TWI615992B - Method of manufacturing solar cell - Google Patents

Method of manufacturing solar cell Download PDF

Info

Publication number
TWI615992B
TWI615992B TW104141443A TW104141443A TWI615992B TW I615992 B TWI615992 B TW I615992B TW 104141443 A TW104141443 A TW 104141443A TW 104141443 A TW104141443 A TW 104141443A TW I615992 B TWI615992 B TW I615992B
Authority
TW
Taiwan
Prior art keywords
layer
electrode
germanium substrate
copper
passivation layer
Prior art date
Application number
TW104141443A
Other languages
Chinese (zh)
Other versions
TW201721900A (en
Inventor
賴光傑
莊佳智
王建竣
Original Assignee
茂迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 茂迪股份有限公司 filed Critical 茂迪股份有限公司
Priority to TW104141443A priority Critical patent/TWI615992B/en
Publication of TW201721900A publication Critical patent/TW201721900A/en
Application granted granted Critical
Publication of TWI615992B publication Critical patent/TWI615992B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

一種太陽能電池的製造方法,包含:提供一矽基板,該矽基板具有一第一表面以及相對於該第一表面的一第二表面;於該矽基板的第一表面上形成一射極,其中該射極與該矽基板的摻雜類型不同,以藉此形成p-n接面;於該矽基板的第一表面上形成一第一鈍化層;於該矽基板的第二表面上形成一第二鈍化層;形成該第一鈍化層與該第二鈍化層之後,對該矽基板實施熱退火處理;實施該熱退火處理之後,於該第一鈍化層上開口並電鍍形成一第一電極;以及實施該熱退火處理之後,於該第二鈍化層上開口並電鍍形成一第二電極。A method of manufacturing a solar cell, comprising: providing a germanium substrate having a first surface and a second surface opposite to the first surface; forming an emitter on the first surface of the germanium substrate, wherein The emitter is different from the doping type of the germanium substrate to thereby form a pn junction; a first passivation layer is formed on the first surface of the germanium substrate; and a second surface is formed on the second surface of the germanium substrate After the first passivation layer and the second passivation layer are formed, a thermal annealing treatment is performed on the germanium substrate; after the thermal annealing treatment is performed, a first electrode is formed on the first passivation layer and electroplated to form a first electrode; After the thermal annealing treatment is performed, a second electrode is formed on the second passivation layer and electroplated to form a second electrode.

Description

太陽能電池之製造方法Solar cell manufacturing method

本發明是有關於一種半導體元件的製造方法,更特別是有關於一種太陽能電池的製造方法。The present invention relates to a method of fabricating a semiconductor device, and more particularly to a method of fabricating a solar cell.

在石化能源短缺以及能源需求量與日俱增的情況下,再生能源(Renewable energy)的開發成為近年來非常重要的課題之一。再生能源泛指永續且無污染的天然能源,例如太陽能、風能、水利能、潮汐能或是生質能等,其中太陽能的開發更是近幾年來在能源開發的研究上相當重要且受歡迎的一環,而太陽能電池則是一種能夠將太陽能轉換為電能之裝置。The development of renewable energy (Renewable energy) has become one of the most important issues in recent years due to the shortage of petrochemical energy and increasing energy demand. Renewable energy refers to sustainable and non-polluting natural energy sources such as solar energy, wind energy, hydropower, tidal energy or biomass energy. Among them, the development of solar energy is very important in the research of energy development in recent years. A welcome part, and solar cells are a device that converts solar energy into electricity.

已知的矽晶太陽能電池主要包含有:一用於將光能轉換成電能的基板,以及用於傳導電流的一正面電極與一背面電極。前述正面電極與背面電極在製造上可透過網版印刷方式將電極漿料塗佈於基板的受光面與背面上,並經過燒結製程使電極漿料固化成型於基板上。Known twinned solar cells mainly include: a substrate for converting light energy into electrical energy, and a front electrode and a back electrode for conducting current. The front electrode and the back electrode are applied to the light-receiving surface and the back surface of the substrate by screen printing, and the electrode paste is cured and molded on the substrate through a sintering process.

一般來說,電極漿料係由多種物質所組成,包括有金屬粉末、玻璃粉末以及溶劑等。然而,玻璃為不導電的材料,多少會影響電極的電性。另外,燒結製程需要較高的溫度來實行,容易造成一些金屬離子擴散至電池元件的內部,因此影響了太陽能電池的性能。Generally, the electrode slurry is composed of a plurality of materials including metal powder, glass powder, solvent, and the like. However, glass is a non-conductive material, which affects the electrical properties of the electrode. In addition, the sintering process requires a higher temperature to be carried out, which tends to cause some metal ions to diffuse into the interior of the battery element, thus affecting the performance of the solar cell.

有鑑於此,便有需要提出一種方案,以解決上述問題。In view of this, there is a need to propose a solution to solve the above problems.

本發明提供一種太陽能電池的製造方法,包含:提供一矽基板,該矽基板具有一第一表面以及相對於該第一表面的一第二表面;於該矽基板的第一表面上形成一射極,其中該射極與該矽基板的摻雜類型不同,以藉此形成p-n接面;於該矽基板的第一表面上形成一第一鈍化層;於該矽基板的第二表面上形成一第二鈍化層;形成該第一鈍化層與該第二鈍化層之後,對該矽基板實施熱退火處理;實施該熱退火處理之後,於該第一鈍化層上開口並電鍍形成一第一電極;以及實施該熱退火處理之後,於該第二鈍化層上開口並電鍍形成一第二電極。The present invention provides a method of fabricating a solar cell, comprising: providing a germanium substrate having a first surface and a second surface opposite to the first surface; forming a shot on the first surface of the germanium substrate a pole, wherein the emitter is different from a doping type of the germanium substrate, thereby forming a pn junction; forming a first passivation layer on the first surface of the germanium substrate; forming on the second surface of the germanium substrate a second passivation layer; after forming the first passivation layer and the second passivation layer, performing thermal annealing treatment on the germanium substrate; after performing the thermal annealing treatment, opening and plating on the first passivation layer to form a first And after performing the thermal annealing treatment, opening and plating on the second passivation layer to form a second electrode.

