TW201813115A - Silicon-based photovoltaic device and manufacture thereof - Google Patents
Silicon-based photovoltaic device and manufacture thereof Download PDFInfo
- Publication number
- TW201813115A TW201813115A TW105129289A TW105129289A TW201813115A TW 201813115 A TW201813115 A TW 201813115A TW 105129289 A TW105129289 A TW 105129289A TW 105129289 A TW105129289 A TW 105129289A TW 201813115 A TW201813115 A TW 201813115A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- front surface
- passivation layer
- roughened
- germanium wafer
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
本發明係關於一種矽基光伏元件(Silicon-based Photovoltaic Device)及其製造方法,並且特別地,本發明乃關於一種具有射極鈍化及背電極(Passivated Emitter Rear Cell,PERC)結構且光電轉換效率更加提升的矽基光伏元件及其製造方法。 The present invention relates to a Silicon-based Photovoltaic Device and a method of fabricating the same, and in particular, to a Passivated Emitter Rear Cell (PERC) structure and photoelectric conversion efficiency. A more improved bismuth-based photovoltaic element and its method of manufacture.
光伏元件(Photovoltaic Device)因為其將發自一光源(例如,太陽光)中容易取得的能量轉換成電力,以操控例如,計算機、電腦、加熱器...,等電子裝置,所以光伏元件已被廣泛地使用。最常見的光伏元件即為將矽晶圓做為基材的矽基光伏元件。 Photovoltaic Device is a photovoltaic component because it converts energy that is easily obtained from a light source (for example, sunlight) into electricity to manipulate electronic devices such as computers, computers, heaters, and the like. It is widely used. The most common photovoltaic component is a germanium-based photovoltaic component that uses a germanium wafer as a substrate.
雖然,矽基光伏元件靠著矽晶圓、導電漿技術改善以及製程優化,光電轉換效率逐年持續進步,但是隨著分散式系統日益興起,市場更需要性價比高、光電轉換效率也高的產品。適時,已有廠商將PERC矽基光伏元件成功量產,開啟了以PERC技術提升效率的旋風。 Although bismuth-based photovoltaic components rely on silicon wafers, conductive paste technology improvement and process optimization, photoelectric conversion efficiency continues to improve year by year, but with the rise of distributed systems, the market needs products with high cost performance and high photoelectric conversion efficiency. At the right time, manufacturers have successfully mass-produced PERC-based photovoltaic components, opening up a whirlwind with PERC technology to improve efficiency.
PERC技術是利用Al2O3/SiNx、SiO2/SiNx或SiOxNy/SiNx等材料在矽基光伏元件的背表面上形成鈍化層,作為背反射器,增加長波光的吸收,同時將p-n接面間的電勢差最大化,降低電子複合,從而提升矽基光伏元件的光電轉換效率。 The PERC technology uses a material such as Al 2 O 3 /SiN x , SiO 2 /SiN x or SiOxNy/SiN x to form a passivation layer on the back surface of the germanium-based photovoltaic element as a back reflector to increase the absorption of long-wave light while The potential difference between the pn junctions is maximized, and the electron recombination is reduced, thereby improving the photoelectric conversion efficiency of the bismuth-based photovoltaic element.
請參閱圖1,圖1係一典型的PERC矽基光伏元 件1的剖面視圖,以揭示典型的PERC矽基光伏元件1的各層結構。 Referring to Figure 1, there is shown a cross-sectional view of a typical PERC germanium-based photovoltaic element 1 to reveal the various layers of a typical PERC germanium-based photovoltaic element 1.
如圖1所示,典型的PERC矽基光伏元件1包含p型矽晶圓10。p型矽晶圓10具有經粗糙化的正表面102以及背表面104。p型矽晶圓10的經粗糙化的正表面102執行磷擴散製程後,進而在p型矽晶圓10內靠近經粗糙化的正表面102之一處形成p-n接面106。 As shown in FIG. 1, a typical PERC germanium-based photovoltaic element 1 comprises a p-type germanium wafer 10. The p-type germanium wafer 10 has a roughened front surface 102 and a back surface 104. After the roughened front surface 102 of the p-type germanium wafer 10 is subjected to a phosphorus diffusion process, a p-n junction 106 is formed in the p-type germanium wafer 10 near one of the roughened front surfaces 102.
典型的PERC矽基光伏元件1並且包含背鈍化層14。背鈍化層14係形成以被覆p型矽晶圓10的背表面104。特別地,多個微結構142係形成在背鈍化層14上,於每一個微結構142內,背表面104係外露。一般,多個微結構142為溝槽型態微結構,甚至深入背表面104。 A typical PERC germanium-based photovoltaic element 1 and includes a back passivation layer 14. The back passivation layer 14 is formed to coat the back surface 104 of the p-type germanium wafer 10. In particular, a plurality of microstructures 142 are formed on the back passivation layer 14, and within each of the microstructures 142, the back surface 104 is exposed. Typically, the plurality of microstructures 142 are trench-type microstructures that even penetrate the back surface 104.
典型的PERC矽基光伏元件1並且包含抗反射層17。抗反射層17係形成以被覆經粗糙化的正表面102。 A typical PERC germanium-based photovoltaic element 1 and comprises an anti-reflective layer 17. The anti-reflective layer 17 is formed to coat the roughened front surface 102.
典型的PERC矽基光伏元件1並且包含正面電極16以及背面電極18。正面電極16係形成於抗反射層17上,並且與經粗糙化的正表面形102成歐姆接觸。背面電極18係形成於背鈍化層14上,並且填充多個微結構142。一般,背面電極18係採用鋁漿進行燒結而形成。於燒結過程中,鋁局部擴散至典型的PERC矽基光伏元件1的背表面104裡,形成了背表面電場(Back Surface Filed,BSF)182,如圖1所示。背表面電場182反射少數載子並增加多數載子的收集再傳輸至銀或銀鋁形成的匯流排電極,進而提升典型的PERC矽基光伏元件1的整體效能。 A typical PERC germanium-based photovoltaic element 1 also includes a front side electrode 16 and a back side electrode 18. The front electrode 16 is formed on the anti-reflective layer 17 and is in ohmic contact with the roughened front surface shape 102. The back electrode 18 is formed on the back passivation layer 14 and fills a plurality of microstructures 142. Generally, the back surface electrode 18 is formed by sintering with an aluminum paste. During the sintering process, aluminum locally diffuses into the back surface 104 of a typical PERC bismuth-based photovoltaic element 1 to form a Back Surface Filed (BSF) 182, as shown in FIG. The back surface electric field 182 reflects minority carriers and increases the collection of majority carriers and transports them to busbar electrodes formed of silver or silver-aluminum, thereby improving the overall performance of a typical PERC-based photovoltaic component 1.
然而,PERC矽基光伏元件的性能仍有提升的空間。 However, there is still room for improvement in the performance of PERC-based photovoltaic components.
因此,本發明所欲解決的技術問題在於提供一種具有PERC結構且光電轉換效率更加提升的矽基光伏元件及其製造方法。 Therefore, the technical problem to be solved by the present invention is to provide a bismuth-based photovoltaic element having a PERC structure and having improved photoelectric conversion efficiency and a method of manufacturing the same.
