 may be the N+1th one, which is the largest among the first sensing value, the second sensing value and the third sensing value. is the third sensing value, and therefore corresponds to the third sensing. In step 462, ignore the sensing value (update disturbance value) corresponding to the N+1th sensing electrode in the third sensing, and then in step 562, according to the plurality of third sensing values , to determine the position of the external conductive object relative to the plurality of sensing electrodes. For example, in the embodiment of Table 4, the adjacent sensing electrode in step 561 may be the N-1th one, which is the largest among the first sensing value, the second sensing value and the third sensing value. is the first sensing value, so it corresponds to the first sensing. In step 562, ignore the sensing value (update disturbance value) corresponding to the N-1th sensing electrode in the first sensing, and then in step 563, according to the plurality of first sensing values , to determine the position of the external conductive object relative to the plurality of sensing electrodes.

請參考圖5C,其為步驟560的另一實施例之流程示意圖。步驟464:根據該至少兩條感測電極之每一條,其該第一感測值、該第二感測值與該第三感測值三者當中與其他兩者之差異最大者,忽略該最大者所對應之該多個第一感測值、該多個第二感測值或該多個第三感測值。步驟565:根據未被忽略的該多個第一感測值、該多個第二感測值或該多個第三感測值的其中之一,忽略該至少兩條感測電極之一隔鄰感測電極之感測值。步驟566,根據未被忽略的該多個第一感測值、該多個第二感測值或該多個第三感測值的其中之一,判斷該外部導電物件相對於該多條感測電極的該位置。例如在表四的實施例之步驟564當中,第N-1條感測電極的第一感測值與其他兩者之差異最大,故忽略掉該多個第一感測值,第N條感測電極的第二感測值與其他兩者之差異最大,故忽略掉該多個第二感測值。步驟 465當中,將未被忽略的該多個第三感測值當中,忽略相應於隔鄰感測電極(第N+1條)的感測值。步驟566當中,根據該多個第三感測值判斷該外部導電物件相對於該多條感測電極的該位置。例如在表五的實施例之步驟564當中,第N條感測電極的第二感測值與其他兩者之差異最大,故忽略掉該多個第二感測值,第N+1條感測電極的第三感測值與其他兩者之差異最大,故忽略掉該多個第三感測值。步驟565當中,將未被忽略的該多個第一感測值當中,忽略相應於隔鄰感測電極(第N-1條)的感測值。步驟566當中,根據該多個第一感測值,判斷該外部導電物件相對於該多條感測電極的該位置。 Please refer to FIG. 5C , which is a schematic flowchart of another embodiment of step 560 . Step 464: According to each of the at least two sensing electrodes, the one of the first sensing value, the second sensing value, and the third sensing value that has the largest difference with the other two is ignored. The plurality of first sensing values, the plurality of second sensing values, or the plurality of third sensing values corresponding to the largest one. Step 565: According to one of the plurality of first sensing values, the plurality of second sensing values, or the plurality of third sensing values that are not ignored, ignore an interval between the at least two sensing electrodes Sensed values of adjacent sensing electrodes. Step 566, according to one of the plurality of first sensing values, the plurality of second sensing values, or the plurality of third sensing values that are not ignored, determine whether the external conductive object is relative to the plurality of sensing values. The position of the measuring electrode. For example, in step 564 of the embodiment in Table 4, the difference between the first sensing value of the N-1th sensing electrode and the other two is the largest, so the multiple first sensing values are ignored, and the Nth sensing electrode The difference between the second sensing value of the measuring electrode and the other two is the largest, so the plurality of second sensing values are ignored. step In 465 , among the plurality of third sensing values that are not ignored, the sensing value corresponding to the adjacent sensing electrode (the N+1 th bar) is ignored. In step 566, the position of the external conductive object relative to the plurality of sensing electrodes is determined according to the plurality of third sensing values. For example, in step 564 of the embodiment in Table 5, the difference between the second sensing value of the Nth sensing electrode and the other two is the largest, so the plurality of second sensing values are ignored, and the N+1th sensing electrode The difference between the third sensing value of the measuring electrode and the other two is the largest, so the plurality of third sensing values are ignored. In step 565 , among the plurality of first sensing values that are not ignored, the sensing value corresponding to the adjacent sensing electrode (the N−1th bar) is ignored. In step 566, the position of the external conductive object relative to the plurality of sensing electrodes is determined according to the plurality of first sensing values.

請參考圖5D,其為步驟560的另一實施例之流程示意圖。步驟567:根據該至少兩條感測電極之每一條,找出其該第一感測值、該第二感測值與該第三感測值三者當中與其他兩者之差異最大者,並且取其他兩者之平均感測值。步驟568:根據該至少兩條感測電極之每一條感測電極所對應之平均感測值,判斷該外部導電物件相對於該多條感測電極的該位置。比方說,在表四的實施例中,第N-1條橫向電極的後兩次感測結果類似,第N條橫向電極的第一次與第三次感測結果類似,所以在步驟567當中,採用第N-1條橫向電極的後兩次感測結果的平均,以及第N條橫向電極的第一次與第三次感測結果的來計算。在表五的實施例中,第N條橫向電極的第一次與第三次感測結果類似,第N+1條橫向電極的第一次與第二次感測結果類似,所以在步驟567當中,採用第N條橫向電極的第一次與第三次感測結果的平均,以及第N+1條橫向電極的第一次與第二次感測結果的平均進行計算。 Please refer to FIG. 5D , which is a schematic flowchart of another embodiment of step 560 . Step 567: According to each of the at least two sensing electrodes, find out the one of the first sensing value, the second sensing value and the third sensing value which has the largest difference with the other two, And take the average sensing value of the other two. Step 568: Determine the position of the external conductive object relative to the plurality of sensing electrodes according to the average sensing value corresponding to each of the at least two sensing electrodes. For example, in the embodiment of Table 4, the last two sensing results of the N-1th horizontal electrode are similar, and the first and third sensing results of the Nth horizontal electrode are similar, so in step 567 , is calculated by using the average of the last two sensing results of the N-1th horizontal electrode, and the first and third sensing results of the Nth horizontal electrode. In the embodiment of Table 5, the first and third sensing results of the Nth horizontal electrode are similar, and the first and second sensing results of the N+1th horizontal electrode are similar, so in step 567 Among them, the average of the first and third sensing results of the Nth horizontal electrode and the average of the first and second sensing results of the N+1th horizontal electrode are used for calculation.

在一實施例中,本申請提供一種觸控處理裝置,用於減少像 素更新時的干擾,包含:一感測電路以及連接至該感測電路的一處理器。該感測電路用於:對一觸控螢幕上的多條感測電極進行第一次感測,以得到多個第一感測值;於一間隔時間之後,對該多條感測電極進行第二次感測,以得到多個第二感測值;以及於該間隔時間之後,對該多條感測電極進行第三次感測,以得到多個第三感測值。該處理器用於:將相應於該多條感測電極的該多個第一感測值、該多個第二感測值與該多個第三感測值分別加總為多個感測值總和;根據該多個感測值總和,判斷該多條感測電極中的至少兩條相鄰的感測電極附近有一外部導電物件近接該觸控螢幕;以及根據該多個第一感測值、該多個第二感測值與該多個第三感測值的其中之一來判斷該外部導電物件相對於該多個感測電極的一位置,其中,該多條感測電極與該觸控螢幕的像素橫軸互相平行。 In one embodiment, the present application provides a touch processing device for reducing image The interference when pixel is updated includes: a sensing circuit and a processor connected to the sensing circuit. The sensing circuit is used for: first sensing a plurality of sensing electrodes on a touch screen to obtain a plurality of first sensing values; Sensing a second time to obtain a plurality of second sensing values; and after the interval time, performing a third sensing to the plurality of sensing electrodes to obtain a plurality of third sensing values. The processor is used for: summing the plurality of first sensing values, the plurality of second sensing values and the plurality of third sensing values corresponding to the plurality of sensing electrodes into a plurality of sensing values respectively sum; according to the sum of the plurality of sensing values, it is judged that there is an external conductive object close to the touch screen near at least two adjacent sensing electrodes among the plurality of sensing electrodes; and according to the plurality of first sensing values , one of the plurality of second sensing values and the plurality of third sensing values to determine a position of the external conductive object relative to the plurality of sensing electrodes, wherein the plurality of sensing electrodes and the plurality of sensing electrodes The horizontal axes of the pixels of the touch screen are parallel to each other.