根據本發明之太陽能電池的製造方法,其中電極的形成係由傳統銀鋁漿製程改為金屬電鍍的方式,如此可使用較低溫製程,形成良好的金屬接觸;同時亦不會因製程溫度過高,造成金屬離子擴散至電池元件內部,導致開路電壓下降。According to the manufacturing method of the solar cell of the present invention, the formation of the electrode is changed from the conventional silver-aluminum paste process to the metal plating process, so that a lower temperature process can be used to form a good metal contact; and the process temperature is not too high. Causes metal ions to diffuse into the interior of the battery element, causing the open circuit voltage to drop.

根據本發明之太陽能電池的製造方法,其中熱退火製程中的高溫可以讓鈍化層中的缺陷得以修補,提升了鈍化品質及效果,因此可有效改善開路電壓值。再者,熱退火製程中的高溫可讓矽基板中的缺陷修補,來改善整個電池元件的性能。此外,熱退火製程中的高溫也可讓鈍化層中的氫離子得以擴散至矽基板,藉此來修補矽基板中的缺陷,提升電池元件的性能。According to the method for fabricating a solar cell of the present invention, the high temperature in the thermal annealing process can repair defects in the passivation layer, improve the passivation quality and effect, and thus can effectively improve the open circuit voltage value. Furthermore, the high temperatures in the thermal annealing process can repair defects in the germanium substrate to improve the performance of the entire battery component. In addition, the high temperature in the thermal annealing process allows hydrogen ions in the passivation layer to diffuse to the germanium substrate, thereby repairing defects in the germanium substrate and improving the performance of the battery element.

為了讓本發明之上述和其他目的、特徵和優點能更明顯,下文將配合所附圖示,詳細說明如下。此外,於本發明之說明中,相同之構件係以相同之符號表示,於此先述明。The above and other objects, features, and advantages of the present invention will become more apparent from the accompanying drawings. In the description of the present invention, the same components are denoted by the same reference numerals and will be described.

請參照圖1a至圖1f,其顯示本發明第一實施例之太陽能電池的製造方法。首先,提供一個單晶或多晶的矽基板110,該矽基板110的摻雜類型可為N型或P型,該矽基板110具有一經粗糙化的受光面111以及相對於該受光面111的一背面112(請參見圖1a)。Referring to Figures 1a to 1f, there is shown a method of fabricating a solar cell according to a first embodiment of the present invention. First, a single crystal or polycrystalline germanium substrate 110 is provided. The doping type of the germanium substrate 110 may be an N-type or a P-type. The germanium substrate 110 has a roughened light receiving surface 111 and a light receiving surface 111 opposite to the light receiving surface 111. A back 112 (see Figure 1a).

請參見圖1b,之後在矽基板110的受光面111上形成一與矽基板110不同摻雜類型的P+或N+之射極120,以形成p-n接面(p-n junction),並且在矽基板110的背面112上形成一與矽基板110相同摻雜類型的N+或P+之背面電場(Back Surface Field; BSF)180。Referring to FIG. 1b, a P+ or N+ emitter 120 of a different doping type from the germanium substrate 110 is formed on the light receiving surface 111 of the germanium substrate 110 to form a pn junction, and is formed on the germanium substrate 110. A back surface field (BSF) 180 of N+ or P+ of the same doping type as the germanium substrate 110 is formed on the back surface 112.

請參見圖1c,接著在射極120上形成一鈍化層130,並於背面電場180上形成一鈍化層140。此外,請參照圖2a,於一實施方式中,若矽基板110為N型矽基板,則射極120將為P+射極,此時鈍化層130係具有三層結構,包含有一氧化矽(SiO2)層131、一氧化鋁(Al2O3)層132以及一氮化矽(SiNx)層133,其中氧化矽層131係先形成於射極120上,接著氧化鋁層132形成於氧化矽層131上,之後氮化矽層133形成於氧化鋁層132上,亦即氧化矽層131、氧化鋁層132及氮化矽層133係依序形成於射極120上。此外,請參照圖2b,若矽基板110為N型矽基板,則背面電場180將為N+背面電場,此時鈍化層140係具有二層結構,包含有一氧化矽(SiO2)層141以及一氮化矽(SiNx)層142,且氧化矽層141與氮化矽層142之間未形成有氧化鋁(Al2O3)層,其中氧化矽層141係先形成於背面電場180上,之後氮化矽層142形成於氧化矽層141上,亦即氧化矽層141及氮化矽層142係依序形成於背面電場180上。Referring to FIG. 1c, a passivation layer 130 is formed on the emitter 120, and a passivation layer 140 is formed on the back surface electric field 180. In addition, referring to FIG. 2a, in an embodiment, if the germanium substrate 110 is an N-type germanium substrate, the emitter 120 will be a P+ emitter, and the passivation layer 130 has a three-layer structure including a hafnium oxide (SiO2). a layer 131, an aluminum oxide (Al 2 O 3 ) layer 132 and a tantalum nitride (SiNx) layer 133, wherein the tantalum oxide layer 131 is formed on the emitter 120 first, and then the aluminum oxide layer 132 is formed on the tantalum oxide layer 131. Thereafter, a tantalum nitride layer 133 is formed on the aluminum oxide layer 132, that is, the hafnium oxide layer 131, the aluminum oxide layer 132, and the tantalum nitride layer 133 are sequentially formed on the emitter 120. In addition, referring to FIG. 2b, if the germanium substrate 110 is an N-type germanium substrate, the back surface electric field 180 will be an N+ back surface electric field, and the passivation layer 140 has a two-layer structure including a tantalum oxide (SiO2) layer 141 and a nitrogen. A bismuth (SiNx) layer 142 is formed, and an aluminum oxide (Al 2 O 3 ) layer is not formed between the yttrium oxide layer 141 and the tantalum nitride layer 142 , wherein the yttrium oxide layer 141 is formed on the back surface electric field 180 first, followed by a tantalum nitride layer. 142 is formed on the ruthenium oxide layer 141, that is, the ruthenium oxide layer 141 and the tantalum nitride layer 142 are sequentially formed on the back surface electric field 180.