根據本發明之第一較佳具體實施例之製造矽基光伏元件的方法,首先,係製備p型矽晶圓,其中p型矽晶圓具有正表面以及背表面。接著,根據本發明之第一較佳具體實施例之方法係對p型矽晶圓的正表面進行粗糙化製程。接著,根據本發明之第一較佳具體實施例之方法係對經粗糙化的正表面執行磷擴散製程,進而在p型矽晶圓內靠近經粗糙化的正表面之一處形成p-n接面,並且在經粗糙化的正表面上形成磷玻璃層。接著,根據本發明之第一較佳具體實施例之方法係去除在經粗糙化的正表面上之磷玻璃層。接著,根據本發明之第一較佳具體實施例之方法係形成背鈍化層以被覆在p型矽晶圓的背表面。接著,根據本發明之第一較佳具體實施例之方法係執行熱處理製程,進而在經粗糙化的正表面上形成氧化矽層,並且同時對背鈍化層進行退火處理。接著,根據本發明之第一較佳具體實施例之方法係形成抗反射層以被覆氧化矽層。接著,根據本發明之第一較佳具體實施例之方法係局部移除背鈍化層,進而在背鈍化層上形成多個微結構,其中於每一個微結構內,背表面係外露。接著,根據本發明之第一較佳具體實施例之方法係於抗反射層上形成正面電極,其中正面電極與經粗糙化的正表面形成歐姆接觸。最後,根據本發明之第一較佳具體實施例之方法係於背鈍化層上形成背面電極,其中背面電極填充多個微結構。 According to a first preferred embodiment of the present invention, a method of fabricating a germanium-based photovoltaic device, first, a p-type germanium wafer is prepared, wherein the p-type germanium wafer has a front surface and a back surface. Next, the method according to the first preferred embodiment of the present invention performs a roughening process on the front surface of the p-type germanium wafer. Next, the method according to the first preferred embodiment of the present invention performs a phosphorus diffusion process on the roughened front surface to form a pn junction in one of the roughened front surfaces in the p-type germanium wafer. And forming a phosphor glass layer on the roughened front surface. Next, the method according to the first preferred embodiment of the present invention removes the phosphorous glass layer on the roughened front surface. Next, the method according to the first preferred embodiment of the present invention forms a back passivation layer to be coated on the back surface of the p-type germanium wafer. Next, the method according to the first preferred embodiment of the present invention performs a heat treatment process to form a ruthenium oxide layer on the roughened front surface and simultaneously anneal the back passivation layer. Next, the method according to the first preferred embodiment of the present invention forms an antireflection layer to coat the ruthenium oxide layer. Next, the method according to the first preferred embodiment of the present invention partially removes the back passivation layer, thereby forming a plurality of microstructures on the back passivation layer, wherein the back surface is exposed in each of the microstructures. Next, the method according to the first preferred embodiment of the present invention is to form a front electrode on the anti-reflective layer, wherein the front electrode forms an ohmic contact with the roughened front surface. Finally, the method according to the first preferred embodiment of the present invention is to form a back electrode on the back passivation layer, wherein the back electrode is filled with a plurality of microstructures.
根據本發明之第二較佳具體實施例之製造矽基光伏元件的方法,首先,係製備p型矽晶圓,其中p型矽晶圓具有正表面以及背表面。接著,根據本發明之第二較佳具體實施例之方法係對p型矽晶圓的正表面進行粗糙化製程。接著,根據本發明之第二較佳具體實施例之方法係對經粗糙 化的正表面執行磷擴散製程,進而在p型矽晶圓內靠近經粗糙化的正表面之一處形成p-n接面,並且在經粗糙化的正表面上形成磷玻璃層。接著,根據本發明之第二較佳具體實施例之方法係去除在經粗糙化的正表面上之磷玻璃層。接著,根據本發明之第二較佳具體實施例之方法係執行熱處理製程進而在經粗糙化的正表面上形成正面氧化矽層,並且同時在背表面上形成背面氧化矽層。接著,根據本發明之第二較佳具體實施例之方法係形成背鈍化層以被覆背面氧化矽層。接著,根據本發明之第二較佳具體實施例之方法係形成抗反射層以被覆正面氧化矽層。接著,根據本發明之第二較佳具體實施例之方法係局部移除背鈍化層以及背面氧化矽層,進而在背鈍化層上形成多個微結構,其中於每一個微結構內,背表面係外露。接著,根據本發明之第二較佳具體實施例之方法係於抗反射層上形成正面電極,其中正面電極與經粗糙化的正表面形成歐姆接觸。最後,根據本發明之第二較佳具體實施例之方法係於背鈍化層上形成背面電極,其中背面電極填充多個微結構。 According to a second preferred embodiment of the present invention, a method of fabricating a germanium-based photovoltaic device, first, a p-type germanium wafer is prepared, wherein the p-type germanium wafer has a front surface and a back surface. Next, the method according to the second preferred embodiment of the present invention performs a roughening process on the front surface of the p-type germanium wafer. Next, a method according to a second preferred embodiment of the present invention performs a phosphorus diffusion process on the roughened front surface to form a pn junction in one of the roughened front surfaces in the p-type germanium wafer. And forming a phosphor glass layer on the roughened front surface. Next, the method according to the second preferred embodiment of the present invention removes the phosphor glass layer on the roughened front surface. Next, the method according to the second preferred embodiment of the present invention performs a heat treatment process to form a front ruthenium oxide layer on the roughened front surface and simultaneously form a back ruthenium oxide layer on the back surface. Next, a method according to a second preferred embodiment of the present invention forms a back passivation layer to coat the back ruthenium oxide layer. Next, a method according to a second preferred embodiment of the present invention forms an anti-reflective layer to coat the front yttrium oxide layer. Next, the method according to the second preferred embodiment of the present invention partially removes the back passivation layer and the back ruthenium oxide layer, thereby forming a plurality of microstructures on the back passivation layer, wherein in each of the microstructures, the back surface Exposed. Next, a method according to a second preferred embodiment of the present invention is to form a front electrode on the anti-reflective layer, wherein the front electrode forms an ohmic contact with the roughened front surface. Finally, the method according to the second preferred embodiment of the present invention is to form a back electrode on the back passivation layer, wherein the back electrode is filled with a plurality of microstructures.