在一範例中,該處理器更用於:根據該至少兩條感測電極之一隔鄰感測電極所對應的該第一感測值、該第二感測值與該第三感測值當中的最大者,判斷該最大者對應至該第一次感測、該第二次感測或該第三次感測的何者;忽略該最大者所對應之該第一次感測、該第二次感測或該第三次感測其中之一當中,相應於該隔鄰感測電極的感測值;以及根據該最大者所對應之該第一次感測、該第二次感測或該第三次感測其中之一,來判斷該外部導電物件相對於該多條感測電極的該位置。 In one example, the processor is further configured to: according to the first sensing value, the second sensing value and the third sensing value corresponding to one of the sensing electrodes adjacent to the at least two sensing electrodes The largest among them, judge that the largest corresponds to which one of the first sensing, the second sensing or the third sensing; ignore the first sensing, the second sensing corresponding to the largest Among one of the second sensing or the third sensing, the sensing value corresponding to the adjacent sensing electrode; and according to the first sensing, the second sensing corresponding to the largest or one of the third sensings to determine the position of the external conductive object relative to the plurality of sensing electrodes.

在另一範例中,該處理器更用於:根據該至少兩條感測電極之每一條,其該第一感測值、該第二感測值與該第三感測值三者當中與其他兩者之差異最大者,忽略該最大者所對應之該多個第一感測值、該多個第二感測值或該多個第三感測值;根據未被忽略的該多個第一感測值、該 多個第二感測值或該多個第三感測值的其中之一,忽略該至少兩條感測電極之一隔鄰感測電極之感測值;以及根據未被忽略的該多個第一感測值、該多個第二感測值或該多個第三感測值的其中之一,判斷該外部導電物件相對於該多條感測電極的該位置。 In another example, the processor is further configured to: according to each of the at least two sensing electrodes, the first sensing value, the second sensing value and the third sensing value are compared with each other The difference between the other two is the largest, ignoring the plurality of first sensing values, the plurality of second sensing values or the plurality of third sensing values corresponding to the largest; The first sensing value, the One of the plurality of second sensing values or the plurality of third sensing values, ignoring the sensing value of the sensing electrode adjacent to one of the at least two sensing electrodes; and according to the plurality of non-ignored One of the first sensing value, the plurality of second sensing values or the plurality of third sensing values is used to determine the position of the external conductive object relative to the plurality of sensing electrodes.

在更一範例中,該處理器更用於:根據該至少兩條感測電極之每一條,找出其該第一感測值、該第二感測值與該第三感測值三者當中與其他兩者之差異最大者,並且取其他兩者之平均感測值;以及根據該至少兩條感測電極之每一條感測電極所對應之平均感測值,判斷該外部導電物件相對於該多條感測電極的該位置。 In yet another example, the processor is further configured to: find out the first sensing value, the second sensing value and the third sensing value according to each of the at least two sensing electrodes Among them, the difference between the other two is the largest, and the average sensing value of the other two is taken; and according to the average sensing value corresponding to each sensing electrode of the at least two sensing electrodes, it is judged that the external conductive object is relatively at the position of the plurality of sensing electrodes.

在一實施例中,本申請提供一種電子系統,用於減少像素更新時的干擾,包含:一觸控螢幕與連接到該觸控螢幕的一觸控處理裝置。該觸控處理裝置包含:一感測電路;以及連接至該感測電路的一處理器。該感測電路用於:對該觸控螢幕上的多條感測電極進行第一次感測,以得到多個第一感測值;於一間隔時間之後,對該多條感測電極進行第二次感測,以得到多個第二感測值;以及於該間隔時間之後,對該多條感測電極進行第三次感測,以得到多個第三感測值。該處理器,用於:將相應於該多條感測電極的該多個第一感測值、該多個第二感測值與該多個第三感測值分別加總為多個感測值總和;根據該多個感測值總和,判斷該多條感測電極中的至少兩條相鄰的感測電極附近有一外部導電物件近接該觸控螢幕;以及根據該多個第一感測值、該多個第二感測值與該多個第三感測值的其中之一來判斷該外部導電物件相對於該多個感測電極的一位置,其中,該多條感測電極與該觸控螢幕的像素橫軸互相平行。 In one embodiment, the present application provides an electronic system for reducing interference when updating pixels, comprising: a touch screen and a touch processing device connected to the touch screen. The touch processing device includes: a sensing circuit; and a processor connected to the sensing circuit. The sensing circuit is used for: first sensing the plurality of sensing electrodes on the touch screen to obtain a plurality of first sensing values; after an interval time, performing the sensing on the plurality of sensing electrodes Sensing a second time to obtain a plurality of second sensing values; and after the interval time, performing a third sensing to the plurality of sensing electrodes to obtain a plurality of third sensing values. The processor is configured to: sum the plurality of first sensing values, the plurality of second sensing values and the plurality of third sensing values corresponding to the plurality of sensing electrodes into a plurality of sensing values respectively. The sum of the measured values; according to the sum of the plurality of sensing values, it is determined that there is an external conductive object close to the touch screen near at least two adjacent sensing electrodes among the plurality of sensing electrodes; and according to the plurality of first sensing electrodes Measured value, one of the plurality of second sensing values and the plurality of third sensing values to determine a position of the external conductive object relative to the plurality of sensing electrodes, wherein the plurality of sensing electrodes The horizontal axes of the pixels of the touch screen are parallel to each other.

請參考圖6所示,其為根據本發明一實施例的一觸控處理方法600之一流程示意圖,其可以適用於表二的實施例當中,其所得的間隔時間,可以使用於圖4A-D與圖5A-D的實施例當中。該觸控處理方法600可以由圖3的觸控處理裝置310實施。該觸控處理方法600還可以是儲存在非揮發性記憶體模組當中的指令,由處理器模組314加以執行。步驟610:設定一間隔時間,例如給定一初始值。步驟620:確定觸控螢幕沒有任何近接的外部導電物件。步驟630:對觸控螢幕上的多條感測電極進行三次感測以分別獲得多個第一感測值、多個第二感測值與多個第三感測值,每次感測都相隔該間隔時間。此步驟530與步驟310~330是相同的。步驟640:判斷該多個第一感測值、該多個第二感測值與該多個第三感測值當中,是否都只有單一個最大值?若是的話,接著進行步驟650,否則進行步驟670。步驟650:判斷三個最大值是否相應於相鄰的三條感測電極?若是的話,接著進行步驟660,否則進行步驟670。步驟660:儲存該間隔時間。步驟670:調整該間隔時間。例如,當三個最大值相應於同一條或兩條相鄰感測電極時,則增加該間隔時間。例如三個最大值相應於三條不相鄰感測電極時,則減少該間隔時間。 Please refer to FIG. 6 , which is a schematic flow chart of a touch processing method 600 according to an embodiment of the present invention, which can be applied to the embodiment in Table 2, and the obtained interval time can be used in FIG. 4A- D and the embodiment of Fig. 5A-D. The touch processing method 600 can be implemented by the touch processing device 310 in FIG. 3 . The touch processing method 600 can also be instructions stored in the non-volatile memory module, and executed by the processor module 314 . Step 610: Set an interval time, for example, give an initial value. Step 620: Make sure that the touch screen does not have any external conductive objects in close proximity. Step 630: Sensing the plurality of sensing electrodes on the touch screen three times to respectively obtain a plurality of first sensing values, a plurality of second sensing values and a plurality of third sensing values, each sensing at this interval. This step 530 is the same as steps 310-330. Step 640: Determine whether there is only a single maximum value among the plurality of first sensing values, the plurality of second sensing values, and the plurality of third sensing values? If yes, go to step 650 , otherwise go to step 670 . Step 650: Determine if the three maximum values correspond to three adjacent sensing electrodes? If yes, go to step 660 , otherwise go to step 670 . Step 660: Store the interval time. Step 670: Adjust the interval time. For example, when the three maximum values correspond to the same or two adjacent sensing electrodes, then the interval time is increased. For example, when three maximum values correspond to three non-adjacent sensing electrodes, the interval time is reduced.