請參照圖3a,於另一實施方式中,若矽基板110為P型矽基板,則射極120將為N+射極,此時鈍化層130係具有二層結構,包含有一氧化矽(SiO2)層134以及一氮化矽(SiNx)層135,且氧化矽層134與氮化矽層135之間未形成有氧化鋁(Al2O3)層,其中氧化矽層134係先形成於射極120上,之後氮化矽層135形成於氧化矽層134上,亦即氧化矽層134及氮化矽層135係依序形成於射極120上。此外,請參照圖3b,若矽基板110為P型矽基板,則背面電場180將為P+背面電場,此時鈍化層140係具有三層結構,包含有一氧化矽(SiO2)層144、一氧化鋁(Al2O3)層145以及一氮化矽(SiNx)層146,其中氧化矽層144係先形成於背面電場180上,接著氧化鋁層145形成於氧化矽層144上,之後氮化矽層146形成於氧化鋁層145上,亦即氧化矽層144、氧化鋁層145及氮化矽層146係依序形成於背面電場180上。Referring to FIG. 3a, in another embodiment, if the germanium substrate 110 is a P-type germanium substrate, the emitter 120 will be an N+ emitter, and the passivation layer 130 has a two-layer structure including a hafnium oxide (SiO2). a layer 134 and a tantalum nitride (SiNx) layer 135, and an aluminum oxide (Al 2 O 3 ) layer is not formed between the tantalum oxide layer 134 and the tantalum nitride layer 135 , wherein the tantalum oxide layer 134 is formed on the emitter 120 first. Thereafter, a tantalum nitride layer 135 is formed on the tantalum oxide layer 134, that is, the tantalum oxide layer 134 and the tantalum nitride layer 135 are sequentially formed on the emitter 120. In addition, referring to FIG. 3b, if the germanium substrate 110 is a P-type germanium substrate, the back surface electric field 180 will be a P+ back surface electric field. At this time, the passivation layer 140 has a three-layer structure including a germanium oxide (SiO2) layer 144 and oxidation. An aluminum (Al2O3) layer 145 and a tantalum nitride (SiNx) layer 146, wherein the tantalum oxide layer 144 is formed on the back surface electric field 180, and then the aluminum oxide layer 145 is formed on the tantalum oxide layer 144, after which the tantalum nitride layer 146 is formed. The yttrium oxide layer 144, the yttrium oxide layer 145, and the tantalum nitride layer 146 are formed on the back surface electric field 180 in this order.

請參見圖1d,在鈍化層130及鈍化層140形成之後,接著對整個矽基板110連同其上的結構進行熱退火(thermal annealing)處理。進行熱退火處理的方法,係可將矽基板110放置在設有加熱源的爐子內,加熱使矽基板110所處的環境溫度逐漸上升,例如使溫度由580℃上升至910℃,時間持續1至2分鐘。較佳的熱退火處理方式是,讓矽基板110依序通過溫度為580℃、620℃、737℃、695℃、813℃以及910℃的爐子,以得到較佳的處理效果。Referring to FIG. 1d, after the passivation layer 130 and the passivation layer 140 are formed, the entire tantalum substrate 110 is then subjected to a thermal annealing process along with the structure thereon. The thermal annealing treatment is performed by placing the crucible substrate 110 in a furnace provided with a heating source, and heating to gradually increase the ambient temperature of the crucible substrate 110, for example, increasing the temperature from 580 ° C to 910 ° C for 1 time. Up to 2 minutes. A preferred thermal annealing treatment is to pass the crucible substrate 110 through furnaces having temperatures of 580 ° C, 620 ° C, 737 ° C, 695 ° C, 813 ° C, and 910 ° C to obtain a better treatment effect.

請參見圖1e,在熱退火處理之後,係於鈍化層130與鈍化層140上形成開口138、148,以分別裸露出部分的射極120與部分的背面電場180。之後,利用無電電鍍或物理氣相沈積法(Physical Vapor Deposition; PVD)等方式,在鈍化層140上形成一種子層150,該種子層150包含鎳或鈦,其中種子層150係填滿開口148並連接到背面電場180,使種子層150能夠與背面電場180電性連接。在種子層150形成之後,接著利用電鍍方式於種子層150上形成一電極160。於一實施方式中,種子層150係具有二層結構(圖中未標示),包含有一鎳層及一銅層,或者包含一鈦層及一銅層,其中鎳層或鈦層係先形成於鈍化層140上,而後銅層才形成在鎳層或鈦層上,亦即種子層150係為鎳/銅或鈦/銅結構。同樣地,以電鍍方式形成的電極160亦具有二層結構(圖中未標示),包含有一銅層及一錫層,或者包含一銅層及一銀層,其中銅層係先形成並電性連接於種子層150,而後錫層或銀層才形成在銅層上,亦即電極160係為銅/錫或銅/銀結構。Referring to FIG. 1e, after the thermal annealing process, openings 138, 148 are formed on the passivation layer 130 and the passivation layer 140 to expose a portion of the emitter 120 and a portion of the back surface electric field 180, respectively. Thereafter, a sub-layer 150 is formed on the passivation layer 140 by means of electroless plating or physical vapor deposition (PVD). The seed layer 150 comprises nickel or titanium, wherein the seed layer 150 fills the opening 148. And connected to the back surface electric field 180, the seed layer 150 can be electrically connected to the back surface electric field 180. After the seed layer 150 is formed, an electrode 160 is then formed on the seed layer 150 by electroplating. In one embodiment, the seed layer 150 has a two-layer structure (not shown), and includes a nickel layer and a copper layer, or a titanium layer and a copper layer, wherein the nickel layer or the titanium layer is formed first. The passivation layer 140 is then formed on the nickel layer or the titanium layer, that is, the seed layer 150 is a nickel/copper or titanium/copper structure. Similarly, the electrode 160 formed by electroplating also has a two-layer structure (not shown), and includes a copper layer and a tin layer, or a copper layer and a silver layer, wherein the copper layer is formed first and electrically It is connected to the seed layer 150, and then the tin layer or the silver layer is formed on the copper layer, that is, the electrode 160 is a copper/tin or copper/silver structure.

請參見圖1f,在電極160形成之後,係於開口138處以電鍍方式形成一電極170,該電極170係通過開口138與射極120電性連接。於一實施方式中,電極170具有二層結構(圖中未標示),包含有一鎳層及一銅層,或者包含一鈦層及一銅層,其中鎳層或鈦層係先形成於射極120上,而後銅層才形成在鎳層或鈦層上,亦即電極170係為鎳/銅或鈦/銅結構。於一實施方式中,可基於前述電極170的鎳/銅或鈦/銅結構,再形成一錫層或銀層於該銅層上,以免銅層產生氧化,進而導致電極170的導電性下降。圖1f亦繪示出利用本發明第一實施例之太陽能電池的製造方法所製造出的太陽能電池。Referring to FIG. 1f, after the electrode 160 is formed, an electrode 170 is formed by electroplating at the opening 138, and the electrode 170 is electrically connected to the emitter 120 through the opening 138. In one embodiment, the electrode 170 has a two-layer structure (not shown), and includes a nickel layer and a copper layer, or a titanium layer and a copper layer, wherein the nickel layer or the titanium layer is formed on the emitter first. 120, then the copper layer is formed on the nickel layer or the titanium layer, that is, the electrode 170 is a nickel/copper or titanium/copper structure. In one embodiment, a tin layer or a silver layer may be formed on the copper layer based on the nickel/copper or titanium/copper structure of the electrode 170 to prevent oxidation of the copper layer, thereby causing a decrease in conductivity of the electrode 170. Fig. 1f also shows a solar cell manufactured by the method for producing a solar cell according to the first embodiment of the present invention.