根據本發明之第三較佳具體實施例之製造矽基光伏元件的方法,首先,係製備p型矽晶圓,其中p型矽晶圓具有正表面以及背表面。接著,根據本發明之第三較佳具體實施例之方法係對p型矽晶圓的正表面進行粗糙化製程。接著,根據本發明之第三較佳具體實施例之方法係對經粗糙化的正表面執行磷擴散製程,進而在p型矽晶圓內靠近經粗糙化的正表面之一處形成p-n接面,並且在經粗糙化的正表面上形成磷玻璃層。接著,根據本發明之第三較佳具體實施例之方法係去除在經粗糙化的正表面上之磷玻璃層。接著,根據本發明之第三較佳具體實施例之方法係形成抗反射層以被覆經粗糙化的正表面。接著,根據本發明之第三較佳具體實施例之方法係形成背鈍化層以被覆p型矽晶圓的背表面。接著,根據本發明之第三較佳具體實施例之方法係執行熱處理 製程,進而同時對背鈍化層以及抗反射層進行熱處理。接著,根據本發明之第三較佳具體實施例之方法係局部移除背鈍化層進而在背鈍化層上形成多個微結構,其中於每一個微結構內,背表面係外露。接著,根據本發明之第三較佳具體實施例之方法係於抗反射層上形成正面電極,其中正面電極與經粗糙化的正表面形成歐姆接觸。最後,根據本發明之第三較佳具體實施例之方法係於背鈍化層上形成背面電極,其中背面電極填充多個微結構。 According to a third preferred embodiment of the present invention for fabricating a germanium-based photovoltaic device, first, a p-type germanium wafer is prepared, wherein the p-type germanium wafer has a front surface and a back surface. Next, the method according to the third preferred embodiment of the present invention performs a roughening process on the front surface of the p-type germanium wafer. Next, the method according to the third preferred embodiment of the present invention performs a phosphorus diffusion process on the roughened front surface to form a pn junction in one of the roughened front surfaces in the p-type germanium wafer. And forming a phosphor glass layer on the roughened front surface. Next, the method according to the third preferred embodiment of the present invention removes the phosphor glass layer on the roughened front surface. Next, a method according to a third preferred embodiment of the present invention forms an anti-reflective layer to coat the roughened front surface. Next, a method according to a third preferred embodiment of the present invention forms a back passivation layer to coat the back surface of the p-type germanium wafer. Next, the method according to the third preferred embodiment of the present invention performs a heat treatment process to simultaneously heat-treat the back passivation layer and the anti-reflection layer. Next, the method according to the third preferred embodiment of the present invention partially removes the back passivation layer to form a plurality of microstructures on the back passivation layer, wherein the back surface is exposed in each of the microstructures. Next, a method according to a third preferred embodiment of the present invention is to form a front electrode on the anti-reflective layer, wherein the front electrode forms an ohmic contact with the roughened front surface. Finally, the method according to the third preferred embodiment of the present invention is to form a back electrode on the back passivation layer, wherein the back electrode is filled with a plurality of microstructures.
於實際應用中,微結構可以是凹陷、溝槽,或上述結構構成的混合結構。 In practical applications, the microstructure may be a recess, a trench, or a hybrid structure of the above structure.
於一具體實施例中,背鈍化層的組成可以是Al2O3/SiNx、SiO2/SiNx或SiOxNy/SiNx,或上述化合物之混合物。 In a specific embodiment, the composition of the back passivation layer may be Al 2 O 3 /SiN x , SiO 2 /SiN x or SiO x N y /SiN x , or a mixture of the above compounds.
於一具體實施例中,抗反射層的組成可以是SiNx、SiO2/SiNx或SiNx/SiOxNy,或上述化合物之混合物。 In a specific embodiment, the composition of the antireflection layer may be SiN x , SiO 2 /SiN x or SiN x /SiO x N y , or a mixture of the above compounds.
於一具體實施例中,p型矽晶圓可以是p型單晶矽晶圓或p型多晶矽晶圓。 In one embodiment, the p-type germanium wafer may be a p-type single crystal germanium wafer or a p-type poly germanium wafer.
與先前技術不同,根據本發明之方法所製造的矽基光伏元件不僅具有PERC結構,並且其光電轉換效率較典型的PERC矽基光伏元件更加提升。 Unlike the prior art, the bismuth-based photovoltaic element fabricated according to the method of the present invention not only has a PERC structure, but also has a higher photoelectric conversion efficiency than a typical PERC-based photovoltaic element.
關於本發明之優點與精神可以藉由以下的發明詳述及所附圖式得到進一步的瞭解。 The advantages and spirit of the present invention will be further understood from the following detailed description of the invention.
1、2、3、4‧‧‧矽基光伏元件 1, 2, 3, 4‧‧‧ 矽 based photovoltaic components
10、20、30、40‧‧‧p型矽晶圓 10, 20, 30, 40‧‧‧p-type wafers
102、202、302、402‧‧‧正表面 102, 202, 302, 402‧‧‧ front surface
104、204、304、404‧‧‧背表面 104, 204, 304, 404‧‧‧ back surface
106、206、306、406‧‧‧p-n接面 106, 206, 306, 406‧‧‧p-n junction
14、24、34、44‧‧‧背鈍化層 14, 24, 34, 44‧‧‧ back passivation layer
142、242、342、442‧‧‧微結構 142, 242, 342, 442‧‧‧ microstructures
16、26、36、46‧‧‧正面電極 16, 26, 36, 46‧‧‧ front electrodes
17、27、37、47‧‧‧抗反射層 17, 27, 37, 47‧‧‧ anti-reflection layer
18、28、38、48‧‧‧背面電極 18, 28, 38, 48‧‧‧ back electrode
182、282、382、482‧‧‧背表面電場 182, 282, 382, 482‧‧‧ back surface electric field
21、31、41‧‧‧磷玻璃層 21, 31, 41‧‧ ‧ phosphorus glass layer
22‧‧‧氧化矽層 22‧‧‧Oxide layer
32‧‧‧正面氧化矽層 32‧‧‧Positive oxidized ruthenium layer
33‧‧‧背面氧化矽層 33‧‧‧Back ruthenium oxide layer
圖1係一典型的PERC矽基光伏元件的剖面視圖。 Figure 1 is a cross-sectional view of a typical PERC germanium based photovoltaic component.
圖2至圖7係以剖面視圖繪示根據本發明之第一較佳具體實施例之製造矽基光伏元件的方法。 2 through 7 are cross-sectional views showing a method of fabricating a germanium-based photovoltaic device in accordance with a first preferred embodiment of the present invention.
圖8至圖13係以剖面視圖繪示根據本發明之第二較佳具體實施例之製造矽基光伏元件的方法。 8 through 13 are cross-sectional views showing a method of fabricating a germanium-based photovoltaic element in accordance with a second preferred embodiment of the present invention.
圖14至圖18係以剖面視圖繪示根據本發明之第三較佳具體實施例之製造矽基光伏元件的方法。 14 through 18 are cross-sectional views showing a method of fabricating a germanium-based photovoltaic element in accordance with a third preferred embodiment of the present invention.
請參閱圖2至圖7,該等圖式係以剖面視圖描繪根據本發明之第一較佳具體實施例之製造如圖7的剖面視圖所示之矽基太陽能電池2的方法。 Referring to FIGS. 2-7, the drawings depict a method of fabricating a germanium-based solar cell 2 as shown in the cross-sectional view of FIG. 7 in accordance with a first preferred embodiment of the present invention in a cross-sectional view.
如圖2所示,根據本發明之第一較佳具體實施例之製造矽基光伏元件2的方法,首先,係製備p型矽晶圓20,其中p型矽晶圓具20有正表面202以及背表面204。 As shown in FIG. 2, in a method of fabricating a germanium-based photovoltaic device 2 according to a first preferred embodiment of the present invention, first, a p-type germanium wafer 20 is prepared, wherein the p-type germanium wafer 20 has a front surface 202. And a back surface 204.