在一實施例中,本申請提供一種觸控處理裝置,用於獲得一間隔時間,以利用該間隔時間執行一觸控處理方法用於減少像素更新時的干擾,包含:一感測電路以及連接至該感測電路的一處理器。該感測電路用於:對一觸控螢幕上的多條感測電極進行第一次感測,以得到多個第一感測值;於一間隔時間之後,對該多條感測電極進行第二次感測,以得到多個第二感測值;以及於該間隔時間之後,對該多條感測電極進行第三次 感測,以得到多個第三感測值。該處理器用於:判斷該多個第一感測值、該多個第二感測值與該多個第三感測值當中,是否都只有單一個最大值;當該多個第一感測值、該多個第二感測值與該多個第三感測值當中,都只有單一個最大值時,判斷三個最大值是否相應於相鄰的三條感測電極;若三個最大值相應於相鄰的三條感測電極,儲存該間隔時間,其中,該多條感測電極與該觸控螢幕的像素橫軸互相平行。 In one embodiment, the present application provides a touch processing device, which is used to obtain an interval time, so as to use the interval time to execute a touch processing method for reducing interference when updating pixels, including: a sensing circuit and a connection to a processor of the sensing circuit. The sensing circuit is used for: first sensing a plurality of sensing electrodes on a touch screen to obtain a plurality of first sensing values; Sensing for the second time to obtain a plurality of second sensing values; and after the interval time, performing a third sensing operation on the plurality of sensing electrodes sensing to obtain a plurality of third sensing values. The processor is used for: judging whether there is only a single maximum value among the plurality of first sensing values, the plurality of second sensing values and the plurality of third sensing values; when the plurality of first sensing values value, the plurality of second sensing values and the plurality of third sensing values, when there is only a single maximum value, it is judged whether the three maximum values correspond to three adjacent sensing electrodes; if the three maximum values The interval time is stored corresponding to three adjacent sensing electrodes, wherein the plurality of sensing electrodes are parallel to the horizontal axis of the pixel of the touch screen.

在一實施例中,本申請提供一種電子系統,用於獲得一間隔時間,以利用該間隔時間執行一觸控處理方法用於減少像素更新時的干擾,包含:一觸控螢幕;一感測電路;以及連接至該感測電路的一處理器。該感測電路用於:對一觸控螢幕上的多條感測電極進行第一次感測,以得到多個第一感測值;於一間隔時間之後,對該多條感測電極進行第二次感測,以得到多個第二感測值;以及於該間隔時間之後,對該多條感測電極進行第三次感測,以得到多個第三感測值。該處理器用於:判斷該多個第一感測值、該多個第二感測值與該多個第三感測值當中,是否都只有單一個最大值;當該多個第一感測值、該多個第二感測值與該多個第三感測值當中,都只有單一個最大值時,判斷三個最大值是否相應於相鄰的三條感測電極;若三個最大值相應於相鄰的三條感測電極,儲存該間隔時間,其中,該多條感測電極與該觸控螢幕的像素橫軸互相平行。 In one embodiment, the present application provides an electronic system for obtaining an interval time, so as to use the interval time to execute a touch processing method for reducing interference when updating pixels, including: a touch screen; a sensing circuit; and a processor connected to the sensing circuit. The sensing circuit is used for: first sensing a plurality of sensing electrodes on a touch screen to obtain a plurality of first sensing values; Sensing a second time to obtain a plurality of second sensing values; and after the interval time, performing a third sensing to the plurality of sensing electrodes to obtain a plurality of third sensing values. The processor is used for: judging whether there is only a single maximum value among the plurality of first sensing values, the plurality of second sensing values and the plurality of third sensing values; when the plurality of first sensing values value, the plurality of second sensing values and the plurality of third sensing values, when there is only a single maximum value, it is judged whether the three maximum values correspond to three adjacent sensing electrodes; if the three maximum values The interval time is stored corresponding to three adjacent sensing electrodes, wherein the plurality of sensing electrodes are parallel to the horizontal axis of the pixel of the touch screen.

請參考圖7A所示,其為根據本發明一實施例的一觸控處理方法700之一流程示意圖,其可以適用於表一和表三的實施例當中。該觸控處理方法700可以由圖3的觸控處理裝置310實施。該觸控處理方法700還可以是儲存在非揮發性記憶體模組當中的指令,由處理器模組314加以執行。 Please refer to FIG. 7A , which is a schematic flowchart of a touch processing method 700 according to an embodiment of the present invention, which can be applied to the embodiments in Table 1 and Table 3. The touch processing method 700 can be implemented by the touch processing device 310 in FIG. 3 . The touch processing method 700 can also be an instruction stored in a non-volatile memory module and executed by the processor module 314 .

步驟710:對一觸控螢幕上的多條橫向電極或第一電極進行第一次感測,以得到多個第一感測值。 Step 710: Perform first sensing on multiple horizontal electrodes or first electrodes on a touch screen to obtain multiple first sensing values.

步驟720:於一間隔時間之後,對該多條橫向電極進行第二次感測,以得到多個第二感測值。該間隔時間可以是圖6所示實施例所找出來的間隔時間。 Step 720 : After an interval, perform second sensing on the plurality of horizontal electrodes to obtain a plurality of second sensing values. The interval time may be the interval time found in the embodiment shown in FIG. 6 .

步驟730:於該間隔時間之後,對該多條橫向電極進行第三次感測,以得到多個第三感測值。 Step 730 : After the interval time, perform a third sensing on the plurality of horizontal electrodes to obtain a plurality of third sensing values.

步驟740:將相應於該多條橫向電極的該多個第一感測值、該多個第二感測值與該多個第三感測值分別加總為多個感測值總和。 Step 740 : Summing up the plurality of first sensing values, the plurality of second sensing values and the plurality of third sensing values corresponding to the plurality of horizontal electrodes respectively to form a plurality of sums of sensing values.

步驟750:根據該多個感測值總和,判斷該多條橫向電極中的第N條橫向電極附近有一外部導電物件近接該觸控螢幕。 Step 750 : According to the sum of the plurality of sensing values, it is determined that an external conductive object approaches the touch screen near the Nth horizontal electrode among the plurality of horizontal electrodes.

步驟760:自該第N條橫向電極發出驅動信號,以及自多條縱向電極互電容感測該驅動信號以得到一條感測值陣列。 Step 760 : Send out a driving signal from the Nth horizontal electrode, and sense the driving signal from a plurality of vertical electrodes with mutual capacitance to obtain an array of sensing values.

步驟770:根據該條感測值陣列與該第N條橫向電極的位置,計算觸控事件的位置。 Step 770: Calculate the position of the touch event according to the position of the sensing value array and the Nth horizontal electrode.

請參考圖7B所示,其為根據本發明一實施例的一觸控處理方法700之一流程示意圖,其可以適用於表一和表三的實施例當中。圖7B所示的該觸控處理方法700是圖7A所示的實施例的變形。在執行完步驟750之後,圖7B所示的該觸控處理方法700繼續執行步驟765。 Please refer to FIG. 7B , which is a schematic flowchart of a touch processing method 700 according to an embodiment of the present invention, which can be applied to the embodiments in Table 1 and Table 3. The touch processing method 700 shown in FIG. 7B is a modification of the embodiment shown in FIG. 7A . After step 750 is executed, the touch processing method 700 shown in FIG. 7B continues to execute step 765 .