根據本發明第一實施例之太陽能電池的製造方法,係於鈍化層130和鈍化層140形成之後,對矽基板110連同鈍化層130和鈍化層140進行熱退火處理。在熱退火處理之後,則利用電鍍方式形成電性連接於射極120和背面電場180之電極170與電極160。According to the method of manufacturing a solar cell according to the first embodiment of the present invention, after the passivation layer 130 and the passivation layer 140 are formed, the germanium substrate 110 is thermally annealed together with the passivation layer 130 and the passivation layer 140. After the thermal annealing treatment, the electrode 170 and the electrode 160 electrically connected to the emitter 120 and the back surface electric field 180 are formed by electroplating.

請參照圖4a至圖4f,其顯示本發明第二實施例之太陽能電池的製造方法。首先,提供一個單晶或多晶的矽基板210,該矽基板210的摻雜類型可為N型或P型,該矽基板210具有一經粗糙化的受光面211以及相對於該受光面211的一背面212(請參見圖4a)。Referring to Figures 4a to 4f, there is shown a method of fabricating a solar cell according to a second embodiment of the present invention. First, a single crystal or polycrystalline germanium substrate 210 is provided. The doping type of the germanium substrate 210 may be an N-type or a P-type. The germanium substrate 210 has a roughened light receiving surface 211 and a light receiving surface 211 opposite to the light receiving surface 211. A back side 212 (see Figure 4a).

請參見圖4b,之後在矽基板210的背面212上形成一與矽基板210不同摻雜類型的P+或N+之射極220,以形成p-n接面(p-n junction),並且在矽基板210的正面211上形成一與矽基板210相同摻雜類型的N+或P+之正面電場(Front Surface Field; FSF)280。Referring to FIG. 4b, a P+ or N+ emitter 220 of a different doping type from the germanium substrate 210 is formed on the back surface 212 of the germanium substrate 210 to form a pn junction, and on the front side of the germanium substrate 210. A front surface electric field (FSF) 280 of N+ or P+ of the same doping type as the germanium substrate 210 is formed on 211.

請參見圖4c,接著在正面電場280上形成一鈍化層230,並於射極220上形成一鈍化層240。此外,請參照圖5b,於一實施方式中,若矽基板210為N型矽基板,則射極220將為P+射極,此時鈍化層240係具有三層結構,包含有一氧化矽(SiO2)層244、一氧化鋁(Al2O3)層245以及一氮化矽(SiNx)層246,其中氧化矽層244係先形成於射極220上,接著氧化鋁層245形成於氧化矽層244上,之後氮化矽層246形成於氧化鋁層245上,亦即氧化矽層244、氧化鋁層245及氮化矽層246係依序形成於射極220上。此外,請參照圖5a,若矽基板210為N型矽基板,則正面電場280將為N+正面電場,此時鈍化層230係具有二層結構,包含有一氧化矽(SiO2)層234以及一氮化矽(SiNx)層235,且氧化矽層234與氮化矽層235之間未形成有氧化鋁(Al2O3)層,其中氧化矽層234係先形成於正面電場280上,之後氮化矽層235形成於氧化矽層234上,亦即氧化矽層234及氮化矽層235係依序形成於正面電場280上。Referring to FIG. 4c, a passivation layer 230 is formed on the front side electric field 280, and a passivation layer 240 is formed on the emitter 220. In addition, referring to FIG. 5b, in an embodiment, if the germanium substrate 210 is an N-type germanium substrate, the emitter 220 will be a P+ emitter, and the passivation layer 240 has a three-layer structure including a hafnium oxide (SiO2). a layer 244, an aluminum oxide (Al2O3) layer 245, and a tantalum nitride (SiNx) layer 246, wherein the tantalum oxide layer 244 is formed on the emitter 220 first, and then the aluminum oxide layer 245 is formed on the tantalum oxide layer 244. Thereafter, a tantalum nitride layer 246 is formed on the aluminum oxide layer 245, that is, the hafnium oxide layer 244, the aluminum oxide layer 245, and the tantalum nitride layer 246 are sequentially formed on the emitter 220. In addition, referring to FIG. 5a, if the germanium substrate 210 is an N-type germanium substrate, the front electric field 280 will be an N+ frontal electric field, and the passivation layer 230 has a two-layer structure including a tantalum oxide (SiO2) layer 234 and a nitrogen. A bismuth (SiNx) layer 235 is formed, and an aluminum oxide (Al 2 O 3 ) layer is not formed between the yttrium oxide layer 234 and the tantalum nitride layer 235 , wherein the yttrium oxide layer 234 is formed on the front electric field 280 first, followed by a tantalum nitride layer. 235 is formed on the hafnium oxide layer 234, that is, the hafnium oxide layer 234 and the tantalum nitride layer 235 are sequentially formed on the front electric field 280.