於一具體實施例中,p型矽晶圓20可以是p型單晶矽晶圓或p型多晶矽晶圓。 In one embodiment, the p-type germanium wafer 20 can be a p-type single crystal germanium wafer or a p-type poly germanium wafer.
同樣示於圖2,根據本發明之第一較佳具體實施例之方法係對p型矽晶圓20的正表面202進行粗糙化製程,以讓p型矽晶圓20的正表面202成經粗糙化的正表面202,進而降低p型矽晶圓20對入射光的反射率。粗糙化製程可以利用KOH或NaOH等鹼性液體進行蝕刻,但並不以此為限。 Also shown in FIG. 2, the method according to the first preferred embodiment of the present invention roughens the front surface 202 of the p-type germanium wafer 20 to allow the front surface 202 of the p-type germanium wafer 20 to pass through. The roughened front surface 202 further reduces the reflectivity of the p-type germanium wafer 20 to incident light. The roughening process can be etched using an alkaline liquid such as KOH or NaOH, but is not limited thereto.
如圖3所示,接著,根據本發明之第一較佳具體實施例之方法係對經粗糙化的正表面202執行磷擴散製程,進而在p型矽晶圓20內靠近經粗糙化的正表面202之一處形成p-n接面206,並且在經粗糙化的正表面202上形成磷玻璃層21。 As shown in FIG. 3, next, the method according to the first preferred embodiment of the present invention performs a phosphorus diffusion process on the roughened front surface 202, thereby approaching the roughened positive in the p-type germanium wafer 20. A pn junction 206 is formed at one of the surfaces 202, and a phosphor glass layer 21 is formed on the roughened front surface 202.
如圖4所示,接著,根據本發明之第一較佳具體實施例之方法係去除在經粗糙化的正表面202上之磷玻璃層21。 As shown in FIG. 4, next, the method according to the first preferred embodiment of the present invention removes the phosphorous glass layer 21 on the roughened front surface 202.
如圖5所示,接著,根據本發明之第一較佳具體實施例之方法係形成背鈍化層24以被覆在p型矽晶圓20的背表面204。 As shown in FIG. 5, a method of forming a back passivation layer 24 to cover the back surface 204 of the p-type germanium wafer 20 is then performed in accordance with the method of the first preferred embodiment of the present invention.
於一具體實施例中,背鈍化層24的組成可以是Al2O3/SiNx、SiO2/SiNx或SiOxNy/SiNx,或上述化合物之混合物。 In one embodiment, the composition of the back passivation layer 24 may be Al 2 O 3 /SiN x , SiO 2 /SiN x or SiO x N y /SiN x , or a mixture of the above compounds.
同樣示於圖5,接著特別地,根據本發明之第一較佳具體實施例之方法係執行熱處理製程,進而在經粗糙化的正表面202上形成氧化矽層22,並且同時對背鈍化層24進行退火處理。於一具體實施例中,熱處理製程的溫度範圍介於300℃至900℃,製程時間範圍介於1分鐘至120分鐘,爐氛使用空氣(air)、氮氣(N2)、氧氣(O2)或上述氣體之混合物,藉此可以降低背鈍化層24的缺陷密度,並且提昇背鈍化層24的表面形態。 Also shown in Fig. 5, and in particular, the method according to the first preferred embodiment of the present invention performs a heat treatment process to form a ruthenium oxide layer 22 on the roughened front surface 202 and simultaneously to the back passivation layer. 24 is annealed. In one embodiment, the temperature range of the heat treatment process ranges from 300 ° C to 900 ° C, and the process time ranges from 1 minute to 120 minutes. The furnace atmosphere uses air, nitrogen (N 2 ), and oxygen (O 2 ). Or a mixture of the above gases, whereby the defect density of the back passivation layer 24 can be lowered, and the surface morphology of the back passivation layer 24 can be improved.
如圖6所示,接著,根據本發明之第一較佳具體實施例之方法係形成抗反射層27以被覆氧化矽層22。 As shown in FIG. 6, then, in accordance with the method of the first preferred embodiment of the present invention, an anti-reflective layer 27 is formed to coat the yttria layer 22.
於一具體實施例中,抗反射層27的組成可以是SiNx、SiNx/SiOxNy或SiO2/SiNx,或上述化合物之混合物。 In one embodiment, the composition of the anti-reflective layer 27 may be SiN x , SiN x /SiO x N y or SiO 2 /SiN x , or a mixture of the above compounds.
如圖7所示,接著,根據本發明之第一較佳具體實施例之方法係局部移除背鈍化層24,進而在背鈍化層24上形成多個微結構242,其中於每一個微結構242內,背表面204係外露。於一具體實施例中,多個微結構242可以藉由雷射雕刻背鈍化層24而形成,多個微結構242槽甚至深入背表面204,但並不以此為限。 As shown in FIG. 7, next, the method according to the first preferred embodiment of the present invention partially removes the back passivation layer 24, thereby forming a plurality of microstructures 242 on the back passivation layer 24, wherein each of the microstructures Within 242, the back surface 204 is exposed. In one embodiment, the plurality of microstructures 242 may be formed by laser engraving the back passivation layer 24, and the plurality of microstructures 242 may even penetrate the back surface 204, but are not limited thereto.
於實際應用中,微結構242可以是凹陷、溝槽,或上述結構構成的混合結構。 In practical applications, the microstructures 242 can be recesses, trenches, or a hybrid structure of the above structure.
同樣示於圖7,接著,根據本發明之第一較佳具體實施例之方法係於抗反射層27上形成正面電極26,其中正 面電極26與經粗糙化的正表面202形成歐姆接觸。 Also shown in Fig. 7, then, in accordance with a first preferred embodiment of the present invention, a front side electrode 26 is formed on the anti-reflective layer 27, wherein the front side electrode 26 forms an ohmic contact with the roughened front surface 202.
同樣示於圖7,最後,根據本發明之第一較佳具體實施例之方法係於背鈍化層24上形成背面電極28,即完成矽基太陽能電池2。特別地,背面電極28填充多個微結構242。圖7所示矽基太陽能電池2具有PERC結構。 Also shown in Fig. 7, finally, the method according to the first preferred embodiment of the present invention is such that the back surface electrode 28 is formed on the back passivation layer 24, i.e., the germanium based solar cell 2 is completed. In particular, the back electrode 28 is filled with a plurality of microstructures 242. The germanium-based solar cell 2 shown in Fig. 7 has a PERC structure.
於一具體實施例中,正面電極26的形成可以藉由局部塗佈銀漿於抗反射層27上,背面電極28的形成可以藉由塗佈鋁漿於背鈍化層24上,再進行共燒製程一起形成。於燒結過程中,鋁局部擴散至背表面204裡,形成了背表面電場282,如圖7所示。 In a specific embodiment, the front electrode 26 can be formed by partially coating a silver paste on the anti-reflective layer 27, and the back electrode 28 can be formed by coating an aluminum paste on the back passivation layer 24, and then co-firing. The process is formed together. During the sintering process, aluminum partially diffuses into the back surface 204, forming a back surface electric field 282, as shown in FIG.