步驟765:分別自該第N-1條、第N條與第N+1條橫向電極發出驅動信號,以及自多條縱向電極互電容感測該驅動信號以得到三條感測值陣列。接著,流程執行步驟775。 Step 765 : Send out driving signals from the N−1 th, N th and N+1 th horizontal electrodes respectively, and sense the driving signals from the mutual capacitance of a plurality of vertical electrodes to obtain three sensing value arrays. Next, the process executes step 775 .

步驟775:根據該三條感測值陣列與該第N-1條至第N+1條橫向電極的位置,計算觸控事件的位置。 Step 775 : Calculate the position of the touch event according to the three sensing value arrays and the positions of the N−1 th to N+1 th horizontal electrodes.

請參考圖7C所示,其為根據本發明一實施例的一觸控處理方法700之一流程示意圖,其可以適用於表四和表五的實施例當中。圖7C所示的該觸控處理方法700是圖7A所示的實施例的變形。在執行完步驟740之後,圖7C所示的該觸控處理方法700繼續執行步驟752。 Please refer to FIG. 7C , which is a schematic flowchart of a touch processing method 700 according to an embodiment of the present invention, which can be applied to the embodiments in Table 4 and Table 5 . The touch processing method 700 shown in FIG. 7C is a modification of the embodiment shown in FIG. 7A . After step 740 is executed, the touch processing method 700 shown in FIG. 7C continues to execute step 752 .

步驟752:根據該多個感測值總和,判斷該多條橫向電極中的第N條與第N+1條橫向電極附近有一外部導電物件近接該觸控螢幕。 Step 752 : According to the sum of the plurality of sensing values, it is determined that there is an external conductive object close to the touch screen near the Nth and N+1th horizontal electrodes among the plurality of horizontal electrodes.

步驟762:分別自該第N條與第N+1條橫向電極發出驅動信號,以及多條縱向電極互電容感測該驅動信號以得到兩條感測值陣列。 Step 762 : sending driving signals from the N th and N+1 th horizontal electrodes respectively, and mutual capacitance sensing of the driving signals by the plurality of vertical electrodes to obtain two sensing value arrays.

步驟764:根據該兩條感測值陣列與該第N條與第N+1條橫向電極的位置,計算觸控事件的位置。 Step 764 : Calculate the position of the touch event according to the two sensing value arrays and the positions of the Nth and N+1th horizontal electrodes.

請參考圖7D所示,其為根據本發明一實施例的一觸控處理方法700之一流程示意圖,其可以適用於表四和表五的實施例當中。圖7D所示的該觸控處理方法700是圖7C所示的實施例的變形。在執行完步驟752之後,圖7B所示的該觸控處理方法700繼續執行步驟764。 Please refer to FIG. 7D , which is a schematic flowchart of a touch processing method 700 according to an embodiment of the present invention, which can be applied to the embodiments in Table 4 and Table 5 . The touch processing method 700 shown in FIG. 7D is a modification of the embodiment shown in FIG. 7C . After step 752 is executed, the touch processing method 700 shown in FIG. 7B continues to execute step 764 .

步驟764:分別自該第N-1條至第N+2條橫向電極發出驅動信號,以及多條縱向電極互電容感測該驅動信號以得到四條感測值陣列。 Step 764 : sending driving signals from the N−1 th to N+2 th horizontal electrodes respectively, and mutual capacitance sensing of the driving signals by multiple vertical electrodes to obtain four arrays of sensing values.

步驟774:根據該四條感測值陣列與該第N-1條至第N+2條橫向電極的位置,計算觸控事件的位置。 Step 774 : Calculate the position of the touch event according to the four sensing value arrays and the positions of the N−1 th to N+2 th horizontal electrodes.

根據本申請的一面向,提供一種觸控處理方法,用於減少像素更新時的干擾。該觸控處理方法包含:對一觸控螢幕上的多條橫向電極 進行第一次感測,以得到多個第一感測值;於一間隔時間之後,對該多條橫向電極進行第二次感測,以得到多個第二感測值;於該間隔時間之後,對該多條橫向電極進行第三次感測,以得到多個第三感測值;將相應於該多條橫向電極的該多個第一感測值、該多個第二感測值與該多個第三感測值分別加總為多個感測值總和;根據該多個感測值總和,判斷該多條橫向電極中的第N條橫向電極附近有一外部導電物件近接該觸控螢幕;自該第N條橫向電極發出驅動信號,以及自該觸控螢幕的多條縱向電極互電容感測該驅動信號以得到一條第N感測值陣列;以及根據該條第N感測值陣列與該第N條橫向電極的位置,計算一觸控事件的位置,其中,該多條橫向電極與該觸控螢幕的像素橫軸互相平行,該多條縱向電極與該觸控螢幕的像素橫軸互相垂直,且該多條縱向電極與該多條橫向電極互相交疊形成多個交疊區,N為大於1的自然數。 According to an aspect of the present application, a touch processing method is provided, which is used for reducing interference when updating pixels. The touch processing method includes: a plurality of horizontal electrodes on a touch screen performing a first sensing to obtain a plurality of first sensing values; after an interval, performing a second sensing to the plurality of horizontal electrodes to obtain a plurality of second sensing values; Afterwards, a third sensing is performed on the plurality of horizontal electrodes to obtain a plurality of third sensing values; corresponding to the plurality of first sensing values, the plurality of second sensing values value and the plurality of third sensing values are respectively summed into a plurality of sensing value sums; according to the plurality of sensing value sums, it is judged that there is an external conductive object near the Nth transverse electrode among the plurality of transverse electrodes. A touch screen; a drive signal is sent from the Nth horizontal electrode, and the drive signal is sensed by mutual capacitance from a plurality of vertical electrodes of the touch screen to obtain an Nth array of sensing values; and according to the Nth sensor measuring the position of the value array and the Nth horizontal electrode, and calculating the position of a touch event, wherein, the multiple horizontal electrodes are parallel to the horizontal axis of the pixel of the touch screen, and the multiple vertical electrodes are parallel to the touch screen The horizontal axes of the pixels are perpendicular to each other, and the plurality of vertical electrodes and the plurality of horizontal electrodes overlap each other to form a plurality of overlapping regions, and N is a natural number greater than 1.

更進一步的,為了更精準地定位該觸控事件,該觸控處理方法更包含:分別自第N-1條與第N+1條橫向電極發出驅動信號,以及自該多條縱向電極互電容感測該驅動信號以分別得到一條第N-1感測值陣列與一條第N+1感測值陣列;以及根據該條第N-1感測值陣列、該條第N感測值陣列、該條第N+1感測值陣列與該第N-1條至該第N+1條橫向電極的位置,計算該觸控事件的位置。 Furthermore, in order to locate the touch event more precisely, the touch processing method further includes: sending driving signals from the N-1th and N+1th horizontal electrodes respectively, and mutual capacitance from the plurality of vertical electrodes Sensing the driving signal to respectively obtain an N-1th sensing value array and an N+1th sensing value array; and according to the N-1th sensing value array, the Nth sensing value array, The position of the N+1th sensing value array and the N−1th to the N+1th horizontal electrodes is used to calculate the position of the touch event.