請參照圖6b,於另一實施方式中,若矽基板210為P型矽基板,則射極220將為N+射極,此時鈍化層240係具有二層結構,包含有一氧化矽(SiO2)層241以及一氮化矽(SiNx)層242,且氧化矽層241與氮化矽層242之間未形成有氧化鋁(Al2O3)層,其中氧化矽層241係先形成於射極220上,之後氮化矽層242形成於氧化矽層241上,亦即氧化矽層241及氮化矽層242係依序形成於射極220上。此外,請參照圖6a,若矽基板210為P型矽基板,則正面電場280將為P+正面電場,此時鈍化層230係具有三層結構,包含有一氧化矽(SiO2)層231、一氧化鋁(Al2O3)層232以及一氮化矽(SiNx)層233,其中氧化矽層231係先形成於正面電場280上,接著氧化鋁層232形成於氧化矽層231上,之後氮化矽層233形成於氧化鋁層232上,亦即氧化矽層231、氧化鋁層232及氮化矽層233係依序形成於正面電場280上。Referring to FIG. 6b, in another embodiment, if the germanium substrate 210 is a P-type germanium substrate, the emitter 220 will be an N+ emitter, and the passivation layer 240 has a two-layer structure including a hafnium oxide (SiO2). a layer 241 and a tantalum nitride (SiNx) layer 242, and an aluminum oxide (Al 2 O 3 ) layer is not formed between the tantalum oxide layer 241 and the tantalum nitride layer 242 , wherein the tantalum oxide layer 241 is formed on the emitter 220 first. Thereafter, a tantalum nitride layer 242 is formed on the tantalum oxide layer 241, that is, the tantalum oxide layer 241 and the tantalum nitride layer 242 are sequentially formed on the emitter 220. In addition, referring to FIG. 6a, if the germanium substrate 210 is a P-type germanium substrate, the front electric field 280 will be a P+ frontal electric field, and the passivation layer 230 has a three-layer structure including a tantalum oxide (SiO2) layer 231, and oxidation. An aluminum (Al 2 O 3 ) layer 232 and a tantalum nitride (SiNx) layer 233, wherein the tantalum oxide layer 231 is formed on the front electric field 280, and then the aluminum oxide layer 232 is formed on the tantalum oxide layer 231, and then the tantalum nitride layer 233 The yttrium oxide layer 231, the yttrium oxide layer 232, and the tantalum nitride layer 233 are formed on the front surface electric field 280 in this order.

請參見圖4d,在鈍化層230及鈍化層240形成之後,接著對整個矽基板210連同其上的結構進行熱退火處理。進行熱退火處理的方法,係可將矽基板210放置在設有加熱源的爐子內,加熱使溫度逐漸上升,例如使溫度由580℃上升至910℃,時間持續1至2分鐘。較佳的熱退火處理方式是,讓矽基板210依序通過溫度為580℃、620℃、737℃、695℃、813℃以及910℃的爐子,以得到較佳的處理效果。Referring to FIG. 4d, after the passivation layer 230 and the passivation layer 240 are formed, the entire tantalum substrate 210 is then thermally annealed along with the structure thereon. In the thermal annealing treatment, the tantalum substrate 210 can be placed in a furnace provided with a heating source, and the temperature is gradually increased by heating, for example, the temperature is raised from 580 ° C to 910 ° C for 1 to 2 minutes. A preferred thermal annealing treatment is to pass the crucible substrate 210 through furnaces having temperatures of 580 ° C, 620 ° C, 737 ° C, 695 ° C, 813 ° C, and 910 ° C to obtain a better treatment effect.

請參見圖4e,在熱退火處理之後,係於鈍化層230與鈍化層240上形成開口238、248,以分別裸露出部分的正面電場280與部分的射極220。之後,利用無電電鍍或物理氣相沈積法等方式,在鈍化層240上形成一種子層250,該種子層250包含鎳或鈦,其中種子層250係填滿開口248並連接到射極220,使種子層250能夠與射極220電性連接。在種子層250形成之後,接著利用電鍍方式於種子層250上形成一電極260。於一實施方式中,種子層250係具有二層結構(圖中未標示),包含有一鎳層及一銅層,或者包含一鈦層及一銅層,其中鎳層或鈦層係先形成於鈍化層240上,而後銅層才形成在鎳層或鈦層上,亦即種子層250係為鎳/銅或鈦/銅結構。同樣地,以電鍍方式形成的電極260亦具有二層結構(圖中未標示),包含有一銅層及一錫層,或者包含一銅層及一銀層,其中銅層係先形成並電性連接於種子層250,而後錫層或銀層才形成在銅層上,亦即電極260係為銅/錫或銅/銀結構。Referring to FIG. 4e, after the thermal annealing process, openings 238, 248 are formed on the passivation layer 230 and the passivation layer 240 to expose a portion of the front electric field 280 and a portion of the emitter 220, respectively. Thereafter, a sub-layer 250 is formed on the passivation layer 240 by means of electroless plating or physical vapor deposition, and the seed layer 250 comprises nickel or titanium, wherein the seed layer 250 fills the opening 248 and is connected to the emitter 220. The seed layer 250 can be electrically connected to the emitter 220. After the seed layer 250 is formed, an electrode 260 is then formed on the seed layer 250 by electroplating. In one embodiment, the seed layer 250 has a two-layer structure (not shown), and includes a nickel layer and a copper layer, or a titanium layer and a copper layer, wherein the nickel layer or the titanium layer is formed first. The passivation layer 240 is then formed on the nickel layer or the titanium layer, that is, the seed layer 250 is a nickel/copper or titanium/copper structure. Similarly, the electrode 260 formed by electroplating also has a two-layer structure (not shown), including a copper layer and a tin layer, or a copper layer and a silver layer, wherein the copper layer is formed first and electrically It is connected to the seed layer 250, and then the tin layer or the silver layer is formed on the copper layer, that is, the electrode 260 is a copper/tin or copper/silver structure.

請參見圖4f,在電極260形成之後,係於開口238處以電鍍方式形成一電極270,該電極270通過開口238與正面電場280電性連接。於一實施方式中,電極270具有二層結構(圖中未標示),包含有一鎳層及一銅層,或者包含一鈦層及一銅層,其中鎳層或鈦層係先形成於正面電場280上,而後銅層才形成在鎳層或鈦層上,亦即電極270係為鎳/銅或鈦/銅結構。於一實施方式中,可基於前述電極270的鎳/銅或鈦/銅結構,再形成一錫層或銀層於該銅層上,以免銅層產生氧化,進而導致電極270的導電性下降。圖4f亦繪示出利用本發明第二實施例之太陽能電池的製造方法所製造出的太陽能電池。Referring to FIG. 4f, after the electrode 260 is formed, an electrode 270 is formed by electroplating at the opening 238, and the electrode 270 is electrically connected to the front electric field 280 through the opening 238. In one embodiment, the electrode 270 has a two-layer structure (not shown), and includes a nickel layer and a copper layer, or a titanium layer and a copper layer, wherein the nickel layer or the titanium layer is formed on the front electric field. At 280, the copper layer is then formed on the nickel or titanium layer, that is, the electrode 270 is a nickel/copper or titanium/copper structure. In one embodiment, a tin layer or a silver layer may be formed on the copper layer based on the nickel/copper or titanium/copper structure of the electrode 270 to prevent oxidation of the copper layer, thereby causing a decrease in conductivity of the electrode 270. Fig. 4f also shows a solar cell manufactured by the method of manufacturing a solar cell according to a second embodiment of the present invention.