請再參閱圖7,根據本發明之第一較佳具體實施例之方法所製造的矽基光伏元件2包含p型矽晶圓20、背鈍化層24、氧化矽層22、抗反射層27、正面電極26以及背面電極28。 Referring to FIG. 7, the germanium-based photovoltaic device 2 manufactured according to the method of the first preferred embodiment of the present invention comprises a p-type germanium wafer 20, a back passivation layer 24, a hafnium oxide layer 22, an anti-reflection layer 27, Front electrode 26 and back electrode 28.
p型矽晶圓20具有經粗糙化的正表面202以及背表面204,並且包含靠近經粗糙化的正表面202之p-n接面206。背鈍化層24係形成以被覆p型矽晶圓20的背表面204。特別地,多個微結構242係形成在背鈍化層24上,於每一個微結構242內,背表面204係外露。 The p-type germanium wafer 20 has a roughened front surface 202 and a back surface 204 and includes a p-n junction 206 adjacent the roughened front surface 202. A back passivation layer 24 is formed to coat the back surface 204 of the p-type germanium wafer 20. In particular, a plurality of microstructures 242 are formed on the back passivation layer 24, and within each microstructure 242, the back surface 204 is exposed.
氧化矽層22係形成於p型矽晶圓20的經粗糙化的正表面202上。特別地,於氧化矽層22形成的過程中,背鈍化層24係同時進行退火處理,藉此可以降低背鈍化層24的缺陷密度,並且提昇背鈍化層24的表面形態。 The hafnium oxide layer 22 is formed on the roughened front surface 202 of the p-type germanium wafer 20. In particular, during the formation of the hafnium oxide layer 22, the back passivation layer 24 is simultaneously annealed, whereby the defect density of the back passivation layer 24 can be lowered, and the surface morphology of the back passivation layer 24 can be improved.
抗反射層27係形成以被覆氧化矽層22。正面電極26係形成於抗反射層27上,並且與經粗糙化的正表面202形成歐姆接觸。背面電極28係形成於背鈍化層24上,並且特別地,背面電極28填充該多個微結構242。鋁局部擴散至背表面204裡,形成了背表面電場282。 The anti-reflection layer 27 is formed to cover the ruthenium oxide layer 22. The front electrode 26 is formed on the anti-reflective layer 27 and forms an ohmic contact with the roughened front surface 202. The back electrode 28 is formed on the back passivation layer 24, and in particular, the back electrode 28 fills the plurality of microstructures 242. The aluminum partially diffuses into the back surface 204, forming a back surface electric field 282.
請參閱表1,根據本發明之第一較佳具體實施例之方法所製造的矽基光伏元件2經測試所得各項電池特性,包含光電轉換效率(Efficiency)、開路電壓(Voc)、短路電流(Isc)以及填充因子(Fill Factor,FF)。表1中並列出一典型的PERC矽基光伏元件做為參考組1的測試結果,做為比較。 Referring to Table 1, the battery characteristics obtained by the ruthenium-based photovoltaic element 2 manufactured according to the method of the first preferred embodiment of the present invention include photoelectric conversion efficiency (Efficiency), open circuit voltage (V oc ), and short circuit. Current (I sc ) and fill factor (FF). Table 1 also lists a typical PERC-based photovoltaic component as a reference group 1 test result, as a comparison.
從表1的測試數據,可以清楚看出根據本發明之第一較佳具體實施例之方法所製造的矽基光伏元件2其各項電池特性皆優於典型的PERC矽基光伏元件(參考組1)的各項電池特性。 From the test data of Table 1, it can be clearly seen that the bismuth-based photovoltaic element 2 manufactured according to the method of the first preferred embodiment of the present invention has superior battery characteristics to typical PERC bismuth-based photovoltaic elements (reference group). 1) Various battery characteristics.
請參閱圖8至圖13,該等圖式係以剖面視圖描繪根據本發明之第二較佳具體實施例之製造如圖13的剖面視圖所示之矽基太陽能電池3的方法。 Referring to Figures 8 through 13, the drawings depict a method of fabricating a germanium-based solar cell 3 as shown in the cross-sectional view of Figure 13 in accordance with a second preferred embodiment of the present invention in a cross-sectional view.
如圖8所示,根據本發明之第二較佳具體實施例之製造矽基光伏元件3的方法,首先,係製備p型矽晶圓30,其中p型矽晶圓具30有正表面302以及背表面304。 As shown in FIG. 8, a method of manufacturing a germanium-based photovoltaic device 3 according to a second preferred embodiment of the present invention, first, a p-type germanium wafer 30 is prepared, wherein the p-type germanium wafer 30 has a front surface 302. And a back surface 304.
於一具體實施例中,p型矽晶圓30可以是p型單晶矽晶圓或p型多晶矽晶圓。 In one embodiment, the p-type germanium wafer 30 can be a p-type single crystal germanium wafer or a p-type poly germanium wafer.
同樣示於圖8,根據本發明之第二較佳具體實施例之方法係對p型矽晶圓30的正表面302進行粗糙化製程, 以讓p型矽晶圓30的正表面302成經粗糙化的正表面302,進而降低p型矽晶圓30對入射光的反射率。 Also shown in FIG. 8, a method according to a second preferred embodiment of the present invention roughens the front surface 302 of the p-type germanium wafer 30 to allow the front surface 302 of the p-type germanium wafer 30 to pass through. The roughened front surface 302 further reduces the reflectivity of the p-type germanium wafer 30 to incident light.
如圖9所示,接著,根據本發明之第二較佳具體實施例之方法係對經粗糙化的正表面302執行磷擴散製程,進而在p型矽晶圓30內靠近經粗糙化的正表面302之一處形成p-n接面306,並且在經粗糙化的正表面302上形成磷玻璃層31。 As shown in FIG. 9, next, the method according to the second preferred embodiment of the present invention performs a phosphorus diffusion process on the roughened front surface 302, thereby approaching the roughened positive in the p-type germanium wafer 30. A pn junction 306 is formed at one of the surfaces 302, and a phosphor glass layer 31 is formed on the roughened front surface 302.
如圖10所示,接著,根據本發明之第二較佳具體實施例之方法係去除在經粗糙化的正表面302上之磷玻璃層31。 As shown in FIG. 10, next, the method according to the second preferred embodiment of the present invention removes the phosphorous glass layer 31 on the roughened front surface 302.
如圖11所示,接著,根據本發明之第二較佳具體實施例之方法係執行退火製程進而在p型矽晶圓30的經粗糙化的正表面302上形成正面氧化矽層32,並且同時在p型矽晶圓30的背表面304上形成背面氧化矽層33。 As shown in FIG. 11, then, the method according to the second preferred embodiment of the present invention performs an annealing process to form a front oxide layer 32 on the roughened front surface 302 of the p-type germanium wafer 30, and At the same time, a back yttrium oxide layer 33 is formed on the back surface 304 of the p-type germanium wafer 30.
於一具體實施例中,熱處理製程的溫度範圍介於300℃至900℃,製程時間範圍介於1分鐘至120分鐘,爐氛使用空氣(air)、氮氣(N2)、氧氣(O2)或上述氣體之混合物,如圖12所示,接著,根據本發明之第二較佳具體實施例之方法係形成背鈍化層34以被覆背面氧化矽層33。 In one embodiment, the temperature range of the heat treatment process ranges from 300 ° C to 900 ° C, and the process time ranges from 1 minute to 120 minutes. The furnace atmosphere uses air, nitrogen (N 2 ), and oxygen (O 2 ). Or a mixture of the above gases, as shown in Fig. 12, followed by forming a back passivation layer 34 to coat the back yttria layer 33 in accordance with the method of the second preferred embodiment of the present invention.
於一具體實施例中,背鈍化層34的組成可以是Al2O3/SiNx、SiO2/SiNx或SiOxNy/SiNx,或上述化合物之混合物。 In one embodiment, the composition of the back passivation layer 34 may be Al 2 O 3 /SiN x , SiO 2 /SiN x or SiO x N y /SiN x , or a mixture of the above compounds.
同樣示於圖12,接著,根據本發明之第二較佳具體實施例之方法係形成抗反射層37以被覆正面氧化矽層32。 Also shown in Fig. 12, then, in accordance with a second preferred embodiment of the present invention, an anti-reflective layer 37 is formed to coat the front ruthenium oxide layer 32.
於一具體實施例中,抗反射層37的組成可以是SiNx、SiOxNy/SiNx或SiO2/SiNx,或上述化合物之混合物。 In one embodiment, the composition of the anti-reflective layer 37 may be SiN x , SiO x N y /SiN x or SiO 2 /SiN x , or a mixture of the above compounds.
如圖13所示,接著,根據本發明之第二較佳具 體實施例之方法係局部移除背鈍化層34以及背面氧化矽層33,進而在背鈍化層34上形成多個微結構342,其中於每一個微結構342內,背表面304係外露。於一具體實施例中,多個微結構342可以藉由雷射雕刻背鈍化層34而形成,多個微結構342甚至深入背表面304,但並不以此為限 As shown in FIG. 13, the method according to the second preferred embodiment of the present invention partially removes the back passivation layer 34 and the back ruthenium oxide layer 33, thereby forming a plurality of microstructures 342 on the back passivation layer 34. Within each of the microstructures 342, the back surface 304 is exposed. In a specific embodiment, the plurality of microstructures 342 may be formed by laser engraving the back passivation layer 34, and the plurality of microstructures 342 may even penetrate the back surface 304, but not limited thereto.
於實際應用中,微結構342可以是凹陷、溝槽,或上述結構構成的混合結構。 In practical applications, the microstructure 342 can be a recess, a trench, or a hybrid structure of the above structure.
同樣示於圖13,接著,根據本發明之第二較佳具體實施例之方法係於抗反射層37上形成正面電極36,其中正面電極36與經粗糙化的正表面302形成歐姆接觸。 Also shown in Fig. 13, then, in accordance with a second preferred embodiment of the present invention, a front side electrode 36 is formed on the anti-reflective layer 37, wherein the front side electrode 36 forms an ohmic contact with the roughened front surface 302.
同樣示於圖13,最後,根據本發明之第二較佳具體實施例之方法係於背鈍化層34上形成背面電極38。特別地,背面電極38填充多個微結構342。圖13所示矽基太陽能電池3具有PERC結構。 Also shown in Fig. 13, finally, the method of the second preferred embodiment of the present invention is formed on the back passivation layer 34 to form the back electrode 38. In particular, the back electrode 38 is filled with a plurality of microstructures 342. The germanium-based solar cell 3 shown in Fig. 13 has a PERC structure.
於一具體實施例中,正面電極36的形成可以藉由局部塗佈銀漿於抗反射層37上,背面電極38的形成可以藉由塗佈鋁漿於背鈍化層34上,再進行共燒製程一起形成。於燒結過程中,鋁局部擴散至背表面304裡,形成了背表面電場382,如圖13所示。 In one embodiment, the front electrode 36 can be formed by partially coating a silver paste on the anti-reflective layer 37. The back electrode 38 can be formed by coating an aluminum paste on the back passivation layer 34 and co-firing. The process is formed together. During the sintering process, aluminum partially diffuses into the back surface 304, forming a back surface electric field 382, as shown in FIG.
請再參閱圖13,根據本發明之第二較佳具體實施例之方法所製造的矽基光伏元件3包含p型矽晶圓30、正面氧化矽層32、背面氧化矽層33、背鈍化層34、抗反射層37、正面電極36以及背面電極38。 Referring to FIG. 13, a bismuth-based photovoltaic device 3 fabricated according to the method of the second preferred embodiment of the present invention comprises a p-type germanium wafer 30, a front yttrium oxide layer 32, a back yttria layer 33, and a back passivation layer. 34. Antireflection layer 37, front electrode 36, and back electrode 38.
p型矽晶圓30具有經粗糙化的正表面302以及背表面304,並且包含靠近經粗糙化的正表面302之p-n接面306。正面氧化矽層32係形成在p型矽晶圓30的經粗糙化的正表面302上。背面氧化矽層33係形成在p型矽晶圓30的背表面304上。特別地,正面氧化矽層32與背面氧化矽層33 係同時形成。 The p-type germanium wafer 30 has a roughened front surface 302 and a back surface 304 and includes a p-n junction 306 near the roughened front surface 302. The front yttrium oxide layer 32 is formed on the roughened front surface 302 of the p-type germanium wafer 30. A back yttrium oxide layer 33 is formed on the back surface 304 of the p-type germanium wafer 30. In particular, the front ruthenium oxide layer 32 is formed simultaneously with the back ruthenium oxide layer 33.
背鈍化層34係形成以被覆背面氧化矽層33。特別地,多個微結構342係形成在背鈍化層34上,於每一個微結構342內,背表面304係外露。 The back passivation layer 34 is formed to coat the back yttria layer 33. In particular, a plurality of microstructures 342 are formed on the back passivation layer 34, and within each of the microstructures 342, the back surface 304 is exposed.
抗反射層37係形成以被覆正面氧化矽層32。正面電極36係形成於抗反射層37上,並且與經粗糙化的正表面302形成歐姆接觸。背面電極38係形成於背鈍化層24上,並且特別地,背面電極38填充該多個微結構342。鋁局部擴散至背表面304裡,形成了背表面電場382。 The anti-reflective layer 37 is formed to coat the front yttrium oxide layer 32. The front electrode 36 is formed on the anti-reflective layer 37 and forms an ohmic contact with the roughened front surface 302. The back electrode 38 is formed on the back passivation layer 24, and in particular, the back electrode 38 fills the plurality of microstructures 342. The aluminum partially diffuses into the back surface 304, forming a back surface electric field 382.
請參閱表2,根據本發明之第二較佳具體實施例之方法所製造的矽基光伏元件之數個試片經測試所得各項平均電池特性,包含光電轉換效率(Efficiency,Eff)、開路電壓(Voc)、短路電流(Isc)以及填充因子(Fill Factor,FF)。表2中並列出一典型的PERC矽基光伏元件做為參考組2的測試結果,做為比較。 Referring to Table 2, the average battery characteristics of a plurality of test pieces of the bismuth-based photovoltaic element manufactured by the method according to the second preferred embodiment of the present invention, including photoelectric conversion efficiency (Efficiency, Eff), open circuit Voltage (V oc ), short circuit current (I sc ), and fill factor (Fill Factor, FF). Table 2 also lists a typical PERC-based photovoltaic component as a reference group 2 test result, for comparison.
從表2的測試數據,可以清楚看出根據本發明之第二較佳具體實施例之方法所製造的矽基光伏元件3其各項電池特性皆優於典型的PERC矽基光伏元件(參考組2)的各項電池特性。 From the test data of Table 2, it can be clearly seen that the bismuth-based photovoltaic element 3 manufactured according to the method of the second preferred embodiment of the present invention has better battery characteristics than the typical PERC bismuth-based photovoltaic element (reference group) 2) Various battery characteristics.
請參閱圖14至圖19,該等圖式係以剖面視圖描繪根據本發明之第三較佳具體實施例之製造如圖19的剖面視圖所示之矽基太陽能電池4的方法。 Referring to Figures 14 through 19, the drawings depict a method of fabricating a germanium-based solar cell 4 as shown in the cross-sectional view of Figure 19 in accordance with a third preferred embodiment of the present invention in a cross-sectional view.
如圖14所示,根據本發明之第三較佳具體實施例之製造矽基光伏元件4的方法,首先,係製備p型矽晶圓40,其中p型矽晶圓具40有正表面402以及背表面404。 As shown in FIG. 14, a method of fabricating a germanium-based photovoltaic device 4 according to a third preferred embodiment of the present invention, first, a p-type germanium wafer 40 is prepared, wherein the p-type germanium wafer 40 has a front surface 402. And a back surface 404.
於一具體實施例中,p型矽晶圓40可以是p型單晶矽晶圓或p型多晶矽晶圓。 In one embodiment, the p-type germanium wafer 40 can be a p-type single crystal germanium wafer or a p-type poly germanium wafer.
同樣示於圖14,根據本發明之第三較佳具體實施例之方法係對p型矽晶圓40的正表面402進行粗糙化製程,以讓p型矽晶圓40的正表面402成經粗糙化的正表面402,進而降低p型矽晶圓40對入射光的反射率。粗糙化製程可以是利用KOH、NaOH等鹼性液體進行蝕刻,但並不以此為限。 Also shown in FIG. 14, a method according to a third preferred embodiment of the present invention roughens the front surface 402 of the p-type germanium wafer 40 to allow the front surface 402 of the p-type germanium wafer 40 to pass through. The roughened front surface 402 further reduces the reflectivity of the p-type germanium wafer 40 to incident light. The roughening process may be performed by using an alkaline liquid such as KOH or NaOH, but is not limited thereto.
如圖15所示,接著,根據本發明之第三較佳具體實施例之方法係對經粗糙化的正表面402執行磷擴散製程,進而在p型矽晶圓40內靠近經粗糙化的正表面402之一處形成p-n接面406,並且在經粗糙化的正表面402上形成磷玻璃層41。 As shown in FIG. 15, next, the method according to the third preferred embodiment of the present invention performs a phosphorus diffusion process on the roughened front surface 402, thereby approaching the roughened positive in the p-type germanium wafer 40. A pn junction 406 is formed at one of the surfaces 402, and a phosphor glass layer 41 is formed on the roughened front surface 402.
如圖16所示,接著,根據本發明之第三較佳具體實施例之方法係去除在經粗糙化的正表面402上之磷玻璃層41。 As shown in FIG. 16, then, the method according to the third preferred embodiment of the present invention removes the phosphor glass layer 41 on the roughened front surface 402.
如圖17所示,接著,根據本發明之第三較佳具體實施例之方法係形成抗反射層47以被覆p型矽晶圓40的經粗糙化的正表面402。 As shown in FIG. 17, then, in accordance with a third preferred embodiment of the present invention, an anti-reflective layer 47 is formed to coat the roughened front surface 402 of the p-type germanium wafer 40.
於一具體實施例中,抗反射層47的組成可以是SiNx、SiNx/SiOxNy或SiO2/SiNx,或上述化合物之混合物。 In one embodiment, the composition of the anti-reflective layer 47 may be SiN x , SiN x /SiO x N y or SiO 2 /SiN x , or a mixture of the above compounds.
同樣示於圖17,接著,根據本發明之第三較佳具體實施例之方法係形成背鈍化層44以被覆在p型矽晶圓40的背表面404。 Also shown in FIG. 17, then, a method according to a third preferred embodiment of the present invention forms a back passivation layer 44 to be coated over the back surface 404 of the p-type germanium wafer 40.
於一具體實施例中,背鈍化層44的組成可以是Al2O3/SiNx、SiO2/SiNx或SiOxNy/SiNx,或上述化合物之混合物。 In one embodiment, the composition of the back passivation layer 44 may be Al 2 O 3 /SiN x , SiO 2 /SiN x or SiO x N y /SiN x , or a mixture of the above compounds.
同樣示於圖17,接著特別地,根據本發明之第三較佳具體實施例之方法係執行熱處理製程,進而同時對背鈍化層44以及抗反射層47進行退火處理。於一具體實施例中,熱處理製程的溫度範圍介於300℃至900℃,製程時間範圍介於1分鐘至120分鐘,爐氛使用空氣(air)、氮氣(N2)、氧氣(O2)、氫氣(H2)、氬氣(Ar)或上述氣體之混合物,藉此可以降低背鈍化層44與抗反射層47的缺陷密度,並且提昇背鈍化層44與抗反射層47的表面形態。 Also shown in Fig. 17, then, in particular, the method according to the third preferred embodiment of the present invention performs a heat treatment process to simultaneously anneal the back passivation layer 44 and the anti-reflective layer 47. In one embodiment, the temperature range of the heat treatment process ranges from 300 ° C to 900 ° C, and the process time ranges from 1 minute to 120 minutes. The furnace atmosphere uses air, nitrogen (N 2 ), and oxygen (O 2 ). Hydrogen (H 2 ), argon (Ar) or a mixture of the above gases, whereby the defect density of the back passivation layer 44 and the anti-reflective layer 47 can be lowered, and the surface morphology of the back passivation layer 44 and the anti-reflective layer 47 can be improved.
如圖18所示,接著,根據本發明之第三較佳具體實施例之方法係局部移除背鈍化層44,進而在背鈍化層44上形成多個微結構442,其中於每一個微結構442內,背表面404係外露。於一具體實施例中,多個微結構442可以藉由雷射雕刻背鈍化層44而形成,但並不以此為限。 As shown in FIG. 18, next, the method according to the third preferred embodiment of the present invention partially removes the back passivation layer 44, thereby forming a plurality of microstructures 442 on the back passivation layer 44, wherein each of the microstructures In 442, the back surface 404 is exposed. In one embodiment, the plurality of microstructures 442 may be formed by laser engraving the back passivation layer 44, but is not limited thereto.
於實際應用中,微結構可以是凹陷、溝槽,或上述結構構成的混合結構。 In practical applications, the microstructure may be a recess, a trench, or a hybrid structure of the above structure.
同樣示於圖18,接著,根據本發明之第三較佳具體實施例之方法係於抗反射層47上形成正面電極46,其中正面電極46與經粗糙化的正表面402形成歐姆接觸。 Also shown in Fig. 18, a method according to a third preferred embodiment of the present invention is followed by forming a front side electrode 46 on the anti-reflective layer 47, wherein the front side electrode 46 forms an ohmic contact with the roughened front surface 402.
同樣示於圖18,最後,根據本發明之第三較佳具體實施例之方法係於背鈍化層44上形成背面電極48,即完成矽基太陽能電池4。特別地,背面電極48填充多個微結構442。圖18所示矽基太陽能電池4具有PERC結構。 Also shown in Fig. 18, finally, the method according to the third preferred embodiment of the present invention is such that the back surface electrode 48 is formed on the back passivation layer 44, i.e., the germanium based solar cell 4 is completed. In particular, the back electrode 48 is filled with a plurality of microstructures 442. The bismuth-based solar cell 4 shown in Fig. 18 has a PERC structure.
於一具體實施例中,正面電極46的形成可以藉由局部塗佈銀漿於抗反射層47上,背面電極48的形成可以藉由塗佈鋁漿於背鈍化層44上,再進行共燒製程一起形成。於燒結過程中,鋁局部擴散至背表面404裡,形成了背表面電場482,如圖18所示。 In a specific embodiment, the front electrode 46 can be formed by partially coating silver paste on the anti-reflective layer 47. The back electrode 48 can be formed by coating aluminum paste on the back passivation layer 44 and co-firing. The process is formed together. During the sintering process, aluminum partially diffuses into the back surface 404, forming a back surface electric field 482, as shown in FIG.
請參閱表3,根據本發明之第三較佳具體實施例之方法所製造的矽基光伏元件4之數個試片經測試所得各項平均電池特性,包含光電轉換效率(Efficiency,Eff)、開路電壓(Voc)、短路電流(Isc)以及填充因子(Fill Factor,FF)。表3中並列出一典型的PERC矽基光伏元件做為參考組3的測試結果,做為比較。 Referring to Table 3, the average battery characteristics of the test pieces obtained by the test piece according to the third preferred embodiment of the present invention, including the photoelectric conversion efficiency (Efficiency, Eff), Open circuit voltage (V oc ), short circuit current (I sc ), and fill factor (Fill Factor, FF). Table 3 also lists the results of a typical PERC-based photovoltaic component as a reference group 3 for comparison.
從表3的測試數據,可以清楚看出根據本發明之第三較佳具體實施例之方法所製造的矽基光伏元件4其各項電池特性皆優於典型的PERC矽基光伏元件(參考組3)的各項電池。 From the test data of Table 3, it can be clearly seen that the bismuth-based photovoltaic element 4 manufactured by the method according to the third preferred embodiment of the present invention has better battery characteristics than the typical PERC-based photovoltaic element (reference group). 3) Various batteries.
綜上所述,咸信能讓人清楚了解根據本發明之方法所製造的矽基光伏元件不僅具有PERC結構,並且其光電轉換效率較典型的PERC矽基光伏元件更加提升。 In summary, it is clear that the germanium-based photovoltaic elements fabricated according to the method of the present invention not only have a PERC structure, but also have higher photoelectric conversion efficiency than typical PERC-based photovoltaic elements.
藉由以上較佳具體實施例之詳述,係希望能更加 清楚描述本發明之特徵與精神,而並非以上述所揭露的較佳具體實施例來對本發明之面向加以限制。相反地,其目的是希望能涵蓋各種改變及具相等性的安排於本發明所欲申請之專利範圍的面向內。因此,本發明所申請之專利範圍的面向應該根據上述的說明作最寬廣的解釋,以致使其涵蓋所有可能的改變以及具相等性的安排。 The features and spirit of the present invention are intended to be more apparent from the detailed description of the preferred embodiments. On the contrary, the intention is to cover various modifications and equivalents that are within the scope of the invention as claimed. Therefore, the scope of the patent application of the present invention should be construed broadly in the light of the above description, so that it covers all possible changes and arrangements.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105129289A TW201813115A (en) | 2016-09-09 | 2016-09-09 | Silicon-based photovoltaic device and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105129289A TW201813115A (en) | 2016-09-09 | 2016-09-09 | Silicon-based photovoltaic device and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201813115A true TW201813115A (en) | 2018-04-01 |
Family
ID=62639541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105129289A TW201813115A (en) | 2016-09-09 | 2016-09-09 | Silicon-based photovoltaic device and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW201813115A (en) |
-
2016
- 2016-09-09 TW TW105129289A patent/TW201813115A/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101225978B1 (en) | Sollar Cell And Fabrication Method Thereof | |
JP5197760B2 (en) | Method for manufacturing solar battery cell | |
CN108666376B (en) | P-type back contact solar cell and preparation method thereof | |
CN106711239A (en) | Preparation method of PERC solar battery and PERC solar battery | |
CN108666386B (en) | P-type back contact solar cell and preparation method thereof | |
JP2012023228A (en) | Method and device of manufacturing solar cell | |
TW201432925A (en) | Silicon solar cell structure | |
JP2010171263A (en) | Method of manufacturing photovoltaic device | |
JP2008034543A (en) | Photoelectric conversion element, and manufacturing method thereof | |
WO2014206211A1 (en) | Back-passivated solar battery and manufacturing method therefor | |
WO2013100085A1 (en) | Solar cell element, method for manufacturing solar cell element, and solar cell module | |
JP2019004159A (en) | Method of manufacturing solar battery | |
WO2015114922A1 (en) | Photoelectric conversion device and method for manufacturing photoelectric conversion device | |
KR20120062224A (en) | Method for fabricating solar cell | |
KR100416740B1 (en) | Method for fabricating rear locally sintered silicon solar cell | |
CN115692516A (en) | Novel TOPCON battery and manufacturing method thereof | |
CN102683504B (en) | The method of crystal silicon solar energy battery manufacture craft is improved by ion implantation arsenic | |
Seiffe et al. | Multifunctional PECVD layers: dopant source, passivation, and optics | |
KR101223021B1 (en) | Method of preparing solar cell and solar cell | |
CN110800114B (en) | High-efficiency back electrode type solar cell and manufacturing method thereof | |
TW201813115A (en) | Silicon-based photovoltaic device and manufacture thereof | |
Nishimura et al. | Over 21% efficiency of n-type monocrystalline silicon PERT photovoltaic cell with boron emitter | |
CN103904168B (en) | The manufacture method of solar battery cell | |
CN112054085A (en) | Efficient IBC battery structure and preparation method thereof | |
CN104241454B (en) | A kind of method for improving solar cell transformation efficiency |