根據本申請的一面向,提供一種觸控處理裝置,用於減少像素更新時的干擾,包含:一驅動電路模組;一感測電路模組;以及連接至該驅動電路模組與該感測電路模組的一處理器模組,用於執行非揮發性記憶體當中的指令,以實現以下步驟:令該感測電路模組對一觸控螢幕上的 多條橫向電極進行第一次感測,以得到多個第一感測值;於一間隔時間之後,令該感測電路模組對該多條橫向電極進行第二次感測,以得到多個第二感測值;於該間隔時間之後,令該感測電路模組對該多條橫向電極進行第三次感測,以得到多個第三感測值;將相應於該多條橫向電極的該多個第一感測值、該多個第二感測值與該多個第三感測值分別加總為多個感測值總和;根據該多個感測值總和,判斷該多條橫向電極中的第N條橫向電極附近有一外部導電物件近接該觸控螢幕;令該驅動電路模組對該第N條橫向電極發出驅動信號,以及令該感測電路模組自該觸控螢幕的多條縱向電極互電容感測該驅動信號以得到一條第N感測值陣列;以及根據該條感測值陣列與該第N條橫向電極的位置,計算一觸控事件的位置,其中,該多條橫向電極與該觸控螢幕的像素橫軸互相平行,該多條縱向電極與該觸控螢幕的像素橫軸互相垂直,且該多條縱向電極與該多條橫向電極互相交疊形成多個交疊區,N為大於1的自然數。 According to an aspect of the present application, a touch processing device is provided, which is used to reduce the interference when updating pixels, including: a driving circuit module; a sensing circuit module; and a sensor module connected to the driving circuit module and the sensing A processor module of the circuit module is used to execute instructions in the non-volatile memory to realize the following steps: make the sensing circuit module control a touch screen A plurality of horizontal electrodes are sensed for the first time to obtain a plurality of first sensing values; a second sensing value; after the interval time, make the sensing circuit module sense the plurality of horizontal electrodes for the third time to obtain a plurality of third sensing values; corresponding to the plurality of horizontal electrodes The plurality of first sensing values, the plurality of second sensing values and the plurality of third sensing values of the electrodes are respectively summed into a plurality of sums of sensing values; according to the sum of the plurality of sensing values, it is judged that the There is an external conductive object close to the touch screen near the Nth horizontal electrode among the multiple horizontal electrodes; the driving circuit module is made to send a driving signal to the Nth horizontal electrode, and the sensing circuit module is activated from the touch screen. Multiple longitudinal electrodes of the control screen sense the drive signal by mutual capacitance to obtain an Nth array of sensing values; and calculate the position of a touch event according to the position of the array of sensing values and the Nth horizontal electrode, Wherein, the multiple horizontal electrodes are parallel to the horizontal axis of the pixel of the touch screen, the multiple vertical electrodes are perpendicular to the horizontal axis of the pixel of the touch screen, and the multiple vertical electrodes and the multiple horizontal electrodes intersect each other stacked to form multiple overlapping regions, and N is a natural number greater than 1.

更進一步的,為了更精準地定位該觸控事件,該處理器模組更用於:分別令該驅動電路模組自第N-1條與第N+1條橫向電極發出驅動信號,以及令該感測電路模組自多條縱向電極互電容感測該驅動信號以分別得到一條第N-1感測值陣列與一條第N+1感測值陣列;以及根據該條第N-1感測值陣列、該條第N感測值陣列、該條第N+1感測值陣列與該第N-1條至該第N+1條橫向電極的位置,計算該觸控事件的位置。 Furthermore, in order to locate the touch event more precisely, the processor module is further used to: respectively make the driving circuit module send a driving signal from the N-1th and N+1th horizontal electrodes, and make the The sensing circuit module senses the drive signal from a plurality of longitudinal electrode mutual capacitances to respectively obtain an N-1 array of sensing values and an array of N+1 sensing values; and according to the N-1 array of sensing values Positions of the measured value array, the Nth sensed value array, the N+1th sensed value array, and the N−1th to the N+1th horizontal electrodes are used to calculate the position of the touch event.

根據本申請的一面向,提供一種觸控處理方法,用於減少像素更新時的干擾,包含:對一觸控螢幕上的多條橫向電極進行第一次感測,以得到多個第一感測值;於一間隔時間之後,對該多條橫向電極進行第二 次感測,以得到多個第二感測值;於該間隔時間之後,對該多條橫向電極進行第三次感測,以得到多個第三感測值;將相應於該多條橫向電極的該多個第一感測值、該多個第二感測值與該多個第三感測值分別加總為多個感測值總和;根據該多個感測值總和,判斷該多條橫向電極中的兩條相鄰的第N條與第N+1條橫向電極附近有一外部導電物件近接該觸控螢幕;以及分別自該第N條與該第N+1條橫向電極發出驅動信號,以及自該觸控螢幕的多條縱向電極互電容感測該驅動信號以得到一條第N感測值陣列與一條第N+1感測值陣列;以及根據該條第N感測值陣列、該條第N+1感測值陣列、該第N條橫向電極的位置與該第N+1條橫向電極的位置,計算一觸控事件的位置,其中,該多條橫向電極與該觸控螢幕的像素橫軸互相平行,該多條縱向電極與該觸控螢幕的像素橫軸互相垂直,且該多條縱向電極與該多條橫向電極互相交疊形成多個交疊區,N為大於1的自然數。 According to an aspect of the present application, a touch processing method is provided, which is used to reduce the interference when updating pixels, including: first sensing multiple horizontal electrodes on a touch screen to obtain multiple first senses measured value; after an interval time, the plurality of horizontal electrodes are subjected to a second Sensing for the second time to obtain a plurality of second sensing values; after the interval time, the plurality of horizontal electrodes are sensed for the third time to obtain a plurality of third sensing values; corresponding to the plurality of horizontal electrodes The plurality of first sensing values, the plurality of second sensing values and the plurality of third sensing values of the electrodes are respectively summed into a plurality of sums of sensing values; according to the sum of the plurality of sensing values, it is judged that the There is an external conductive object close to the touch screen near two adjacent Nth and N+1th horizontal electrodes among the plurality of horizontal electrodes; a driving signal, and sensing the driving signal from a plurality of vertical electrodes mutual capacitance of the touch screen to obtain an Nth sensing value array and an N+1th sensing value array; and according to the Nth sensing value array, the N+1th sensing value array, the position of the Nth horizontal electrode and the position of the N+1th horizontal electrode, and calculate the position of a touch event, wherein the plurality of horizontal electrodes and the The transverse axes of the pixels of the touch screen are parallel to each other, the plurality of longitudinal electrodes are perpendicular to the transverse axes of the pixels of the touch screen, and the plurality of longitudinal electrodes and the plurality of transverse electrodes overlap each other to form a plurality of overlapping regions, N is a natural number greater than 1.

更進一步的,為了更精準地定位該觸控事件,該觸控處理方法更包含:分別自第N-1條與第N+2條橫向電極發出驅動信號,以及自該多條縱向電極互電容感測該驅動信號以分別得到一條第N-1感測值陣列與一條第N+2感測值陣列;以及根據該條第N-1感測值陣列、該條第N感測值陣列、該條第N+1感測值陣列、該條第N+2感測值陣列與該第N-1條至該第N+2條橫向電極的位置,計算該觸控事件的位置。 Furthermore, in order to locate the touch event more precisely, the touch processing method further includes: sending driving signals from the N-1th and N+2th horizontal electrodes respectively, and mutual capacitance from the plurality of vertical electrodes Sensing the driving signal to respectively obtain an N-1th sensing value array and an N+2th sensing value array; and according to the N-1th sensing value array, the Nth sensing value array, The position of the N+1th sensing value array, the N+2th sensing value array and the N−1th to the N+2th horizontal electrodes is used to calculate the position of the touch event.

根據本申請的一面向,提供一種觸控處理裝置,用於減少像素更新時的干擾,包含:一驅動電路模組;一感測電路模組;以及連接至該驅動電路模組與該感測電路模組的一處理器模組,用於執行非揮發性記憶體當中的指令,以實現以下步驟:令該感測電路模組對一觸控螢幕上的 多條橫向電極進行第一次感測,以得到多個第一感測值;於一間隔時間之後,令該感測電路模組對該多條橫向電極進行第二次感測,以得到多個第二感測值;於該間隔時間之後,令該感測電路模組對該多條橫向電極進行第三次感測,以得到多個第三感測值;將相應於該多條橫向電極的該多個第一感測值、該多個第二感測值與該多個第三感測值分別加總為多個感測值總和;根據該多個感測值總和,判斷該多條橫向電極中的兩條相鄰的第N條與第N+1條橫向電極附近有一外部導電物件近接該觸控螢幕;以及分別令該驅動電路模組自該第N條與該第N+1條橫向電極發出驅動信號,以及令該感測電路模組自該觸控螢幕的多條縱向電極互電容感測該驅動信號以得到一條第N感測值陣列與一條第N+1感測值陣列;以及根據該條第N感測值陣列、該條第N+1感測值陣列、該第N條橫向電極的位置與該第N+1條橫向電極的位置,計算一觸控事件的位置,其中,該多條橫向電極與該觸控螢幕的像素橫軸互相平行,該多條縱向電極與該觸控螢幕的像素橫軸互相垂直,且該多條縱向電極與該多條橫向電極互相交疊形成多個交疊區,N為大於1的自然數。 According to an aspect of the present application, a touch processing device is provided, which is used to reduce the interference when updating pixels, including: a driving circuit module; a sensing circuit module; and a sensor module connected to the driving circuit module and the sensing A processor module of the circuit module is used to execute instructions in the non-volatile memory to realize the following steps: make the sensing circuit module control a touch screen A plurality of horizontal electrodes are sensed for the first time to obtain a plurality of first sensing values; a second sensing value; after the interval time, make the sensing circuit module sense the plurality of horizontal electrodes for the third time to obtain a plurality of third sensing values; corresponding to the plurality of horizontal electrodes The plurality of first sensing values, the plurality of second sensing values and the plurality of third sensing values of the electrodes are respectively summed into a plurality of sums of sensing values; according to the sum of the plurality of sensing values, it is judged that the There is an external conductive object close to the touch screen near two adjacent Nth and N+1th horizontal electrodes among the plurality of horizontal electrodes; +1 horizontal electrode sends a driving signal, and makes the sensing circuit module sense the driving signal from the mutual capacitance of multiple vertical electrodes of the touch screen to obtain an Nth sensing value array and an N+1th sensing value array. a measurement array; and according to the Nth sensing value array, the N+1th sensing value array, the position of the Nth horizontal electrode and the position of the N+1th horizontal electrode, calculate a touch The position of the event, wherein, the multiple horizontal electrodes are parallel to the horizontal axis of the pixel of the touch screen, the multiple vertical electrodes are perpendicular to the horizontal axis of the pixel of the touch screen, and the multiple vertical electrodes are parallel to the multiple The lateral electrodes overlap each other to form multiple overlapping regions, and N is a natural number greater than 1.

更進一步的,為了更精準地定位該觸控事件,該處理器模組更用於:分別令該驅動電路模組自第N-1條與第N+2條橫向電極發出驅動信號,以及令該感測電路模組自該多條縱向電極互電容感測該驅動信號以分別得到一條第N-1感測值陣列與一條第N+2感測值陣列;以及根據該條第N-1感測值陣列、該條第N感測值陣列、該條第N+1感測值陣列、該條第N+2感測值陣列與該第N-1條至該第N+2條橫向電極的位置,計算該觸控事件的位置。 Furthermore, in order to locate the touch event more precisely, the processor module is further used to: respectively make the driving circuit module send a driving signal from the N-1th and N+2th horizontal electrodes, and make the The sensing circuit module senses the drive signal from the plurality of vertical electrodes to obtain an N-1th sensing value array and an N+2th sensing value array respectively; and according to the N-1th sensing value array Sensing value array, the Nth sensing value array, the N+1th sensing value array, the N+2th sensing value array and the N-1th to the N+2th horizontal The position of the electrode, calculate the position of the touch event.

根據本申請的一面向,提供一種觸控系統,用於減少像素更新時的干擾,包含:如前所述的觸控處理裝置;以及該觸控處理裝置所連接的一觸控螢幕。 According to an aspect of the present application, a touch control system is provided for reducing interference during pixel update, including: the touch processing device as described above; and a touch screen connected to the touch processing device.

本申請提供了觸控處理裝置或觸控系統極其觸控處理方法,利用間隔適當時間進行的多次橫向電極的感測結果,判斷出哪一橫向電極的感測結果確實與觸控相關,或者判斷出哪一橫向電極的感測結果與觸控無關,並且將其感測結果排除在觸控計算之外,或是根據其感測結果另作一次以上的縱向電極感測,使得觸控計算能夠免於或至少減少受到像素橫軸更新的電磁干擾影響。 The present application provides a touch processing device or a touch system and a touch processing method thereof, using the sensing results of multiple lateral electrodes at appropriate intervals to determine which sensing result of the lateral electrode is indeed related to touch, or Determine which horizontal electrode's sensing result has nothing to do with touch, and exclude its sensing result from the touch calculation, or perform more than one vertical electrode sensing based on its sensing result, so that the touch calculation It is possible to avoid or at least reduce the influence of electromagnetic interference caused by updating the horizontal axis of pixels.

700:觸控處理方法 700: Touch processing method

710~775:步驟 710~775: Steps

Claims (9)

一種觸控處理方法,用於減少像素更新時的干擾,包含: A touch processing method for reducing noise when updating pixels, comprising: 對一觸控螢幕上的多條橫向電極進行第一次感測,以得到多個第一感測值; performing first sensing on multiple horizontal electrodes on a touch screen to obtain multiple first sensing values; 於一間隔時間之後,對該多條橫向電極進行第二次感測,以得到多個第二感測值; After an interval time, perform second sensing on the plurality of horizontal electrodes to obtain a plurality of second sensing values; 於該間隔時間之後,對該多條橫向電極進行第三次感測,以得到多個第三感測值; After the interval time, perform a third sensing on the plurality of horizontal electrodes to obtain a plurality of third sensing values; 將相應於該多條橫向電極的該多個第一感測值、該多個第二感測值與該多個第三感測值分別加總為多個感測值總和; summing up the plurality of first sensing values, the plurality of second sensing values, and the plurality of third sensing values corresponding to the plurality of horizontal electrodes to form a plurality of sums of sensing values; 根據該多個感測值總和,判斷該多條橫向電極中的第N條橫向電極附近有一外部導電物件近接該觸控螢幕; According to the sum of the plurality of sensing values, it is determined that an external conductive object is close to the touch screen near the Nth horizontal electrode among the plurality of horizontal electrodes; 自該第N條橫向電極發出驅動信號,以及自該觸控螢幕的多條縱向電極互電容感測該驅動信號以得到一條第N感測值陣列;以及 Sending a driving signal from the Nth horizontal electrode, and sensing the driving signal from a plurality of vertical electrodes of the touch screen with mutual capacitance to obtain an Nth sensing value array; and 根據該條第N感測值陣列與該第N條橫向電極的位置,計算一觸控事件的位置, calculating the position of a touch event according to the position of the Nth sensing value array and the Nth horizontal electrode, 其中,該多條橫向電極與該觸控螢幕的像素橫軸互相平行,該多條縱向電極與該觸控螢幕的像素橫軸互相垂直,且該多條縱向電極與該多條橫向電極互相交疊形成多個交疊區,N為大於1的自然數。 Wherein, the multiple horizontal electrodes are parallel to the horizontal axis of the pixel of the touch screen, the multiple vertical electrodes are perpendicular to the horizontal axis of the pixel of the touch screen, and the multiple vertical electrodes and the multiple horizontal electrodes intersect each other stacked to form multiple overlapping regions, and N is a natural number greater than 1. 如申請專利範圍第1項的觸控處理方法,更包含: For example, the touch processing method of item 1 of the scope of the patent application includes: 分別自第N-1條與第N+1條橫向電極發出驅動信號,以及自該多條縱向電 極互電容感測該驅動信號以分別得到一條第N-1感測值陣列與一條第N+1感測值陣列;以及 Send driving signals from the N-1th and N+1th horizontal electrodes respectively, and send out driving signals from the multiple vertical electrodes Sensing the driving signal by mutual capacitance between poles to obtain an N-1th sensing value array and an N+1th sensing value array respectively; and 根據該條第N-1感測值陣列、該條第N感測值陣列、該條第N+1感測值陣列與該第N-1條至該第N+1條橫向電極的位置,計算該觸控事件的位置。 According to the N-1th sensing value array, the Nth sensing value array, the N+1th sensing value array and the positions of the N-1th to the N+1th horizontal electrodes, Calculate the location of the touch event. 一種觸控處理裝置,用於減少像素更新時的干擾,包含: A touch processing device for reducing interference when updating pixels, comprising: 一驅動電路模組; A driving circuit module; 一感測電路模組;以及 a sensing circuit module; and 連接至該驅動電路模組與該感測電路模組的一處理器模組,用於執行非揮發性記憶體當中的指令,以實現以下步驟: A processor module connected to the driving circuit module and the sensing circuit module is used to execute instructions in the non-volatile memory to realize the following steps: 令該感測電路模組對一觸控螢幕上的多條橫向電極進行第一次感測,以得到多個第一感測值; making the sensing circuit module perform first sensing on a plurality of horizontal electrodes on a touch screen to obtain a plurality of first sensing values; 於一間隔時間之後,令該感測電路模組對該多條橫向電極進行第二次感測,以得到多個第二感測值; After an interval time, make the sensing circuit module perform second sensing on the plurality of horizontal electrodes to obtain a plurality of second sensing values; 於該間隔時間之後,令該感測電路模組對該多條橫向電極進行第三次感測,以得到多個第三感測值; After the interval time, make the sensing circuit module sense the plurality of horizontal electrodes for the third time to obtain a plurality of third sensing values; 將相應於該多條橫向電極的該多個第一感測值、該多個第二感測值與該多個第三感測值分別加總為多個感測值總和; summing up the plurality of first sensing values, the plurality of second sensing values, and the plurality of third sensing values corresponding to the plurality of horizontal electrodes to form a plurality of sums of sensing values; 根據該多個感測值總和,判斷該多條橫向電極中的第N條橫向電極附近有一外部導電物件近接該觸控螢幕; According to the sum of the plurality of sensing values, it is determined that an external conductive object is close to the touch screen near the Nth horizontal electrode among the plurality of horizontal electrodes; 令該驅動電路模組對該第N條橫向電極發出驅動信號,以及令該感測電路模組自該觸控螢幕的多條縱向電極互電容感測該驅動信號以得到一 條第N感測值陣列;以及 making the driving circuit module send a driving signal to the Nth horizontal electrode, and making the sensing circuit module sense the driving signal from the mutual capacitance of the vertical electrodes of the touch screen to obtain a an Nth sensing value array; and 根據該條感測值陣列與該第N條橫向電極的位置,計算一觸控事件的位置, calculating the position of a touch event according to the position of the sensing value array and the Nth horizontal electrode, 其中,該多條橫向電極與該觸控螢幕的像素橫軸互相平行,該多條縱向電極與該觸控螢幕的像素橫軸互相垂直,且該多條縱向電極與該多條橫向電極互相交疊形成多個交疊區,N為大於1的自然數。 Wherein, the multiple horizontal electrodes are parallel to the horizontal axis of the pixel of the touch screen, the multiple vertical electrodes are perpendicular to the horizontal axis of the pixel of the touch screen, and the multiple vertical electrodes and the multiple horizontal electrodes intersect each other stacked to form multiple overlapping regions, and N is a natural number greater than 1. 如申請專利範圍第3項的觸控處理裝置,其中該處理器模組更用於: For example, the touch processing device of item 3 of the patent scope of the application, wherein the processor module is further used for: 分別令該驅動電路模組自第N-1條與第N+1條橫向電極發出驅動信號,以及令該感測電路模組自多條縱向電極互電容感測該驅動信號以分別得到一條第N-1感測值陣列與一條第N+1感測值陣列;以及 Respectively make the driving circuit module send a driving signal from the N-1th and N+1th horizontal electrodes, and make the sensing circuit module sense the driving signal from the mutual capacitance of a plurality of vertical electrodes to obtain a first N-1 sensing value array and an N+1th sensing value array; and 根據該條第N-1感測值陣列、該條第N感測值陣列、該條第N+1感測值陣列與該第N-1條至該第N+1條橫向電極的位置,計算該觸控事件的位置。 According to the N-1th sensing value array, the Nth sensing value array, the N+1th sensing value array and the positions of the N-1th to the N+1th horizontal electrodes, Calculate the location of the touch event. 一種觸控處理方法,用於減少像素更新時的干擾,包含: A touch processing method for reducing noise when updating pixels, comprising: 對一觸控螢幕上的多條橫向電極進行第一次感測,以得到多個第一感測值; performing first sensing on multiple horizontal electrodes on a touch screen to obtain multiple first sensing values; 於一間隔時間之後,對該多條橫向電極進行第二次感測,以得到多個第二感測值; After an interval time, perform second sensing on the plurality of horizontal electrodes to obtain a plurality of second sensing values; 於該間隔時間之後,對該多條橫向電極進行第三次感測,以得到多個第三感測值; After the interval time, perform a third sensing on the plurality of horizontal electrodes to obtain a plurality of third sensing values; 將相應於該多條橫向電極的該多個第一感測值、該多個第二感測值與該 多個第三感測值分別加總為多個感測值總和; combining the plurality of first sensing values corresponding to the plurality of horizontal electrodes, the plurality of second sensing values and the plurality of A plurality of third sensing values are respectively added to a sum of a plurality of sensing values; 根據該多個感測值總和,判斷該多條橫向電極中的兩條相鄰的第N條與第N+1條橫向電極附近有一外部導電物件近接該觸控螢幕;以及 According to the sum of the plurality of sensing values, it is determined that there is an external conductive object close to the touch screen near two adjacent Nth and N+1th lateral electrodes among the plurality of lateral electrodes; and 分別自該第N條與該第N+1條橫向電極發出驅動信號,以及自該觸控螢幕的多條縱向電極互電容感測該驅動信號以得到一條第N感測值陣列與一條第N+1感測值陣列;以及 sending driving signals from the Nth and the N+1th horizontal electrodes respectively, and sensing the driving signals from the mutual capacitance of the multiple vertical electrodes of the touch screen to obtain an Nth sensing value array and an Nth sensing value array and an Nth +1 array of sense values; and 根據該條第N感測值陣列、該條第N+1感測值陣列、該第N條橫向電極的位置與該第N+1條橫向電極的位置,計算一觸控事件的位置, Calculate the position of a touch event according to the Nth sensing value array, the N+1th sensing value array, the position of the Nth horizontal electrode and the position of the N+1th horizontal electrode, 其中,該多條橫向電極與該觸控螢幕的像素橫軸互相平行,該多條縱向電極與該觸控螢幕的像素橫軸互相垂直,且該多條縱向電極與該多條橫向電極互相交疊形成多個交疊區,N為大於1的自然數。 Wherein, the multiple horizontal electrodes are parallel to the horizontal axis of the pixel of the touch screen, the multiple vertical electrodes are perpendicular to the horizontal axis of the pixel of the touch screen, and the multiple vertical electrodes and the multiple horizontal electrodes intersect each other stacked to form multiple overlapping regions, and N is a natural number greater than 1. 如申請專利範圍第5項的觸控處理方法,更包含: For example, the touch processing method of item 5 of the scope of patent application further includes: 分別自第N-1條與第N+2條橫向電極發出驅動信號,以及自該多條縱向電極互電容感測該驅動信號以分別得到一條第N-1感測值陣列與一條第N+2感測值陣列;以及 sending driving signals from the N-1th and N+2th horizontal electrodes respectively, and sensing the driving signals from the mutual capacitance of the plurality of vertical electrodes to respectively obtain an N-1th sensing value array and an N+th 2 arrays of sensed values; and 根據該條第N-1感測值陣列、該條第N感測值陣列、該條第N+1感測值陣列、該條第N+2感測值陣列與該第N-1條至該第N+2條橫向電極的位置,計算該觸控事件的位置。 According to the N-1th sensing value array, the Nth sensing value array, the N+1th sensing value array, the N+2th sensing value array and the N-1th to The position of the N+2th horizontal electrode is used to calculate the position of the touch event. 一種觸控處理裝置,用於減少像素更新時的干擾,包含: A touch processing device for reducing interference when updating pixels, comprising: 一驅動電路模組; A driving circuit module; 一感測電路模組;以及 a sensing circuit module; and 連接至該驅動電路模組與該感測電路模組的一處理器模組,用於執行非揮發性記憶體當中的指令,以實現以下步驟: A processor module connected to the driving circuit module and the sensing circuit module is used to execute instructions in the non-volatile memory to realize the following steps: 令該感測電路模組對一觸控螢幕上的多條橫向電極進行第一次感測,以得到多個第一感測值; making the sensing circuit module perform first sensing on a plurality of horizontal electrodes on a touch screen to obtain a plurality of first sensing values; 於一間隔時間之後,令該感測電路模組對該多條橫向電極進行第二次感測,以得到多個第二感測值; After an interval time, make the sensing circuit module perform second sensing on the plurality of horizontal electrodes to obtain a plurality of second sensing values; 於該間隔時間之後,令該感測電路模組對該多條橫向電極進行第三次感測,以得到多個第三感測值; After the interval time, make the sensing circuit module sense the plurality of horizontal electrodes for the third time to obtain a plurality of third sensing values; 將相應於該多條橫向電極的該多個第一感測值、該多個第二感測值與該多個第三感測值分別加總為多個感測值總和; summing up the plurality of first sensing values, the plurality of second sensing values, and the plurality of third sensing values corresponding to the plurality of horizontal electrodes to form a plurality of sums of sensing values; 根據該多個感測值總和,判斷該多條橫向電極中的兩條相鄰的第N條與第N+1條橫向電極附近有一外部導電物件近接該觸控螢幕;以及 According to the sum of the plurality of sensing values, it is determined that there is an external conductive object close to the touch screen near two adjacent Nth and N+1th lateral electrodes among the plurality of lateral electrodes; and 分別令該驅動電路模組自該第N條與該第N+1條橫向電極發出驅動信號,以及令該感測電路模組自該觸控螢幕的多條縱向電極互電容感測該驅動信號以得到一條第N感測值陣列與一條第N+1感測值陣列;以及 Respectively make the driving circuit module send a driving signal from the Nth and the N+1th horizontal electrodes, and make the sensing circuit module sense the driving signal from the mutual capacitance of the plurality of vertical electrodes of the touch screen to obtain an Nth sensing value array and an N+1th sensing value array; and 根據該條第N感測值陣列、該條第N+1感測值陣列、該第N條橫向電極的位置與該第N+1條橫向電極的位置,計算一觸控事件的位置, Calculate the position of a touch event according to the Nth sensing value array, the N+1th sensing value array, the position of the Nth horizontal electrode and the position of the N+1th horizontal electrode, 其中,該多條橫向電極與該觸控螢幕的像素橫軸互相平行,該多條縱向電極與該觸控螢幕的像素橫軸互相垂直,且該多條縱向電極與該多條橫向電極互相交疊形成多個交疊區,N為大於1的自然數。 Wherein, the multiple horizontal electrodes are parallel to the horizontal axis of the pixel of the touch screen, the multiple vertical electrodes are perpendicular to the horizontal axis of the pixel of the touch screen, and the multiple vertical electrodes and the multiple horizontal electrodes intersect each other stacked to form multiple overlapping regions, and N is a natural number greater than 1. 如申請專利範圍第7項的觸控處理裝置,其中該處理器模組更用於: For example, the touch processing device of item 7 of the patent scope of the application, wherein the processor module is further used for: 分別令該驅動電路模組自第N-1條與第N+2條橫向電極發出驅動信號,以及令該感測電路模組自該多條縱向電極互電容感測該驅動信號以分別得到一條第N-1感測值陣列與一條第N+2感測值陣列;以及 Respectively make the driving circuit module send driving signals from the N-1th and N+2th horizontal electrodes, and make the sensing circuit module sense the driving signals from the mutual capacitance of the plurality of vertical electrodes to obtain a An N-1th sensing value array and an N+2th sensing value array; and 根據該條第N-1感測值陣列、該條第N感測值陣列、該條第N+1感測值陣列、該條第N+2感測值陣列與該第N-1條至該第N+2條橫向電極的位置,計算該觸控事件的位置。 According to the N-1th sensing value array, the Nth sensing value array, the N+1th sensing value array, the N+2th sensing value array and the N-1th to The position of the N+2th horizontal electrode is used to calculate the position of the touch event. 一種觸控系統,用於減少像素更新時的干擾,包含: A touch system for reducing distraction when updating pixels, comprising: 如申請專利範圍第3、4、7和8項其中之一的觸控處理裝置;以及 Such as the touch processing device of one of items 3, 4, 7 and 8 of the scope of patent application; and 該觸控處理裝置所連接的一觸控螢幕。 A touch screen connected to the touch processing device.
TW110110127A 2016-02-19 2021-03-18 Touch sensitive processing apparatus and touch system and method thereof TWI761144B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW110110127A TWI761144B (en) 2021-03-18 2021-03-18 Touch sensitive processing apparatus and touch system and method thereof
CN202110396816.0A CN115113755A (en) 2021-03-18 2021-04-13 Touch processing device, touch system and touch processing method thereof
US17/335,554 US11474640B2 (en) 2016-02-19 2021-06-01 Touch sensitive processing apparatus and electronic system and method thereof for reducing interference from pixel refreshing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110110127A TWI761144B (en) 2021-03-18 2021-03-18 Touch sensitive processing apparatus and touch system and method thereof