根據本發明第二實施例之太陽能電池的製造方法,係於鈍化層230和鈍化層240形成之後,對矽基板210連同鈍化層230和鈍化層240進行熱退火處理。在熱退火處理之後,則利用電鍍方式形成電性連接於射極220和正面電場280之電極260與電極270。According to the method of manufacturing a solar cell according to the second embodiment of the present invention, after the passivation layer 230 and the passivation layer 240 are formed, the germanium substrate 210 is thermally annealed together with the passivation layer 230 and the passivation layer 240. After the thermal annealing treatment, the electrode 260 and the electrode 270 electrically connected to the emitter 220 and the front electric field 280 are formed by electroplating.

根據本發明之太陽能電池的製造方法,其中射極能夠形成在矽基板的受光面或背面上。若射極形成在矽基板的受光面,則矽基板的背面將形成有背面電場;若射極形成在矽基板的背面,則矽基板的受光面將形成有正面電場。當矽基板為N型時且射極為P+射極時,則覆蓋在射極上的鈍化層係具有三層結構,亦即包含有氧化矽層、氧化鋁層及氮化矽層,且覆蓋在正面電場或背面電場的另一鈍化層則具有二層結構,亦即包含有氧化矽層及氮化矽層,且氧化矽層與氮化矽層之間未形成有氧化鋁層。若矽基板為P型時且射極為N+射極時,則覆蓋在射極上的鈍化層係具有二層結構,亦即包含有氧化矽層及氮化矽層,且氧化矽層與氮化矽層之間未形成有氧化鋁層,而覆蓋在正面電場或背面電場的另一鈍化層則具有三層結構,亦即包含有氧化矽層、氧化鋁層及氮化矽層。According to the method of manufacturing a solar cell of the present invention, the emitter can be formed on the light receiving surface or the back surface of the ruthenium substrate. When the emitter is formed on the light receiving surface of the ruthenium substrate, a back surface electric field is formed on the back surface of the ruthenium substrate, and when the emitter is formed on the back surface of the ruthenium substrate, a front surface electric field is formed on the light receiving surface of the ruthenium substrate. When the germanium substrate is N-type and the emitter is P+ emitter, the passivation layer covering the emitter has a three-layer structure, that is, a germanium oxide layer, an aluminum oxide layer and a tantalum nitride layer, and is covered on the front side. The other passivation layer of the electric field or the back electric field has a two-layer structure, that is, a tantalum oxide layer and a tantalum nitride layer, and no aluminum oxide layer is formed between the tantalum oxide layer and the tantalum nitride layer. If the germanium substrate is P-type and the emitter is very N+ emitter, the passivation layer covering the emitter has a two-layer structure, that is, a germanium oxide layer and a tantalum nitride layer, and the tantalum oxide layer and the tantalum nitride layer. An aluminum oxide layer is not formed between the layers, and the other passivation layer covering the front electric field or the back surface electric field has a three-layer structure, that is, a tantalum oxide layer, an aluminum oxide layer, and a tantalum nitride layer.

根據本發明之太陽能電池的製造方法,其中電極的形成係由傳統銀鋁漿製程改為金屬電鍍的方式,如此可使用較低溫製程,形成良好的金屬接觸;同時亦不會因製程溫度過高,造成金屬離子擴散至電池元件內部,導致開路電壓Voc下降。According to the manufacturing method of the solar cell of the present invention, the formation of the electrode is changed from the conventional silver-aluminum paste process to the metal plating process, so that a lower temperature process can be used to form a good metal contact; and the process temperature is not too high. The metal ions are diffused into the interior of the battery element, causing the open circuit voltage Voc to drop.

根據本發明之太陽能電池的製造方法,其中熱退火製程係需要在金屬電極形成之前實施,以避免製程中的高溫影響了金屬電極,產生不利的結果。熱退火製程中的高溫可以讓鈍化層中的缺陷得以修補,提升了鈍化品質及效果,因此可有效改善開路電壓值。再者,熱退火製程中的高溫可讓矽基板中的缺陷修補,以改善整個電池元件的性能。此外,熱退火製程中的高溫也可讓鈍化層中的氫離子得以擴散至矽基板,藉此來修補矽基板中的缺陷,提升電池元件的性能。According to the method of fabricating a solar cell of the present invention, the thermal annealing process needs to be performed before the formation of the metal electrode to avoid the high temperature in the process affecting the metal electrode, resulting in unfavorable results. The high temperature in the thermal annealing process can repair the defects in the passivation layer, improve the passivation quality and effect, and thus can effectively improve the open circuit voltage value. Furthermore, the high temperatures in the thermal annealing process can repair defects in the germanium substrate to improve the performance of the entire battery component. In addition, the high temperature in the thermal annealing process allows hydrogen ions in the passivation layer to diffuse to the germanium substrate, thereby repairing defects in the germanium substrate and improving the performance of the battery element.

雖然本發明已以前述實例揭示,然其並非用以限定本發明,任何本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與修改。因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the present invention has been disclosed by the foregoing examples, it is not intended to be construed as limiting the scope of the invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

110‧‧‧矽基板110‧‧‧矽 substrate

111‧‧‧受光面111‧‧‧Glossy surface

112‧‧‧背面112‧‧‧Back

120‧‧‧射極120‧‧ ‧ emitter

130‧‧‧鈍化層130‧‧‧ Passivation layer

131‧‧‧氧化矽層131‧‧‧Oxide layer

132‧‧‧氧化鋁層132‧‧‧Alumina layer

133‧‧‧氮化矽層133‧‧‧ layer of tantalum nitride

134‧‧‧氧化矽層134‧‧‧Oxide layer

135‧‧‧氮化矽層135‧‧‧ layer of tantalum nitride

138‧‧‧開口138‧‧‧ openings

140‧‧‧鈍化層140‧‧‧ Passivation layer

141‧‧‧氧化矽層141‧‧‧Oxide layer

142‧‧‧氮化矽層142‧‧‧ layer of tantalum nitride

144‧‧‧氧化矽層144‧‧‧Oxide layer

145‧‧‧氧化鋁層145‧‧‧Alumina layer

146‧‧‧氮化矽層146‧‧‧ layer of tantalum nitride

148‧‧‧開口148‧‧‧ openings

150‧‧‧種子層150‧‧‧ seed layer

160‧‧‧電極160‧‧‧electrode

170‧‧‧電極170‧‧‧ electrodes

180‧‧‧背面電場180‧‧‧Back electric field

210‧‧‧矽基板210‧‧‧矽 substrate

211‧‧‧受光面211‧‧‧Glossy surface

212‧‧‧背面212‧‧‧Back

220‧‧‧射極220‧‧‧射极

230‧‧‧鈍化層230‧‧‧ Passivation layer

231‧‧‧氧化矽層231‧‧‧Oxide layer

232‧‧‧氧化鋁層232‧‧‧Alumina layer

233‧‧‧氮化矽層233‧‧‧ layer of tantalum nitride

234‧‧‧氧化矽層234‧‧‧Oxide layer

235‧‧‧氮化矽層235‧‧‧ layer of tantalum nitride

238‧‧‧開口238‧‧‧ openings

240‧‧‧鈍化層240‧‧‧ Passivation layer

241‧‧‧氧化矽層241‧‧‧Oxide layer

242‧‧‧氮化矽層242‧‧‧ layer of tantalum nitride

244‧‧‧氧化矽層244‧‧‧Oxide layer

245‧‧‧氧化鋁層245‧‧‧Alumina layer

246‧‧‧氮化矽層246‧‧‧ layer of tantalum nitride

248‧‧‧開口248‧‧‧ openings

250‧‧‧種子層250‧‧‧ seed layer

260‧‧‧電極260‧‧‧electrode

270‧‧‧電極270‧‧‧electrode

280‧‧‧正面電場280‧‧‧ positive electric field

圖1a至圖1f是繪示本發明第一實施例之太陽能電池的製造方法。 圖2a為圖1c之A部分的局部放大圖。 圖2b為圖1c之B部分的局部放大圖。 圖3a為圖1c之A部分的局部放大圖。 圖3b為圖1c之B部分的局部放大圖。 圖4a至圖4f是繪示本發明第二實施例之太陽能電池的製造方法。 圖5a為圖4c之C部分的局部放大圖。 圖5b為圖4c之D部分的局部放大圖。 圖6a為圖4c之C部分的局部放大圖。 圖6b為圖4c之D部分的局部放大圖。1a to 1f are views showing a method of manufacturing a solar cell according to a first embodiment of the present invention. Figure 2a is a partial enlarged view of a portion A of Figure 1c. Figure 2b is a partial enlarged view of a portion B of Figure 1c. Figure 3a is a partial enlarged view of a portion A of Figure 1c. Figure 3b is a partial enlarged view of a portion B of Figure 1c. 4a to 4f are views showing a method of manufacturing a solar cell according to a second embodiment of the present invention. Figure 5a is a partial enlarged view of a portion C of Figure 4c. Figure 5b is a partial enlarged view of a portion D of Figure 4c. Figure 6a is a partial enlarged view of a portion C of Figure 4c. Figure 6b is a partial enlarged view of a portion D of Figure 4c.

Claims (10)