Publications (2)

Publication Number Publication Date
TWI761144B TWI761144B (en) 2022-04-11
TW202238343A true TW202238343A (en) 2022-10-01

Family

ID=82199175

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110110127A TWI761144B (en) 2016-02-19 2021-03-18 Touch sensitive processing apparatus and touch system and method thereof

Country Status (2)

Country Link
CN (1) CN115113755A (en)
TW (1) TWI761144B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107102765B (en) * 2016-02-19 2020-04-10 禾瑞亚科技股份有限公司 Touch processing method and device for reducing interference during pixel updating and electronic system
TWI619063B (en) * 2016-02-19 2018-03-21 禾瑞亞科技股份有限公司 Touch sensitive processing method, apparatus and electronic system for reducing interference from pixel update
TWI666583B (en) * 2016-03-30 2019-07-21 禾瑞亞科技股份有限公司 Touch processor and method

Also Published As

Publication number Publication date
TWI761144B (en) 2022-04-11
CN115113755A (en) 2022-09-27

Similar Documents

Publication Publication Date Title
US10268324B2 (en) Peak detection schemes for touch position detection
TWI414974B (en) Touch position sensing method and position sensing system of touch panel
US10037100B2 (en) SNR-aware active mode touch scans with electrode reallocation
KR102088906B1 (en) Appratus and method for driving touch screen
KR102050385B1 (en) Touch sensing system and method of reducing latency thereof
US9811208B2 (en) Touch screen and method of determining a touch position
KR20140048920A (en) Touch display device
US10379686B2 (en) Touch display panel and method for driving the same
WO2015180315A1 (en) Capacitive touch structure, embedded touchscreen, display device and scanning method therefor
US9811181B2 (en) Noise correction for a stylus touch device
KR101461036B1 (en) Apparatus and method for driving touch sensor
US11029786B2 (en) Touch sensitive method, apparatus and electronic system for reducing interference from pixel refreshing
US10296146B2 (en) System and method for detecting grip of a touch enabled device
WO2020001042A1 (en) Data detection method and device, storage medium, and touch device
KR101493557B1 (en) Display having touch sensor and touch data processing method thereof
US20170068330A1 (en) Preprocessing for nonlinear stylus profiles
KR101970558B1 (en) Apparatus for driving touch sensor
KR20140081260A (en) Display device and driving method thereof
US11474640B2 (en) Touch sensitive processing apparatus and electronic system and method thereof for reducing interference from pixel refreshing
KR20160089942A (en) Touch recognition mehtod for display device and display device using the same
TWI761144B (en) Touch sensitive processing apparatus and touch system and method thereof
TWI619063B (en) Touch sensitive processing method, apparatus and electronic system for reducing interference from pixel update
KR102016570B1 (en) Touch sensing system and noise reduction method thereof
KR102063347B1 (en) Touch sensing system and method of controlling smoothing filter thereof
US20150277624A1 (en) Sensing Method and Related Touch Panel