一種太陽能電池的製造方法,包含:提供一矽基板,該矽基板具有一第一表面以及相對於該第一表面的一第二表面;於該矽基板的第一表面上形成一射極,其中該射極與該矽基板的摻雜類型不同,以藉此形成p-n接面(p-n junction);於該矽基板的第一表面上形成一第一鈍化層;於該矽基板的第二表面上形成一第二鈍化層;形成該第一鈍化層與該第二鈍化層之後,對該矽基板實施熱退火處理;實施該熱退火處理之後,於該第一鈍化層上開口並電鍍形成一第一電極;以及實施該熱退火處理之後,於該第二鈍化層上開口並電鍍形成一第二電極。A method of manufacturing a solar cell, comprising: providing a germanium substrate having a first surface and a second surface opposite to the first surface; forming an emitter on the first surface of the germanium substrate, wherein The emitter is different from the doping type of the germanium substrate to thereby form a pn junction; a first passivation layer is formed on the first surface of the germanium substrate; and on the second surface of the germanium substrate Forming a second passivation layer; after forming the first passivation layer and the second passivation layer, performing thermal annealing treatment on the germanium substrate; after performing the thermal annealing process, opening and plating on the first passivation layer to form a first An electrode; and after performing the thermal annealing treatment, opening and plating on the second passivation layer to form a second electrode. 如申請專利範圍第1項所述之太陽能電池的製造方法,其中實施熱退火處理之步驟包含:將該矽基板所處的環境溫度由580℃上升至910℃,時間持續1至2分鐘。The method for manufacturing a solar cell according to claim 1, wherein the step of performing the thermal annealing treatment comprises: raising the ambient temperature of the crucible substrate from 580 ° C to 910 ° C for a period of 1 to 2 minutes. 如申請專利範圍第2項所述之太陽能電池的製造方法,其中將該矽基板所處的環境溫度由580℃上升至910℃之步驟包含:將該矽基板所處的環境溫度依照580℃、620℃、737℃、695℃、813℃及910℃的順序改變。The method for manufacturing a solar cell according to claim 2, wherein the step of raising the ambient temperature of the germanium substrate from 580 ° C to 910 ° C comprises: the ambient temperature of the germanium substrate is 580 ° C, The order of 620 ° C, 737 ° C, 695 ° C, 813 ° C, and 910 ° C was changed. 如申請專利範圍第1項所述之太陽能電池的製造方法,其中該矽基板為N型矽基板,該第一鈍化層包含有一第一氧化矽層、一第一氧化鋁層及一第一氮化矽層,依序形成在該矽基板的第一表面上,該第二鈍化層包含有一第二氧化矽層及一第二氮化矽層,依序形成在該矽基板的第二表面上,且該第二鈍化層未形成有一氧化鋁層。The method for manufacturing a solar cell according to claim 1, wherein the ruthenium substrate is an N-type ruthenium substrate, the first passivation layer comprising a first ruthenium oxide layer, a first aluminum oxide layer and a first nitrogen The ruthenium layer is sequentially formed on the first surface of the ruthenium substrate, and the second passivation layer comprises a second ruthenium oxide layer and a second tantalum nitride layer, which are sequentially formed on the second surface of the ruthenium substrate And the second passivation layer is not formed with an aluminum oxide layer. 如申請專利範圍第1項所述之太陽能電池的製造方法,其中該矽基板為P型矽基板,該第一鈍化層包含有一第一氧化矽層及一第一氮化矽層,依序形成在該矽基板的第一表面上,且該第一鈍化層未形成有一氧化鋁層,該第二鈍化層包含有一第二氧化矽層、一第二氧化鋁層及一第二氮化矽層,依序形成在該矽基板的第二表面上。The method for manufacturing a solar cell according to claim 1, wherein the ruthenium substrate is a P-type ruthenium substrate, and the first passivation layer comprises a first ruthenium oxide layer and a first tantalum nitride layer, which are sequentially formed. On the first surface of the germanium substrate, the first passivation layer is not formed with an aluminum oxide layer, and the second passivation layer comprises a second hafnium oxide layer, a second aluminum oxide layer and a second tantalum nitride layer. And sequentially formed on the second surface of the crucible substrate. 如申請專利範圍第1項所述之太陽能電池的製造方法,其中該第一表面為該矽基板的受光面,該第一電極的形成晚於該第二電極的形成,以及該第二鈍化層開口後先形成一種子層於該矽基板的第二表面上,再形成該第二電極於該種子層上。The method of manufacturing a solar cell according to claim 1, wherein the first surface is a light receiving surface of the germanium substrate, the first electrode is formed later than the second electrode, and the second passivation layer After the opening, a sub-layer is formed on the second surface of the germanium substrate, and the second electrode is formed on the seed layer. 如申請專利範圍第6項所述之太陽能電池的製造方法,其中該第一電極具有鎳/銅/錫、鎳/銅/銀、鈦/銅/錫或鈦/銅/銀其中之一的結構;以及該第二電極具有銅/錫或銅/銀其中之一的結構。The method of manufacturing a solar cell according to claim 6, wherein the first electrode has a structure of one of nickel/copper/tin, nickel/copper/silver, titanium/copper/tin or titanium/copper/silver. And the second electrode has a structure of one of copper/tin or copper/silver. 如申請專利範圍第1項所述之太陽能電池的製造方法,其中該第二表面為該矽基板的受光面,該第二電極的形成晚於該第一電極的形成,以及該第一鈍化層開口後先形成一種子層於該矽基板的第一表面上,再形成該第一電極於該種子層上。The method of manufacturing a solar cell according to claim 1, wherein the second surface is a light receiving surface of the germanium substrate, the second electrode is formed later than the first electrode, and the first passivation layer After the opening, a sub-layer is formed on the first surface of the germanium substrate, and the first electrode is formed on the seed layer. 如申請專利範圍第8項所述之太陽能電池的製造方法,其中該第二電極具有鎳/銅/錫、鎳/銅/銀、鈦/銅/錫或鈦/銅/銀其中之一的結構;以及該第一電極具有銅/錫或銅/銀其中之一的結構。The method for manufacturing a solar cell according to claim 8, wherein the second electrode has a structure of one of nickel/copper/tin, nickel/copper/silver, titanium/copper/tin or titanium/copper/silver. And the first electrode has a structure of one of copper/tin or copper/silver. 如申請專利範圍第6或8項所述之太陽能電池的製造方法,其中該種子層包含鎳或鈦。The method of manufacturing a solar cell according to claim 6 or 8, wherein the seed layer comprises nickel or titanium.
TW104141443A 2015-12-10 2015-12-10 Method of manufacturing solar cell TWI615992B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104141443A TWI615992B (en) 2015-12-10 2015-12-10 Method of manufacturing solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104141443A TWI615992B (en) 2015-12-10 2015-12-10 Method of manufacturing solar cell

Publications (2)

Publication Number Publication Date
TW201721900A TW201721900A (en) 2017-06-16
TWI615992B true TWI615992B (en) 2018-02-21

Family

ID=59687365

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104141443A TWI615992B (en) 2015-12-10 2015-12-10 Method of manufacturing solar cell

Country Status (1)

Country Link
TW (1) TWI615992B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI658603B (en) * 2017-07-04 2019-05-01 茂迪股份有限公司 Mono-facial solar cell and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104167460A (en) * 2013-05-17 2014-11-26 李岱殷 Manufacturing method of solar energy cell
CN104781936A (en) * 2012-10-04 2015-07-15 喜瑞能源公司 Photovoltaic devices with electroplated metal grids

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104781936A (en) * 2012-10-04 2015-07-15 喜瑞能源公司 Photovoltaic devices with electroplated metal grids
CN104167460A (en) * 2013-05-17 2014-11-26 李岱殷 Manufacturing method of solar energy cell

Also Published As

Publication number Publication date
TW201721900A (en) 2017-06-16

Similar Documents

Publication Publication Date Title
JP4727607B2 (en) Solar cell
JP5296358B2 (en) Method for annealing a photovoltaic cell
US20130089943A1 (en) Method of manufacturing a solar cell
TW201424011A (en) Solar cell and back-contact solar cell
JP2010262979A (en) Solar cell and method for manufacturing the same
WO2010001473A1 (en) Photovoltaic system and manufacturing method thereof
CN106981539A (en) A kind of preparation method and application of nano-stack conductive film
JP6681878B2 (en) Photoelectric conversion element and method for manufacturing photoelectric conversion element
CN111640826A (en) Preparation method of battery conducting by utilizing selective contact
TWI615992B (en) Method of manufacturing solar cell
JP5964751B2 (en) Photovoltaic battery conductor having two parts, a high temperature printed part and a low temperature printed part
KR101371865B1 (en) Front electrode structure of solar cell and fabricating method thereof
KR101407165B1 (en) Method of forming local back surface field lower electrode of solar cell
KR101161095B1 (en) Method for fabricating front electrode of solar cell
KR101223021B1 (en) Method of preparing solar cell and solar cell
KR20140049624A (en) Solar cell and method for fabricating the same
KR20130011696A (en) Electrode of solar cell and method for menufacture the same
KR101151413B1 (en) Solar cell having multimple anti-reflection film and manufacturing method thereof
TWI381539B (en) Method of manufacturing solar cell with backside dielectric layer
KR101820600B1 (en) Method of forming an electrode structure and method of manufacturing a solar cell using the same
TWI446566B (en) Method of fabricating crystalline silicon solar cell with surface passivation structure using wet chemical process
TW201813115A (en) Silicon-based photovoltaic device and manufacture thereof
TWI434426B (en) Method for manufacturing solar cell
TWI443841B (en) Complex compound film with multi-components and method for manufacturing the same
CN104285303B (en) Solaode and manufacture method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees