TWI613892B - 處理額外功率後移方法、裝置及系統 - Google Patents

處理額外功率後移方法、裝置及系統 Download PDF

Info

Publication number
TWI613892B
TWI613892B TW104141380A TW104141380A TWI613892B TW I613892 B TWI613892 B TW I613892B TW 104141380 A TW104141380 A TW 104141380A TW 104141380 A TW104141380 A TW 104141380A TW I613892 B TWI613892 B TW I613892B
Authority
TW
Taiwan
Prior art keywords
wtru
mpr
phr
transmission
cmax
Prior art date
Application number
TW104141380A
Other languages
English (en)
Other versions
TW201620259A (zh
Inventor
約翰 海姆
博寇威斯 珍妮特 史騰
史蒂芬 泰利
凡吉爾 康薩
辛頌祐
Original Assignee
內數位專利控股公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 內數位專利控股公司 filed Critical 內數位專利控股公司
Publication of TW201620259A publication Critical patent/TW201620259A/zh
Application granted granted Critical
Publication of TWI613892B publication Critical patent/TWI613892B/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power

Abstract

所描述的是供無線發射/接收單元(WTRU)管理其傳輸功率的方法、裝置和系統。基於後移變化或後移影響,可以觸發功率餘量報告(PHR)。通過使用額外後移,可以計算WTRU的最大輸出功率,並且可以用支配地位指示符來向網路資源指示所述額外後移。WTRU可以被配置成消除虛擬PHR引發的觸發。此外,WTRU可以被配置成對快速的後移變化做出回應。

Description

處理額外功率後移方法、裝置及系統
本申請主張下列申請的優先權:2011年1月7日提交的美國臨時申請案,其申請號為61/430,903,2011年2月11日提交的美國臨時申請案,其申請號為61/442,095,2011年3月23日提交的美國臨時申請案,其申請號為61/466,899,2011年3月28日提交的美國臨時申請案,其申請號為61/468,432,2011年4月8日提交的美國臨時申請案,其申請號為61/473,635以及2011年8月12日提交的美國臨時申請案,其申請號為61/523,113,其中每份申請的內容在這裏都被引入作為參考。
本申請係關於無線通信,尤其係關於用於處理額外功率回退(backoff)的方法、裝置和系統。
在無線通信系統中使用功率控制來滿足政府管制以及限制無線通信裝置之間的干擾。
所描述的是用於管理與無線發射/接收單元(WTRU)相關聯的功率餘量報告的方法、裝置和系統。一種典型的方法包括:確定功率管理功率減小(P-MPR);確定用於減小WTRU的最大傳輸功率值的回退值;以及依照所確定的回退值來報告功率餘量。
另一種用於管理無線發射/接收單元(WTRU)的傳輸功率的典型方法包括:確定功率管理功率減小(P-MPR);確定用於減小WTRU的最大傳輸功率值的回退值;以及依照所確定的回退值來調節傳輸功率。
一種被配置成報告功率餘量的典型無線發射/接收單元(WTRU)包括:處理器,被配置成:確定功率管理功率減小(P-MPR),以及確定用於減小WTRU的最大傳輸功率值的回退值;以及發射/接收單元,被配置成依照該處理器所確定的回退值來報告功率餘量。
另一種被配置來管理功率餘量報告(PHR)的典型WTRU包括:處理器,被配置成確定在第一時段是否要針對分量載波(CC)發生真實傳輸;確定針對CC發生真實傳輸的先前時段;將關聯於第一時段的CC的P-MPR與關聯於先前時段的CC的P-MPR相比較;以及依照比較結果來觸發PHR。
100‧‧‧通信系統
102、102a、102b、102c、102d‧‧‧無線發射/接收單元(WTRU)
104‧‧‧無線電存取網路(RAN)
106‧‧‧核心網路
108‧‧‧公共交換電話網路(PSTN)
110‧‧‧網際網路
112‧‧‧其他網路
114a、114b‧‧‧基地台
116‧‧‧空中介面
118‧‧‧處理器
120‧‧‧收發器
122‧‧‧發射/接收元件
124‧‧‧揚聲器/麥克風
126‧‧‧數字鍵盤
128‧‧‧顯示器/觸控板
130‧‧‧不可移動記憶體
132‧‧‧可移動記憶體
134‧‧‧電源
136‧‧‧全球定位系統(GPS)晶片組
138‧‧‧週邊裝置
140a、140b、140c‧‧‧e節點B(eNB)
142‧‧‧移動性管理實體(MME)
144‧‧‧服務閘道
146‧‧‧封包資料網路(PDN)閘道
510、520、530、540、550、610、620、630、640、710、720、730、740、750、760、770、780、790、795、810、820、830、840、910、920、930、940‧‧‧時間
1000、1100、1200、1300、1400、1500、1600、1700、1800、1900、2000‧‧‧方法
1010、1020、1030、1110、1120、1210、1220、1230、1240、1310、1320、1410、1420、1430、1440、1510、1520、1610、1620、1710、1720、1810、1820、1910、1920、1930、2010、2020‧‧‧方框
A-MPR‧‧‧額外MPR
CC‧‧‧分量載波
MPR‧‧‧最大功率減小
P-MPR‧‧‧功率管理
P-MPR‧‧‧功率管理功率減小
PCMAX,c‧‧‧最大輸出功率
PH‧‧‧功率餘量
PHR‧‧‧功率餘量報告
S1、X2‧‧‧介面
SAR‧‧‧滿足特定吸收率
TTI‧‧‧傳輸時間間隔
TTT‧‧‧時間-觸發器
更詳細的理解可以從以下結合附加於此的圖式的舉例給出的詳細描述中得到。與詳細描述一樣,圖式中的這些圖形都是示例。就此而論,圖式和詳細描述不被認為是限制性的,並且其他同樣有效的示例也是可行和可能的。此外,圖式中的相同參考數字指示的是相同的要素, 並且其中:第1A圖是可以實施所公開的一個或多個實施方式的範例通信系統的系統圖式;第1B圖是可以在第1A圖所示的通信系統內使用的範例無線發射/接收單元(WTRU)的系統圖式;第1C圖是可以在第1A圖所顯示的通信系統內使用的範例無線電存取網路以及範例核心網路的系統圖式;第2A-2D圖顯示了作為如何以及何時可能發生觸發的範例的典型PHR觸發過程的圖式;第3A-3C圖顯示了作為如何以及何時可能發生觸發的不同範例的其他典型PHR觸發過程的圖式;第4A-4B圖顯示了作為如何以及何時可能發生觸發的另外的範例的另外的典型PHR觸發過程的圖式;第5圖顯示了使用禁止計時器和回顧(lookback)視窗的額外PHR典型觸發過程的圖式;第6圖顯示了使用禁止計時器和回退視窗的其他PHR典型觸發過程的圖式;第7圖顯示了使用時間-觸發計時器的另一個PHR典型觸發過程的圖式;以及第8和9圖顯示了使用禁止計時器的額外PHR典型觸發過程的圖式。
第10圖顯示了典型的PHR方法的流程圖;第11圖顯示了另一個典型的PHR方法的流程圖; 第12圖顯示了另一個典型的PHR方法的流程圖;第13圖顯示了額外的典型PHR方法的流程圖;第14圖顯示了另一個典型的PHR方法的流程圖;第15圖顯示了額外的典型PHR方法的流程圖;第16圖顯示了額外的典型PHR方法的流程圖;第17圖顯示了另一個典型的PHR方法的流程圖;第18圖顯示了另一個典型的PHR方法的流程圖;第19圖顯示了典型的功率傳輸調整方法的流程圖;以及第20圖顯示了另一個典型的功率傳輸調整方法的流程圖。
參考第1A圖,通信系統100可以是為多個無線用戶提供諸如語音、資料、視訊、消息傳遞、廣播等內容的多重存取系統。通信系統100可以通過共用包括無線帶寬在內的系統資源來允許多個無線用戶訪問此類內容,例如,通信系統100可以使用一種或多種通道存取方法,例如分碼多重存取(CDMA)、分時多重存取(TDMA)、分頻多重存取(FDMA)、正交FDMA(OFDMA)和/或單載波FDMA(SC-FDMA)等等。
如第1A圖所示,通信系統100可以包括WTRU 102a、102b、102c、102d,無線電存取網路(RAN)104,核心網路106,公共交換電話網路(PSTN)108,網際網路110以及其他網路112,但是應該瞭解,所公開的實施方式可以使用任意數量的WTRU、基地台、網路和/或網路元件。每一個WTRU 102a、102b、102c、102d可以是被配置成在無線環境中工作和/ 或通信的任何類型的裝置。例如,WTRU 102a、102b、102c、102d可以被配置成發射和/或接收無線信號,並且可以包括用戶設備(UE)、移動站、固定或移動訂戶單元、呼叫器、手機、個人數位助理(PDA)、智慧型手機、膝上型電腦、易網機(netbook)、個人電腦、無線感測器和/或消費類電子裝置等等。
通信系統100還可以包括基地台114a和基地台114b。每一個基地台114a、114b可以是被配置成與WTRU 102a、102b、102c、102d中的至少一個無線對接的任何類型的裝置,以便促成針對一個或多個通信網路的存取,例如核心網路106、網際網路110和/或其他網路112。舉個例子,基地台114a、114b可以是基地收發台(base transceiver station,BTS)、節點B、演進型節點B(eNB)、家用節點B(HNB)、家用eNB(HeNB)、站點控制器(site controller)、存取點(AP)和/或無線路由器等等。雖然每一個基地台114a、114b都被描述成是單個元件,但是應該瞭解,基地台114a、114b可以包括任何數量的互連基地台和/或網路元件。
基地台114a可以是RAN 104的一部分,其中所述RAN 104還可以包括其他基地台和/或網路元件(未顯示),例如一個或多個基地台控制器(BSC)、一個或多個無線電網路控制器(RNC)和/或一個或多個中繼節點等等。基地台114a和/或基地台114b可以被配置成在特定地理區域(例如被稱為胞元(cell,未顯示))內發射和/或接收無線信號。胞元可以進一步分成胞元分區。例如,與基地台114a相關聯的胞元可以分成三個分區。在某些典型的實施方式中,基地台114a和/或114b可以包括三個收發器(每一個收發器用於胞元的每一個分區)。在某些典型的實施方式中,基地台114a 可以使用多輸入多輸出(MIMO)技術,由此可以為胞元中的每個分區使用多個收發器。
基地台114a、114b可以通過空中介面116與一個或多個WTRU 102a、102b、102c、102d進行通信,其中所述空中介面116可以是任何適當的無線通信鏈路(例如射頻(RF)、微波、紅外線(IR)、紫外線(UV)和/或可見光等等)。空中介面116可以是用任何適當的無線電存取技術(RAT)建立的。
通信系統100可以是多重存取系統,並且可以使用一種或多種通道存取方案,例如CDMA、TDMA、FDMA、OFDMA和/或SC-FDMA等等。舉例來說,RAN 104中的基地台114a和WTRU 102a、102b、102c可以實施通用移動電信系統(UMTS)陸地無線電存取(UTRA)之類的無線電技術,其中該技術可以使用寬頻CDMA(WCDMA)來建立空中介面116。WCDMA可以包括如下通信協定:高速封包存取(HSPA)和/或演進型HSPA(HSPA+)。HSPA可以包括高速DL封包存取(HSDPA)和/或高速UL封包存取(HSUPA)等等。
在某些典型實施方式中,基地台114a和WTRU 102a、102b、102c可以實施演進型UTRA(E-UTRA)之類的無線電技術,其中所述技術可以使用長期演進(LTE)和/或先進LTE(LTE-A)來建立空中介面116。
在某些典型實施方式中,基地台114a與WTRU 102a、102b、102c可以實施諸如IEEE 802.16(全球互通微波存取(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000演進資料優化(EV-DO)、臨時標準2000(IS-2000)、臨時標準95(IS-95)、臨時標準856(IS-856)、全球 移動通信系統(GSM)、用於GSM演進的增強資料速率(EDGE)和/或GSM/EDGE RAN(GERAN)等的無線電技術。
舉例來說,基地台114b可以是無線路由器、HNB、HeNB和/或AP,並且可以使用任何適當的RAT來促成局部區域的無線連接,例如營業場所、住宅、交通工具和/或校園等等。在某些典型的實施方式中,基地台114b和WTRU 102c、102d可以實施諸如IEEE 802.11之類的無線電技術來建立無線區域網路(WLAN)。在某些典型的實施方式中,基地台114b和WTRU 102c、102d可以實施諸如IEEE 802.15之類的無線電技術來建立無線個人區域網路(WPAN)。在某些典型的實施方式中,基地台114b和WTRU 102c、102d可以使用基於胞元的RAT(例如WCDMA、CDMA2000、GSM、LTE和/或LTE-A等等)來建立微微胞元(picocell)或毫微微胞元(femtocell)。如第1A圖所示,基地台114b可以直接連接至網際網路110。由此,基地台114b可以或者不用經由核心網路106存取至網際網路110。
RAN 104可以與核心網路106通信,所述核心網路106可以是任何類型的網路,其被配置成向一個或多個WTRU 102a、102b、102c、102d提供語音、資料、應用和/或網際網路協定上的語音(VoIP)服務等等。例如,核心網路106可以提供呼叫控制、記帳服務、基於移動位置的服務、預付費呼叫、網際網路連接、視訊分配等等,和/或執行用戶認證之類的高級安全功能。雖然第1A圖沒有顯示,但是應該想到的是,RAN 104和/或核心網路106可以直接或間接地與其他那些與RAN 104使用相同RAT或不同RAT的RAN進行通信。例如,除了連接到可以使用E-UTRA無線電技術的RAN 104之外,核心網路106還可以與使用GSM無線電技術的另一個RAN(未顯 示)通信。
核心網路106還可以充當供WTRU 102a、102b、102c、102d接入至PSTN 108、網際網路110和/或其他網路112等的閘道。PSTN 108可以包括提供簡易老式電話服務(POTS)的電路交換電話網路。網際網路110可以包括使用公共通信協定的全球性互聯電腦網路裝置系統,其中該協定可以例如是TCP/IP族中的傳輸控制協定(TCP)、用戶資料報協定(UDP)和網際網路協定(IP)。其他網路112可以包括由一個或多個服務供應商所擁有和/或運營的有線或無線通信網路。例如,其他網路112可以包括與一個或多個RAN相連的另一個核心網路,其中所述一個或多個RAN可以與RAN 104使用相同RAT或不同的RAT。
通信系統100中的WTRU 102a、102b、102c、102d的某些或全部可以包括多模能力,例如WTRU 102a、102b、102c、102d可以包括在不同無線鏈路上與不同無線網路通信的多個收發器。舉個例子,第1A圖所示的WTRU 102c可以被配置成與使用基於胞元的無線電技術的基地台114a通信,以及與可以使用IEEE 802無線電技術的基地台114b通信。通信系統100中的WTRU 102a、102b、102c、102d的某些或全部可以使用藍芽技術來與其他裝置進行通信。
第1B圖顯示了可以在第1A圖的通信系統內使用的典型無線發射/接收單元(WTRU)的圖式。
參考第1B圖,WTRU 102可以包括處理器118、收發器120、發射/接收元件(例如天線)122、揚聲器/麥克風124、數字鍵盤126、顯示器/觸控板128、不可移動記憶體130、可移動記憶體132、電源134、全球定 位系統(GPS)晶片組136和/或週邊裝置138等等。應該想到的是,在保持符合公開的各種實施方式的同時,WTRU 102可以包括前述元件的任何子組合。
處理器118可以是通用處理器、專用處理器、常規處理器、數位信號處理器(DSP)、微處理器、與DSP核心關聯的一個或多個微處理器、控制器、微控制器、特殊應用積體電路(ASIC)、現場可編程閘陣列(FPGA)電路、積體電路(IC)和/或狀態機等等。處理器118可以執行信號編碼、資料處理、功率控制、輸入/輸出處理和/或其他任何能使WTRU 102在無線環境中工作的功能。處理器118可以耦合至收發器120,收發器120可以耦合至發射/接收元件122。雖然第1B圖將處理器118和收發器120描述成是獨立組件,但是處理器118和收發器120可以集成在一個電子封裝或晶片中。
發射/接收元件122可以被配置成通過空中介面116來發射或接收去往或來自基地台(例如基地台114a)的信號。例如在某些典型實施方式中,發射/接收元件122可以是被配置成發射和/或接收RF信號的天線。在某些典型實施方式中,舉例來說,發射/接收元件122可以是被配置成發射和/或接收IR、UV或可見光信號的發射器/檢測器。在某些典型實施方式中,發射/接收元件122可以被配置成發射和接收RF和光信號。所述發射/接收元件122可以被配置成發射和/或接收無線信號的任何組合。
雖然將發射/接收元件122描述成了單個元件,但是WTRU 102可以包括任何數量的發射/接收元件122。例如,WTRU 102可以使用MIMO技術。在某些典型實施方式中,WTRU 102可以包括兩個或更多用於 通過空中介面116發射和接收無線信號的發射/接收元件122(例如多個天線)。
收發器120可以被配置成調變發射/接收元件122將要傳送的信號,以及解調發射/接收元件122所接收的信號。例如,WTRU 102可以具有多模能力,由此收發器120可以包括多個收發器,用於使得WTRU 102能夠經由UTRA和IEEE 802.11之類的多種RAT來進行通信。
WTRU 102的處理器118可以與揚聲器/麥克風124、數字鍵盤126和/或顯示器/觸控板128(例如液晶顯示器(LCD)顯示單元和/或有機發光二極體(OLED)顯示單元)等等耦合,並且可以接收來自這些裝置的用戶輸入資料。處理器118還可以將用戶資料輸出至揚聲器/麥克風124、數字鍵盤126和/或顯示器/觸控板128等等。處理器118可以從任何適當的記憶體(例如不可移動記憶體130和/或可移動記憶體132)中存取資訊,以及將資料存入這些記憶體。所述不可移動記憶體130可以包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、硬碟和/或其他任何類型的記憶儲存裝置等等。可移動記憶體132可以包括用戶身份模組(SIM)卡、記憶碟和/或安全數位(SD)記憶卡等等。在某些典型的實施方式中,記憶體可以是非臨時記憶體。
在某些典型的實施方式中,處理器118可以從那些並非實際位於WTRU 102上的記憶體存取資訊及儲存資料,例如,所述記憶體可以位於伺服器或家用電腦上(未顯示)。
處理器118可以接收來自電源134的電力,並且可以被配置成分配和/或控制到WTRU 102中的其他組件的電力。電源134可以是供電給 WTRU 102的任何適當裝置。例如,電源134可以包括一個或多個乾電池組(如鎳鎘(Ni-Cd)、鎳鋅(Ni-Zn)、鎳氫(NiMH)和/或鋰離子(Li-ion)等等)、太陽能電池和/或燃料電池等等。
處理器118可以與GPS晶片組136耦合,該晶片組136可以被配置成提供關於WTRU 102的當前位置的位置資訊(例如經度和緯度)。除了(或取代)來自GPS晶片組136的資訊,WTRU 102可以通過空中介面116接收來自基地台(例如基地台114a和/或114b)的位置資訊,和/或根據從兩個或多個附近基地台接收的信號的計時來確定其位置。在保持符合公開的各種實施方式的同時,WTRU 102可以借助任何適當的定位方法來獲取位置資訊。
處理器118可以耦合到其他週邊裝置138,這其中可以包括提供額外特徵、功能和/或有線或無線連接的一個或多個軟體和/或硬體模組。例如,週邊裝置138可以包括加速度計、電子指南針、衛星收發器、數位相機(用於照片或視訊)、通用串列匯流排(USB)埠、振動裝置、電視收發器、免持耳機、藍芽模組、調頻(FM)無線電單元、數位音樂播放器、媒體播放器、視訊遊戲機模組和/或網際網路流覽器等等。
第1C圖顯示了可以在第1A圖的通信系統內使用的典型的無線電存取網路和典型的核心網路的圖示。RAN 104可以使用E-UTRA無線電技術通過空中介面116來與WTRU 102a、102b和102c進行通信,但是任何數量的WTRU都是可能的。RAN 104還可以與核心網路106通信。RAN 104可以包括eNB 140a、140b、140c,但在保持與各種實施方式相符的同時,RAN 104可以包括任何數量的eNB。每一個eNB 140a、140b、140c都可以包括一 個或多個收發器,用於通過空中介面116來與WTRU 102a、102b、102c通信。在某些典型實施方式中,eNB 140a、140b、140c可以實施MIMO技術。例如,eNB 140a可以使用多個天線來向WTRU 102a傳送無線信號,和/或接收來自WTRU 102a的無線信號。
每一個eNB 140a、140b、140c都可以與特定胞元(未顯示)關聯,並且可以被配置成處理無線電資源管理決策、切換決定和/或UL和/或DL中的用戶排程等等。如第1C圖所示,eNB 140a、140b、140c可以通過X2介面來彼此進行通信。
第1C圖所示的核心網路106可以包括移動性管理實體(MME)142、服務閘道144和/或封包資料網路(PDN)閘道146等等。雖然每一個前述元件都被描述成是核心網路106的一部分,但是應該想到,這其中的任何元件都可以由核心網路營運商之外的實體所擁有和/或操作。
MME 142可以經由S1介面與RAN 104中的每一個eNB 140a、140b、140c相連,並且可以充當控制節點。例如,MME 142可以負責認證WTRU 102a、102b、102c的用戶,承載啟動(bearer activation)/去啟動和/或在WTRU 102a、102b、102c的初始附著過程中選擇特定服務閘道等等。MME 142還可以提供控制平面功能,用於在RAN 104與使用如GSM或WCDMA之類的其他無線電技術的其他RAN(未顯示)之間進行切換。
服務閘道144可以經由S1介面與RAN 104中的每一個e節點B 140a、140b、140c相連。該服務閘道144通常可以按規定路線發送和轉發去往/來自WTRU 102a、102b、102c的用戶資料封包。該服務閘道144可以執行其他功能,例如在eNB間的切換過程中錨定用戶面,在DL資料可供WTRU 102a、102b、102c使用時觸發尋呼,和/或管理和/或儲存WTRU 102a、102b、102c的上下文等等。
服務閘道144還可以連接到PDN閘道146,所述PDN閘道146可以為WTRU 102a、102b、102c提供例如網際網路110的封包交換網路的存取,以便促成WTRU 102a、102b、102c與IP致能裝置之間的通信。
核心網路106可以促成與其他網路的通信。例如,核心網路106可以為WTRU 102a、102b、102c提供對PSTN 108之類的電路交換網路的存取,以便促成WTRU 102a、102b、102c與傳統陸地線路通信裝置之間的通信。舉例來說,核心網路106可以包括IP閘道(例如IP多媒體子系統(IMS)伺服器)或與之通信,其中該IP閘道可以充當核心網路106與PSTN 108之間的介面。此外,核心網路106可以為WTRU 102a、102b、102c提供對其他網路112的存取,該網路112可以包括其他服務供應商所擁有和/或營運的其他有線或無線網路。
在無線通信、例如根據第三代合作夥伴計畫(3GPP)長期演進(LTE)版本8(R8)和版本9(R9)的無線通信中,在上行鏈路(UL)和/或下行鏈路(DL)中的每一個當中都可以使用單載波。在UL傳輸中,無線發射/接收單元(WTRU)可以基於多個因素來執行功率控制,這些因素可以包括:(1)在DL載波上測得的路徑損耗;(2)發射功率控制(TPC)命令(例如來自e節點B(eNB));(3)WTRU可以傳送的資源塊的數量;和/或(4)其他靜態或半靜態參數等等。
靜態或半靜態參數可以由eNB或其他網路資源提供。例如,這些參數和/或功率控制公式和/或功率控制程序可以是基於LTE或先進長期 演進(LTE-A)標準建立的,或可以是在這些標準中找到的。功率控制程序有可能導致產生這樣一種可能性,那就是計算得到的WTRU的發射功率有可能超出其最大許可的發射功率,並且有可能規定WTRU縮減發射功率,以免超出最大許可發射功率。
最大許可發射功率(或所配置的最大輸出功率)PCMAX可以是WTRU的功率等級的函數,它可以是eNB 140用信號通告的功率限度(limit)以及WTRU可被允許做出的功率減小,以免超出波段發射需求或是許可的值或水平,其中舉例來說,所述功率減小可以基於WTRU將要傳送的信號。例如,對於LTE/LTE-A傳輸來說,WTRU可以基於最大功率減小(MPR)和/或額外MPR(A-MPR)和/或許可的公差△Tc來減小其最大輸出功率。MPR、A-MPR以及△Tc值可以在LTE/LTE-A標準中找到。可供WTRU使用的值可以基於某些傳輸特性中的一個或多個特性與來自eNB 140的信號的組合。WTRU可以認為這些值是最大許可值,就此而論,WTRU可以使用MPR、A-MPR、△Tc值和/或其他較小的值。
例如,WTRU 102可以向eNB 140提供功率餘量(PH)報告,以便幫助eNB 140做出排程選擇。舉個例子,WTRU可以週期性地和/或基於觸發事件或狀況等等來提供PH報告。該功率餘量報告可以是基於某些觸發事件而提供的,例如路徑損耗變化(例如大的路徑損耗變化)。功率餘量可以是計算得到的WTRU的發射功率與為其配置的最大輸出功率之間的差值,其中所述最大輸出功率可以包括WTRU所採取的實際功率減小。實際功率減小可以小於或等於組合的MPR、A-MPR和△Tc值。可以設想的是,通過擴展功率控制和功率餘量功能,可以在諸如LTE-A標準的版本10中支援 載波聚合。
例如,根據LTE版本10(R10),支持載波聚合的WTRU可以被配置有一個或多個服務胞元(或分量載波(CC)),對於每一個CC,WTRU可以被配置用於UL通信。可以設想的是,CC與服務胞元是可以互換使用的,並且仍舊是與這裏包含的實施方式相符合的。
WTRU可以在每一個分量載波(或CC)c上為每一個UL通道執行功率控制(PC)。每一個UL載波(或CC)都被配置了最大輸出功率PCMAX,c。諸如主要CC的UL CC有可能具有一個以上的PCMAX,c。WTRU可以基於子訊框來執行PC,並且可以為其將要在子訊框中執行UL傳輸的通道確定(例如僅僅確定)功率。
WTRU可以報告每一個載波(或CC)的功率餘量(PH),並且所述PH可以是PCMAX,c與在縮放(scale)之前計算的CC的功率之間的差值。WTRU可以報告例如主要CC的CC的一個以上的PH值。例如,WTRU可以報告CC的PH,而不用考慮在報告PH的時候其是否會在該CC的任何通道上進行傳送或將進行傳送。當PH報告(PHR)針對的是沒有實際傳輸的CC時,該報告可被稱為虛擬PHR。舉例來說,虛擬PH是用於在傳送或將傳送PHR的子訊框中沒有實際UL授權的CC的PH,它可以使用參考授權來確定。
PCMAX,c可以與某些或所有每個分量載波(CC)的PHR一起被報告。PCMAX,c可以是用於計算所報告的每一個CC的PH的值。在一些典型的實施方式中,可以針對被報告了虛擬PH的一個或多個CC不報告PCMAX,c
舉例來說,可以考慮的是,對PCMAX,c實施額外功率後移,以確保滿足特定吸收率(SAR)門檻值或需求,此外還可以滿足與同時工作在LTE及其他空中介面上的WTRU 102相關的傳輸門檻值或需求,該其他空中介面例如是1xRTT和/或1xEV-DO等等。
對於PCMAX,c來說,可以考慮對WTRU 102應用的與功率管理相關(或者以之為基礎)的額外功率後移加以考慮。在某些典型的實施方式中闡述了用於額外功率後移的過程,並且可以是基於額外功率後移來定義PCMAX,c。可以考慮指定額外功率後移的規定(provisioning)或需求。
基於配置或重新配置,基於路徑損耗變化(例如顯著的路徑損耗變化),和/或基於輔助胞元啟動等等,用於PH報告的觸發可以是週期性的。諸如路徑損耗變化觸發的某些觸發有可能是在(例如僅僅是在)先前PHR的禁止視窗之外發生的,例如在用於PHR的禁止計時器終止的時候發生。
在這裏考慮的是實施額外功率後移(例如因為SAR、1X(例如1xRTT或1xEV-DO)和/或其他技術等等)。通過應用以及在稍後某個時間移除額外後移,可以導致PCMAX,c的值時常改變。可以考慮包含新的PHR觸發,其中該觸發是以PCMAX,c的變化為基礎的,以便向eNB 140告知額外後移何時改變。
在某些典型實施方式中,所實施的可以是用於處理因為SAR、包括1X(例如1xRTT或1xEV-DO)傳輸在內的多RAT傳輸和/或MPR、A-MPR以及△Tc未解決的(或未影響的)其他原因而導致的後移的典型方 法和典型過程。該後移在這裏有時可被稱為非MPR後移、基於功率管理的後移、功率管理後移、由於功率管理所導致的功率後移、功率管理功率減小(P-MPR或PMPR)、P-MPR後移、額外功率後移或額外後移。
對波段間載波聚合的情況而言,用於每個波段(例如每個頻帶)的MPR、A-MPR、△Tc和/或額外功率後移中的一者或多者可以是不同的,由此可能導致減小或限制每一個波段的發射功率(例如,每一個頻帶的限制或減小有可能是不同的)。設想的是具有用於在WTRU 102工作於一個以上的頻帶的時候處理每個頻帶的最大功率限度的典型方法和典型裝置。
上行鏈路控制資訊(UCI)可以包括應答(ACK)/否定應答(NACK)、通道狀態資訊(CSI)和/或排程請求(SR)等等,並且該UCI可以由WTRU 102傳送到eNB 140。在給定的子訊框中,在沒有配置同時的物理上行鏈路控制通道(PUCCH)和物理上行鏈路共用通道(PUSCH)的情況下(這可以意味著或者表明WTRU可能無法同時在PUCCH和PUSCH傳送),如果在該子訊框中有要傳送的PUSCH,那麼可以在PUSCH上傳送UCI(例如任意UCI)。在某些典型的實施方式中,舉例來說,當在子訊框中沒有要傳送的PUSCH時,可以在PUCCH上傳送UCI。在某些典型的實施方式中,在配置了同時的PUCCH和PUSCH的時候(這可以意味著或者表明WTRU可以同時在PUCCH和PUSCH上傳送),無論在該子訊框中是否有要傳送的PUSCH,在PUCCH上都可以傳送某個UCI(例如ACK/NACK)。在給定的子訊框中在多個PUSCH上可以不攜帶UCI。在沒有UCI的情況下,WTRU 102可以同等地縮放PUSCH(例如所有PUSCH)的功率。
可以在PUCCH和PUSCH上同時傳送UCI。
對單波段和/或多波段操作而言,當在PUCCH和PUSCH上同時傳送UCI時,通過實施典型的方法和典型的過程,可以避免WTRU 102超出最大發射功率。
例如,某些典型的方法和某些典型的裝置可以允許:(1)在PCMAX,c和/或PCMAX限度中包含額外後移;(2)在確定PCMAX,c的過程中包含額外後移;(3)基於發生變化的額外後移來觸發PHR;(4)消除有可能是因為虛擬PHR而引發的PHR觸發,其中所述PHR觸發是不必要或沒用的觸發;(5)確定何時將額外後移應用於PCMAX,c,以便在功率控制和PHR中加以使用;(6)處理快速變化的額外後移;(7)在存在額外後移的時候處理虛擬PHR;(8)滿足每一個WTRU的最大功率以及每一個CC的最大功率,(9)對單波段操作而言,在UCI同時處於PUCCH和PUSCH上的情況下,防止WTRU 102超出最大發射功率;(10)在WTRU 102工作於一個以上的波段的情況下,例如在波段間載波聚合中,處理最大功率;和/或(11)對多波段操作而言,在UCI同時處於PUCCH和PUSCH上的情況下,避免WTRU 102超出最大發射功率,等等。
本領域技術人員將會理解,以上示例既可以單獨應用,也可以組合應用。
可以設想的是,對於所有CC或是處於例如給定波段之類的群組中的所有CC來說,在這裏被描述成是CC專用的任何功率後移值都可以是相同的,例如MPR、A-MPR、△TC、功率管理後移等等。對於給定的一個或多個相同的值來說,代表CC的下標(例如,在這裏使用了c)是可以丟 棄或是用另一個下標取代的,例如代表群組或波段專用值的下標。
可以設想的是,這裏描述的計算(例如所有計算)是可以在子訊框i之類的特定子訊框中執行的。計算等式中的每個值可以是應用於特定子訊框i的值,或者可以是應用於所有子訊框或特定子訊框集合的值。還可以相應地修改標記,並且所述標記仍舊符合這裏描述的典型實施方式。
可以設想的是,術語P CMAX,c 可以用於代表為服務胞元(或CC)c配置的最大輸出功率。出於功率餘量計算的目的,LTE規範定義了這個值的兩個版本,其中所使用的版本以及相關聯的功率餘量計算取決於在CC上存在(也就是將被傳送的)哪些通道。在這些規範中,兩個版本被稱為P CMAX,c
Figure TWI613892BD00001
。舉例來說,在與有可能包含計算、觸發等等的功率餘量相關聯的某些典型的實施方式中,P CMAX,c 可以用於代表在一個或多個這些當前定義的版本或是未來可能定義的任意其他版本中為CC c配置的最大輸出功率。更進一步,Pcmax,c、PCMAX,c、PCMAX,c、P CMAX,c 以及大寫字母和小寫字母、使用或未使用用於c的下標標記以及字體的其他組合可以用於代表相同的物理量。
可以設想的是,術語P CMAX,c 可以用於代表所配置的WTRU的最大輸出功率。Pcmax、PCMAXP CMAX,c 及其他大寫字母和小寫字母及字體的組合可以用於代表相同的物理量。
在某些典型的實施方式中,額外後移可以被包括在下面所述的PCMAX限度和/或在後面描述的PCMAX,c限度中。
在典型的LTE示例中,WTRU 102可被允許設定其被配置的最大輸出功率PCMAX。所配置的最大輸出功率PCMAX可被設定在以下限制 範圍以內:
Figure TWI613892BD00002
其中PCMAX_L=MIN{PEMAX-△TC,PPowerClass-MPR-A-MPR-△TC}
PCMAX_H=MIN{PEMAX,PPowerClass}
舉例來說,PEMAX可以是由eNB 140經由例如RRC發信號的較高層發信號通告給WTRU的功率限制值。PEMAX可以是由資訊元素(IE)P-Max給出的值。
PPowerClass可以是在未考慮指定公差的情況下的最大WTRU功率。
MPR和A-MPR可以是所指定的最大許可功率減小值。
舉例來說,△TC可以是在將UL傳輸頻寬限制在UL傳輸波段邊緣附近的時候WTRU可以使用的公差值。例如,在將UL傳輸頻寬限制在4MHz的傳輸波段邊緣以內的時候,△TC可以是例如1.5dB的值,其中所述限制可以用FUL_low和FUL_low+4MHz或FUL_high-4MHz和FUL_high表示。否則,△TC可以是0dB。
用於包含非MPR效果(例如與基於功率管理的後移或額外後移相關聯)的典型修改可以包括以下的典型示例。用於處理非MPR功率後移的典型示例1可以是:所述額外後移是一個額外項。例如,所允許的下限可以是:PCMAX_L=MIN{PEMAX-△TC,PPowerCLass-MPR-A-MPR-△TC-nonMPR}. 等式(2)
用於處理非MPR功率後移的典型示例2可以是:額外後移與 MPR減小(其可以包括MPR和A-MPR)是並行的。例如,所允許的下限可以是:PCMAX_L=MIN{PEMAX-△TC,PPowerClass-MAX{MPR+A-MPR,nonMPR}-△TC}; 等式(3)
其中“nonMPR(非MPR)”可以是滿足特定吸收率(SAR)的需求或RF暴露限度,限制與其他技術(例如1x EV-DO)的干擾,和/或例如處理與MPR、A-MPR以及△Tc無關的其他效果所需要或使用的後移。
如果同時存在多個“非MPR”效果,那麼這些效果可以是加成性的(與MPR效果和/或彼此)和/或並行的(與MPR效果和/或彼此)。關於加成性的N個效果的示例可以是:非MPR=非MPR-1+非MPR-2+…+非MPR-N,並且舉例來說,這種非MPR或其相等值(例如使用單獨的非MPR-i值)是可以在這裏的一個或多個等式中使用的。
關於並行的N個效果的示例可以是:非MPR=MAX(非MPR-1,非MPR-2,…非MPR-N),並且舉例來說,這種非MPR或其相等值(例如使用單獨的非MPR-i值)是可以在這裏的一個或多個等式中使用的。有可能一個或多個效果可以是加成性的,且一個或多個效果可以是並行的。在這種情況下,這些等式是可以組合的。例如:PCMAX_L=MIN{PEMAX-△TC,PPowerClass-MAX{MPR+A-MPR+nonMPRadditive,nonMPRparallel}-△TC}. 等式(4)
等式4還可以被認為是一個通用等式,其中nonMPRadditive可以是單獨的效果、多個效果的總和、多個效果中的最大效果或是多個效果的別的組合。NonMPRadditive還可以是0、不存在或是其相等值。NonMPRparallel可以是單獨的效果、多個效果的總和、多個效果中的最大效 果或是多個效果的另一組合。NonMPRparallel也可以是0、不存在或是其相等值。
在某些典型的實施方式中,在這裏描述的確定PCMAX,c的過程中可以包括額外後移。
對於傳送信號(例如LTE信號)的情況而言,WTRU 102可被允許在指定限度內設定其最大輸出功率PCMAX和/或每一個CC的最大輸出功率PCMAX,c(例如在支持載波聚合的時候)。作為所傳送的信號以及配置的函數,舉例來說,WTRU 102可被允許減小其每一個CC的最大輸出功率,以免超出波段外發射限度。WTRU 102可以基於其實施來使用許可的功率減小(例如全部的許可功率減小)或是更小的值。在每一個子訊框i中,對於給定CC,WTRU 102可以基於配置(例如LTE配置)和例如MPRactual,c(i)的授權確定其功率減小(例如所需要的功率減小),並且可以確定子訊框中的最大許可輸出功率。關於某種實施如何可以確定每一個CC的最大輸出功率的典型示例提供在以下提出的等式5中。
PCMAX,c(i)=MIN{PEMAX,c,PPowerClass-MPRactual,c(i)-△TC,c}; 等式(5)
其中PEMAX,c可以是較高層發信號的最大功率限度(用於CC),例如由eNB 140發信號給WTRU。
PPowerClass可以是該WTRU等級的最大WTRU輸出功率。
MPRactual,c可以是WTRU因為MPR和/或A-MPR效果而採取的實際功率減小(用於CC)。
△TC,c可以是作為傳輸頻寬(BW)的函數的固定功率偏移(用於CC)。
在以下的典型示例中描述了如何可以在WTRU確定PCMAX,c的過程中包含用於SAR、其他無線電技術和/或其他非MPR效果的額外功率後移。
在某些典型的實施方式中,非MPR後移可以是一個額外項。例如:PCMAX,c(i)=MIN{PEMAX,c,PPowerClass-MPRactual,c(i)-Pbackoff,c(i)-△TC,c}; 等式(6)
其中Pbackoff,c(i)可以是用於子訊框i中的CC c的額外後移。
如果因為多個效果而存在多個後移,那麼它們可以是加成性的。例如,Pbackoff,c(i)可以是個別的後移(或額外後移)的合成(composite)(例如代數合成和/或總和)。額外後移可以額外地或擇一地被個別地包含在等式中,以實現加成性效果。
在某些典型的實施方式中,非MPR後移可以不是MPR減小(例如其包括MPR和/或A-MPR減小)的補充,而是可以與MPR減小並行,由此,實際上可以使用2個或更多減小中的較大者(或最大者)。例如:PCMAX,c(i)=MIN{PEMAX,c,PPowerClass-MAX(MPRactual,c(i),Pbackoff,c(i))-△TC,c}; 等式(7)
其中Pbackoff,c(i)可以是用於子訊框i中的CC c的額外後移。
如果因為多個效果而存在多個後移,那麼它們可以是並行的(例如全都並行)。舉個例子,Pbackoff,c(i)可以是單個後移(或額外後移)中的最大後移。額外後移可以額外地或擇一地被個別地包含在等式7中,由此該結果可以是包括MPR後移(例如其可以包括MPR和/或A-MPR後移)的後移(例如所有後移)中的最大後移。
可以觀察到的是,如果使用的是與等式7相關的示例,並且如果額外後移小於MPR後移,那麼PCMAX,c不會受到額外後移變化的影響。
在某些典型的實施方式中,一個或多個非MPR後移(與MPR後移和/或彼此)可以是加成性的,並且一個或多個非MPR後移(與MPR後移和/或彼此)可以是並行的。在這種情況下,不同的典型示例是可以組合的。例如:PCMAX,c(i)=MIN{PEMAX,c,PPowerClass-MAX(MPRactual,c(i)-PbackoffAdditive,c(i),backoffParallel,c(i))-△TC,c} 等式(8)
等式8可被認為是一個通用等式,其中PbackoffAdditive,c(i)可以是單獨的效果、多個效果的總和、多個效果中的最大效果或是多個效果的另一組合。PbackoffAdditive,c(i)還可以是0、不存在或是其相等值。PbackoffParallel,c(i)可以是單個效果、多個效果的總和、多個效果中的最大效果或是多個效果的另一組合。PbackoffParallel,c(i)也可以是0、不存在或是其相等值。
在某些典型的實施方式中,可以實施由於額外後移發生變化而觸發PHR。
在一些情況中,例如在額外後移與MPR後移相加的時候,與以上的第一典型示例中一樣,通過向eNB 140提供PCMAX,c(例如在額外後移充分改變的時候在PHR中提供),可以提供有用的資訊。
在其他情況中,例如在額外後移與MPR後移是並行的(與以上的第二典型示例中一樣)並且MPR後移處於支配地位(dominate)的時 候,在額外後移改變時向eNB 140提供PCMAX,c可能沒用。如果額外後移處於支配地位,那麼較為有用的是eNB理解(例如被告知)何時存在足夠大的變化。
無論如何包含額外的非MPR後移,有用的是eNB排程器知道額外後移影響PCMAX,c的方式何時發生很大變化。以下的範例實施方式可以用於向eNB 140告知額外後移影響PCMAX,c的方式何時發生顯著變化。
典型示例1可以包括在額外後移對PCMAX,c的影響的變化超出某個門檻值時的PHR觸發,其中舉例來說,所述變化是通過計算具有額外的非MPR後移的PCMAX,c和沒有額外後移的PCMAX,c得到的,然後在兩個變化之間的變化量(△)超出某個門檻值時觸發PHR。該示例可以顯示如下:時間0(最後一次PHR報告):計算:具有非MPR後移的PCMAX,c-沒有非MPR後移的PCMAX,c=K0 等式(9)
時間i(從最後一個PHR時起的某個子訊框i):計算:具有非MPR後移的PCMAX,c-沒有非MPR後移的PCMAX,c=Ki 等式(10)
如果|Ki-K0|>門檻值,則觸發PHR。
對於非MPR後移大於或等於零,則K0、Ki
Figure TWI613892BD00003
0
在這個示例中,用於兩個值之間的正變化量和負變化量的門 檻值可以是相同的。
在另一個示例中,可以在具有額外後移和沒有額外後移的情況下計算PCMAX,c,並且當這兩個變化之間的正變化量或負變化量超出某個門檻值時,可以觸發PHR,其中正門檻值和負門檻值是不同的。該示例可以顯示如下:執行以上的等式9和10中的計算。
然後:如果Ki-K0>正門檻值,則觸發PHR。
如果Ki-K0<負門檻值,則觸發PHR。
對於正變化量或負增量,可以只有一個門檻值以及相應的PHR觸發(例如只有正門檻值或負門檻值,而不是兩者皆有)。
該觸發可以基於CC,由此可以在超出了用於任何CC的門檻值的情況下觸發PHR。該觸發可以基於WTRU。例如,具有和不具有非MPR後移的PCMAX可以用於確定是否觸發PHR,而不是使用CC專用的PCMAX,c標準(criteria)來確定。舉個例子,如果CC(例如所有CC)具有相同的MPR後移和非MPR後移,那麼使用PCMAX可以導致產生相同的結果。
在以下示例中,一發送了PHR,則WTRU可以計算和/或可以儲存以下:PMPRimpact,c(0)=PCMAX,c-PCMAX,c_noPMPR; 等式(11)
其中PCMAX,c_noPMPR=在PMPR=0時計算的PCMAX,c
對於每一個傳輸時間間隔(TTI)(或是僅僅對於與UL授權 關聯或是具有UL授權的TTI),WTRU可以計算下式:PMPRimpact,c(1)=PCMAX,c-PCMAX,c_noPMPR 等式(12)
如果| PMPRimpact,c(1)-PMPRimpact,c(0)|>門檻值,則觸發PHR。如果跨越了用於任一CC的門檻值,則可以觸發PHR。在某些典型的實施方式中,該影響(impact)可以是作為一個整體而為WTRU 102計算的。在這種情況下,CC的下標c可被移除,並且該觸發可以基於WTRU 102專用的對門檻值被跨越的確定(例如使用PCMAX而不是PCMAX,c)。
在另一個示例中,MPR後移與非MPR後移並行的情況可以顯示在提出的等式13中:PCMAX,c(i)=MIN{PEMAX,c,PPowerClass-MAX(MPRactual,c(i),Pbackoff,c(i))-△TC,c}. 等式(13)
在這個示例中,在任意給定的子訊框i中,MPR後移或非MPR後移中的一個的效果有可能處於支配地位,其中MPR後移可以包括MPR和/或A-MPR。M可以代表代表MPR後移,例如在時間j可以使用Mj。P可以代表非MPR後移,例如在時間j可以使用Pj。M和P可以是CC專用的,或者可以作為一個整體應用於WTRU 102。時間=0可以代表發送最後一個PHR的時間。時間=1可以代表從發送最後一個PHR時開始的某個時間,例如一定數量的子訊框。在M值和P值之間至少存在四種可能的關係。
第2A-2D圖顯示了供WTRU 102觸發PHR的典型觸發狀況的圖示。第2A圖與如下所述的情況1相關。第2B-2D圖則與如下所述的情況2相關。第2A-2D圖顯示的是MPR後移(M)與非MPR後移(P)之間的範例關係及其在M初始處於支配地位時對PHR觸發所產生的影響。
第3A-3C圖顯示了供WTRU 102觸發PHR的其他典型觸發狀況的圖示。並且第3A-3C圖與如下所述的情況3相關聯。第4A和4B圖顯示了供WTRU 102觸發PHR的另一個典型觸發狀況的圖示。第4A和4B圖與如下所述的情況4相關聯。第3A-3C以及4A-4B圖顯示的是MPR後移(M)與非MPR後移(P)之間的範例關係及其在P初始處於支配地位時對PHR觸發所產生的影響。
在本示例中為每一個情況指示了WTRU 102是否以及何時可以觸發PHR。
情況1:M0>P0,M1>P1;在這種情況下,M在時間0和時間1都處於支配地位,並且觸發是沒用或不需要的;在這種情況下,WTRU不會觸發PHR。
情況2:M0>P0,M1<P1;在這種情況下,M在時間0處於支配地位,並且P在時間1處於支配地位;如果P1-M1>門檻值,那麼WTRU可以觸發PHR。
情況3:M0<P0,M1>P1;在這種情況下,P在時間0處於支配地位,並且M在時間1處於支配地位;如果P0-M0>門檻值,那麼WTRU可以觸發PHR。
情況4:M0<P0,M1<P1;在這種情況下,P在時間0和時間1都處於支配地位;如果|(P1-M1)-(P0-M0)|>門檻值,則WTRU可以觸發PHR。
每一個情況的門檻值可以是相同的,也可以是不同的。第2和3圖提供的是在這些情況中如何以及何時可以發生觸發的示例。在並行的MPR後移和非MPR後移的情況中,本節之前的示例將會達到相同的效果, 但是使用的是不同的公式。
在第2A-2D、3A-3C以及4A-4B圖中,該觸發過程可以與用於觸發PHR的其他過程相比較,例如基於變化量PCMAX,c的觸發和基於變化量P的觸發。基於情況1-4的典型過程可以避免不必要或無用的觸發,並且提供與基於變化量PCMAX,c和/或變化量P的其他過程相關的必要或有用的觸發。
現在參考第2A圖,對於典型的觸發狀況200A而言,在第一時間T0,M0與P0相比有可能處於支配地位,並且在第二時間T1,M1相對於M0可以是增大的,P1相對於P0可以是增大的。在時間T1,M1與P1相比可以處於支配地位。PCMAX,c和P的變化有可能很大,但是非MPR(例如與SAR相關)後移有可能對PCMAX,c沒有效果。基於MPR後移變化的PCMAX,c變化有可能是eNB 140所預期的或者接近於eNB 140的預期。由於非MPR後移變化,PHR觸發可能是沒用的和/或不必需的。
參考第2B圖,對於典型的觸發狀況200B來說,在第一時間T0,M0與P0相比有可能處於支配地位,並且在第二時間T1,M1相對於M0可以是減小的,P1相對於P0可以是增大的。在時間T1,P1與M1相比有可能處於支配地位。PCMAX,c c的變化有可能很小,P的變化有可能很大。非MPR(例如與SAR相關)後移有可能對PCMAX,c只有很小的效果。基於MPR後移變化的PCMAX,c變化有可能是eNB 140所預期的或者接近於eNB 140的預期。由於非MPR後移變化,PHR觸發可能是沒用的和/或不必需的。
參考第2C圖,對於典型的觸發狀況200C來說,在第一時間T0,M0與P0相比有可能處於支配地位,並且在第二時間T1,M1相對於M0 可以是減小的,並且P1相對於P0可以保持大致相同的等級。在時間T1,P1與M1相比有可能處於支配地位。PCMAX,c的變化有可能很大,P的變化有可能很小。非MPR(例如與SAR相關)後移有可能對PCMAX,c有效果。由於非MPR後移對PCMAX,c有效果,因此,PCMAX,c的值或其變化可能並非eNB 140所預期的或者接近於eNB 140的預期。即使非MPR後移保持大致相同,PHR觸發也有可能是有用的和/或必需的。
參考第2D圖,對於典型的觸發狀況200D來說,在第一時間T0,M0與P0相比有可能處於支配地位,並且在第二時間T1,M1相對於M0可以是減小的,並且P1相對於P0可以是增大的。在時間T1,P1與M1相比有可能處於支配地位。PCMAX,c的變化有可能很小,P的變化有可能很大。現在,非MPR(例如與SAR相關)後移有可能對PCMAX,c的效果很大。由於非MPR後移現在對PCMAX,c有效果,因此,PCMAX,c的值或其變化可能並非eNB 140所預期的或者接近於eNB 140的預期。即使PCMAX,c的變化很小,但由於非MPR後移變化,PHR觸發也可能是有用的和/或必需的。
現在參考第3A圖,對於典型的觸發狀況300A來說,在第一時間T0,P0與M0相比有可能可以處於支配地位,並且在第二時間T1,M1相對於M0可以是增大的,P1相對於P0可以是減小的。在時間T1,M1與P1相比有可能處於支配地位。PCMAX,c和P的變化有可能很小,但是非MPR(例如與SAR相關)後移有可能過去對PCMAX,c有很大的效果,但是現在其對PCMAX,c沒有效果。由於非MPR後移對PCMAX,c過去有效果,但是現在不再對PCMAX,c有效果,因此,PCMAX,c的值可能不是eNB 140所預期的或者接近於eNB 140的預期。即使PCMAX,c和P沒有顯著改變,PHR觸 發也可能是有用的和/或必需的。
參考第3B圖,對於典型的觸發狀況300B來說,在第一時間T0,P0與M0相比有可能處於支配地位,並且在第二時間T1,M1相對於M0可以保持大致相同,P1相對於P0可以是減小的。在時間T1,M1與P1相比有可能處於支配地位。PCMAX,c的變化和P的變化有可能很大。非MPR(例如與SAR相關)後移過去有可能有很大效果,但是現在其對PCMAX,c沒有效果。PCMAX,c的值或其變化可能並非eNB 140所預期的或者接近於eNB 140的預期。由於非MPR後移變化,PHR觸發可能是有用的和/或必需的。
參考第3C圖,對於典型的觸發狀況300C來說,在第一時間T0,P0與M0相比有可能處於支配地位,並且在第二時間T1,M1相對於M0可以是增大的,P1相對於P0可以是減小的。在時間T1,M1與P1相比有可能處於支配地位。PCMAX,c的變化有可能很小,P的變化有可能很大。非MPR(例如與SAR相關)後移在時間T0對PCMAX,c有效果但在時間T1對PCMAX,c沒有效果。PCMAX,c的值可能不是eNB 140所預期的或者接近於eNB 140的預期。即使PCMAX,c沒有顯著變化,但由於非MPR後移變化,PHR觸發也可能是有用的和/或必需的。
參考第4A圖,對於典型的觸發狀況400A來說,在第一時間T0,P0與M0相比有可能處於支配地位,並且在第二時間T1,M1相對於M0可以是增大的,P1相對於P0可以是增大的,其中P1的增大可以與M1的增大相似。在時間T1,P1與M1相比有可能處於支配地位。PCMAX,c的變化有可能很大,P的變化有可能很大,但是由於非MPR後移變化與MPR後移變化相似,因此,PCMAX,c的相應變化有可能是eNB 140所預期的或者接近於 eNB 140的預期。由於非MPR後移變化,PHR觸發可能是沒用的和/或不必需的。
參考第4B圖,對於典型的觸發狀況400B來說,在第一時間T0,P0與M0相比有可能處於支配地位,並且在第二時間T1,M1相對於M0可以是增大的,P1相對於P0可以是增大的。在時間T1,P1與M1相比有可能處於支配地位。PCMAX,c的變化有可能很小,P的變化也有可能很小。與在T0相比,在T1,非MPR(例如與SAR相關)後移對PCMAX,c的效果會小很多。PCMAX,c的值可能並非eNB 140所預期的或者接近於eNB 140的預期。由於非MPR後移對PCMAX,c的效果減小,因此,PHR觸發可能是有用的和/或必需的。
在某些典型的實施方式中,與第2A-2D、3A-3C以及4A-4B圖相關聯的邏輯可以包括:如果M0>P0並且M1<P1,則WTRU可以在P1-M1>門檻值的的情況下觸發PHR;如果M0<P0並且M1>P1,則WTRU可以在P0-M0>門檻值的情況下觸發PHR;以及如果M0<P0並且M1<P1,則WTRU可以在|(P1-M1)-(P0-M0)|>門檻值的情況下觸發PHR。
當WTRU 102發送最後一個PHR時,M0和P0可以分別代表MPR後移和非MPR後移。在稍後的某個時間,M1和P1可以分別代表MPR後移和非MPR後移,以確定是否觸發PHR。另一個典型邏輯可以在|[MAX(P1,M1)-M1]-[MAX(P0,M0)-M0]|>門檻值的時候觸發PHR。
在下表1中概述了上述情形,其中第1項是MAX(P1,M1)-M1,並且第2項是MAX(P0,M0)-M0。
Figure TWI613892BD00004
觸發可以基於CC,由此可以在超出了用於任一CC的門檻值的情況下觸發PHR。該觸發可以基於WTRU。作為一個整體,可以為WTRU 102定義MPR和非MPR後移。在某些典型的實施方式中,這些值可用於確定是否觸發PHR,從而取代使用CC專用的MPR後移和非MPR後移。
在某些典型的實施方式中,一發送了PHR,則WTRU可以計算和/或可以儲存P0=PMPRactual以及M0=MPRactual(其可以包括MPR和A-MPR)。在每一個TTI(或是WTRU具有UL授權的每一個TTI),WTRU可以計算P1=PMPRactual以及M1=MPRactual。如果|[MAX(P1,M1)-M1]-[MAX(P0,M0)-M0]|>門檻值,則WTRU可以觸發PHR。
如果跨越了用於任一CC的門檻值,則可以觸發PHR。在這種情況下,下標c可被添加到所有變數名稱。在某些典型的實施方式中,可以作為一個整體計算針對WTRU102的影響,由此可以移除CC下標,並且觸發可以基於特定於WTRU的對跨越門檻值的確定。
消除虛擬PHR導致的觸發(例如不必要或沒用的觸發)
PHR有可能是因為種種原因而被觸發並被WTRU 102發送至eNB 140。PHR可以包括一個或多個PH值以及用於提供額外資訊的其他參數。
例如,當WTRU 102在特定TTI中發送PHR時,該PHR有可能包括用於每一個在該TTI中具有UL授權的活動CC的真實PH(例如指派的實際資源),以及用於在該TTI中沒有UL授權的任一活動CC的虛擬PH。真實PH可以使用與授權相關聯的參數以及WTRU採取的任何功率減小來進行計算,以符合(例如滿足)混附發射遮罩(spurious emission mask,SEM)和/或SAR等傳輸限度或需求。虛擬PH可以使用參考授權和/或可以對一個或多個功率減小使用零。WTRU 102可以在報告中包括為每一個CC配置的最大輸出功率PCMAX,c,且可以省略用於報告虛擬PH的CC的PCMAX,c
當用於至少一個已啟動服務胞元的由於功率管理(例如P-MPR)所導致的額外功率後移變化超出門檻值時,可以觸發PHR。該觸發可以被定義成以下時候發生:當WTRU 102具有用於新的傳輸的UL資源的時候,從最後一次PHR傳輸的時候開始,禁止PHR計時器終止或者已經終止以及用於至少一個具有已配置的上行鏈路的已啟動服務胞元的由於功率管理(由P-MPR許可)所導致的額外功率後移的變化超出了DL路徑損耗變 化(dl-PathlossChange)(dB)。
可以設想的是,在發送最後一個PHR的時候,它有可能已經包含了用於一個或多個服務胞元(也被稱為CC)的虛擬PH。在這種情況下,對於包含在最後一個PHR中的虛擬PH來說,P-MPR許可的額外功率後移可被設定成零。在對當前的額外功率後移和發送最後一個PH時使用的額外功率後移進行比較的時候,所述比較可以是與用於該虛擬PH的零值作比較。只要額外功率後移超出(例如其本身超出)觸發門檻值,那麼就可以有觸發。由於與用於虛擬PH的零值進行比較,因此,所述觸發可以基於所感知的額外功率後移變化,其中所述變化不是一個真實的變化。在排程器選擇不排程特定CC的時候,這樣做有可能導致產生過多不必要或無用的觸發。類似的情景有可能在最後一個PHR包含了用於給定CC的具有實際額外後移值的真實PH的時候發生,並且在執行額外功率後移比較來確定是否觸發PHR的當前TTI中,CC不具有UL授權,並且用於CC的額外後移可被設定成零。真實的額外功率後移值(例如在其大於門檻值的情況下)可以是PHR觸發的來源,而不是額外功率後移的真實變化,而這同樣有可能導致產生過多不必要或無用的觸發。
可以設想的是,在給定TTI中,在功率管理後移改變時發送PHR,可以為eNB 140提供包含了經過更新的功率管理後移的PHR,因此其可以將所述功率管理後移包含在排程決定中。由此,如果實際功率管理後移的幅度變化大於門檻值量,和/或如果PH和/或諸如PCMAX,c之類的所報告的任何適用的關聯參數顧及了實際功率管理後移,那麼基於該觸發來發送PHR可以只對CC有用。
可以設想的是,在PHR中使用的參數之一是V位元,它可以指示PH值是基於真實傳輸還是基於參考格式。對於類型1的PH來說,V=0可以指示PUSCH上的真實傳輸,V=1可以指示使用PUSCH參考格式。對於類型2的PH來說,V=0可以指示PUCCH上的真實傳輸,V=1可以指示使用PUCCH參考格式。對於類型1和類型2的PH來說,V=0可以指示存在相關聯的PCMAX,c欄位,V=1可以指示省略相關聯的PCMAX,c欄位。
某些典型的PHR觸發過程
為了消除由於基於虛擬餘量報告的比較及其他原因而產生的過多和/或不必要的(或者無用的)觸發,在用於給定CC的功率後移(例如用於功率管理)與在WTRU最後一次發送用於所述給定CC的真實PHR時的用於所述給定CC的功率後移(例如用於功率管理)進行比較後其變化超出門檻值時,WTRU 102可以觸發PHR。
WTRU 102可以使用WTRU最後一次在用於給定CC的PHR中傳送PCMAX,c值的時間來確定其最後一次傳送用於給定CC的真實PHR的時間。
WTRU 102可以使用WTRU最後一次將表明給定CC是非虛擬CC的指示包含在用於給定CC的PHR中的時間(例如WTUR 102最後一次將用於給定CC且被設定成0的V位元包含在PHR中的時間)來確定其最後一次發送用於給定CC的真實PHR的時間。
對具有兩種類型的餘量報告(例如用於PUSCH餘量報告的類型1和用於PUSCH+PUCCH餘量報告的類型2)的PCell來說,在確定是否滿足用於PCell(主服務胞元或CC)的觸發標準的時候,WTRU 102可以使 用類型1的PH、類型2的PH或是類型1和類型2的PH兩者。例如,在發送PHR時,如果一個或多個類型1和/或類型2的PH是真實的,那麼WTRU 102可以確定已經發送用於該CC的真實PHR。舉個例子,如果用於這兩種PH類型的V位元不等於1(例如虛擬),那麼可以認為PHR是真實的。作為第二個示例,如果在用於PCell的PHR中發送類型1和類型2的PCMAX,c值中的至少一個,那麼可以認為PHR是真實的。在某些典型的實施方式中,WTRU 102可以使用類型1的PH或類型2的PH之一來確定是否滿足觸發標準。
在確定用於SCell的最後一個真實PHR時,WTRU 102可以忽略SCell(輔助服務胞元)的任何去啟動(deactivation)。舉個例子,如果從用於給定CC的最後一個真實PHR時起將CC去啟動並重新啟動了一次或多次,那麼WTRU 102仍舊可以使用用於該CC的最後一個真實的PHR。在某些典型的實施方式中,WTRU 102可以考慮(例如只考慮)從最後一次啟動或重新啟動CC時起的PHR傳輸。如果從最後一次啟動或重新啟動時起沒有用於該CC的真實PHR,那麼WTRU 102可以延遲對用於確定是否觸發PHR的觸發標準的評估,直至在啟動或重新啟動之後具有用於該CC的真實PHR,或者WTRU 102可以將其作為特例來進行處理,並且可以基於其他標準來觸發,例如大於門檻值的功率管理後移值(或功率管理後移對PCMAX,c的影響)。
在配置或重新配置SCell時,WTRU 102可以考慮(例如只考慮)從所述配置或重新配置時起的用於SCell的PHR傳輸。如果從最後一次配置或重新配置時起沒有用於該CC的真實PHR,那麼WTRU 102可以延遲對用於確定是否觸發PHR的觸發標準的評估,直至在配置或重新配置之後 具有用於該CC的真實PHR,或者WTRU 102可以將其作為特例來進行處理,並且可以基於其他標準來觸發,例如大於門檻值的功率管理後移值(或功率管理後移對PCMAX,c的影響)。
在某些典型的實施方式中,作為基於額外功率後移變化超出門檻值的觸發的替換或擇一,觸發可以基於額外功率後移對PCMAX,c的影響的變化超出門檻值。
在某些典型的實施方式中,基於與額外功率後移相關的變化(例如實際變化或是影響的變化)來觸發PHR可以是以與其他PHR觸發相似的方式由禁止計時器進行閘控(gate)。
在某些典型的實施方式中,基於與額外功率後移相關的變化來觸發PHR可以適用於(例如僅適用於)已被配置了UL的活動CC。
在某些典型的實施方式中,基於與額外功率後移相關的變化來觸發PHR可以適用於(例如只適用於)WTRU 102具有用於任一CC的新的傳輸的UL資源的TTI中。
為了消除由於基於虛擬餘量報告的比較而產生的過多且不必要或無用的觸發,和/或確保WTRU 102發送有意義的報告以及其他原因,在(例如僅僅在)所述WTRU 102具有用於該CC的UL資源(例如,所述UL資源可以是PUSCH和/或PUCCH資源)的TTI中,比較(例如功率管理後移值或功率管理後移值的影響的比較)和基於與功率管理後移相關的變化的PHR觸發可適用於給定CC。例如,在(例如只在)WTRU 102具有用於給定CC的有效UL授權(或是指派的UL資源)的TTI中,WTRU 102可以評估(或考慮)給定CC的觸發狀況,和/或在(例如只在)WTRU 102具有 用於該CC(或任意CC)的新傳輸的有效UL資源的TTI中,WTRU 102可以評估(或考慮)給定CC的觸發狀況。
如何定義觸發標準的典型示例(例如,使用不同措詞的等價定義也可以被使用)
當WTRU 102具有或者可能具有用於新傳輸的UL資源時,從最後一次在具有用於該服務胞元的UL資源的時候傳輸PHR時開始,禁止PHR計時器終止、已經終止、有可能終止或者有可能已經終止以及用於至少一個具有UL資源的已啟動服務胞元的由於功率管理(例如P-MPR或由P-MPR許可的)導致的額外功率後移的變化或是可能的變化超出了門檻值(例如DL路徑損耗變化(dB))。
當WTRU 102具有或可能具有用於新傳輸的UL資源時,從最後一次在具有用於該服務胞元的有效UL授權的時候傳輸PHR時開始,禁止PHR計時器終止、已經終止、有可能終止或者有可能已經終止以及用於至少一個具有有效UL授權的已啟動服務胞元的由於功率管理(例如P-MPR或由P-MPR許可的)導致的額外功率後移的變化或可能的變化超出了門檻值(例如DL路徑損耗變化(dB))。
當WTRU 102具有或可能具有用於新傳輸的UL資源時,從最後一次傳輸用於該服務胞元的真實PHR時起,禁止PHR計時器終止、已經終止、有可能終止或者有可能已經終止以及用於至少一個具有有效UL授權的已啟動服務胞元的由於功率管理(例如P-MPR或由P-MPR許可的)導致的額外功率後移的變化或是可能的變化超出了門檻值(例如DL路徑損耗變化(dB))。
當WTRU 102具有或可能具有用於新的傳輸的UL資源時,從最後一次傳輸用於該服務胞元的具有V位元=0的PHR開始,禁止PHR計時器終止、已經終止、有可能終止或者有可能已經終止以及用於至少一個具有有效UL授權的已啟動服務胞元的由於功率管理(例如P-MPR或由P-MPR許可的)導致的額外功率後移的變化或可能的變化超出了門檻值(例如DL路徑損耗變化(dB))。
當WTRU102具有或者有可能具有用於新的傳輸的UL資源的時候,從最後一次傳輸用於該服務胞元的具有任意V位元=0的PHR開始,禁止PHR計時器終止、已經終止,有可能終止或者有可能已經終止以及用於至少一個具有有效UL授權的已啟動服務胞元的由於功率管理(例如P-MPR或由P-MPR許可的)導致的額外功率後移的變化或可能的變化超出了門檻值(例如DL路徑損耗變化(dB))。
當WTRU 102具有或可能具有用於新傳輸的UL資源時,從最後一次傳輸用於該服務胞元的具有V位元=0的類型1的PHR開始,禁止PHR計時器終止、已經終止、有可能終止或者有可能已經終止以及用於至少一個具有有效UL授權的已啟動服務胞元的由於功率管理(例如P-MPR或由P-MPR許可的)導致的額外功率後移的變化或可能的變化超出了門檻值(例如DL路徑損耗變化(dB))。
當WTRU 102具有或可能具有用於新傳輸的UL資源時,從最後一次傳輸用於該服務胞元的真實類型1的PHR時起,禁止PHR計時器終止、已經終止、有可能終止或者有可能已經終止以及用於至少一個具有有效UL授權的已啟動服務胞元的由於功率管理(例如P-MPR或由P-MPR許可 的)導致的額外功率後移的變化或可能的變化超出了門檻值(例如DL路徑損耗變化(dB))。
可以設想的是,“具有有效UL授權(或UL資源)的服務胞元”與“具有已配置的上行鏈路和有效授權(或UL資源)的服務胞元”可以是相同的。對於以上所有示例來說,“用於至少一個已啟動服務胞元的由於功率管理(例如P-MPR或由P-MPR許可的)導致的額外功率後移”可以用下列各項替換:“用於至少一個已啟動服務胞元的由於功率管理(例如P-MPR或由P-MPR許可的)導致的額外功率後移對PCMAX,c的效果(或影響)”、“用於至少一個已啟動服務胞元的由於功率管理(例如P-MPR或由P-MPR許可的)導致的額外功率後移對所配置的最大輸出功率的效果”或是“用於至少一個已啟動服務胞元的由於功率管理(例如P-MPR或由P-MPR許可的)導致的功率後移對PCMAX,c的效果(或影響)”或是其等效物。
所設想的是確保具有一個真實的PHR,以用於在下列各項中的一項或多項之後的用於每一個CC的比較:配置、重新配置、啟動和/或重新啟動。
對於觸發第一個真實的PHR可能是有用的任意狀況或事件或是在其之後(例如在發生了所述狀況或事件之後),如果功率管理後移本身超出了門檻值,或者功率管理後移對PCMAX,c的影響超出了門檻值,那麼WTRU 102可以為具有有效UL授權(或UL資源)的活動CC觸發PHR。
典型的觸發過程可以包括基於這裏描述的任一標準來觸發PHR的需求或策略,用於例如基於下列各項之一來消除可能由虛擬PHR引發 的觸發(例如不必要或無用的觸發):(1)用於至少一個具有已配置的上行鏈路和有效授權(或UL資源)的已啟動服務胞元的由於功率管理(例如P-MPR或由P-MPR許可的)導致的功率後移的變化超出門檻值;(2)用於至少一個具有已配置的上行鏈路和有效授權(或UL資源)的已啟動服務胞元的由於功率管理(例如P-MPR或由P-MPR許可的)導致的功率後移對PCMAX,c的效果(或影響)的變化超出門檻值;(3)用於至少一個具有已配置的上行鏈路和有效授權(或UL資源)的已啟動服務胞元的由於功率管理(例如P-MPR或由PMPR許可的)的功率後移對於PCMAX,c的效果(或影響)的變化超出門檻值;其他,其中用於確定所述變化是否大於門檻值的比較的參考點可以是先前的(例如最近的)時間、時段或是傳送PHR的間隔以及下列各項之一:(1)具有已配置的上行鏈路的至少一個已啟動服務胞元具有有效授權(或UL資源);(2)PHR包含了用於至少一個具有已配置的上行鏈路的已啟動服務胞元的真實PH;其他。
該門檻值可以是以dB為單位的DL路徑損耗變化。
典型的功率餘量報告過程可用於為服務eNB 140提供關於名義上的WTRU最大發射功率與每一個已啟動服務胞元的UL-SCH傳輸的估計功率之間的差值的資訊,以及名義上的WTRU最大功率與PCell上的UL-SCH和PUCCH傳輸的估計功率之間的差值的資訊。通過配置兩個計時器,即週期性PHR計時器和禁止PHR計時器,以及通過用信號通告DL路徑損耗變化,RRC可以控制功率餘量報告,其中所述DL路徑損耗變化可以設定用於觸發PHR的所測量的下行鏈路路徑損耗的變化。
如果發生以下任一事件,則可以觸發功率餘量報告(PHR):
-禁止PHR計時器終止或已經終止,並且路徑損耗變化超出了至少一個已啟動服務胞元的DL路徑損耗變化(dB),其中所述DL路徑損耗變化可以是或者可以作為從最後一次在WTRU 102具有或可能具有用於新傳輸的UL資源的時候傳輸PHR時開始的路徑損耗參考。
-週期性PHR-計時器終止;
-高層配置或重新配置了功率餘量報告功能性,其中所述配置或重新配置不被用於使該功能失效;
-啟動具有已配置的上行鏈路的SCell;和/或
-與額外功率後移變化或是這裏描述的任何額外功率後移效果變化相關的觸發標準,例如:禁止PHR計時器終止或已經終止,以及從最後一次在WTRU 102具有或可能具有用於新傳輸的UL資源的時候傳輸PHR時開始,用於至少一個具有已配置的上行鏈路及有效授權的已啟動服務胞元且歸因於功率管理(由P-MPR許可)的功率後移對於PCMAX,c的效果的變化超出了DL路徑損耗變化dB。
如果WTRU 102具有為這個TTI的新傳輸所分配的UL資源:
-如果它是從最後一個MAC重設時起為新傳輸所分配的第一個UL資源,則啟動週期性PHR計時器;
-如果功率餘量報告過程確定從最後一次傳輸PHR開始已經觸發了至少一個PHR,或者這是首次觸發PHR,以及;
-如果所分配的UL資源可以或者能夠適應PHR MAC控制元素加上作為邏輯通道優先化處理結果的小標題(subheader):
-如果擴展PHR被配置:
-對於具有已配置的上行鏈路的每一個啟動的服務胞元來說:
-獲取類型1的功率餘量的值,並且在某些情況中從物理層獲取與該服務胞元相關聯的相對應的PCMAX,c
-如果配置的是同時的PUCCH-PUSCH:
-獲取用於PCell的類型2的功率餘量的值,並且在某些情況中是從物理層獲取相對應的PCMAX,c;
-基於物理層報告的值來指示多工(multiplexing)和裝配過程產生並傳送擴展PHR MAC控制元素。
-否則:
-從物理層獲取類型1的功率餘量的值;
-基於物理層報告的值來指示多工和裝配過程產生和傳送PHR MAC控制元素;
-啟動或重啟週期性的PHR計時器;
-啟動或重啟禁止PHR計時器;
-取消所有已觸發的PHR。
在某些典型的實施方式中,所實施的可以是確定何時將額外後移應用於PCMAX,c而在功率控制和PHR中使用的過程。
由於SAR或其他例如非LTE之類的效果,對於確定發射功率和/或計算功率餘量,PCMAX,c有可能會被減小或後移。
當需要或者將要改變額外後移的量時,WTRU 102可以開始使用下列選項(例如方式)之一而開始使用或者應用發生變化的後移,以便改變用於確定通道功率的PCMAX,c值,例如PPUSCH,c(i):(1)在狀況改變 的時候立即應用,而不考慮最終PHR的時間;(2)在應用之前一直等待,直至WTRU 102在PHR中報告了發生變化的PCMAX,c;(3)在應用之前等待不超過某個門檻值的時間量;和/或(4)如果下一個週期性PHR有可能在給定的時間量以外發生,則立即或者在給定時間量以內應用。可以設想的是,一些或所有選項是可以組合的,例如項目2和3。舉個例子,在應用之前,無論最先到來的是哪一個,WTRU 102都可以一直等待,直至經過了某個門檻值的時間量或是直到其在PHR中報告了PCMAX,c
使用四個選項(例如方式)中的哪一個可以取決於所要使用的額外後移量是增大還是減小。在某些典型的實施方式中,與額外後移中的絕對變化相反,其有可能相關於額外後移對於PCMAX,c的效果。
舉個例子,如果發生了額外後移量增大或是額外後移對於PCMAX,c的影響增大的狀況(這有可能導致發射功率降低),那麼等待應用後移變化有可能會對人類這樣的哺乳動物產生不受歡迎的射頻(RF)效果。在這種情況下,最好是立即將所述變化應用於後移,而不考慮何時發送PHR。在應用了變化之後盡可能快地發送PHR(例如具有發生變化的PCMAX,c)是非常有用的。在發送PHR之前,eNB 140可以分配WTRU 102可能不支援的UL授權。
如果發生的狀況是額外後移量減小或者額外後移對於PCMAX,c的影響變小(其結果有可能是具有了提高發射功率的能力),那麼等待應用後移變化的處理可能會延遲WTRU 102處理更大授權的能力,其中所述授權可以是由eNB 140經由PHR發覺後移減小的時候發送的。在這種情況下,在發送PHR中的延遲有可能更能被接受。
以下的一個或多個典型過程都是可以應用的。
(1)如果額外後移(或額外後移效果)減小,則WTRU 102可以即時或者在給定時訊框內兩者擇一地應用發生變化的後移,WTRU 102可以等待直至發送了PHR後再應用後移。在某些典型的實施方式中,如果沒有在某個預定時間發送PHR,那麼WTRU 102可以應用發生變化的後移,並且可以不再等待PHR。在其他的典型實施方式中,如果下一個週期性PHR有可能在給定時間量以外發生,那麼WTRU 102可以在給定時間量以內應用後移。
(2)如果額外後移(或額外後移效果)增大,則WTRU 102可以即時或者在給定時訊框內應用發生變化的後移。在某些典型的實施方式中,WTRU 102可以等待直到發送了PHR才應用後移。在其他典型的實施方式中,如果沒有在某個預定時間發送PHR,那麼WTRU 102可以應用發生變化的後移,並且可以不再等待PHR。在其他的典型實施方式中,如果接下來的週期性PHR有可能在給定時間量以外發生,那麼WTRU 102可以在給定時間量以內應用後移。
可以設想的是,即使由於額外後移(例如額外後移不斷變化的需求)觸發了PHR,也可以延遲PHR傳輸(例如由於有可能沒有用於MAC CE的空間(例如容量))。在需要發生變化的額外後移的時間與用於發送PHR的時間之間可能存在一個非零時段。
在某些典型的實施方式中,所實施的可以是用於處理快速變化的額外後移的典型過程。
例如,先前部分描述的是基於額外後移的變化或是額外後移影響的變化來觸發PHR的處理。典型的過程可以處理額外後移的快速變 化。對於非快速變化的額外後移來說,這種典型的過程也是可以應用的。
舉個例子,1xEV-DO傳輸的叢發性有可能很強(例如在20毫秒的訊框中具有下至2.5ms的開啟狀態以及上至17.5ms的關閉狀態),但是它也有可能是持續開啟的。在每一個這種高速叢發的開端和末端都有可能存在與報告PHR相關聯的問題。如果額外後移變化或是額外後移影響變化所觸發的PHR受到禁止計時器的約束(例如用於禁止在發送了最後一個PHR之後的某個時段中觸發PHR的計時器),那麼舉例來說,由於切換速率可能快於禁止計時器週期,因此,處於這種高速叢發開端和末端的PHR觸發器有可能丟失。如果這些變化觸發的PHR不受禁止計時器約束,那麼有可能存在PHR的過多發信號開銷。
在下文中描述了用於處理快速變化的額外後移的典型過程。只要能夠實現開啟狀態,則典型過程1可以將所述後移穩定在與開啟狀態相符的等級。舉個例子,如果啟用了1X或另一空中介面操作,或者如果連接或是正在進行1X或其他呼叫,則可以使用用於開啟狀態的後移,而不用考慮是否存在叢發。
用於1X的典型過程2可以是:WTRU 102可以檢測到或接受一個指示,其中該指示表明它是否處於發送快速1X叢發的模式(該模式可被稱為叢發模式),以及當處於發送快速1X叢發的模式時,這時可以像1X傳輸持續開啟那樣在PHR中發信號通告PCMAX,c。該典型過程可以用於:(1)在快速叢發起始時觸發包含減小的PCMAX,c的PHR(例如因為後移增大);(2)當處於發送快速的1X叢發的模式時,在因為別的原因(例如週期的或相當大的變化的路徑損耗)觸發的(例如任一)PHR中包含PCMAX,c, 就好像使用了增大的後移一樣,而不用考慮執行PHR時的實際後移(例如所需要的後移);和/或(3)當叢發(例如所有這樣的叢發)結束時,觸發一個包含了增大的PCMAX,c的PHR(由於不再使用增大的後移)。
一種用於確定1X叢發模式以及在叢發模式開端和末端觸發PHR的示例演算法可以包括:
●在每個子訊框中,觀察1X是在進行傳送還是沒有進行傳送
●如果1X正在進行傳送
○叢發模式=開啟
○如果1X在前一個子訊框中沒有進行傳送
■標記該時間(將其表示成“叢發開啟起始時間”)
○如果前一個子訊框中的叢發模式是關閉的,
■觸發PHR,以便報告減少的PCMAX,c
●如果1X沒有進行傳送
○如果前一個子訊框中的叢發模式是開啟
■如果從叢發開啟起始時間時起的時間大於20ms
◆則叢發模式=關閉
◆觸發PHR,以便報告增大的PCMAX,c
舉例來說,典型過程3可以處理快速變化的額外後移需求,例如由於SAR而產生的額外後移需求。WTRU 102可以確定何時需要(或將要使用)額外後移,例如在檢測到鄰近度的時候,並且可以保持額外後移等級一致(例如在最糟糕的情況下或是在別的總量的時候),直至在某個長度的時間裏不需要(或者不使用)額外後移。
例如,典型過程4可以包括在PHR中報告PCMAX,c,這其中包括在從最後一個PHR時開始的時段中發生的最差情況的額外後移或額外後移影響。例如:時間0(最後一個PHR報告):後移=b0;時間1(下一個子訊框):後移=b1;時間2(下一個子訊框):後移=b2;...時間p(可以發送下一個PHR的子訊框):後移=bp;以及PCMAX,c可以由WTRU使用後移=Max(b0,b1,b2,…,bp)進行報告。
雖然在這裏舉出了1xEV-DO和SAR的例子,但是可以想到的是,這些典型的過程可以用於任何叢發或非叢發應用,和/或任何快速或非快速變化的後移情況。
在某些典型的實施方式中,所實施的可以是在具有額外後移時處理虛擬PHR的典型過程。
用於為虛擬PHR處理PCMAX,c報告的典型過程有很多種。這些典型過程可以包括:(1)始終為非虛擬PHR和虛擬PHR報告PCMAX,c;或者(2)為非虛擬PHR而不為虛擬PHR報告PCMAX,c,這是因為對於虛擬PHR來說,MPR、A-MPR以及△TC有可能為零,由此eNB 140可以在沒有報告PCMAX,c的情況下為虛擬PHR確定PCMAX,c。這些典型的過程可以基於MPR、A-MPR以及△TC的許可功率減小。
在實施額外後移時,這時可以實施用於處理虛擬PHR和 PCMAX,c的典型過程。對虛擬PHR,WTRU 102可以在確定PCMAX,c的過程中包括額外後移效果(例如與SAR和/或1X效果相關聯)。在某些典型的實施方式中,如果WTRU 102在PCMAX,c中包含了額外後移效果,那麼在(例如只有在)PCMAX,c受到額外後移影響時,WTRU 102可以報告用於虛擬PHR的PCMAX,c。在其他典型的實施方式中,對於虛擬PHR,WTRU 102可以從確定PCMAX,c的過程中排除額外後移的影響(例如與SAR和/或1X相關聯),並且在虛擬PHR中可以不報告PCMAX,c
可以設想的是,如果WTRU 102在PHR中報告(例如始終報告)PCMAX,c,那麼無論在PCMAX,c中包含還是不包含後移的類型,都可以為虛擬PHR報告PCMAX,c。
在這裏可以實施用於處理每一個WTRU的最大功率以及每一個CC的最大功率的典型過程。
在CC等級和WTRU等級上可以為WTRU 102定義一個最大功率範圍。通過擴展這裏已經定義的等式,可以定義如等式14所述且為每一個CC配置的示例的最大輸出功率PCMAX,c,並且WTRU 102可被允許在該等式闡述的限制以內設定依照CC為其配置的最大輸出功率。
Figure TWI613892BD00005
其中:PCMAX_L,c=MIN{PEMAX,c-△TC,PPowerClass-MAX(MPR+A-MPR,P-MPR)-△TC}
PCMAX_H,c=MIN{PEMAX,c,PPowerClass}
PEMAX,c可以是高層發信號通告的最大功率限度(用於CC),例如由eNB 140在P-Max IE中發信號通告WTRU。
MPR、A-MPR、△TC以及P-MPR中的每一個都可以被定義成具有一個用於WTRU 102以及所有CC的公共值(common value)。例如,對於作為一個整體的所有CC和WTRU 102來說,MPR可以是相同的。由於CC的功率是相加的,因此可以為每一個CC以及WTRU使用相同的值。舉個例子,通過對每一個單獨的CC應用了3dB減小,可以實現WTRU 102的3dB減小。
在某些典型的實施方式中,一個或多個CC的一個或多個值可被定義一個CC專用值。對於任一CC專用值來說,所述CC專用值可以在等式中使用,並且可以在該值上添加下標c來表示,例如MPRc、A-MPRc、P-MPRc以及△TCc
作為每CC配置的最大輸出功率PCMAX,c的替換或補充,舉例來說,在這裏可以依照先前描述的方式來定義為整個WTRU配置的最大輸出功率PCMAX,並且WTRU 102可以將其配置的最大輸出功率設定在以下限度以內:
Figure TWI613892BD00006
其中,使用來自等式3的下限PCMAX_L以及將非MPR功率減小值稱為P-MPR,PCMAX_L可以如等式16所述:PCMAX_L=MIN{PEMAX-△TC,PPowerClass-MAX(MPR+A-MPR,P-MPR)-△TC} 等式(16)
並且其中上限PCMAX_H可被定義成:PCMAX_H=MIN{PEMAX,PPowerClass} 等式(17)
其中PEMAX可以是eNB經由RRC之類的更高層發信號通告的功率限 度,或者舉例來說,它也可以是WTRU從那些單獨發信號通告用於每一個CC的功率限度PEMAX,c中計算得到的值。
舉個例子,PEMAX=10 log10 Σ pEMAX,c,,其中PEMAX,c可以是RRC在用於每一個CC的P-Max IE中發信號通告的功率限度。PEMAX,c可以是用dB表述的值,並且pEMAX,c可以是用線性標記表述的PEMAX,c的值。
可以設想的是,PCMAX值可被用於作為決定縮放通道功率的限度,和/或作為在功率控制過程中不會被超出的限度。
在某些典型的實施方式中,PCMAX和/或PCMAX,c可以是為子訊框i而被確定,並且可以分別被表示為PCMAX(i)和PCMAX,c(i)。
在另一個示例中,下限PCMAX_L可以從每個CC的值中被定義、被確定和/或被計算得到。
PCMAX的下限可以如下從每個CC值中被定義、被確定和/或被計算得到:PCMAX_L,c=MIN{PEMAX,c-△TC,c,PPowerClass-MAX(MPRc+A-MPRc,P-MPRc)-△TC,c} 等式(18)
其中下標c表示的是CC專用值。CC值可以是相同或不同的。例如,對於波段內CC,在這裏可以將WTRU專用值或波段專用值提供給MPR、A-MPR、P-MPR和/或△TC中的一個或多個,並且這些值可以用於單獨的CC值。
通過使用可以用小寫字母來表示線性值的線性標記(例如至少用於值的第一個字元),可以採用的等式19所述的方式來表述等式18:10log10pCMAX_L,c=MIN{10log10(pEMAX,c/(△tC,c),10log10pPowerClass/(mprc.a-mprc.△tC,c),10log10pPowerClass/(pmprc.△tC,c)} 等式(19)
因此:pCMAX_L,c=MIN{pEMAX,c/(△tC,c),pPowerClass/(mprc.a-mprc.△tC,c),pPowerClass/(pmprc.△tC,c)} 等式(20)
多個CC的功率總和的最小值是:Σ pCMAX_L,c=Σ MIN{pEMAX,c/(△tC,c),pPowerClass/(mprc.a-mprc.△tC,c),pPowerClass/(pmprc.△tC,c)} 等式(21)
因此:PCMAX_L=10log10 Σ pCMAX_L,c=10log10 Σ MIN{pEMAX,c/(△tC,c),pPowerClass/(mprc.a-mprc.△tC,c),pPowerClass/(pmprc.△tC,c)} 等式(22)
等式22中闡述的用於PCMAX的下限可以應用於(或是適用於)波段內CC和/或波段間CC。可以設想的是,對於低功率減小(例如MPR和其他),這有可能導致產生一個大於功率等級(PowerClass)的PCMAX_L值(例如接近於CC數量x pPowerClass的值)。由此,如果確保所述值不會超出PPowerClass,那麼將會是非常有用的。在等式22中闡述的用於PCMAX的下限可以採用等式23中闡述的方式來修改:PCMAX_L=MIN{10log10 Σ MIN[pEMAX,c/(△tC,c),pPowerClass/(mprc.a-mprc.△tC,c),pPowerClass/(pmprc.△tC,c)],PPowerClass} 等式(23)
在某些典型的實施方式中,它可以表述成:PCMAX_L=PPowerClass+10log10 Σ MIN[pEMAX,c/(pPowerClass.△tC,c),1/(mprc.a-mprc.△tC,c),1/(pmprc.△tC,c)] 等式(24)
或者,在具有等式25所示的PPowerClass限度的情況下:PCMAX_L=MIN{PPowerClass+10log10 Σ MIN[pEMAX,c/(pPowerClass.△tC,c),1/(mprc.a-mprc.△tC,c),1/(pmprc.△tC,c)],PPowerClass} 等式(25)
舉個例子,對於波段內情況而言,額外的功率減小可以被允許。這種減小可被稱為用於給定CC的IBRc(例如採用線性標記的ibrc)。對 於不同的CC來說,這些值可以是相同或不同的。在這種情況下,PCMAX_L可以是由以下等式之一來定義:PCMAX_L=10log10 Σ MIN{pEMAX,c/(△tC,c),pPowerClass/(mprc.a-mprc.△tC,c.ibrc),pPowerClass/(pmprc.△tC,c.ibrc)}; 等式(26)
PCMAX_L=10log10 Σ MIN{pEMAX,c/(△tC,c.ibrc),pPowerClass/(mprc.a-mprc.△tC,c.ibrc),pPowerClass/(pmprc.△tC,c.ibrc)}; 等式(27)
PCMAX_L=MIN{10log10 Σ MIN{pEMAX,c/(△tC,c),pPowerClass/(mprc.a-mprc.△tC,c.ibrc),pPowerClass/(pmprc.△tC,c.ibrc)},PPowerClass}; 等式(28)
PCMAX_L=MIN{10log10 Σ MIN{pEMAX,c/(△tC,c.ibrc),pPowerClass/(mprc.a-mprc.△tC,c.ibrc),pPowerClass/(pmprc.△tC,c.ibrc)},PPowerClass};以及 等式(29)
PCMAX_L=MIN{10log10 Σ MIN{pEMAX,c/(△tC,c.ibrc),pPowerClass/(mprc.a-mprc.△tC,c.ibrc),pPowerClass/(pmprc.△tC,c.ibrc)},PPowerClass-IBR}。 等式(30)
PCMAX_L也可以被定義為下列其中之一,以便允許對於WTRU 102的總的P-MPR減小:PCMAX_L=MIN{10log10 Σ MIN[pEMAX,c/(△tC,c),pPowerClass/(mprc.a-mprc.△tC,c),pPowerClass/(pmprc.△tC,c)],PPowerClass-MAX(P-MPRc)}, 等式(31)
其中MAX(P-MPRc)是CC中的最大的P-MPRc值; PCMAX_L=MIN{10log10 Σ MIN[pEMAX,c/(△tC,c),pPowerClass/(mprc.a-mprc.△tC,c),pPowerClass/(pmprc.△tC,c)],PPowerClass-IBR-MAX(P-MPRc)}; 等式(32)
PCMAX_L=MIN{10log10 Σ MIN{pEMAX,c/(△tC,c),pPowerClass/(mprc.a-mprc.△tC,c.ibrc),pPowerClass/(pmprc.△tC,c.ibrc)},PPowerClass-MAX(P-MPRc)}; 等式(33)
PCMAX_L=MIN{10log10 Σ MIN{pEMAX,c/(△tC,c),pPowerClass/(mprc.a-mprc.△tC,c.ibrc),pPowerClass/(pmprc.△tC,c.ibrc)},PPowerClass-IBR-MAX(P-MPRc)}; 等式(34)
PCMAX_L=MIN{10log10 Σ MIN{pEMAX,c/(△tC,c.ibrc),pPowerClass/(mprc.a-mprc.△tC,c.ibrc),pPowerClass/(pmprc.△tC,c.ibrc)},PPowarClass-MAX(P-MPRc)};以及 等式(35)
PCMAX_L=MIN{10log10 Σ MIN{pEMAX,c/(△tC,c.ibrc),pPowerClass/(mprc.a-mprc.△tC,c.ibrc),pPowerClass/(pmprc.△tC,c.ibrc)},PPowerClass-IBR-MAX(P-MPRc)}。 等式(36)
以上等式中的IBR可以是WTRU專用的鬆弛值(relaxation)。所述IBR可以是:(1)來自CC專用的IBRc值的獨立值,(2)與這些值相同;或者(3)諸如最大值、平均值或總和等等之類的值的組合。在轉換成用於IBR的對數格式之前,所述組合可以用線性格式執行。
可以設想的是,這裏描述的用於頻帶間聚合的等式可被應用於帶內聚合,例如帶內非連續聚合。在這種情況下,MPR、A-MPR、△TC和/或P-MPR中的一個或多個可以是依照載波或是依照聚合的鄰接載波群規定的。
對於能夠支持帶內鄰接載波聚合(CA)並且同時能夠支持頻帶間CA的WTRU 102而言,考量在RF前端例如因為額外雙工器或其他元 件所產生的額外插入損耗可能會是有用的。在這種情況和/或其他情況中,以上等式可以使用一個額外項來考量插入損耗。該插入損耗可以替代或另外(例如完全或部分)被包含在所述等式中的已有項之一所規定的許可功率減小中。
在某些典型的實施方式中,在最大功率等式中可以使用CC專用值與WTRU專用值之間的關係。
為個別的CC定義的某些值與為WTRU 102定義的值之間的關係可以包括下列各項中的一項或多項。對於帶內CA情況,MPR可以是為WTRU 102定義的,並且每一個CC專用的MPRc可被設定成等於MPR。例如,如果有兩個CC處於相同波段並且具有用於WTRU 102的MPR=1dB,那麼WTRU 102能夠將每一個CC的PEMAX,c放寬1dB,且如果這兩個CC全都接近最大值,並且其總和即將達到或者將會超出PCMAX(或是Ppowerclass),那麼WTRU 102可被允許將功率縮減回至不超過PCMAX(或是Ppowerclass),其中所述PCMAX可以包括總體上將WTRU的最大功率減小例如1dB的裕量。
用於CC的項△TC,c可以基於CC在波段中所處的頻率。對於帶內CA來說,當CC專用的△TC,c(例如所有CC專用的△TC,c)相同時,可以將用於WTRU 102的△TC設定成等於△TC,c。對於頻帶間CA來說,該處理在每個波段(例如頻段)基礎上都是可以應用的。
對於帶內CA情況,當任一CC專用的△TC,c不同時,可以將△TC設定成等於△TC,c值中的最大值。對於頻帶間CA情況,該處理在每個波段(例如頻段)基礎上都可以應用。
對於帶內CA情況,當任一CC專用的△TC,c不相同時,如果使其跳頻,則可以在子訊框的兩個時隙中將△TC設定成等於最大的△TC,c。對於頻帶間CA情況,該處理在每個波段(例如頻段)基礎上都可以應用。
對於帶內CA來說,如果用於任一CC的A-MPRc不相同,則可以為A-MPR值使用最大值。
在某些典型的實施方式中,如果使其跳頻並且RB隨著一個至另一個的時隙而改變,以及對於一個或多個CC(例如任一CC)來說,每一個時隙的A-MPRc都在改變時,那麼可以將該子訊框上的最大A-MPRc值用於A-MPR值。
對於帶內CA來說,如果用於聚合CC的A-MPRc值相同,則可以將A-MPR設定成等於A-MPRc。對於頻帶間CA來說,該處理在每一個波段(例如頻段)基礎上都可以應用。對於頻帶間CA來說,由於A-MPRc值具有加成效果,這些值可在逐個CC上被應用。
對於具有非連續分配的帶內CA來說,以上描述的關於頻帶間CA的一個或多個關係也是適用的。
在某些典型的實施方式中,可實施測量得到的最大功率。
先前描述的最大功率值可以是“被配置的”值或目標值。當WTRU 102傳送時,即便來自相同的製造商,由於元件可能會隨著WTRU 102的不同而在性能上發生變化,因而所述WTRU 102可能不會傳送其計算得到的精確值。在實際傳送以及在為了確定WTRU 102的最大輸出功率是否保持在給定限度以內而執行的測試中,WTRU 102可被允許具有圍繞所配置的值的容限。
測量到的最大輸出功率可以定義如下。所述測量到的WTRU 102的最大輸出功率可以是測量得到的單個CC功率的最大總和(ΣpU,c)MAX,並且該功率可以(或者可能需要)處於以下限度以內:
Figure TWI613892BD00007
其中pU,c可以是分量載波c在線性標度中的輸出功率;PCMAX_L和PCMAX_H可以按照先前定義;以及T(PCMAX)可以是容限值,例如由容限表定義的容限值,並且可以單獨應用於PCMAX_L和PCMAX_H
可實施用於防止WTRU 102超出最大發射功率的典型過程,其中UCI同時處於用於一個波段操作的PUCCH和PUSCH上。
當在用於一個波段操作的PUCCH和PUSCH上同時傳送UCI時,用於防止WTRU 102超出最大發射功率的典型過程如下,其可以用若干種功能相同而不同形式表述之。
在某些典型的實施方式中,
Figure TWI613892BD00008
可以用
Figure TWI613892BD00009
Figure TWI613892BD00010
取代。
在所有形式中,進行通道縮放(例如縮放通道功率)通常指的是將通道(例如通道功率)與一個因數w,0
Figure TWI613892BD00011
w
Figure TWI613892BD00012
1相乘,因此,用大小為1的因數來縮放通道的處理與不縮放通道是等價的,並且用大小為0的因數縮放通道的處理與不傳送通道是等價的。
通過將任一未傳送通道的相應線性功率項設定成零,所述典型過程通常可同時適用於這樣的情況:(1)沒有傳送PUCCH;和/或(2) 沒有傳送PUSCH(例如具有或不具有UCI)。
在第一種形式(例如形式1)中,當同時在PUCCH和PUSCH上傳送UCI時,如果WTRU 102的總發射功率即將到達或將會超出PCMAX,並且PUCCH功率與帶有UCI的PUSCH功率相加的總和可能不會或者將不會超出PCMAX,那麼WTRU 102可以同等地縮放沒有UCI的PUSCH(例如所有PUSCH)。如果WTRU 102的總發射功率即將到達或者將會超出PCMAX,並且PUCCH功率與具有UCI的PUSCH功率的總和即將到達或將會超出PCMAX,那麼WTRU 102可以縮放具有UCI的PUSCH,並且不會傳送任何沒有UCI的PUSCH。
在第二種形式(例如形式2)中,當同時在胞元c=j中的PUSCH以及PUCCH上傳送UCI時,如果
Figure TWI613892BD00013
,那麼WTRU 102可以在子訊框i中縮放用於服務胞元(例如所有服務胞元)c≠j的
Figure TWI613892BD00014
,從而滿足條件
Figure TWI613892BD00015
。否則,WTRU 102可能不會傳送
Figure TWI613892BD00016
,並且可以在子訊框i中縮放
Figure TWI613892BD00017
,以便滿足條件
Figure TWI613892BD00018
。可以設想的是,當w(i)>0時,w(i)值在所有服務胞元c≠j都是相同的,但是對於某些服務胞元來說,w(i)可以為零。此外還可以設想,
Figure TWI613892BD00019
可以是PCMAX的線性相等值,和/或
Figure TWI613892BD00020
可以是PPUSCH,c的線性相等值等等。
在第三種形式(例如形式3)中,當同時在胞元c=j中的PUSCH以及PUCCH上傳送UCI時,如果WTRU 102的總發射功率可能或將會超出PCMAX,那麼WTRU 102可以在子訊框i中縮放用於所有服務胞元c的
Figure TWI613892BD00021
,以便滿足以下條件:
Figure TWI613892BD00022
可以設想的是,
Figure TWI613892BD00023
可以是PCMAX的線性相等值,和/或
Figure TWI613892BD00024
可以是PPUSCH,c的線性相等值等等。
在第四種形式(例如形式4)中,當同時在在胞元c=j中的PUSCH以及PUCCH上傳送UCI時,如果WTRU 102的總發射功率可能或將會超出PCMAX,那麼WTRU 102可以在子訊框i中縮放用於所有服務胞元c的
Figure TWI613892BD00025
,以便滿足以下條件:
Figure TWI613892BD00026
可以設想的是,
Figure TWI613892BD00027
可以是PCMAX的線性相等值,和/或
Figure TWI613892BD00028
可以是PPUSCH,c的線性相等值等等。
在某些典型的實施方式中,當WTRU 102在諸如頻帶間載波聚合之類的一個以上的波段上工作時,這時可以實施用於處理最大功率的典型過程,例如用於設定波段專用的功率限度的典型過程。
對於頻帶間操作來說,每一個波段的MPR、A-MPR以及△TC可以是不同的。在每一個波段上,P-MPR可以是相同或不同的,例如,在每一個波段上,用於SAR(例如與WTRU至人的鄰近度相關聯)的功率減 小可以是相同的,但對每一個波段而言,用於同時的1X-EVDO的功率減小可以是不同的。
為了支援這種情況,除了作為其他參數的函數之外,在這裏還可以將MPR、A-MPR和/或△TC定義成是波段(例如頻段)的函數。P-MPR可被定義成是WTRU 102的最大許可功率減小,其中如果將其同等應用於波段,那麼所述P-MPR可以成為每一個波段和每一個CC的最大許可減小。在某些典型的實施方式中,P-MPR可以是依照波段定義的,或者也可以存在用於WTRU 102的P-MPR分量以及依照波段的P-MPR。
每一個波段的功率可以受該波段的功率等級和減小因數的限制。例如,WTRU 102可以從下式確定每一個波段的最大許可輸出功率PCMAX,b(或者WTRU 102可被允許將為其在波段b上配置的最大輸出功率PCMAX,b設定在以下限制範圍以內):
Figure TWI613892BD00029
其中如果存在一個用於WTUR 102的P-MPR:PCMAX_L,b=MIN{PEMAX,b-△TC,b,PPowerClass-MAX(MPRb+A-MPRb,P-MPR)-△TC,b} 等式(41)
PCMAX_H,b=MIN{PEMAX,b,PPowerClass} 等式(42)
其中PEMAX,b可以是eNB 140經由例如RRC發信號通告的所述波段的功率限度,或者可以是從在該波段中的每一個CC的單獨通告的功率限度PEMAX,c中計算得到的值。
舉個例子,PEMAX,b=10 log10 Σ pEMAX,c,其中該總和可以是為波段b中的CC計算的,並且其中PEMAX,c可以是eNB 140經由例如RRC發信號而在P-Max IE中通告的用於波段b中的每個CC的功率限度。pEMAX,c可以是 用線性注釋表述的PEMAX,c的值。下標b可以指示用於波段b的值。舉個例子,如果不同波段的P-MPR是不同的,那麼可以用P-MPRb來替換P-MPR。可以設想的是,在用於那些被理解成是波段函數的值的等式中是不會使用下標b的。
以下等式可以應用於每一個CC:
Figure TWI613892BD00030
其中PCMAX_L,c=MIN{PEMAX,c-△TC,PPowerClass-MAX(MPRc+A-MPRc,P-MPRc)-△TCc};PCMAX_H,c=MIN{PEMAX,c,PPowerClass};PEMAX,c可以是較高層用信號通告的(用於CC)的最大功率限度,例如由eNB 140在P-Max IE中通告給WTRU 102的;並且其中MPRc、A-MPRc以及△TCc可以等於CC可能所在波段的值。如果P-MPRc是依照波段指定的,那麼所述P-MPRc可以與用於CC所在波段的P-MPRb值相等,或者它也可以等於WTRU 102專用的P-MPR值。
除了為每一個波段配置的最大輸出功率PEMAX,b之外,WTRU可以配置一個總的WTRU已配置最大輸出功率PCMAX,其中所述PEMAX,b除了是為每一個CC配置的最大輸出功率外,可以是PEMAX,c。PCMAX可以受功率等級的限制,並且還可以受到用於補償波段上的加成效果的功率減小的限制。例如,某一個波段中的傳送所導致的相鄰通道干擾未必會與另一個波段中的傳送所導致的相鄰通道干擾相加。PCMAX的限制範圍可以定義如下:
Figure TWI613892BD00031
其中:PCMAX_L可以顧及用信號傳送的用於CC的最大功率值以及所許可的功率的減小。PCMAX_H可以允許用信號傳送的用於CC的最大功率值以及功率等級。
除了總的WTRU最大功率PCMAX之外,還可以修改用於功率縮放的判定點以及用於功率縮放的規則,以顧及波段專用最大功率PCMAX,b。例示的過程在下文中描述。
在某些典型的實施方式中,當WTRU 102可在一個以上的波段、例如在頻帶間載波聚合中工作時,這時可以實施用於處理最大功率的典型過程,例如用於設定縮放規則的過程。
可以對功率縮放規則(或策略)進行定義,以便在計算得到的CC功率的總和即將或將會超出功率等級最大功率PPowerClass的情況下,對或可能對單個的PUSCH通道功率進行縮放,其中攜帶UCI的PUSCH將被給予優先順序,例如比未攜帶UCI的PUSCH有更高的優先順序。給予PUCCH的優先順序可以高於給予攜帶UCI的PUSCH的優先順序,並且在縮放過程中可以不減小PUCCH功率。PCMAX可以作為功率限度使用,以此來取代在適用於帶內(例如單個或連續波段)CA的以下示例中示出的PPowerClass
在本示例中,如果WTRU 102的總的發射功率即將或將會超出
Figure TWI613892BD00032
,那麼WTRU 102將會或者有可能將子訊框i中用於服務胞元c
Figure TWI613892BD00033
縮放一個加權w(i),從而滿足以下條件:
Figure TWI613892BD00034
如果WTRU 102在胞元j上具有帶有UCI的PUSCH傳輸,在一個或多個剩餘胞元具有沒有UCI的PUSCH,並且WTRU 102的總的發射功率將會或者即將超出
Figure TWI613892BD00035
,那麼WTRU 102將會或者有可能將在子訊框i中用於服務胞元且沒有UCI的
Figure TWI613892BD00036
縮放一個加權w(i),從而滿足以下條件:
Figure TWI613892BD00037
可以設想的是,在某些典型的實施方式中,較為恰當的是在某些或所有的以上等式中使用
Figure TWI613892BD00038
而不是
Figure TWI613892BD00039
。還可以設想,
Figure TWI613892BD00040
Figure TWI613892BD00041
可以是PCMAX和/或
Figure TWI613892BD00042
的線性相等值,或者
Figure TWI613892BD00043
可以是PPUSCH,c的線性相等值等等。
在存在波段專用功率限制的情況下,例如具有不同的MPR值以及用於每一個波段的其他後移的頻帶間CA,那麼每一個波段的最大許可功率PCMAX,b有可能會施加一個或多個額外限制。
下列各項中的一項或多項是可以應用的。在第一個示例中,如果計算得到的給定波段b中的CC功率總和將會或即將超出該波段的最大功率,則WTRU 102可以在給定波段b中執行縮放。這個最大功率可以是PCMAX,b或是其線性相等值。該最大功率可以是子訊框專用的,並且可以是子訊框i的PCMAX,b(i)或是其線性相等值。
在第二示例中,如果下列各項中的一項或多項成立,則WTRU 102可以對計算得到的通道功率執行縮放:(1)在任何波段中計算得到的CC功率的總和即將或者將會超出該波段的最大功率(例如所述最大功 率可以是PCMAX,b或是其線性相等值,和/或所述最大功率可以是子訊框專用的,其中對於子訊框i來說,它可以是PCMAX,b(i)或是其線性相等值);(2)在波段(例如所有波段)中的CC(例如所有CC)上計算得到的功率的總和即將或者將會超出為WTRU 102定義的最大功率(例如,所述最大功率可以是PCMAX或是其線性相等值,和/或所述最大功率可以是子訊框專用的,其中對於子訊框i來說,它可以是PCMAX(i)或是其線性相等值)。
在第三示例中,無論每一個PUSCH可處在什麼波段,WTRU 102都可以執行縮放,以使未攜帶UCI的PUSCH的加權(例如所有加權)可以是相等的。在確定用於子訊框i中的傳輸的縮放加權的過程中可以應用以下限制。可以設想的是,大於0的加權w(i)可以是相等的,並且對於某些胞元來說,該加權可以是零。通過應用可被同等縮放PUSCH(例如所有未攜帶UCI的PUSCH)的規則/規定,可以單獨為每一個波段(例如頻段)應用以下在等式47中闡述的典型縮放演算法。
如果波段中的某一個CC攜帶PUCCH,
Figure TWI613892BD00044
或者,如果波段中的某一個CC j攜帶的是具有UCI的PUSCH,
Figure TWI613892BD00045
或者,如果該波段中沒有一個CC攜帶PUCCH或是帶有UCI的PUSCH,
Figure TWI613892BD00046
其中:c
Figure TWI613892BD00047
b指示或意味著波段b中的所有載波c,w(i)可以是應用於子訊框i中未攜帶UCI的PUSCH(例如所有PUSCH)的縮放加權,PPUCCH(i)可以是子訊框i中的PUCCH(例如波段b中的PUCCH或是任一波段中的PUCCH)的發射功率,以及
Figure TWI613892BD00048
可以是用dBm或對數形式表述的物理量的線性相等值。
WTRU 102可以選擇一個(例如一個非零的)縮放加權w(i),以便為每一個波段滿足以上的適用條件(例如所有適用條件)。WTRU 102可以對所述加權進行選擇,以便為每一個波段滿足與最大每一波段發射功率相適合的一個或多個限制(例如上述為每一個波段相適合的限制),並且還可以滿足與最大WTRU發射功率相適合的以下限制。
如果在子訊框i中傳送PUCCH,則WTRU 102的發射功率限制可以是:
Figure TWI613892BD00049
或者
Figure TWI613892BD00050
如果在子訊框i中在CC j上傳送了帶有UCI的PUSCH,那麼WTRU 102的發射功率限制可以是:
Figure TWI613892BD00051
或者
Figure TWI613892BD00052
如果在子訊框i中既沒有傳送PUCCH也沒有傳送帶有UCI的PUSCH,那麼WTRU 102的發射功率限制可以是:
Figure TWI613892BD00053
或者
Figure TWI613892BD00054
第四個示例可以是為所有可能未攜帶UCI的PUSCH使用一個縮放加權因數w(i)的替換方案。在這個示例中,WTRU 102可以為在波段b中的PUSCH(例如所有未攜帶UCI的PUSCH)使用單獨的縮放加權因數w b(i)。可以設想的是,對於給定的波段b來說,大於0的加權w b(i)可以是相等的,並且對於某些胞元來說,該加權可以為零。WTRU 102可以對加權w b(i)進行選擇,以便為每一個波段滿足與最大每一波段發射功率相適合的一個或多個限制。在本示例中,每一個波段的限制可以是:如果該波段的一個CC攜帶PUCCH,
Figure TWI613892BD00055
或者,如果該波段的一個CC j攜帶帶有UCI的PUSCH,
Figure TWI613892BD00056
或者如果該波段中沒有CC攜帶PUCCH或是帶有UCI的PUSCH,
Figure TWI613892BD00057
WTRU 102可以選擇加權w b(i),以便為每一個波段滿足與最大每一波段發射功率相適合的一個或多個限制,以及同時滿足與最大WTRU發射功率相適合的限制。在本示例中,最大WTRU 102發射功率限制可以是:如果任一波段中的一個CC攜帶PUCCH,則
Figure TWI613892BD00058
或者如果任一波段中的一個CC攜帶帶有UCI的PUSCH,則
Figure TWI613892BD00059
或者,如果在任一波段中沒有一個CC攜帶PUCCH或是帶有UCI的PUSCH,則
Figure TWI613892BD00060
在以上的每一個等式中,
Figure TWI613892BD00061
可以用
Figure TWI613892BD00062
Figure TWI613892BD00063
取代。
第五個示例可以是另一個替換方案,其中WTRU 102可以為波段b中的PUSCH(例如所有未攜帶UCI的PUSCH)使用加權因數w b(i),並且可以使用加權因數w u(i)來進一步縮放通道功率,以滿足WTRU的最大功率限制。可以設想的是,用於給定的波段b且大於0的加權w b(i)可以是相等的,並且大於零的加權w u(i)也可以是相等的,且對於某些胞元而言,該加權可以為零。WTRU 102可以選擇加權,以為每一個波段滿足每一個波段的限制以及WTRU發射功率限制。通過首先滿足每一個波段的限制,以及然 後滿足WTRU的限制,可以滿足波段與WTRU限制的所有組合。在本示例中,每一個波段的限制可以是:如果該波段中的一個CC攜帶PUCCH,則
Figure TWI613892BD00064
或者,如果該波段的一個CC j攜帶帶有UCI的PUSCH,則
Figure TWI613892BD00065
或者如果在該波段中沒有CC攜帶PUCCH或是帶有UCI的PUSCH,則
Figure TWI613892BD00066
在這個示例中,最大WTRU發射功率限制可以是:如果在任一波段中的一個CC攜帶PUCCH,則
Figure TWI613892BD00067
或者,如果任一波段中的一個CC攜帶帶有UCI的PUSCH,則
Figure TWI613892BD00068
或者,如果在任一波段中沒有CC攜帶PUCCH或是帶有UCI的PUSCH,則
Figure TWI613892BD00069
在以上的每一個等式中,
Figure TWI613892BD00070
可以用
Figure TWI613892BD00071
Figure TWI613892BD00072
替換。
本領域技術人員理解在所有替代的實施方式中,這些限制可以被擴展,以便涵蓋子訊框中具有多個PUCCH的情況和/或在同一個子訊框 中具有一個或多個PUCCH和/或一個或多個帶有UCI的PUSCH的情況。在某些典型的實施方式中,所實施的可以是用於防止WTRU 102超出最大發射功率的典型過程,這其中包括在用於多波段操作的PUCCH和PUSCH上同時具有UCI的情況。
可以設想的是,WTRU有時可能會同時傳送攜帶了某個UCI(例如應答/否定應答(ACK/NACK))的PUCCH以及攜帶了某個(例如其他)UCI的PUSCH。攜帶UCI的PUCCH和PUSCH可以處於相同或不同的波段。可以修改先前描述的功率縮放規則(或策略)、關於最大每一波段發射功率的限制以及關於最大WTRU發射功率的限制,以及添加新的功率縮放規則(或策略)和限制,以包含這種可能性。
以下各項中的一項或多項是可以應用的。在第一示例中,如果在給定的波段b中計算得到的CC功率的總和將會或即將超出該波段的最大功率,那麼WTRU 102可以在該波段中執行縮放。最大功率可以是PCMAX,b或是其線性相等值。所述最大功率可以是子訊框專用的,對於子訊框i來說,它可以是PCMAX,b(i)或是其線性相等值。
在第二示例中,如果下列各項中的一項或多項成立,則WTRU 102可以對計算得到的通道功率執行縮放:(1)在任一波段中計算得到的CC功率的總和即將或者將會超出該波段的最大功率(例如,所述最大功率可以是PCMAX,b或是其線性相等值,和/或所述最大功率可以是子訊框專用的,其中對於子訊框i來說,它可以是PCMAX,b(i)或是其線性相等值);(2)在波段(例如所有波段)中計算得到的CC(例如所有CC)上的功率的總和即將或者將會超出為WTRU 102定義的最大功率(例如,所述最大功率可以 是PCMAX或是其線性相等值,和/或所述最大功率可以是子訊框專用的,其中對於子訊框i來說,它可以是PCMAX(i)或是其線性相等值)。
在第三示例中,無論每一個PUSCH可能在什麼波段,WTRU 102都可以執行縮放,以使未攜帶UCI的PUSCH的加權(例如所有加權)可以是相等的。在這種情況下,在確定用於子訊框i中的傳輸的縮放加權的過程中可以應用以下限制。可以設想的是,對於縮放來說,大於0的加權w(i)可以是相等的,並且對於某些胞元來說,該加權可以是零。通過應用可同等縮放PUSCH(例如所有未攜帶UCI的PUSCH)的規則/規定,可以單獨為每一個波段應用以下在等式68中闡述的例示縮放演算法: 如果該波段中的一個CC攜帶PUCCH,並且在該波段中沒有帶有UCI的PUSCH,則
Figure TWI613892BD00073
或者,如果波段中的一個CC j攜帶的是帶有UCI的PUSCH,並且在該波段中沒有PUCCH,則
Figure TWI613892BD00074
或者,如果在波段中沒有CC攜帶的是PUCCH或是帶有UCI的PUSCH,則
Figure TWI613892BD00075
或者,如果波段中的一個CC攜帶的是PUCCH,並且該波段中的一個CC(所述CC與攜帶PUCCH的CC可以是相同CC,也可以不相同) 攜帶的是帶有UCI的PUSCH,則
Figure TWI613892BD00076
以及
Figure TWI613892BD00077
其中:c
Figure TWI613892BD00078
b指示或意味著在波段b中的所有載波c,w(i)可以是應用於子訊框i中未攜帶UCI的PUSCH(例如所有PUSCH)的縮放加權,PPUCCH(i)可以是子訊框i中的PUCCH的發射功率,以及或可以是用dBm或對數形式表述的物理量的線性相等值。
WTRU 102可以選擇一個(例如一個非零的)縮放加權w(i)或wc≠j(i),以便滿足以上適用的(例如所有適用)限制。WTRU 102可以選擇加權,以便為每一個波段滿足與最大每一波段發射功率相適合的一個或多個限制(例如上述為每一個波段相適合的限制),此外還可以滿足以下與最大WTRU 102發射功率相適合的限制:如果在子訊框i中傳送了PUCCH,則WTRU 102的發射功率限制可以是:
Figure TWI613892BD00079
或者
Figure TWI613892BD00080
如果在子訊框i中在CC j中傳送了帶有UCI的PUSCH,則WTRU的發射功率限制可以是:
Figure TWI613892BD00081
或者
Figure TWI613892BD00082
如果在子訊框i中既沒有傳送PUCCH,也沒有傳送帶有UCI的PUSCH,則WTRU的發射功率限制可以是:
Figure TWI613892BD00083
或者
Figure TWI613892BD00084
如果在子訊框i中PUCCH和帶有UCI的PUSCH都存在,則WTRU的發射功率限制可以是:
Figure TWI613892BD00085
或者
Figure TWI613892BD00086
以及
Figure TWI613892BD00087
或者
Figure TWI613892BD00088
第四個示例可以是為PUSCH(例如所有未攜帶UCI的PUSCH)使用一個縮放加權因數w(i)的替換方案。在該示例中,WTRU 102可以為波段b中的PUSCH(例如所有未攜帶UCI的PUSCH)使用單獨的縮放 加權因數w b(i)。可以設想的是,對於給定的波段b來說,大於0的加權w b(i)可以是相等的,並且對於某些胞元來說,該加權可以為零。WTRU 102可以選擇加權w b(i),以為每一個波段滿足與最大每一波段發射功率相適合的一個或多個限制。在本示例中,每一個波段的限制可以是: 如果該波段的一個CC攜帶PUCCH,並且在該波段沒有帶有UCI的PUSCH,則
Figure TWI613892BD00089
或者,如果該波段中的一個CC j攜帶的是帶有UCI的PUSCH,並且在該波段中沒有PUCCH,則
Figure TWI613892BD00090
或者,如果在該波段中沒有CC攜帶PUCCH或是帶有UCI的PUSCH,則
Figure TWI613892BD00091
或者,如果該波段的中一個CC攜帶的是PUCCH,並且該波段中的一個CC(與攜帶PUCCH的CC可以相同也可以不相同)攜帶的是帶有UCI的PUSCH,則
Figure TWI613892BD00092
以及
Figure TWI613892BD00093
WTRU 102可以選擇加權w b(i)),以便為每一個波段滿足與最大每一波段發射功率相適合的一個或多個限制,以及同時滿足與最大 WTRU發射功率相適合的限制。在本示例中,最大WTRU 102發射功率限制可以是:如果任一波段中的一個CC攜帶PUCCH,並且在任一波段中都沒有帶有UCI的PUSCH,則
Figure TWI613892BD00094
或者,如果任一波段中的一個CC攜帶的是帶有UCI的PUSCH,並且在任一波段中都沒有PUCCH,則
Figure TWI613892BD00095
或者,如果在任一波段中都沒有CC攜帶PUCCH或是帶有UCI的PUSCH,則
Figure TWI613892BD00096
或者,如果在任一波段中有CC攜帶的是PUCCH,並且在任一波段中有CC攜帶的是帶有UCI的PUSCH,則
Figure TWI613892BD00097
以及
Figure TWI613892BD00098
在以上的每一個等式中,
Figure TWI613892BD00099
Figure TWI613892BD00100
既可以用
Figure TWI613892BD00101
Figure TWI613892BD00102
替換,也可以用
Figure TWI613892BD00103
Figure TWI613892BD00104
替換。
第五個示例可以是另一個替換方案,其中WTRU 102可以為波段b中的PUSCH(例如所有未攜帶UCI的PUSCH)使用加權因數w b(i),並 且可以使用加權因數w u(i)來進一步縮放通道功率,以滿足WTRU的最大功率限制。可以設想的是,用於給定的波段b的且大於0的加權w b(i)可以是相等的,並且大於零的加權w u(i)也可以是相等的,且對於某些胞元來說,該些加權可以為零。WTRU 102可以選擇加權,以為每一個波段滿足與每一個波段的限制以及WTRU發射功率的限制。通過首先滿足每一個波段的限制,以及然後滿足WTRU的限制,可以達成滿足波段與WTRU限制的所有組合。在本示例中,每一個波段的限制可以是:如果該波段中的一個CC攜帶PUCCH,則
Figure TWI613892BD00105
或者,如果該波段中的一個CC j攜帶的是帶有UCI的PUSCH,則
Figure TWI613892BD00106
或者,如果在該波段中沒有CC攜帶的是PUCCH或是帶有UCI的PUSCH,則
Figure TWI613892BD00107
在這個示例中,最大WTRU發射功率限制可以是:如果在任一波段中的一個CC攜帶的是PUCCH,則
Figure TWI613892BD00108
或者,如果任一波段中的一個CC攜帶的是帶有UCI的PUSCH,則
Figure TWI613892BD00109
如果在任一波段中沒有CC攜帶的是PUCCH或是帶有UCI的PUSCH,則
Figure TWI613892BD00110
或者,如果在任一波段中有CC攜帶的是PUCCH,並且在任一波段中有CC攜帶的是帶有UCI的PUSCH,
Figure TWI613892BD00111
以及
Figure TWI613892BD00112
在以上的每一個等式中,
Figure TWI613892BD00113
可以用
Figure TWI613892BD00114
Figure TWI613892BD00115
替換。
本領域技術人員理解,在所有替換的實施方式中可以擴展這些限制,以便涵蓋子訊框中具有多個PUCCH的情況和/或在同一個子訊框中具有一個或多個PUCCH以及帶有UCI的PUSCH的情況。
在某些典型的實施方式中,所實施的可以是包含與額外或是非MPR後移相關聯的發信號的典型過程。
新發信號可從WTRU 102被添加到eNB 140,以便幫助eNB 140理解額外後移(或非MPR效果)何時以及如何影響WTRU 102(或是對其提供影響)。WTRU 102提供給eNB 140的發信號可以包括下列各項中的一 項或多項。WTRU 102可以提供一個關於在確定PCMAX和/或PCMAX,c的過程中是MPR還是非MPR效果可處於支配地位的指示。WTRU 102可以將該指示與PHR包含在一起。WTRU 102可以將這個(例如支配)資訊包含在MAC CE中。WTRU 102可以經由RRC發信號來發送這個(例如支配)資訊。所述指示可以是依照CC的,或者可以是一個用於WTRU 102的指示(例如合成指示)。當處於支配地位的因素(MPR後移或非MPR後移)發生變化時,WTRU 102可以觸發PHR報告。
在某些典型的實施方式中,所實施的可以是與功率餘量和PHR觸發處理相關聯的典型過程。
WTRU在LTE和另一個空中介面技術上的同時傳輸或是SAR需求/限制有可能會導致基於功率管理的後移(P-MPR)。這些效果可被稱為叢發業務量。叢發業務量的示例可以是1xEV-DO資料傳輸、1xRTT話音突峰和/或SAR需求/限制(舉例來說,所述需求/限制有可能關聯於某些情景,例如WTRU與人緊密接近的情況)等等。
在叢發業務量或SAR需求/限制期間,在其他情景中,P-MPR後移有可能會變化,和/或P-MPR後移對於PCMAX或PCMAX,c的影響有可能改變。與P-MPR相關的其他狀況同樣有可能改變,例如P-MPR是否支配(例如具有效力)PCMAX(或PCMAX,c)的值。基於以上的一個或多個狀況改變來觸發PHR將會是有用的,例如所述P-MPR的變化大於一門檻值,P-MPR對於PCMAX或PCMAX,c的影響改變,和/或與P-MPR相關的其他變化等等。
在某些典型的實施方式中,例如對叢發通信量或SAR需求/限制,觸發狀況有可能存在短期變化。這些變化有可能很短,以致於排程 器可能沒有時間對其產生作用以及在給定的時段中實施授權。
在這裏已經給出了用於處理快速變化的額外後移的典型過程,其中舉例來說,所述過程包括在此類變化持續某個時段之前忽略所述變化(例如P-MPR下降)。
當基於P-MPR的變化來觸發PHR時,忽略P-MPR後移中的短期下降,而不忽略P-MPR後移的增大,將可能是有用的。將排程器可能不知道某個時段的最高P-MPR後移等級的情況減至最少,從而將超出可用傳輸功率的上行鏈路授權排程減至最少,將可能是有用的。
可以設想的是,對於多個CC來說,每一個CC都有可能具有單獨的P-MPR值,即P-MPR,c。當存在P-MPR,c時,所描述的變化(例如可能導致PHR觸發的變化)可以是P-MPR,c的變化,P-MPR,c對PCMAX,c的影響,和/或P-MPR,c是否支配PCMAX,c等等。
在某些典型的實施方式中,所實施的可以是用於處理PHR觸發狀況中的短期變化的典型過程。
在這裏公開了用於減小因為PHR觸發狀況的短期變化而導致的PHR觸發的典型過程。例如,在可保持快速報告P-MPR後移增大的同時,關於P-MPR後移的短期降低的PH報告可能被減至最少。對於快速變化的P-MPR後移來說,較高的P-MPR後移值可被報告給排程器,以便將超出可用傳輸功率的上行鏈路授權減至最小。在一些典型的實施方式中,該過程可以包括:確定一個與當前TTI中的值可能不同的P-MPR後移值,以便確定P-MPR變化(例如與一個觸發門檻值相比較)門檻值觸發以及計算PHR中的PCMAX,c。在某些典型的實施方式中,所確定的P-MPR後移值可以是 在當前TTI之前的給定的時段中記錄的最大值。
本領域技術人員理解,這裏描述的典型過程/實施方式的要素/部分既可以單獨使用,也可以組合使用。
在某些典型的實施方式中,可使用回顧視窗來實施典型過程。
基於其他目的,WTRU 102可以使用回顧視窗或是其相等值來確定P-MPR後移和/或P-MPR,c後移的值。例如,在具有多個CC或是具有CC專用的P-MPR的情況下,P-MPR可以用P-MPR,c替換。該回顧視窗既可以與PHR禁止定時器具有相同的大小(持續時間),也可以具有與PHR禁止計時器相關聯的大小和/或不同的持續時間。PHR禁止計時器可以是用於觸發歸因於路徑損耗變化的PHR的禁止計時器,或者可以是一個可能用以觸發為其他目的之PHR的不同計時器(例如禁止計時器),舉例來說,所述其他目的可以是P-MPR改變、P-MPR對PCMAX或PCMAX,c的影響改變,或是其他任何禁止計時器等等。
所實施的可以是一個回顧視窗(例如單個回顧視窗)或多個回顧視窗。在實施多個回顧視窗時,其中一個視窗可以是用於增大的(例如P-MPR或P-MPR效果增大),另一個視窗可以是用於減少的(例如P-MPR或P-MPR效果減少)。該回顧視窗可以用專用發信號(例如RRC發信號)配置。所述值可以依照TTI的數量規定。
回顧視窗是一個代表了其功能的通用術語,並且任何名稱均可以用於該功能。在一個示例中,當回顧視窗與P-MPR後移相關聯時,這時可以將其稱為P-MPR後移視窗或P-MPR後移視窗。
回顧視窗可以以如下方式來使用。與P-MPR相關聯的PHR觸發可以是以P-MPR後移的變化為基礎的。在某些典型的實施方式中,該觸發可以基於:(1)P-MPR對PCMAX所產生的影響的變化;(2)P-MPR對一個或多個PCMAX,c值所產生的影響的變化;(3)CC專用的P-MPR、P-MPR,c對PCMAX,c所產生的影響的變化,和/或(4)PCMAX,c在其他情況中的變化。在其他情景中也可以應用回顧視窗,以便完成與這裏的描述相類似的功能。
WTRU 102可以採用以下的一種或多種方式來使用回顧視窗。WTRU 102可以在時間上使用回顧視窗來回顧一組值,並且選擇其中一個值,例如最高值、最低值、平均值或是這些值的其他組合、最壞情況的值、影響最大的值或是代表視窗中的數值集合的另一值。舉個例子,對P-MPR來說,WTRU 102可以選擇在回顧視窗內部計算得到的最高的P-MPR後移值,其中所述最高值可以是或者可以意味著一個導致產生最大功率縮放或減小的值(例如,依照所使用的是dB標度還是線性標度,所述值可以是或者可以不是最高數值)。
WTRU 102可以使用所選擇的值來確定是否發生了PHR觸發事件之類的事件。所述事件可以是為了確定是否跨越了變化門檻值,並且WTRU 102可以將在回顧視窗中選擇的值用於所述確定。
如果跨越了變化門檻值,則有可能導致WTRU 102觸發PHR。
當基於P-MPR觸發事件觸發PHR時,回顧窗口內部的P-MPR(或P-MPR,c)的最高值(或其他選定值)可以是WTRU 102在計算PHR中 提供的PCMAX,c的過程中使用的值。
當基於P-MPR觸發事件觸發PHR時,回顧窗口內部的P-MPR(或P-MPR,c)的最高(或其他選定值)值可以是WTRU 102在計算PCMAX,c的過程中使用的值,以及用於確定WTRU 102可能在PHR中包含的關於給定的CC的功率餘量(PH)的值。該情況對於類型1(PUSCH)和/或類型2(PUSCH+PUCCH)的功率餘量來說都是適用的。
當基於P-MPR觸發事件觸發PHR時,回顧窗口內部的P-MPR(或PMPR,c)的最高(或其他選定值)值可以是WTRU 102在確定P-MPR(或P-MPR,c)是否支配(例如影響)WTRU 102所報告的PCMAX,c值的過程中使用的值。
當基於另一個觸發事件來觸發PHR時,回顧視窗內部的P-MPR(或PMPR,c)的最高值(或其他選定值)可以是WTRU 102在計算PHR中提供的PCMAX,c的過程中使用的值,其中所述另一個觸發事件例如為路徑損耗改變、重新配置、SCell啟動、週期性的PHR報告或其他事件。
當基於另一個觸發事件來觸發PHR時,回顧視窗內部的P-MPR(或P-MPR,c)的最高值(或其他選定值)可以是WTRU 102在計算PCMAX,c的過程中使用的值,以及用於確定WTRU 102可以在PHR中包含的關於給定的CC的功率餘量(PH)的值,其中所述另一個觸發事件例如為路徑損耗改變、重新配置、SCell啟動、週期性的PHR報告或其他事件。該情況對於類型1(PUSCH)和/或類型2(PUSCH+PUCCH)的功率餘量來說都是適用的。
當基於另一個觸發事件來觸發PHR時,回顧視窗內部的 P-MPR(或P-MPR,c)的最高值(或其他選定值)可以是WTRU 102在確定P-MPR(或P-MPR,c)是否支配(例如影響)WTRU 102所報告的PCMAX,c值的過程中使用的值,其中所述另一個觸發事件例如為路徑損耗改變、重新配置、SCell啟動、週期性的PHR報告或其他事件。
WTRU 102可以使用如下回顧視窗。在每一個TTI(可能不包括WTRU 102無法或者不被允許發送PHR的TTI,例如在禁止計時器禁止WTRU 102的時候或是在WTRU 102沒有UL授權或在MAC-CE中沒有用於發送PHR的空間的時候),WTRU 102可以執行下列各項中的一項或多項處理。WTRU 102可以在時間上回顧該回顧視窗時間,並且確定WTRU 102在該時段使用的基於功率管理的最大後移(例如P-MPR)值(例如導致產生最大功率減小的值)。這個值可以小於或等於所許可的最大P-MPR值。在某些典型的實施方式中,WTRU 102可以從回顧視窗中的值裏選擇(或者確定)一個P-MPR值。如果存在多個CC,那麼可以為每一個CC單獨選擇或確定一個值,並且對每一個CC來說,P-MPR可以是P-MPR,c。
WTRU 102可以將P-MPR值(例如所選擇或確定的P-MPR值)與在最後一個PHR中使用的P-MPR值相比較,以便確定是否發生了PHR觸發事件。如果存在多個CC,那麼可以為每一個CC單獨執行該處理,並且對每一個CC來說,P-MPR可以是P-MPR,c。
WTRU 102可以將P-MPR值(例如所選擇或確定的P-MPR值)對PCMAX或PCMAX,c的影響與最後一個PHR中的P-MPR值對PCMAX或PCMAX,c的影響相比較,以便確定是否發生了PHR觸發事件。如果存在多個CC,那麼可以為每一個CC單獨執行該處理,並且對每一個CC來說, P-MPR可以是P-MPR,c。
WTRU 102可以將使用P-MPR值(例如所選擇或確定的P-MPR值)計算的PCMAX,c值與在最後一個PHR中報告的PCMAX,c值相比較,以便確定是否發生了PHR觸發事件。如果存在多個CC,那麼可以為每一個CC單獨執行該處理,並且對每一個CC來說,P-MPR可以是P-MPR,c。
作為替換,WTRU 102可以使用其他一些使用了P-MPR值(例如所選擇或確定的P-MPR值)以及來自先前PHR的P-MPR值的比較標準,以便確定是否發生了PHR觸發事件。如果存在多個CC,那麼可以為每一個CC單獨執行該處理,並且對每一個CC來說,P-MPR可以是P-MPR,c。
如果P-MPR值的差別或其他標準變化超出某個門檻值,則WTRU 102可以觸發PHR,其中所述其他標準例如為P-MPR對PCMAX或PCMAX,c的影響的差別或是PCMAX,c的變化。如果存在多個CC,那麼可以為每一個CC單獨執行該處理,並且對每一個CC來說,P-MPR可以是P-MPR,c。如果滿足了任意的一個或多個CC的標準,則WTRU 102可以觸發PHR。
如果為每一個CC定義了單獨的P-MPR值,那麼基於CC的比較可以使用CC專用值。
如果滿足了任意的一個或多個CC的門檻值標準,則WTRU 102可以觸發PHR。
如果沒有滿足門檻值標準,則WTRU 102不會觸發PHR。
如果觸發了PHR,則WTRU 102可以啟動相關聯的禁止計時器或計時器。
如果觸發了PHR,則WTRU 102可以啟動其他任何可能存在的禁止計時器。
在發送PHR報告時,WTRU 102可以使用其在回顧視窗內部獲取的一個或多個P-MPR或P-MPR,c值(例如該回顧視窗中的一個或多個最高值)來計算所報告的PCMAX,c C值。
在對照每一個CC的PCMAX,c來計算用於PHR的PH時,WTRU 102可以使用其在回顧視窗內部獲取的一個或多個P-MPR或P-MPR,c值(例如該視窗中的一個或多個最高值)來計算用於PH計算的PCMAX,c值。這些用於比較或觸發的值可以採用線性形式或對數形式。
第5和6圖是示出了使用回顧視窗的典型觸發過程(例如回顧視窗如何工作)的圖示。
在某些典型的過程中,報告P-MPR或者P-MPR等級(例如P-MPR等級X)可等價於在PHR中包含PCMAX,c,其中所述PCMAX,c可以包括或者顧及處於等級X或是具有等級X的值的P-MPR後移。
參考第5圖,在典型的觸發過程500中,WTRU 102可以監視或者確定隨時間改變的P-MPR。在第一時間510,PHR可以基於受到監視(或確定)且處於等級C的P-MPR而被觸發,並且可以在PHR中將P-MPR報告給網路資源(例如eNB 140)。在第一時間可以設定一個用於指定時段的禁止計時器。並且在禁止計時器終止之前的這個指定時段中可以禁止觸發別的PHR。可建立回顧視窗以確定與回顧視窗中的P-MPR相關聯的狀況。除了先前描述的眾多其他狀況之外,這些狀況還可以包括下列各項中的一項或多項:(1)回顧視窗中的P-MPR的最高值;(2)回顧視窗中的P-MPR的最 差值;和/或(3)回顧視窗中的P-MPR的最低值。WTRU 102可以基於所述狀況來確定與當前時間間隔(例如當前TTI)相關聯的值。例如,在與(例如始於)第一時間510相對應的第一間隔(例如與TTI相關聯),相關聯的回顧視窗可以具有處於該回顧視窗且處於等級C的最高P-MPR。依照等級C的P-MPR值與第一間隔相對應的判定,WTRU 102可以確定所述P-MPR的變化超出了門檻值或者所述P-MPR處於支配地位和/或滿足了其他觸發標準,並且可以發送PHR。
在第二時間520,在禁止計時器終止並且回顧視窗不再包括處於等級C的P-MPR值之後,與第二時間520相關聯的回顧視窗中的最高P-MPR值處於等級B。例如,由於P-MPR可能不再處於支配地位或者所述變化可能大於門檻值,WTRU 102可以觸發一個由於從等級C到等級B的P-MPR變化所引發的PHR。在每一個觸發事件之後都可以設定一個用於指定時間的禁止計時器。
在第三時間530,在禁止計時器終止之後,P-MPR值有可能變成等級A以下,而有可能發生路徑損耗觸發,並且WTRU 102可以基於與回顧視窗相對應的最高P-MPR值來報告等級B,而不是低於等級A的實際等級。
在第四時間540,在禁止計時器終止之後,P-MPR的值有可能介於等級C與等級D之間,由此其在禁止PHR的時間裏會增大至等級D,然後則會降至等級C與D之間。WTRU 102可以觸發由於P-MPR處於支配地位和/或達到門檻值量的變化(與先前報告的等級B相比)而產生的PHR,並且WTRU 102可以基於與回顧視窗相對應的最高P-MPR直來報告P-MPR等 級D,而不是介於等級C與D之間的實際等級。此外還可以設定另一個用於指定時間的禁止計時器。
在第五時間550,在禁止計時器終止之後,P-MPR的值可以處於等級B,由此會在禁止PHR的時間裏降至等級B,以及保持在等級B。當P-MPR的值在足夠長的時間裏處於等級B,以致於在時間550出現了與回顧視窗相對應且處於等級B的值時,WTRU 102可以觸發由於P-MPR處於支配地位和/或變化達到門檻值量而產生的PHR,並且可以報告P-MPR等級B。
在某些典型的實施方式中,WTRU 102首先可以確定與P-MPR相關的變化是否可被用作觸發標準。該判定可以基於P-MPR是否在計算PCMAX(或PCMAX,c)的過程中是處於支配地位的因素(也就是其是否對所述計算產生影響)。如果存在多個CC,則可以為每一個CC單獨做出這其中的每一個判定。
如果P-MPR在發送最後一個PHR時不是處於支配地位的因素,並且現在(例如在這個TTI中)也不是處於支配地位的因素,那麼因與P-MPR相關聯的變化大於所配置的門檻值而報告PHR未必有用。WTRU 102可以跳過基於與P-MPR相關聯的變化來確定是否觸發PHR的過程。如果存在多個CC,那麼可以單獨為每一個CC執行這其中的每一個判定(例如判定哪一個因素處於支配地位或者是否觸發PHR)。對於滿足該情況的任何CC而言(例如任何這樣的CC,其中對於所述CC來說,P-MPR或P-MPR,c在發送最後一個PHR的時候都不是處於支配地位的因素,並且現在也不是處於支配地位的因素),WTRU 102可以跳過基於與P-MPR相關聯的變化來確定是否觸發PHR的過程。
如果P-MPR在發送最後一個PHR的時候不是處於支配地位的因素,但是現在(例如在這個TTI中)是處於支配地位的因素,那麼為大於所配置門檻值且與P-MPR相關聯的變化報告PHR的處理可能會是有用的。WTRU 102可以應用基於與P-MPR相關聯的變化來確定是否觸發PHR的過程。如果存在多個CC,那麼可以單獨為每一個CC執行這其中的每一個判定(例如確定哪一個因素處於支配地位),應用該過程來確定是否觸發PHR的處理可以是為每一個CC單獨執行的,並且所使用的可以是P-MPR,c而不是P-MPR。
如果P-MPR在發送最後一個PHR的時候是處於支配地位的因素,並且現在(例如在這個TTI中)繼續是處於支配地位的因素,那麼為大於所配置的門檻值且與P-MPR相關聯的變化報告PHR可能會是有用的。WTRU 102可以應用基於與P-MPR相關聯的變化來確定是否觸發PHR的過程。如果存在多個CC,那麼可以單獨為每一個CC執行這其中的每一個判斷(例如確定哪一個因素處於支配地位),應用確定是否觸發PHR的過程的處理可以是為每一個CC單獨執行的,並且所使用的可以是P-MPR,c而不是P-MPR。
在某些典型的實施方式中,典型的MAC過程可以包括可能使用回顧視窗的PHR觸發。
例如,可以實施禁止PHR計時器。如果禁止PHR計時器終止、已經終止、有可能終止或是有可能已經終止,以及從最後一次在WTRU 102具有或可能具有用於新傳輸的UL資源的時候傳輸PHR開始,用於至少一個具有已配置的上行鏈路且歸因於後移視窗(例如P-MPR後移視窗)期間 的功率管理(由P-MPR許可)的最高額外功率後移的變化或是可能發生的變化超出了某個門檻值(例如dl-路徑損耗變化dB),那麼可以報告PHR。
P-MPR後移視窗可以規定可供WTRU 102確定歸因於功率管理(由P-MPR許可)的最高額外功率後移的連續子訊框的數量。作為替換,P-MPR後移視窗可以規定可供WTRU 102確定歸因於功率管理(由P-MPR許可)的最高額外功率後移的子訊框的數量。在第二個替換方案中,P-MPR後移視窗可以規定可供WTRU 102確定歸因於功率管理(由P-MPR許可)的最高額外功率後移的上行鏈路子訊框的數量。在第三個替換方案中,P-MPR後移視窗可以規定可供WTRU 102確定歸因於功率管理(由P-MPR許可)的最高額外功率後移的連續上行鏈路子訊框的數量。
擴展的功率餘量MAC控制元素(CE)可以包括如下定義的PCMAX,c欄位。PCMAX,c:此欄位包括或者可以包括用於在先PH欄位計算的PCMAX,c。關於PCMAX,c的計算考慮或者可以顧及歸因於P-MPR後移視窗中的功率管理(由P-MPR許可)的最高額外功率後移。
用於上述比較的門檻值被標識為dl-路徑損耗變化,它可以是一個可配置的不同門檻值,例如為該目的規定的門檻值。
舉例來說,第6圖顯示了諸如P-MPR後移視窗之類的回顧視窗的用途。在該示例中,P-MPR後移觸發可以基於該觸發之前的時段(例如P-MPR後移視窗)中的最高P-MPR值。
參考第6圖,在典型的觸發過程600中,WTRU 102可以監視或者確定隨時間改變的P-MPR。在第一時間610,PHR可以基於受監視(或確定)且處於等級C的P-MPR而被觸發,並且可以在PHR中將P-MPR報告給 網路資源(例如eNB 140)。在第一時間可以設定一個用於指定時段的禁止計時器。在該禁止計時器終止之前的這個指定時段中可以禁止觸發別的PHR。可以建立回顧視窗以確定與在回顧視窗期間的P-MPR相關聯的狀況。除了先前描述的眾多其他狀況之外,這些狀況還可以包括下列各項中的一項或多項:(1)回顧視窗中的P-MPR的最高值;(2)回顧視窗中的P-MPR的最差值;和/或(3)回顧視窗中的P-MPR的最低值。WTRU 102可以基於所述狀況來確定與當前時間間隔(例如當前TTI)相關聯的值。例如,在與(例如始於)第一時間610相對應的第一間隔(例如與TTI相關聯),相關聯的回顧視窗(例如P-MPR後移視窗)可以具有處於該回顧視窗且為等級C的最高P-MPR。基於等級C的P-MPR值對應於該第一間隔的判定,WTRU 102可以判定所述P-MPR的變化超出了門檻值或者所述P-MPR處於支配地位和/或滿足了其他觸發標準,並且可以發送PHR。
在第二時間620,在禁止計時器終止並且回顧視窗不再包括處於等級C的P-MPR值之後,與第二時間620相關聯的回顧視窗中的最高P-MPR值處於等級B。例如,由於P-MPR可能不再處於支配地位或者所述變化有可能大於門檻值,因此,WTRU 102有可能觸發一個由於從等級C到等級B的P-MPR變化而引發的PHR。在每一個觸發事件之後都可以設定一個用於指定時間的禁止計時器。
在第三時間630,在禁止計時器剛剛終止之後,P-MPR值有可能處於等級B,由此會在禁止PHR的時間中的很短時段中增大至等級C,然後則會降至等級B。等級C是與回顧視窗相對應的最高P-MPR值,基於等級C,WTRU 102可以觸發一個PHR,其中所述PHR是因為P-MPR處於支配 地位和/或達到了門檻值的變化(與先前報告的等級B相比)而引發的,並且WTRU 102可以報告P-MPR等級C而不是實際等級B。此外還可以設定另一個用於指定時間的禁止計時器。
在第四時間640,在禁止計時器終止之後,P-MPR值可能處於等級A,此時有可能發生路徑損耗觸發,並且WTRU 102可以基於與回顧視窗相對應的最高P-MPR值來報告等級C而不是等級A。
在某些典型的實施方式中,如果禁止PHR計時器沒有運行,並且從最後一個PHR開始,處於P-MPR後移視窗中的最高P-MPR後移值的增大或減小超出了DL路徑損耗變化dB,那麼將會觸發PHR,並且在PCMAX,c計算中將會使用這個最大的P-MPR後移值。
某些典型的過程可以在P-MPR後移於短時間內可能減小的時候(例如後移銳減,其中所述銳減可能導致所許可或配置的最大輸出功率激增)限制或阻止PHR觸發,同時允許在P-MPR後移增大的時候(例如後移激增,其中所述激增可以導致所許可或配置的最大輸出功率銳減)實施快速觸發。這些典型過程可以確保用於PHR的PCMAX,c值不會以偶爾或臨時的後移值(例如低的後移值)為基礎,從而避免超出可用WTRU發射功率的排程授權。
在某些典型的實施方式中,所實施的可以是使用了經過修改的時間-觸發器(TTT)的典型過程。
既然已發送最後一個PHR,當P-MPR(例如基於功率管理的後移量)的減小超出了門檻值,則可以在確定是否觸發PHR的時候應用TTT報告延遲。可以設想的是,通過使用這個延遲,可以防止因為P-MPR的間 歇性降低而引發的過多觸發,但是允許在不等待的情況下用P-MPR的增大來觸發PHR(例如排除因為禁止計時器所導致的等待)。一旦啟動了TTT計時器,如果在TTT計時器的持續時間中滿足該標準(例如P-MPR的降低大於某個門檻值),則可以在TTT計時器終止的時候觸發PHR。所述PHR可以在觸發PHR的時候用每一個CC的當前PCMAX,c值發送。
在TTT時段中,在P-MPR的下降持續低於某個門檻值的同時P-MPR發生波動的情況下,上述過程可能不會起作用。PH報告有可能使用的是觸發時出現的P-MPR值,並且這個值是不能代表P-MPR的。舉個例子,在TTT終止時,如果P-MPR向下波動,並且WTRU 102基於該P-MPR發送PHR,那麼eNB 140可能會使用比在P-MPR回過來向上波動時可得的更多的功率來排程UL授權。
在某些典型的實施方式中,可以實施TTT過程的修改版本。WTRU 102可以採取下列操作中的一個或多個操作。
當由於減小的P-MPR TTT終止而WTRU 102觸發並報告PHR時,WTRU 102可以使用先前時段中的最高P-MPR值(例如導致產生最大功率減小的值),其中舉例來說,所述時段可以等於:(1)TTT計時器長度;(2)禁止計時器長度,或者(3)其在計算用於PHR的PCMAX,c的過程中使用的另一個時間視窗,例如回顧視窗。WTRU 102可以使用P-MPR值來計算其在PHR中為每一個CC報告的PCMAX,c值。WTRU 102可以使用P-MPR值來計算其在為PHR中的每一個CC報告的PH的過程中使用的PCMAX,c值。這種情況對於類型1(PUSCH)和/或類型2(PUSCH+PUCCH)的PH來說都是適用的。如果存在多個CC,那麼可以為每一個CC單獨執行 該計算,並且對於每一個CC來說,P-MPR可以是P-MPR,c。
當WTRU 102觸發並且報告因為別的觸發事件所導致的PHR時,WTRU 102可以使用在先時段中的最高P-MPR值(例如導致產生最大的功率減小的值),其中所述時段可以等於:(1)TTT計時器長度;(2)禁止計時器長度,或者(3)其在計算用於PHR之PCMAX,c的過程中使用的另一個時間視窗,例如回顧視窗,所述別的觸發事件例如為路徑損耗變化、重新配置、SCell啟動和/或週期性PHR報告等等。WTRU 102可以使用P-MPR值來計算其在PHR中為每一個CC報告的PCMAX,c值。WTRU 102可以使用P-MPR值來計算其在計算PHR中為每一個CC報告的PH的過程裏使用的PCMAX,c值。這種情況對於類型1(PUSCH)和/或類型2(PUSCH+PUCCH)的PH來說都是適用的。如果存在多個CC,則可以為每一個CC單獨執行該計算,並且對於每一個CC來說,P-MPR可以是P-MPR,c。
作為使用在視窗中的最高P-MPR值的替換,WTRU 102可以使用在視窗中的另一個值或是基於在視窗中的值而計算得到的值,例如平均值、中值或是除了在先時段中的極高或極低值之外的這些值。
從最後一個大於門檻值的PHR起使用P-MPR下降作為發起TTT的標準,作為替換(或補充),WTRU 102可以從最後一個大於門檻值的PHR起,使用P-MPR對於PCMAX或PCMAX,c的影響的變化作為發起TTT的標準,其中舉例來說,所述變化可以是增大或減小。如果存在多個CC,那麼可以為每一個CC單獨做此處理。對於每一個CC來說,P-MPR可以是P-MPR,c。如果滿足了對於至少一個CC的標準,則WTRU 102可以發起TTT。
從最後一個大於門檻值的PHR起,在TTT時間的持續期間中 保持P-MPR下降來作為觸發PHR的標準,作為替換(或補充),WTRU 102可以從最後一個大於門檻值的PHR開始,使用所保持的P-MPR對於PCMAX或PCMAX,c的影響的變化來作為觸發PHR的標準,其中舉例來說,所述變化可以是增大或減小。如果存在多個CC,那麼可以為每一個CC單獨做此處理。對每一個CC來說,P-MPR可以是P-MPR,c。如果滿足了對於至少一個CC的標準,則WTRU 102可以觸發PHR。
從最後一個大於門檻值的PHR起使用P-MPR下降作為發起TTT的標準,作為替換(或補充),WTRU 102可以從最後一個大於門檻值的PHR開始,使用PCMAX或PCMAX,c的增大作為發起TTT的標準。如果存在多個CC,那麼可以為每一個CC單獨做此處理。對於每一個CC來說,P-MPR可以是P-MPR,c。如果滿足了對於至少一個CC的標準,則WTRU 102可以發起TTT。
從最後一個大於門檻值的PHR起,在TTT時間的持續期間中保持P-MPR下降來作為觸發PHR的標準,作為替換(或補充),WTRU 102可以從最後一個大於門檻值的PHR開始使用保持PCMAX或PCMAX,c的增大作為觸發PHR的標準。如果存在多個CC,那麼可以為每一個CC單獨做此處理。對於每一個CC來說,P-MPR可以是P-MPR,c。如果滿足了用於至少一個CC的標準,則WTRU 102可以觸發PHR。
在先前關於例如回顧視窗所描述的以及稍後描述的功率計算(例如PH和/或PCMAX和/或PCMAX,c計算)中,WTRU 102可以使用所選擇的一個或多個P-MPR(或PMPR,c)值。
第7圖是示出了將經過修改的TTT用於PHR的典型觸發過程 700的圖示。
在某些典型的過程中,報告P-MPR或者P-MPR等級(例如P-MPR等級X)可等同於在PHR中包含PCMAX,c,其中所述PCMAX,c可以包括或者顧及處於等級X或是具有等級X的值的P-MPR後移。
參考第7圖,在典型的觸發過程700中,WTRU 102可以監視或者確定可以隨時間改變的P-MPR。在第一時間710,PHR可以基於受到監視(或確定)且處於等級C的P-MPR而被觸發,並且可以在PHR中將P-MPR報告給網路資源(例如eNB 140)。在第一時間710,可以設定一個用於指定時段的禁止計時器。直至禁止計時器終止之前的這個指定時段中可以禁止觸發別的PHR。
在第二時間720,P-MPR值有可能從等級C降至等級A,由此可能啟動TTT計時器。在第三時間730,P-MPR有可能從等級A提高至等級C,並且TTT計時器有可能被停止。由於TTT計時器有可能尚未終止,因此不會發生PHR觸發。在第四時間740,P-MPR值有可能從等級C降至等級A,而這有可能會啟動TTT計時器。在TTT時間的持續期間,P-MPR有可能在等級A與B之間變化(例如叢發)(舉例來說,由於P-MPR的變化可能不會超出門檻值,因此這種情況不會停止TTT計時器)。回應於TTT計時器的終止,在第五時間750,WTRU可以觸發PHR報告,並且將處於例如P-MPR TTT視窗中的最高等級(例如等級B)的P-MPR等級包含在PHR中,並且可以設定一個用於指定時段的禁止計時器。在第六時間760,TTT計時器可以啟動(例如基於從等級B到等級A以下的P-MPR值的下降)。
在第七時間770,在禁止計時器終止之後,P-MPR的等級將 會保持在等級A以下。除了P-MPR之外,WTRU 102還可能會因為顯著的路徑損耗變化之類的其他原因觸發PHR,並且有可能報告處於與某個值(例如等級B之類的最高值)相關聯的等級的P-MPR,其中所述值與用於第七時間770的回顧窗口相關聯。響應於路徑損耗觸發,所述TTT計時器可被停止,並且可以設定一個用於指定時段的禁止計時器。
在第八時間780,在禁止計時器終止之後,P-MPR的等級將會變成介於等級C與等級D之間的等級,由此可以觸發PHR而基於與相應的回顧視窗相關聯的值(例如最高值)來報告P-MPR等級D。可以設想的是,與第八時間780之後的P-MPR值的銳減相關聯的下降不會超出用於啟動TTT計時器的門檻值。在第八時間780,可以設定一個用於指定時段的禁止計時器。
在禁止計時器終止之後的第九時間790,P-MPR的等級會從等級D變成等級B,由此,TTT計時器可以啟動,並且在第十時間795可以觸發PHR而基於與相應的P-MPR TTT視窗相關聯的值(例如最高值)來報告P-MPR等級B。
關於上述典型過程的變體可以包括下列各項中的一項或多項。
WTRU 102首先可以判定與P-MPR相關的變化是否可被用作觸發標準。該判定可以基於P-MPR是否在計算PCMAX(或PCMAX,c)的過程中是處於支配地位的因素(例如是否對所述計算產生影響)。如果存在多個CC,則可以為每一個CC單獨做出這其中的每一個判定。
如果P-MPR在發送最後一個PHR的時候不是處於支配地位 的因素,並且現在(例如在此TTI中)也不是處於支配地位的因素,那麼為關聯於P-MPR的變化報告PHR的處理有可能是無用的,並且WTRU 102可以跳過基於與P-MPR相關聯的變化來確定是否觸發PHR的過程。如果存在多個CC,則可以單獨為每一個CC執行這其中的每一個判定(例如哪一個因素處於支配地位或者是否觸發PHR)。對於滿足條件的任何CC而言(例如任何CC,其中對於所述CC來說,P-MPR或P-MPR,c在發送最後一個PHR的時候都不是處於支配地位的因素,並且現在也不是處於支配地位的因素),WTRU 102可以跳過基於與P-MPR相關聯的變化來確定是否觸發PHR的過程。
如果P-MPR在發送最後一個PHR的時候不是處於支配地位的因素,並且現在(例如在此TTI中)也不是處於支配地位的因素,那麼為關聯於P-MPR的變化報告PHR的處理有可能是無用的,並且WTRU 102可以跳過基於與P-MPR相關的變化來啟動TTT計時器的過程。如果存在多個CC,那麼可以單獨為每一個CC執行這其中的每一個判定(例如哪一個因素處於支配地位或者是否啟動TTT計時器)。對於滿足條件的任何CC而言(例如任何CC,其中對於所述CC來說,P-MPR或P-MPR,c在發送最後一個PHR的時候都不是處於支配地位的因素,並且現在也不是處於支配地位的因素),WTRU 102可以跳過基於與P-MPR(或P-MPR,c)相關聯的變化來啟動TTT計時器的過程。
在某些典型的實施方式中,WTRU 102可以在其功率計算中使用所選擇的P-MPR。
WTRU 102可以選擇一個P-MPR值,以便用於為並非實際功 率管理的功率後移(例如所需要的後移)的PHR計算PH和/或PCMAX,c(例如將要被包含在PHR中的PCMAX,c)。WTRU 102可以在其功率控制計算中採用以下的一種或多種方式來使用P-MPR後移值,其中在具有多個CC的情況下,P-MPR可以用P-MPR,c替換。
在給定的子訊框中,如果實際功率管理的功率後移(例如所需要的後移)小於或等於為最後一個PHR(或是如果可以在該子訊框中發送PHR,則是當前PHR)選擇的P-MPR後移值,那麼在計算用於UL功率控制的PCMAX,c的時候,WTRU 102可以使用所選擇的P-MPR作為功率管理的功率後移值。作為替換,在計算用於UL功率控制的PCMAX,c的時候,WTRU 102可以使用實際功率管理的功率後移(例如所需要的後移)。對於最大功率狀況而言,這樣做(例如使用實際後移)可以避免由於沒有必要的高P-MPR而導致的不必要功率消減或縮放。
在給定的子訊框中,如果實際功率管理的功率後移(例如所需要的後移)大於為最後一個PHR(或是如果可以在這個子訊框中發送PHR,則是當前PHR)選擇的P-MPR後移值,那麼在計算用於功率控制的PCMAX,c的時候,WTRU 102可以使用這個值作為P-MPR後移值。作為替換,在計算用於UL功率控制的PCMAX,c的時候,WTRU 102可以使用實際功率管理的功率後移(例如所需要的後移)。基於活動的禁止計時器之類的某些原因,對於持續較高的實際P-MPR是不能被報告的,對這種P-MPR來說,上述處理是很有利的。
在某些典型的實施方式中,可以實施基於在計算PCMAX和PCMAX,c的過程中處於支配地位的因素來觸發PHR的過程。
在一些情況中,P-MPR(或P-MPR,c)有可能對PCMAX和/或PCMAX,c的計算產生影響,而在一些情況中則不會產生影響。這種情況也被稱為是否P-MPR(或P-MPR,c)支配了PCMAX和/或PCMAX,c的值。可以設想的是,如果P-MPR(或P-MPR,c)沒有支配所述計算,那麼即使P-MPR(或P-MPR,c)處於非零值,PCMAX和/或PCMAX,c的值也不會受到影響。PCMAX可以是為WTRU 102配置的最大輸出功率。PCMAX,c可以是為給定的CC配置的最大輸出功率。在這裏提供了基於在計算PCMAX和/或PCMAX,c的過程中處於支配地位的因素來觸發PHR的例示過程。
雖然這些典型過程的特定要素是單獨或是以某種組合的方式描述的,但是可以設想,它們是可以與這裏描述的其他要素以任何組合方式使用的。
在某些典型的實施方式中,所實施的可以是在支配PCMAX,c計算的因素發生變化的時候觸發PHR的例示過程。
WTRU 102可以採取以下操作中的一個或多個操作。當P-MPR支配了(例如在當前TTI中)PCMAX,c(或PCMAX)的計算而沒有支配最後一個PHR中的PCMAX,c(或PCMAX)的計算時,WTRU 102可以觸發PHR。對於多個CC來說,如果在任意一個或多個CC中存在從P-MPR在最後一個PHR中不處於支配地位到P-MPR處於支配地位(例如在當前TTI中)的變化,則WTRU 102可以觸發PHR。對於多個CC來說,P-MPR可以是專用於CC的,對每一個CC而言是P-MPR,c。可以使用禁止、TTT或回顧計時器或視窗中的一個或多個來排除或延遲P-MPR支配觸發。
當P-MPR沒有支配(例如在當前TTI)PCMAX,c(或PCMAX) 的計算但卻支配了最後一個PHR中的PCMAX,c(或PCMAX)的計算時,WTRU 102可以觸發PHR。對於多個CC來說,如果在一個或多個CC中存在從P-MPR在最後一個PHR中處於支配地位到P-MPR不處於支配地位(例如在當前TTI中)的變化,那麼WTRU102可以觸發PHR。對於多個CC來說,P-MPR可以是專用於CC,對每一個CC而言是P-MPR,c。可以使用禁止、TTT或回顧計時器或視窗中的一個或多個來排除或延遲P-MPR支配觸發。
在某些典型的實施方式中,WTRU102可以如下確定是否滿足了PHR觸發標準。如果P-MPR在最後一個PHR中不是支配PCMAX,c(或PCMAX)的因素,並且現在是處於支配地位的因素,和/或如果P-MPR在最後一個PHR是支配PCMAX,c(或PCMAX)的因素,並且現在不是處於支配地位的因素,那麼PHR觸發標準是可以被滿足的。
以下關於PCMAX,c的計算可以用作示例來幫助例示該過程:PCMAX,c(i)=MIN {PEMAX,c-△TC,c,PPowerClass-MAX(MPRactual,c,P-MPR,c(i))-△TC,c} 等式(101)
在該示例中,當P-MPR,C>MPRactual,c以及[PPowerClass-P-MPR,c]<PEMAX,c時,P-MPR,c有可能影響PCMAX,c的值。
當P-MPR(通常用於表示P-MPR或P-MPR,c)沒有支配PCMAX,c的計算時,eNB 140可能基於其可以具有、可以接收或是可以支配的資訊來追蹤影響PCMAX,c的MPR及其他相關因素(例如LTE相關因素)的變化,其中舉例來說,所述資訊可以是在PHR中報告的PCMAX,c值以及 eNB 140可為WTRU 102的每一個CC提供的UL授權。
當P-MPR處於支配地位時,PHR可以為eNB 140提供PCMAX,c值。當P-MPR處於支配地位時,如果eNB 140知道P-MPR處於支配地位(例如借助於在這裏描述的PHR中包含且表明P-MPR處於支配地位的指示),那麼,通過使用例示等式PCMAX,c=PPowerClass-P-MPR,c(i)-△TC,c,eNB 140能夠確定WTRU 102使用的功率管理功率後移。
第8圖是示出了與額外功率後移支配相關的典型觸發和PHR過程800的圖示。
參考第8圖,在典型的觸發和PHR過程800中,在第一時間810,任何觸發都是有可能發生的(例如因為顯著的路徑損耗變化而導致的觸發)。WTRU 102可以向eNB 140發送一個PHR,其中該PHR可以包括用於活動CC的PH,並且還可以包括用於CC的PCMAX,c。WTRU 102還可以為每一個CC發送一個關於P-MPR是否影響PCMAX,c計算的指示(例如包含在PHR中)。禁止計時器可以是回應於所述觸發而被設定的。在下一個PHR之前,eNB 140可以追蹤MPR(包括MPR和/或A-MPR),並且估計從MPR支配PCMAX,c的計算時起的PH。在第二時間820,在禁止計時器終止之後,P-MPR值有可能變化為大於(例如增大)某個門檻值量的值,並且P-MPR可以支配PCMAX,c的計算。由於P-MPR發生變化,WTRU 102有可能觸發PHR。eNB 140可以從PHR中(例如從PCMAX,c中)確定P-MPR(其在時間820處於等級B)。在第三時間830,在禁止計時器終止之後,P-MPR值有可能變化為大於(例如增大)某個門檻值量的值,而MPR也有可能改變(例如增大)並可能支配PCMAX,c的計算。由於P-MPR的變化,WTRU 102有 可能觸發PHR。由於MPR在時間830支配了PCMAX,c的計算,因此,eNB 140可能不再能夠從PHR中(例如從PCMAX,c中)確定P-MPR(其在時間830處於等級C)。
在第四時間840,在禁止計時器終止之後,MPR值有可能改變(例如減小),以使P-MPR現在可能支配了PCMAX,c的計算。由於支配地位改變,WTRU 102有可能觸發PHR報告。現在,eNB 140可以從PHR確定P-MPR(其在時間840處於等級C)。在沒有該觸發器的情況下,eNB 140無法得知P-MPR,並且有可能會過度排程WTRU 102。
在某些典型的實施方式中,當PCMAX,c(或PCMAX)的支配因素發生變化時,這時可以實施PHR觸發處理。例如,當PCMAX,c的支配因素從P-MPR不處於支配地位變成P-MPR處於支配地位時,可以實施觸發處理。與第一時間810相關聯的觸發器可以是任一PHR觸發器,例如因為路徑損耗變化大於門檻值而產生的觸發器。作為觸發結果,WTRU 102可以發送一個PHR,其中該PHR包含了用於活動CC的PH值以及用於CC的PCMAX,c值。WTRU 102還可以為每一個CC發送一個關於P-MPR是否影響PCMAX,c計算的指示(例如包含在PHR中)。在這種情況,P-MPR不處於支配地位。在下一個PHR之前,只要P-MPR繼續不處於支配地位,則eNB 140可以像P-MPR不存在一樣排程UL授權。如果eNB 140追蹤MPR、A-MPR等等,那麼它可以估計其在做出排程決定的過程中其可使用的功率餘量。
在本示例中,與第二時間820相關聯的觸發器可以是因為P-MPR的大的變化而產生的(例如從最後一個大於門檻值的PHR開始的P-MPR變化)。作為觸發結果,WTRU 102可以發送一個PHR,其中該PHR 包含了用於活動CC的PH值以及用於CC的PCMAX,c值。WTRU 102還可以為每一個CC發送一個關於P-MPR是否影響PCMAX,c計算的指示(例如包含在PHR中)。在這種情況,P-MPR處於支配地位。通過具有PCMAX,c以及表明P-MPR處於支配地位的指示,可以允許eNB 140確定WTRU 102使用的P-MPR值(例如等級B)。
在下一個PHR之前,如果eNB 140追蹤MPR、A-MPR等等,那麼它可以將恰當的值與P-MPR值相比較,以便確定哪一個值處於支配地位,並且相應地使用所追蹤的值或P-MPR值來估計PH。由於P-MPR可以從最後一個PHR獲知,因此這樣是可行的。
在本示例中,與第三時間830相關聯的觸發器可以是因為很大的P-MPR變化產生的(例如從最後一個大於門檻值的PHR起的P-MPR變化)。作為觸發結果,WTRU 102可以發送一個PHR,其中該PHR包含了用於活動CC的PH值以及用於CC的PCMAX,c值。WTRU 102還可以為每一個CC發送一個關於P-MPR是否影響PCMAX,c計算的指示(例如包含在PHR中)。在這種情況下,P-MPR不處於支配地位。現在,eNB 140知道P-MPR不再處於支配地位,並且由於P-MPR不處於支配地位,即使其發生了顯著變化(例如大於門檻值量的變化),eNB也不能確定當前的P-MPR值。
在下一個PHR之前,只要P-MPR仍不處於支配地位,則eNB 140可以像P-MPR不存在一樣排程UL授權。如果eNB140追蹤MPR、A-MPR等等,那麼它可以估計其在做出排程決定的過程中其可使用的功率餘量。
如果狀況發生變化並且P-MPR處於支配地位,那麼在不具有可能觸發PHR的很大變化的情況下,eNB 140無法獲知P-MPR處於支配地位 或是P-MPR值。所述eNB 140有可能會過度排程WTRU 102,而這有可能導致在WTRU 102上的功率縮放。
在第四時間840,由於從P-MPR在最後一個PHR中不處於支配地位到P-MPR處於支配地位的變化,觸發器可用來向eNB 140告知P-MPR現在處於支配地位,以及提供能夠確定P-MPR的PCMAX,c值。
與關聯於時間820和830的第二和第三觸發之間的時間相似,在下一個PHR之前,如果eNB 140追蹤MPR、A-MPR等等,那麼它可以將恰當的值與P-MPR值相比較,以便確定哪一個值處於支配地位,並且可以相應地使用所追蹤的值或P-MPR值來估計PH。
第9圖是示出了典型的觸發和PHR過程900的圖示。
參考第9圖,在典型的觸發和PHR過程900中,在第一時間910,任何觸發都有可能發生(例如因為顯著的路徑損耗變化而導致的觸發)。WTRU 102可以向eNB 140發送PHR,其中該PHR可以包括用於活動CC的PH,並且還可以包括用於CC的PCMAX,c。WTRU 102可以為每一個CC發送一個關於P-MPR是否影響PCMAX,c計算的指示(例如包含在PHR中)。回應於所述觸發,可以設置禁止計時器。在下一個PHR之前,eNB 140可以追蹤MPR(包括MPR和/或A-MPR),並且估計從MPR支配PCMAX,c計算時開始的PH。在第二時間920,在禁止計時器終止之後,P-MPR值的變化(例如增大)有可能大於某個門檻值量,並且P-MPR有可能支配PCMAX,c的計算。由於P-MPR的變化,WTRU 102可以觸發PHR。eNB 140可以從PHR中(例如從PCMAX,c中)確定P-MPR(其在時間920處於等級C)。在第三時間930,在禁止計時器終止之後,P-MPR值的變化(例如減小)有可能大於 某個門檻值量,此時,P-MPR有可能支配PCMAX,c的計算。由於P-MPR的變化,WTRU 102有可能觸發PHR。由於MPR在時間930支配了PCMAX,c的計算,因此,eNB140有可能不再能夠從PHR中(例如從PCMAX,c中)確定P-MPR(其在時間930處於等級B)。
在第四時間940,在禁止計時器終止之後,MPR值有可能會改變(例如減小),由此P-MPR現在有可能支配PCMAX,c的計算。由於支配地位改變,WTRU 102有可能觸發PHR報告。現在,eNB 140可以從PHR中確定P-MPR(其在時間940處於等級B)。在沒有該觸發器的情況下,eNB 140無法得知P-MPR處於支配地位,並且有可能不正確地排程WTRU 102。
在某些典型的實施方式中,如果第四時間的觸發器不存在,那麼eNB 140可以假設P-MPR與其在第二時間發生觸發器的時候相同。在這種情況下,當eNB 140假設P-MPR處於支配地位時,由於其假設仍舊處於等級C,因此其對WTRU 102的排程有可能不足。在其他典型的實施方式,如果eNB 140假設MPR是從最後一個表明MPR處於支配地位的PHR開始處於支配地位的(例如始終處於支配地位),那麼在P-MPR實際處於支配地位時,eNB 140有可能會過度排程WTRU 102。
在某些典型的實施方式中,過程(例如MAC過程)可以包括以PCMAX,c支配地位的變化為基礎的PHR觸發。以PCMAX,c支配地位為基礎的典型例示PHR觸發可被定義成是在以下情況中發生的:禁止PHR計時器終止、已經終止、有可能終止或者有可能已經終止,以及在PHR(例如MAC PHR)中的欄位(例如支配地位指示欄位或P欄位)從最後一次在WTRU 102具有或可能具有用於新傳輸的UL資源時的PHR傳輸開始發生了 變化(或可能已經發生了變化),其中所述欄位可以表明:如果沒有應用額外功率管理,那麼PCMAX,c將會具有(或可能具有)不同的值。
在某些典型的實施方式中,關於是否觸發PHR的確定可以包括使用處於支配地位的因素。
WTRU 102可以基於以下的一個或多個典型過程來確定是否以及基於什麼來觸發PHR。WTRU 102可以確定與P-MPR關聯的變化是否可被用作觸發標準。該確定可以基於P-MPR是否在計算PCMAX,c(或PCMAX)的過程中是處於支配地位的因素(例如其是否對計算產生影響)。如果存在多個CC,那麼可以為每一個CC分別做出這其中的每一個確定。對每一個CC來說,P-MPR可以是P-MPR,c。
如果P-MPR在發送最後一個PHR時不是處於支配地位的因素,並且現在(例如在當前TTI中)也不是處於支配地位的因素,那麼為關聯於P-MPR的變化報告PHR的處理有可能是無用的(例如在P-MPR變化超出門檻值的時候)。WTRU 102可以跳過這個基於與P-MPR相關聯的變化來確定是否觸發PHR的過程。如果存在多個CC,那麼可以分別為每一個CC執行這其中的每一個確定(例如確定哪一個因素處於支配地位或者是否觸發PHR)。對於滿足狀況的任何CC而言(例如P-MPR或P-MPR在發送最後一個PHR的時候都不是處於支配地位的因素,並且現在也不是處於支配地位的因素所針對之任何CC),WTRU 102可以跳過基於與P-MPR相關聯的變化來確定是否觸發PHR的過程。對於每一個CC來說,P-MPR可以是P-MPR,c。
在某些典型的實施方式中,PHR中的PCMAX值可以支援頻帶間UL傳輸。可以設想的是,CC和服務胞元是可以交換使用的,而且TTI 可以取代子訊框,並且仍舊與這些實施方式相符。
PCMAX可以是WTRU之總配置最大輸出功率。在沒有縮放的情況下,如果為UL CC計算的WTRU 102的功率總和會或將會超出PCMAX,那麼WTRU 102可以在傳輸之前相應地縮放CC功率,以免超出其最大功率。在PHR中發送PCMAX是有用於eNB排程器,以使eNB排程器確定WTRU 102是否縮放過CC功率,以及如果有的話是縮放多少。可以設想的是,對頻帶內UL而言,eNB 140能夠從PCMAX,c中確定或估計PCMAX,並且無法從用於頻帶間UL的PCMAX,c中確定或估計PCMAX
在某些典型的實施方式中,PCMAX可以是由WTRU 102在PHR中發送的(比如始終將PCMAX包含在PHR中,或者將其包含在擴展PHR報告中,例如僅用於版本11和/或以後版本的WTRU 102)。如果WTRU 102始終在PHR中發送PCMAX,那麼當可以基於其他用信號通告的參數來確定PCMAX時,這時有可能出現不必要或沒用的發信號。在PHR中發送(例如僅發送)PCMAX(在其有用或被需要的時候)可能是有用的(這會減小發信號開銷)。
以下是用於在(或僅僅在)滿足某些標準的時候藉由將PCMAX包含在PHR中來減少PHR發信號的典型過程。
基於下列的一個或多個標準的符合(或滿足),WTRU 102可以將PCMAX包含在PHR中,所述PHR則可以處於擴展PHR MAC CE中。
第一個標準可以包括配置標準,其是在WTRU 102被配置成用於頻帶間UL(例如,WTRU 102被配置成在至少諸如800MHz波段和2.1GHz波段之類的兩個波段中的每個波段上具有至少一個UL CC)的情況下滿 足的。
第二個標準可以包含已啟動/CC標準,如果PHR包含了(或者將會或即將包含)用於至少兩個波段中的CC的報告,則可以滿足該標準,其舉例來說意味著,或使得(1)在PH包含(或者即將或將要包含)於PHR所針對的至少兩個波段中的每一個波段上都具有至少一個已啟動的CC,並且用於這其中的每一個CC的PH都可以是真實或虛擬的;和/或(2)在PH被包含(或是即將或將要包含)於PHR所針對的至少兩個波段中的每一個波段上都具有至少一個CC,並且用於這其中的每一個CC的PH都可以是真實或虛擬的。
第三標準可以包括真實PH標準,其中如果PHR包含了(或者即將或將會包含)用於至少兩個波段中的CC的真實PH,則可以滿足該標準,其舉例來說意味著,或使得(1)V位元可以指示用於至少兩個波段中的每一個波段上的至少一個CC的真實PH;和/或(2)PCMAX,c可被(或者即將或將被)包含在用於至少兩個波段中的每一個波段上的至少一個CC的PHR中;和/或(3)對處於至少兩個波段中的每個波段的至少一個CC而言,在被報告(或者用以報告)PHR所針對的子訊框中具有UL資源(例如PUSCH和/或PUCCH);和/或(4)對處於至少兩個波段中的每個波段上的至少一個CC而言,在被報告PHR所針對(或所在)的子訊框中分配了UL資源,其中所述UL資源可以通過UL授權或是所配置的半持久性排程(SPS)來分配,並且這種分配有可能產生PUSCH傳輸;和/或5)對處於至少兩個波段中的每個波段上的至少一個CC來說,在被報告PHR的子訊框中有可能分配UL資源或是存在PUCCH傳輸,其中所述UL資源可以是通過UL授權或是所配置的 半持久性排程(SPS)分配的並且有可能產生PUSCH傳輸等等。
第四個標準可以包括一個縮放標準,其中例如如果WTRU 102在報告PHR所針對的子訊框中縮放或者可以縮放其計算的一個或多個CC(或CC通道)功率,則滿足該縮放標準,因為所計算的CC功率總和將會或者即將超出WTRU 102的許可的總功率,其中所述功率可以是WTRU總配置最大輸出功率PCMAX
可以設想的是,如果具有真實PH的CC也是已啟動CC,並且已啟動CC也是已配置的CC,那麼第三標準可以是第二標準的子集,且第二標準可以是第一標準的子集。在這種情況下,舉例來說,無冗餘標準可以單單包括第一、第二、第三和第四標準中的每一個,以及第一與第四、第二與第四、第三與第四標準的組合。
以下是WTRU 102如何確定是否在WTRU 102可以發送的PHR中包含PCMAX,以及eNB 140如何可以確定是否在eNB 140可能接收的PHR中存在PCMAX的示例。
在某些典型示例中,如果第三標準和第四標準都滿足,那麼WTRU 102可以在PHR中包含(例如僅僅包含)PCMAX,由此,在PHR的子訊框中存在處於至少兩個波段中的每一個波段的至少一個CC,其中所述CC的真實PH包含在PHR中,並且WTRU 102為其執行過縮放處理來避免超出其最大功率(舉例來說,其可以是PCMAX)。
在其他的典型示例中,如果滿足第二標準,那麼WTRU 102可以在PHR中包含(例如僅包含)PCMAX,由此,在PHR的子訊框中存在處於至少兩個波段中的每個波段的至少一個已啟動的CC(例如基於WTRU 102所知道或確定的),並且對這其中的每一個CC而言,所報告的PH可以是真實或虛擬的。
在另一個典型示例中,由於PHR可以包括一個表示已被配置和啟動的並且PH被包含所針對CC的位元映射,並且eNB 140知道在每一個波段中具有哪些CC(舉例來說,由於eNB 140可以配置CC),因此,eNB 140可以使用PHR MAC-CE位元映射來確定是否針對一個以上的波段包含了用於CC的PH,其中所述位元映射可以識別PH針對哪些CC而被包含。如果用於包含PCMAX的標準是第二個標準,那麼eNB 140可以知道足夠的資訊來確定在該PHR中是否存在PCMAX。
在額外其他的典型示例中,eNB 140可以使用該位元映射來確定在PHR中可以包含哪些CC,以及使用與每一個PH相關聯的V位元來確定哪些CC具有真實PH,從而確定是否在PHR中具有用於不同波段中的CC的真實PH值。如果用於包含PCMAX的標準是第三個標準(其在滿足第一和第二標準的情況下可以被滿足(例如才可被滿足)),那麼,如果eNB 140發現V位元指示用於至少兩個不同波段中的每一個波段中的CC的真實PH,則eNB 140可以具有足夠資訊(例如來自V位元)來確定PHR中是否存在PCMAX
如果用於包含PCMAX的標準是單獨的或是與任一其他標準組合的第四標準,那麼eNB 140無法具有足夠資訊來確定是否在PHR中包含PCMAX
在某些典型的實施方式中,WTRU 102可以在PHR中包含下列各項中的一項或多項。
(1)關於WTRU 102在計算輸出功率的時候是否執行過縮放的指示,該指示可以提供一個表明WTRU 102是否縮放了所計算的一個或多個CC(或CC通道)功率的指示(例如要避免出現超出WTRU的最大許可發射功率的狀況,其中所述功率可以是WTRU總配置最大輸出功率PCMAX)。該指示可以是1個位元,並且可以使用MAC CE中的保留(或未使用)位元,例如PHR中的第一個八位元組的保留位元,其被用於指示包含在PHR中的CC,且1個位元則被用作了保留位元。諸如位元之類的指示可用於表明在PHR中是否存在PCMAX。舉個例子,如果用於包含PCMAX的標準是第三和第四標準,那麼eNB 140可以使用指示CC的位元映射來瞭解在PHR中是否存在處於不同波段的CC,使用V位元來確定用於至少兩個波段中的CC的PH是否真實,以及使用縮放位元來瞭解是否發生了縮放。如果滿足所有這些標準,那麼eNB 140可以推測餘量中的PCMAX。無論何時WTRU 102在PHR被發送所針對(或所在)的子訊框中執行過縮放處理,那麼WTRU 102可以將位元之類的指示設置成表明縮放處理的狀態。當滿足了用於包含PCMAX的一個或多個標準,並且WTRU 102在PHR被發送所針對(或所在)的子訊框中執行過縮放處理,那麼WTRU 102可以將位元之類的指示設置成表示縮放處理(和/或包含的PCMAX)的狀態。
(2)關於PCMAX是否包含在PHR中的指示,例如存在性指示符,其中舉例來說,所述指示可以是PHR中的單個位元,並且可以是縮放指示的補充(或替換)。該存在指示可以使用MAC CE中的保留(或未使用)位元,例如PHR中的第一個八位元組的保留位元,其中所述八位元組中的7個位元用於指示包含在PHR中的CC,第8個位元則是保留的。當滿足如上描 述的一個或多個恰當標準時,WTRU 102可以將所述位元設置成表明存在PCMAX
雖然所公開的是為頻帶內類型的操作提供PHR中的PCMAX的指示,但是可以想到,其也可以用於與頻帶間狀況不同的其他狀況,例如非鄰接頻帶內或甚至鄰接頻帶內CA,並且可以提供有用資訊。在非鄰接頻帶內和/或鄰接頻帶內操作的情況來說,用於包含PCMAX的一個或多個標準(例如以在多個波段中具有CC為基礎)都是可以應用的。舉個例子,在非鄰接頻帶內CA或是位置不同的服務胞元的CC之情況中,與不同波段中的CC相關聯的標準可以擴展成與處於其他類型的不同情景中的CC相關聯的標準,例如具有不同載波頻率的CC。
在其他的典型實施方式中,在PCell上可以執行無線電鏈路監視(RLM),這對頻帶內操作以及處於相同位置的服務胞元而言是足夠的(其原因在於在這些情形中,胞元的接收品質有可能是相似的)。對於例如具有頻帶間DL和/或UL情景的頻帶間操作而言,或在諸如具有遠端無線電頭端(RRH)的胞元並非處於相同位置的情況下,僅僅為PCell執行RLM未必足夠。所述RLM可以擴展至SCell。通過使用RLM,可以確定DL接收品質,其中所述品質可能導致對同步/不同步狀況進行檢測。
在某些典型的實施方式中,通過使用RLM(或某種其他測量或機制),可以確定用作UL CC的路徑損耗參考而在DL CC上執行的路徑損耗測量是否品質良好和/或可靠。
如果確定路徑損耗參考的品質低下(例如基於某些標準),那麼WTRU 102可以採用以下操作中的一個或多個操作。WTRU可以在PHR 中報告問題(例如品質低下)(例如包含用於每一個CC或CC群組的品質指示符,其中所述群組可以基於波段、位置(例如RRH)或是定時提前(TA)(例如TA群組))。WTRU 102可以禁止用於那些路徑損耗參考品質很差的CC的PH觸發(例如以相關聯的CC或CC群組的RLM過程為基礎)。
在某些典型的實施方式中,以下事件可能觸發PHR:(1)作為路徑損耗參考使用的一個或多個CC(例如任一CC)上的路徑損耗變化(例如超出門檻值和/或顯著的路徑損耗變化);(2)一個或多個CC(例如任一CC)上的P-MPR變化(例如超出門檻值和/或顯著的P-MPR變化);(3)週期性計時器終止;(4)PHR功能的配置/重新配置;和/或(5)已被配置了UL的SCell的啟動等等。
在與處於相同位置的頻帶內胞元一起工作時,每一個胞元的衰落有可能與其他胞元的衰落相關聯,對於這些胞元來說,P-MPR可以是相同的,由此,這些胞元可以採用類似的方式操作。如果一個CC的路徑損耗或P-MPR發生變化(例如顯著地),那麼可以認為其它的也會發生類似變化。當滿足觸發標準並且為CC(例如所有CC)發送PHR時,其可以包括CC(例如所有CC)的變化,並且可以在某個時段中禁止CC(例如所有CC)上的PHR。對於處於相同位置的頻帶內胞元來說,由於其可以採用相似的方式操作,因此,以類似的方式來處理CC(例如所有CC)是合理的。
當胞元處於不同波段或不同位置時,這些胞元的路徑損耗和P-MPR有可能是不相關的。在這種情況下,當基於針對某一個CC滿足的標準而觸發PHR時,處於別的波段或位置的別的CC的觸發標準既有可能是滿足的,也有可能是未被滿足的。如果因為滿足第一CC的觸發標準而發送了 PHR,那麼可以重啟禁止計時器。在禁止時間(例如直到禁止計時器終止的時間)中,如果滿足了另一個CC的觸發標準,那麼可以阻止包含了導致所述觸發之變化的報告,直至禁止計時器終止。一旦計時器終止,如果觸發條件仍舊存在,則可以報告PH(舉例來說,效力上延遲了觸發條件的報告)。如果觸發條件不再存在,則不會報告基於該觸發條件的PH。
在某些典型的實施方式中,WTRU 102可以具有多個PHR禁止計時器,由此,每一個計時器的禁止效果可以是(例如僅僅是)針對與各個禁止計時器相關聯的CC。
在某些典型的實施方式中,CC可以基於下列各項中的一項或多項而被封包:(1)UL波段;(2)DL波段;(3)位置;(4)定時提前參考;(5)路徑損耗參考;和/或(6)路徑損耗參考的波段或位置等等。CC群組可以包括一個或多個CC。
在典型的實施方式中,WTRU 102可以具有依照CC群組的獨立PHR禁止計時器。對於每一個CC群組來說,WTRU 102可以基於為該CC群組觸發的PHR來重啟PHR禁止計時器。例如,WTRU 102可以具有一個依照波段、路徑損耗參考和/或每一個位置(例如RRH)的PHR禁止計時器。WTRU 102還可以(或反而)具有基於不同胞元群組的分別PHR禁止計時器,例如一個禁止計時器用於一個TA群組。
對禁止計時器閘控的觸發(例如路徑損耗變化觸發)來說,WTRU 102可以分別處理用於不同群組中的CC的觸發。當禁止PHR計時器終止或已經終止,並且從最後一次在WTRU 102具有用於新傳輸的UL資源的時候傳送PHR開始,作為路徑損耗參考使用的用於至少一個已啟動服務 胞元的路徑損耗變化已經超出了dl路徑損耗變化(dB),那麼當前的路徑損耗變化觸發標準被滿足。
通過修改路徑損耗變化觸發,可以反映下列各項中的一項或多項,包括:(1)特定於CC群組的PHR禁止計時器終止;(2)基於CC群組中的CC所使用的服務胞元的路徑損耗變化的觸發;(3)為CC群組中的至少一個CC傳輸真實PHR的需求/規定(例如在評估觸發標準的TTI中),其中舉例來說,所述需求/規定可以是指或者促使UL資源(例如PUSCH)經由UL授權或是已配置的SPS而被分配給CC群組中的至少一個CC的傳輸和/或為CC群組中的至少一個CC傳送PUCCH;(4)用於群組中的至少一個CC上的新傳輸的UL資源需求/規定,或者在任一CC上存在用於新傳輸的UL資源。
以下是經過修改的觸發的示例。第一個示例可以包括一個處於以下情況的觸發:如果用於CC群組的禁止PHR-計時器終止或已經終止,並且從最後一次在WTRU 102具有用於CC群組中的CC的新傳輸的UL資源的時候傳送PHR時開始,作為CC群組中的CC的路徑損耗參考使用的至少一個已啟動服務胞元的路徑損耗變化已經超出了dl路徑損耗變化dB。第二示例可以包括一個處於以下情況的觸發:用於CC群組的禁止PHR-計時器終止或已經終止,並且從最後一次在WTRU 102具有為該CC群組中的CC的傳輸分配的UL資源以及用於新傳輸的UL資源的時候傳送PHR時開始,作為CC群組中的CC的路徑損耗參考使用的至少一個已啟動服務胞元的路徑損耗變化已經超出了dl路徑損耗變化dB。
在第二示例中,用於新傳輸的UL資源可以處於任何一個CC。
對處於多個波段的UL CC來說,在每次發送PHR時,用於多個波段其中之一的CC的PH有可能是虛擬的。為了確保WTRU 102至少在該WTRU 102具有活動UL CC的所有波段中偶爾為CC發送真實PH,在某些典型的實施方式中可以實施修改。
有可能存在一個PHR週期性計時器(即週期性PHR-計時器),由此,在其終止的時候可以觸發PHR,如果任一胞元具有用於新傳輸的UL資源,則可以傳送PHR。這裏的一個修改可以包括:對每一個CC群組而言,WTRU 102可以具有一個分別的PHR週期性計時器。當用於CC群組的週期性計時器終止時,WTRU 102可以觸發PHR,並且在滿足以下的一個或多個條件的時候發送PHR。用於觸發和發送PHR的第一個條件可以包括為CC群組中的至少一個CC的傳輸分配了UL資源(例如PUSCH)。第二個條件可以包括存在將會為CC群組中的至少一個CC傳送的PUCCH。第三個條件可以包括存在用於CC群組中的至少一個CC上的新傳輸的UL資源,或者存在用於任何一個CC上的新傳輸的UL資源。
為傳輸分配的UL資源可以是由經過配置的SPS或是藉由UL授權而被分配。
當WTRU 102發送具有用於該群組中的一個或多個CC的真實PH的PHR時,WTRU 102可以重啟該CC群組的PHR週期性計時器。
有可能存在觸發,由此,在啟動已經配置了的UL的SCell時,當任一胞元都具有用於新傳輸的UL資源,那麼WTRU 102將會觸發和發送PHR。如果該啟動不是重新啟動,那麼可以將PHR與用於新啟動的SCell的虛擬PH一起發送(舉例來說,這是因為在WTRU 102接收用於新啟動的 SCell的UL授權的時間之前,在PCell或另一個SCell上可能存在許可)。
在頻帶內CA情況中,由於與新啟動的SCell處於相同波段的至少一個UL CC具有用於新傳輸的UL資源,並且為至少可以提供PCMAX,c的CC包含了一個真實PH,因此該觸發過程是可以接受或適用的。將會認為相同波段中的CC的PCMAX,c是相同的(除非PEMAX,c針對每一者不同),並且eNB 140可以知道相同波段中的CC的PEMAX,c是相同還是不同的值(因為eNB 140可以配置PEMAX,c值)。可以設想的是,PCMAX可以是根據相同波段中的PEMAX,c確定的。在頻帶內的情況中,eNB 140可以具有充足的資訊來排程(例如智慧排程)新啟動的SCell。
在頻帶間CA的情況中,如果在該波段沒有其他CC提供PEMAX,c(例如因為不同波段中的PCMAX,c是無關的),那麼接收虛擬PH有可能是無法接受的。
在某些典型的實施方式中,基於SCell啟動事件的PHR觸發和發送(例如在去啟動之後啟動,和/或在配置或重新配置之後首次啟動等等)可以由WTRU 102基於所滿足的某些標準而被延遲。WTRU 102可以延遲PHR的觸發和發送,直至在啟動SCell的CC群組中的至少一個CC上分配了UL資源(例如其中群組可以基於頻帶)和/或存在用於該群組中的至少一個CC的新傳輸的UL資源。如果滿足以下的一個或多個標準,則WTRU 102可以延遲PHR的觸發和發送:(1)SCell是或者可以是CC群組中的唯一的UL CC或已被配置了上行鏈路的唯一CC,例如基於波段的群組;和/或(2)因為啟動觸發而在例如滿足啟動觸發需求的第一個TTI中發送的PHR可以包括用於已啟動SCell的群組中的所有CC的虛擬PH。
在某些典型的實施方式中,雖然在SCell啟動的時候仍舊保持PHR觸發,但是當在已被啟動的SCell的CC群組中的至少一個CC上分配了UL資源(其中舉例來說,所述群組可以基於頻帶)和/或存在用於該群組中的至少一個CC的新傳輸的UL資源的時候,WTRU 102也可以在啟動事件之後的某個時間額外地觸發PHR(例如在啟動事件之後而儘可能快地)。
關於如何延遲PHR直到為與新啟動的SCell處於相同CC群組(例如相同頻帶)的至少一個胞元傳送真實PH的典型示例可以包括以下的一個或多個觸發標準,這些觸發標準既可以是新的觸發標準,也可以替換已有的SCell啟動觸發標準。
例如,當啟動或者可以啟動配置了上行鏈路而作為某個CC群組一部分的SCell且在該TTI中滿足以下條件(例如為真)時,這時可以發生一個觸發:存在為處於某個CC群組之配置了上行鏈路的胞元上的傳輸分配的UL資源,並且從SCell啟動時起尚沒有使用分配給處於某個CC群組而配置了上行鏈路的胞元上的傳輸的UL資源來傳送PHR。
在另一個示例中,啟動或者可以啟動配置了上行鏈路而作為某個CC群組一部分的SCell且當在這個TTI中滿足以下條件(例如為真)時,這時可以發生一個觸發:在處於某個CC群組而配置了上行鏈路的胞元上分配了用於傳輸的UL資源,並且從去啟動、配置、重新配置之後首次啟動胞元時起和/或從配置或重新配置SCell等等時起尚未使用為在處於某個CC群組而配置了上行鏈路的胞元上進行的傳輸分配的UL資源來傳送PHR。
如上所述,當以UL中的多個波段以及每個波段的多個CC操作時,WTRU 102可以依照UL波段來配置一個最大輸出功率PCMAX,b。在未 執行縮放處理的情況下,如果為波段b中的CC計算的功率總和即將或將會超出PCMAX,b,那麼WTRU 102可以縮減計算得到的功率。
基於與這裏定義的關於何時包含PCMAX的規則相類似的規則,WTRU 102可以在PHR中包含PCMAX,b
WTRU 102可以將PCMAX,b包含在PHR中,其中所述PHR可以處於擴展的PHR MAC CE或另一PHR MAC CE中。WTRU 102始終可以將PCMAX,b包含在PHR中,並且可以基於以上為PCMAX識別的一個或多個標準和/或基於所滿足(或符合)的以下的一個或多個標準來將PCMAX,b包含在PHR中。
(1)配置標準,其被滿足,如果WTRU 102被配置成用於頻帶間UL,並且在至少兩個波段中的每一個波段上具有至少一個UL CC,以及在至少一個波段上具有至少兩個UL CC。
(2)已啟動/CC標準,其被滿足,如果PHR包含(或者即將或將會包含)用於至少兩個波段中的CC的報告(例如具有用於至少一個波段中的至少兩個CC的報告),其中舉例來說,所述標準可以是指或者促使(a)在至少兩個波段中的每一個波段上具有至少一個已啟動的CC(例如具有處於至少一個波段中的至少兩個已啟動的CC),在PHR中包含(或者將會包含)用於所述CC的PH,並且用於這其中的每一個CC的PH可以是真實或虛擬的;和/或(b)在至少兩個波段中的每一個波段上都有可能具有至少一個CC(例如具有處於至少一個波段中的至少兩個CC),其中在PHR中包含(或者將會包含)用於所述CC的PH,並且用於這其中的每一個CC的PH可以是真實或虛擬的。
(3)真實PH標準,如果PHR包括(或者即將或將會包括)用於至少兩個波段中的CC(例如具有這些波段至少其中之一的至少兩個CC)的真實PH,則可以滿足該標準,其中舉例來說,所述標準可以是指或者可以促使(a)V位元可以指示用於至少兩個波段中的每一個波段上的至少一個CC(和/或例如用於這其中的至少一個波段中的至少2個CC)的真實PH;和/或(b)PCMAX,c可被(或者將被)包含在用於至少2個波段中的每一個波段上的至少一個CC(和/或用於例如這其中的至少一個波段中之至少兩個CC)的PHR中;和/或(c)對於至少兩個波段中的每一個波段上的至少一個CC來說(和/或對於在這其中的至少一個波段中的至少兩個CC來說),在被報告PHR所針對(或所存在)的子訊框中存在UL資源(例如PUSCH和/或PUCCH);和/或(d)對於至少兩個波段中的每一個波段上的至少一個CC來說(和/或例如對於這其中的至少一個波段中的至少兩個CC來說),在被報告PHR所針對(或所存在)的子訊框中分配了UL資源,其中UL資源可以是藉助UL授權或是通過所配置的SPS分配的,並且這種分配有可能導致PUSCH傳輸;和/或(e)對於至少兩個波段中的每一個波段上的至少一個CC來說(和/或例如對於這其中的的至少一個波段中的至少兩個CC來說),在被報告PHR所針對(或所存在)的子訊框中有可能分配了UL資源或是具有PUCCH傳輸,其中UL資源可以藉UL授權或是所配置的SPS來分配,並且這種分配可能導致PUSCH傳輸;等等。
(4)縮放標準,其中在被報告PHR所針對(或所存在)的子訊框中,如果WTRU 102縮放或者可能縮放了其計算的一個或多個CC(或者CC通道)的功率,那麼由於計算得到的CC功率的總和即將或將會超出一個 或多個UL波段的PCMAX,b,因此,該標準可被滿足。
對PHR可以添加特別波段中應用了縮放處理的指示。該可以與每一個用信號發送的PCMAX,b相關聯之指示可以用信號發送。用於給出波段縮放指示符存在的標準與如上所述的用於給出PCMAX,b存在的標準可以是相同的。
可以設想的是,在具有真實PH的CC是一個已啟動CC,並且已啟動的CC是一個已配置的CC的情況中,那麼以上闡述的標準(3)可以是標準(2)的子集,並且標準(2)可以是標準(1)的子集。在這種情況下,無冗餘標準可以是單單標準(1)、標準(2)、標準(3)和/或標準(4)中的每一個,以及例如標準(1)與(4)、標準(2)與(4)和/或標準(3)與(4)的組合。
對於以上的一個或多個標準來說,如果滿足該標準,則WTRU 102可以將用於所有波段的PCMAX,b包含在PHR中。在某些典型的實施方式中,WTRU 102可以包括用於具有至少2個CC(例如UL CC)的波段的PCMAX,b(例如僅用於這些波段),並且對所述波段而言,舉例來說,只有在以下條件中的一個或多個條件成立的情況下,WTRU 102才會包含PCMAX,b:(a)這些CC配置了UL,例如用於標準(1);(b)這些CC配置了UL並且是啟動的,例如用於標準(2);(c)對於這些CC來說,在發送PHR的TTI中,PHR可以是真實的,例如用於標準(3);和/或(d)由於計算得到波段中的CC功率總和即將或者將會超出可能或者即將或者將要發送PHR的TTI中的PCMAX,b,因此,對計算得到的這其中的一個或多個CC(或CC通道)功率執行的縮放處理是有用或必需的,例如用於標準(4)。
如果用於包含PCMAX,b的標準是單單基於標準(4)或是與其他任何標準組合,那麼eNB 140無法具有足夠資訊來確定是否在PHR中包含PCMAX,b
在某些典型的實施方式中,WTRU 102可以在PHR中包含下列各項中的一項或多項:(1)關於WTRU 102是否在計算輸出功率的時候為了避免出現超出用於該波段的WTRU的最大許可發射功率的狀況而對某個CC群組中的一個或多個CC執行過縮放處理的指示,其中所述CC群組可以是一個波段,並且所述WTRU最大許可發射功率可以是為該波段配置的WTRU 102的最大輸出功率PCMAX,b(所述指示可以是一個位元或其他指示,並且舉例來說,還可以(或反而)用於指示在PHR中是否存在某個CC群組的PCMAX,b);和/或(2)關於在PHR中是否包含了某個CC群組的PCMAX,b的指示(舉例來說是作為PHR中的單個位元的存在性指示符,並且還可以是縮放指示)。
如果PHR中存在指定波段的PCMAX,b,則有可能存在波段專用的縮放指示。以上論述的任一PCMAX,b存在標準均適用於波段專用的縮放指示符。
除了頻帶間CA之外的情況中,PCMAX,b還可以提供有用的資訊,例如非鄰接頻帶內或鄰接頻帶內CA。在非鄰接頻帶內和/或鄰接頻帶內情況中,以多個波段中具有CC的情況為基礎來包含PCMAX,b的一個或多個標準同樣是適用的。與不同波段中的CC相關聯的標準可以擴展成與其他類型的不同情景中的CC相關聯的標準,像是例如在非鄰接頻帶內CA或是並非處於同一位置的服務胞元的CC的情況下的具有不同載波頻率的CC等等。
第10圖是示出了典型的PHR方法1000的流程圖。
參考第10圖,典型的PHR方法1000可以管理與WTRU 102相關聯的PHR。在方框1010,WTRU 102可以確定用於WTRU 102的P-MPR(例如,有時也被稱為P-MPR)。在方框1020,通過使用如上所述的一個或多個等式組,WTRU 102可以確定一個用於減小WTRU 102的最大傳輸功率值的後移值(backoff value)。該後移值可以包括在以上等式中引入的多個不同因素(factor)。在方框1030,WTRU 102可以依照所確定的後移值來向eNB 140報告PH。
在某些典型的實施方式中,WTRU 102可以基於P-MPR或P-MPR來計算後移值(例如在P-MPR支配了MPR和A-MPR合成的時候)。
WTRU 102可以在另一個值與P-MPR之間選擇一個作為選定值,並且可以基於該選定值來計算後移值。
WTRU 102可以基於至少特定吸收率(SAR)來計算P-MPR,其中所述SAR指示的是與WTRU 102相關聯的射頻能量吸收率。例如,當保持WTRU 102接近或鄰近一個人時,基於人與WTRU 102的鄰近度,特定吸收率可以增大(例如急劇增大)。因此,P-MPR可以增大(急劇增大)並且支配其他後移效果,例如MPR和A-MPR。在某些典型的實施方式中,WTRU 102可以將另一個值(例如與MPR和A-MPR相關聯的)與P-MPR值相比較,以便確定哪一個更大。回應於所述另一個值大於P-MPR(例如第一個值處於支配地位),WTRU 102可以依照所述另一個值來計算後移值(例如只使用第一個值而排除P-MPR)。回應於所述另一個值小於P-MPR(例如P-MPR處於支配地位),WTRU 102可以依照P-MPR來計算後移值(例如只 使用P-MPR而排除所述另一個值)。
在某些典型的實施方式中,WTRU 102可以確定所述另一個值是以MPR以及供WTRU 102用於執行UL傳輸的每一個CC的A-MPR為基礎的,並且可以確定供WTRU 102用於執行UL傳輸的每一個CC的P-MPR。
P-MPR、後移值以及功率餘量報告中的每一個都可以與下列各項之一相關聯:(1)與WTRU 102相關聯的CC或是(2)與WTRU 102相關聯的CC合成。舉例來說,如果WTRU 102是在非鄰接頻帶上操作的,那麼用於P-MPR、後移值和/或功率餘量報告中的每一個的確定或計算可以與一個關聯於頻帶的CC相關聯,或者與CC合成相關聯,其中所述CC合成與用於頻帶間操作的每一個非鄰接頻帶相關聯。在某些典型的實施方式中,PH的報告可以包括為每一個載波分量發送與之關聯的PHR,或者發送一個包含了與每一個載波分量相關聯的PH值的PHR(例如合成報告)。
在某些典型的實施方式中,WTRU 102可以將後移值作為下列各項的最大值來計算:(1)另一個值(例如可選的另一個值)以及(2)P-MPR。
WTRU 102可以使用下列各項之一來計算後移值:用於頻帶間上行鏈路(UL)傳輸的第一過程或是用於頻帶內UL傳輸的第二過程。舉例來說,可供WTRU 102用於頻帶間UL傳輸的後移計算的過程有可能不同於用於頻帶內UL傳輸的後移計算的過程。
在某些典型的實施方式中,如果在沒有縮放(例如任何縮放)的情況下為UL CC計算的WTRU的功率總和將會超出(例如即將超出)最大傳輸功率限度,那麼WTRU 102可以向eNB 140指示所述WTRU 102為了避 免超出最大傳輸功率限度而在傳輸之前縮放了CC功率。此外,WTRU 102還可以依照針對eNB 140的指示來縮放CC功率。
在某些典型的實施方式(例如結合多個CC使用的實施方式)中,WTRU 102可以產生PHR,其中該PHR具有與處於至少兩個頻帶的CC相關聯的至少兩個PH值。這些PH值可以包括與用於至少兩個頻帶的真實傳輸相關聯的PH值。
在某些典型的實施方式中,WTRU 102可以在PHR中指示所述WTRU 102是否在計算輸出功率的時候執行了縮放處理(例如藉由縮放位元或縮放標記)。
第11圖是示出了另一個典型的PHR方法1100的流程圖。
參考第11圖,典型的PHR方法1100可以報告WTRU狀態。在方框1110,WTRU 102可以根據用於WTRU 102的P-MPR來確定所述WTRU 102是否應用了功率後移。在方框1120,WTRU可以基於P-MPR來向網路資源(例如eNB 140)報告所述WTRU 102已經應用了功率後移。當功率後移基於P-MPR時,WTRU 102還可以設置支配地位指示符(domination indicator),並且可以將這個支配地位指示符報告或發送給網路資源。所述支配地位指示符可以處於發送給網路資源的媒體存取控制器(MAC)控制元素(CE)包含的PHR中。支配地位指示符可以是為受其相關聯的P-MPR影響的每一個分量載波設置的,和/或單個(例如總的/合成)支配地位指示符可以與WTRU 102相關聯。
在某些典型的實施方式中,WTRU 102可以將支配地位指示符改成:(1)響應於受P-MPR影響的功率後移的第一邏輯級;或者(2)響 應於不受P-MPR影響的功率後移的第二邏輯級。
第12圖是示出了另一個典型的PHR方法1200的流程圖。
參考第12圖,典型的PHR方法1200可以管理與WTRU 102相關聯的PHR。在方框1210,WTRU 102可以確定在第一時段(例如當前時段或當前TTI時段)是否發生了用於CC的真實功率傳輸。在方框1220,WTRU可以確定在發生了用於CC的真實傳輸的時候的前一個時段(例如在CC具有用於UL傳輸的UL資源的時候)。在方框1230,WTRU 102可以將關聯於第一時段(例如當前時段或當前TTI時段)的CC的P-MPR(或P-MPR)與關聯於第二時段(例如前一個時段)的CC的P-MPR相比較,其中舉例來說,所述第二時段關聯的是與所傳送PHR以及具有真實傳輸的CC之情形相關聯的最近TTI。在方框1240,WTRU可以根據比較結果來觸發PHR。
例如,與CC相關聯的PHR可以是基於比較結果而被觸發的(例如在P-MPR的變化幅度從第一到第二時段變成大於門檻值量的時候)。用於確定第一或第二時段中在CC上執行的傳輸是否真實的處理可以包括:確定上行鏈路授權是否分別與第一或第二時段中的CC相關聯。
第13圖是示出了額外的典型PHR方法1300的流程圖。
參考第13圖,典型的PHR方法1300可以管理與WTRU 102相關聯的PH報告。在方框1310,WTRU 102可以確定在多個TTI上出現而與P-MPR相關聯的條件是否發生臨時變化,以此作為所確定的結果。在方框1320,WTRU 102可以基於所確定的結果來觸發PH報告。
在某些典型的實施方式中,WTRU 102可以通過在分別不同TTI連續確定每一P-MPR系列來確定一系列用於多個TTI(例如,與那些TTI 關聯的TTI)的P-MPR,其中每一個P-MPR分別是在不同的TTI確定的。
在某些典型的實施方式中,確定狀況是否發生臨時變化的處理可以包括:確定TTI序列期間的P-MPR值是否在超出門檻值時段的時間裏變成滿足了狀況。例如,WTRU 102或網路資源可以將相對於當前時間的特定時段設置或配置作為回顧視窗(可以是滑動視窗,它會隨著當前時間的變化而移動/滑動,由此可以基於回顧視窗內的參數來測量/滿足條件)。舉個例子,在超出門檻值時段的時間中,如果在至少一部分的回顧視窗中存在該狀況,則可以滿足所述狀況。
在某些典型的實施方式中,觸發禁止計時器可以是通過觸發PHR啟動的,由此避免出現第二個為時過早的PHR,這樣一來觸發PH報告將被停止或阻止,直到超出從觸發禁止計時器啟動的時間開始的觸發禁止時間(舉例來說,即便其他狀況可以批准第二觸發)。
WTRU 102可以將後移值計算為下列各項之一:(1)P-MPR的最高值;(2)P-MPR的最低值;(3)P-MPR的平均值;或者(4)來自回顧視窗內部的P-MPR的中間值。
在某些典型的實施方式中,通過修改P-MPR所導致的PHR觸發,可以消除PHR中的虛擬餘量報告所導致的偏差。
第14圖是示出了又另一個典型的PHR方法1400的流程圖。
參考第14圖,典型的PHR方法1400可以管理與WTRU 102相關聯的PH報告。在方框1410,WTRU 102可以確定第一後移值,其中該第一後移值指示的是下列各項中的至少一項為基礎或所關聯的WTRU 102的最大傳輸功率值的第一減小:(1)最大功率減小(MPR)或者(2)額外 MPR(A-MPR)。在方框1420,WTRU 102可以確定第二後移值,其中該第二後移值指示的是以功率管理最大功率減小(P-MPR)為基礎而用於WTRU 102的最大傳輸功率值的第二減小。在方框1430,WTRU 102可以基於第一或第二後移值中的哪一個處於支配地位來選擇第一或第二後移值之一。在方框1440,WTRU 102可以依照所選擇的後移值來報告PH。
第15圖是示出了仍是額外的典型PHR方法1500的流程圖。
參考第15圖,典型的PHR方法1500可以管理與WTRU 102相關聯(例如由WTRU 102實施)的傳輸功率。在方框1510,WTRU 102可以基於後移變化或後移影響而在TTI期間觸發PHR。在方框1520,WTRU 102可以在該TTI期間傳送PHR。
第16圖是示出了仍是額外的典型PHR方法1600的流程圖。
參考第16圖,典型的PHR方法1600可以管理與WTRU 102相關聯(例如由WTRU 102實施)的傳輸功率。在方框1610,WTRU 102可以使用基於功率管理的後移來計算WTRU的最大輸出功率。在方框1620,WTRU 102可以根據基於功率管理的後移變化或是基於功率管理的後移影響而觸發PHR。
第17圖是示出了又是另一個典型的PHR方法1700的流程圖。
參考第17圖,典型的PHR方法1700可以實施與WTRU 102相關聯(例如由WTRU 102實施)的傳輸功率確定。在方框1710,WTRU 102可以確定用於減小最大傳輸功率之基於功率管理的後移。在方框1720,WTRU 102可以根據所確定的基於功率管理的後移來報告減小的最大傳輸功率。
第18圖是示出了又另一個典型的PHR方法1800的流程圖。
參考第18圖,典型的PHR方法1800可以管理與WTRU 102相關聯(例如由WTRU 102實施)的傳輸功率。在方框1810,WTRU 102可以基於後移變化或是後移影響來觸發PHR。在方框1820,舉例來說,通過修改因為基於功率管理的後移所導致的PHR觸發,可以消除因為PHR中的虛擬餘量報告所引起的偏差,由此,WTRU 102可以消除虛擬PHR所引發的PHR觸發。
PH可以被計算為WTRU 102的計算發射功率與所配置的最大輸出功率之間的差值。在某些典型的實施方式中,WTRU 102可以計算用於多個CC中的每一個CC的PH的值。
在某些典型的實施方式中,WTRU 102可以並行應用MPR(例如MPR和/或A-MPR)效果以及非MPR效果(例如減小子訊框中的每一個CC的最大輸出功率)。
WTRU 102可以回應於對基於功率管理後移變化的檢測來觸發PHR生成,和/或可以在PHR中指示基於功率管理的後移如何影響所報告的每一個CC的最大輸出功率。
在某些典型的實施方式中,當WTRU 102處於接通狀態時,所述WTRU 102可以使用基於功率管理的後移。
在某些典型的實施方式中,UL傳輸可以是叢發性的,由此,藉由WTRU 102之PHR觸發可以包括回應於第一傳輸叢發而被減小的每一個分量載波值的最大輸出功率(例如,所述第一傳輸叢發可以將資訊元素叢發模式設置成開啟)。
在某些典型的實施方式中,PHR可被發送並且可以包括每一個CC值的最大輸出功率,其中所述值是自最後一次發生PHR起的時段中出現的情況最差的後移。
在某些典型的實施方式中,WTRU 102可以在虛擬PHR中報告每一個CC的最大輸出功率值(例如在每一個CC值的最大輸出功率值受基於功率管理的後移影響的情況下)。
在某些典型的實施方式中,WTRU 102可以使用下列各項之一來設置最大輸出功率:(1)以WTRU 102操作在一個以上的頻帶為基礎的第一模式;或者(2)以WTRU 102操作在一個頻帶為基礎的第二模式。當WTRU 102在第一模式中操作時,MPR、A-MPR、△Tc或基於功率管理的後移可以是用於每一個頻帶的相應的不同的值。
在某些典型的實施方式中,如果同時在物理上行鏈路控制通道(PUCCH)和物理上行鏈路共用通道(PUSCH)上傳送上行鏈路控制資訊(UCI),並且WTRU 102的總發射功率沒有超出PCMAX,以及PUCCH的功率與帶有UCI的PUSCH的功率相加的總和沒有超出PCMAX,那麼可以同等地縮放沒有UCI的PUSCH。在某些典型的實施方式中,如果WTRU102的總發射功率將要超出PCMAX,並且PUCCH的功率與具有UCI的PUSCH的功率相加的總和將要超出PCMAX,那麼可以在不傳送沒有UCI的PUSCH的時候縮放具有UCI的PUSCH。
在某些典型的實施方式中,PHR的觸發可以包括基於支配最大功率計算的因素來觸發PHR。
第19圖是示出了典型的功率傳輸調整方法的流程圖。
參考第19圖,典型的方法1900可以管理WTRU 102的傳輸功率。在方框1910,WTRU 102可以確定功率管理的功率減小(P-MPR)。在方框1920,WTRU 102可以確定用於減小WTRU 102的最大傳輸功率值的後移值。在方框1930,WTRU 102可以根據所確定的後移值來調整傳輸功率。
在某些典型的實施方式中,WTRU 102可以基於P-MPR來計算後移值。
在某些典型的實施方式中,WTRU 102可以將另一個值與P-MPR相比較;並且回應於所述另一個值大於P-MPR,WTRU可以根據所述另一個值來調整傳輸功率(不含P-MPR)。在其他的典型實施方式中,回應於所述另一個值小於P-MPR,WTRU 102可以根據P-MPR來調整傳輸功率(不含所述另一個值)。
在某些典型的實施方式中,WTRU可以將所述另一個值以WTRU 102之傳輸的每一個載波分量的最大功率減小(MPR)和額外MPR(A-MPR)為基礎。
在某些典型的實施方式中,WTRU 102可以縮放WTRU 102用於傳輸的分量載波的傳輸功率,以使得分量載波的實際傳輸功率合成不超出所調整的WTRU 102的最大傳輸功率。
在某些典型的實施方式中,回應於在未縮放的情況下計算的用於上行鏈路分量載波(CC)的WTRU功率總和超出了最大傳輸功率限度,WTRU 102可以在傳輸之前縮放CC功率,以免超出最大傳輸功率限度。
第20圖是示出了另一個典型功率傳輸調整方法的流程圖。
參考第20圖,典型方法2000可以管理WTRU 102的傳輸功 率。在方框2010,WTRU 102可以確定在多個傳輸時間間隔(TTI)上發生而與功率管理功率減小(P-MPR)相關聯的狀況是否發生了臨時變化來作為所確定的結果。在方框2020,WTRU 102可以基於所確定的結果來調整WTRU的功率傳輸。
在某些典型的實施方式中,WTRU102可以連續確定各個不同的TTI期間的P-MPR,由此,WTRU 102可以確定用於多個TTI的P-MPR。
在某些典型的實施方式中,WTRU可以確定P-MPR在TTI期間的值是否改變為在超出門檻值時期滿足所述狀況。
在某些典型的實施方式中,WTRU 102可以設置與當前時間相對的特定時段作為回顧視窗;並且可以確定在該回顧視窗中是否滿足所述狀況。
在某些典型的實施方式中,WTRU 102可以確定在超出門檻值時期是否在回顧視窗的至少一部分中存在所述狀況。
在某些典型的實施方式中,WTRU 102可以將回顧視窗設置成是與當前時間相對的特定時段。
在某些典型的實施方式中,WTRU102可以隨著當前時間的改變而改變回顧視窗。
在某些典型的實施方式中,WTRU 102可以將P-MPR確定成是下列各項之一:(1)P-MPR的最高值;(2)P-MPR的最低值;(3)P-MPR的平均值;或者(4)P-MPR的中間值;並且可以在調整WTRU 102的最大傳輸功率的過程中使用所確定的值。
雖然在上文中描述了採用特定組合的特徵和元素,但是本領 域普通技術人員將會瞭解,每一個特徵或元素既可以單獨使用,也可以與其他特徵和元素進行任何組合。此外,這裏描述的方法可以在引入到電腦可讀介質中並供電腦或處理器執行的電腦程式、軟體或韌體中實施。關於非臨時電腦可讀介質的示例包括但不局限於唯讀記憶體(ROM)、隨機存取記憶體(RAM)、暫存器、快取記憶體、半導體記憶體裝置、內部硬碟盒可拆卸磁片之類的磁介質、磁光介質、以及CD-ROM碟片和數位多用途碟片(DVD)之類的光介質。與軟體相關聯的處理器可以用於實施在WTRU、UE、終端、基地台、RNC或任何主電腦中使用的射頻收發信機。
此外,在上述實施方式中記錄的是處理平臺、計算系統、控制器和包含處理器的其他裝置。這些裝置有可能包含至少一個中央處理器(“CPU”)和記憶體。依照電腦程式領域技術人員的實踐,對於操作或指令的行為或符號表示的引用可以由不同的CPU和記憶體來執行。這些行為以及操作或指令可被稱為“被執行”、“由電腦執行”或是“由CPU執行”。
本領域技術人員將會瞭解,這些行為和用符號表示的操作或指令包含了由CPU實施的電信號操作。電子系統代表的是這樣的資料位元,其中所述資料位元能導致電信號的最終變化或減小,以及將資料位元保持在記憶體系統中的記憶體,從而重新配置或以其他方式改變CPU的操作以及其他信號處理。保持資料位元的記憶體位置是具有與資料位元對應或是代表資料位元的特別電、磁、光學或有機屬性的物理位置。
資料位元還可以保持在電腦可讀介質上,其中所述介質包括能被CPU讀取的磁片、光碟以及其他任何揮發性(例如隨機存取記憶體 (RAM))或非揮發性(例如唯讀記憶體(ROM))大容量儲存系統。電腦可讀介質可以包括協作或互聯的電腦可讀介質,這些介質是只處於處理系統之上或是分佈在處於所述處理系統本地或遠端的多個互聯的處理系統之間的。應該理解的是,這裏的典型實施方式並不局限於上述記憶體,並且其他的平臺和記憶體同樣可以提支援所描述的方法。
本領域技術人員還應該理解,在不脫離本發明的情況下,所公開的實施方式的不同功能和/或要素既可以單獨使用,也可以組合使用。
本領域技術人員還應該理解,這裏闡述的典型過程和方法可以在分時雙工(TDD)和分頻雙工(FDD)系統兩者中使用。
雖然WTRU是用特別的存取技術(例如LTE和CDMA之類的無線電存取技術(RAT))描述的,但是應該瞭解,WTRU是可以作為多模式裝置操作(例如同時在一種以上的RAT中)。
除非明確描述,否則在本申請的說明書中使用的元件、操作或指令不應該被理解成對本發明而言是至關重要或是不可或缺的。此外,這裏使用的冠詞“一”旨在包括一個或多個項。如果所預期的僅僅是一個項目,那麼將會使用術語“一個”或類似的語言。更進一步,這裏使用的處於多個項的列表和/或多個項類別之前的術語“任一”旨在包括單獨或是與其他項和/或其他項類別相結合的項和/或項類別中的“任何一個”、“任何組合”、“任意的多個”和/或“任意的多個的任何組合”。更進一步,這裏使用的術語“集合”旨在包括任意數量的項,這其中包括零。更進一步,這裏使用的術語“數量”旨在包括任何數量,其中包括零。
此外,除非特別提到,否則不應該將申請專利範圍被理解成 是局限於所描述的順序或要素。此外,在申請專利範圍中使用“裝置(means)”是為了援引35 U.S.C.§112,¶ 6,而沒有詞語“裝置”的申請專利範圍是不具有該意圖的。
舉例來說,適當的處理器包括:通用處理器、專用處理器、常規處理器、數位信號處理器(DSP)、多個微處理器、與DSP核心相關聯的一個或多個微處理器、控制器、微控制器、特殊應用積體電路(ASIC)、現場可編程閘陣列(FPGA)電路、任何一種積體電路(IC)和/或狀態機。
與軟體相關的處理器可用於實現射頻收發信機,以便在無線發射接收單元(WTRU)、用戶設備、終端、基地台、移動性管理實體(MME)或演進型封包核心,或是任何主機電腦中加以使用。WTRU可以與採用硬體和/或軟體形式實施的模組結合使用,該硬體和/或軟體包括軟體定義的無線電(SDR)和其他元件,例如相機、攝像機模組、視訊電話、揚聲器電話、振動裝置、揚聲器、麥克風、電視收發信機、免持耳機、數字鍵盤、藍芽模組、調頻(FM)無線電單元、近區域通信(NFC)模組、液晶顯示器(LCD)顯示單元、有機發光二極體(OLED)顯示單元、數位音樂播放器、媒體播放器、視訊遊戲機模組、網際網路流覽器和/或任意無線區域網路(WLAN)或超寬頻(UWB)模組。
雖然本發明是依照通信系統來描述的,但是應該想到,該系統是可以在微處理器/通用電腦(未顯示)上的軟體中實施的。在某些實施方式中,不同元件的一個或多個功能可以在控制通用電腦的軟體中實施。此外,雖然在這裏參考了特定實施方式來圖示和描述本發明,但是本發明並不局限於所顯示的細節。相反,在不脫離本發明的情況下,在申請專利 範圍的等同物的範圍以內是可以在細節上進行各種修改。
實施例
在一個實施例中,一種管理與無線發射/接收單元(WTRU)相關聯的功率餘量報告的方法可以包括:確定功率管理功率減小(P-MPR);確定用於減小WTRU的最大傳輸功率值的後移值;以及根據所確定的後移值來報告功率餘量。
在一個實施例中,確定後移值可以包括:基於P-MPR來計算後移值。
在一個實施例中,確定後移值可以包括:確定用於減小WTRU的最大傳輸功率值的另一個值;在所述另一個值與P-MPR之間選擇一個值作為選定值;以及基於該選定值來計算後移值。
在一個實施例中,確定P-MPR可以包括:至少基於至少指示與WTRU相關聯的射頻能量吸收率的特定吸收率(SAR)來計算P-MPR。
在一個實施例中,該方法還可以包括:將所述另一個值與P-MPR相比較;以及回應於所述另一個值大於P-MPR而根據排除P-MPR在外的所述另一個值來計算後移值。
在一個實施例中,該方法還可以包括:將所述另一個值與P-MPR相比較;以及回應於所述另一個值小於P-MPR而根據排除P-MPR在外的所述P-MPR來計算後移值。
在一個實施例中,所述另一個值可以基於最大功率減小(MPR)以及額外MPR(A-MPR)。
在一個實施例中,該方法還可以包括:通過對基於MPR和 A-MPR的值進行代數組合來計算所述另一個值。
在一個實施例中,P-MPR、後移值以及功率餘量報告中的每一個可以與下列各項之一相關聯:(1)與WTRU相關聯的分量載波,或是(2)與WTRU相關聯的分量載波合成。
在一個實施例中,對功率餘量的報告可以包括為每一個分量載波發送與之關聯的功率餘量報告。
在一個實施例中,基於選定值來計算後移值可以包括:使用所述另一個值與P-MPR中的最大值來計算最大輸出功率。
在一個實施例中,P-MPR、後移值、功率餘量報告以及最大輸出功率中的每一個可以與WTRU的單個分量載波相關聯。
在一個實施例中,該方法還可以包括:使用P-MPR以及所述另一個值與別的值的合成值中的最大值來計算最大輸出功率。
在一個實施例中,該方法還可以包括:將最大輸出功率配置在上限與下限之間,其中所述下限是通過以下等式設置的:PCMAX_L=MIN{PEMAX,-△TC,,PPowerClass-MAX(MPR+A-MPR,P-PR)-△TC,}
其中PEMAX是用信號通告給WTRU的物理量,△TC是基於WTRU傳輸頻率的功率減小,PPowerClass是WTRU功率等級的最大功率,MPR是WTRU的最大功率減小,A-MPR是額外MPR,以及P-MPR是功率管理功率減小。
在一個實施例中,該方法還可以包括:將用於單個分量載波的最大輸出功率配置在上限與下限之間,其中所述下限是通過以下等式設置的: PCMAX_L,c=MIN{PEMAX,c-△TC,c,PPowerClass-MAX(MPR+A-MPR,P-PR)-△TC,c}
其中PEMAX,c是用信號通告給WTRU的物理量,△TC,c是用於單個分量載波而基於WTRU傳輸頻率的功率減小,PPowerClass是WTRU功率等級的最大功率,MPR是WTRU的最大功率減小,A-MPR是額外MPR,以及P-MPR是功率管理功率減小。
在一個實施例中,確定後移值可以包括使用下列各項之一來計算後移值:用於頻帶間上行鏈路(UL)傳輸的第一過程,或是用於頻帶內UL傳輸的第二過程。
在一個實施例中,該方法還可以包括:在在未執行縮放處理的情況下WTRU計算的UL分量載波(CC)的功率總和將要超出最大傳輸功率限度的情況下,其指示所述WTRU在傳輸之前已縮放所述CC功率,以免超出最大傳輸功率限度。
在一個實施例中,對功率餘量的報告可以包括:發送功率餘量報告(PHR),其中所述PHR包括用於至少兩個頻帶中的分量載波的功率餘量值。
在一個實施例中,對功率餘量的報告可以包括:發送功率餘量報告,其中所述報告包括與至少兩個波段相關聯的實際功率餘量值。
在一個實施例中,該方法還可以包括:在PHR中指示WTRU是否在計算輸出功率的時候執行過縮放處理。
在一個實施例中,該方法還可以包括:確定WTRU是否應用了基於P-MPR的後移值;以及向網路資源報告WTRU應用了基於P-MPR的後移值。
在一個實施例中,報告WTRU應用了基於P-MPR的後移值可以包括:當所述後移基於P-MPR時,設置一個支配地位指示符;以及將所述支配地位指示符發送給網路資源。
在一個實施例中,報告WTRU應用了基於P-MPR的後移值可以包括:在功率餘量(PH)報告中包含支配地位指示符。
在一個實施例中,發送支配地位指示符可以包括:以媒體存取控制(MAC)控制元素(CE)的方式將包含所述支配地位指示符的功率餘量報告發送給網路資源。
在一個實施例中,設置支配地位指示符可以包括設置下列各項之一:(1)用於受相應P-MPR影響的每一個分量載波的相應支配地位指示符;或者(2)與WTRU相關聯的單個支配位址指示符。
在一個實施例中,設置支配地位指示符可以包括將所述支配地位指示符設置成下列各項之一:(1)響應於受P-MPR影響的後移值的第一邏輯級(logic level);或者(2)響應於不受P-MPR影響的功率後移的第二邏輯級。
在一個實施例中,一種管理與無線發射/接收單元(WTRU)相關聯的功率餘量報告(PHR)的方法可以包括:確定在第一時段是否會發生針對分量載波(CC)的真實傳輸;確定針對CC發生真實傳輸的時候的先前時段;將關聯於第一時段的CC的P-MPR與關聯於先前時段的CC的P-MPR相比較;以及根據比較結果來觸發PHR。
在一個實施例中,觸發與所要報告的CC相關聯的PHR可以包括:回應於關聯於第一時段的CC的P-MPR和關聯於先前時段的CC的 P-MPR相差一門檻值而觸發所述PHR。
在一個實施例中,確定在第一時段是否會發生針對CC的真實傳輸可以包括:確定在第一時段是否針對所述CC將使用任何UL資源。
在一個實施例中,確定在第一時段是否針對CC將使用任何UL資源可以包括:確定在第一時段針對所述CC是否發生PUSCH或PUCCH發信號。
在一個實施例中,第一時段可以是與當前傳輸時間間隔相關聯的時段,並且先前時段可以是與WTRU發送PHR的最近的先前傳輸時間間隔相關聯的時段,其中所述PHR包括與用於CC的真實傳輸相對應的功率餘量。
在一個實施例中,將關聯於第一時段的CC的P-MPR與關聯於先前時段的CC的P-MPR相比較可以包括:獲取與第一時段相關聯的CC的P-MPR;獲取與先前時段相關聯的CC的P-MPR;以及確定與第一時段相關聯的CC的P-MPR與關聯於先前時段的CC的P-MPR是否相差一門檻值。
在一個實施例中,先前時段可以是WTRU發送了PHR的最近時段,其中所述PHR包含了與用於CC的真實傳輸相對應的功率餘量。
在一個實施例中,第一時段可以是與當前傳輸時間間隔相關聯的時段,並且先前時段可以是與WTRU發送了PHR的最近的先前傳輸時間間隔相關聯的時段,其中所述PHR包含了與用於CC的真實傳輸相對應的功率餘量。
在一個實施例中,觸發功率餘量報告可以包括:在WTRU具有用於新傳輸的上行鏈路資源的傳輸時間間隔中觸發功率餘量報告,而 不是在WTRU不具有用於新傳輸的上行鏈路資源的傳輸時間間隔中。
在一個實施例中,觸發功率餘量報告可以包括:在WTRU具有終止或已經終止的PHR禁止計時器的傳輸時間間隔中觸發功率餘量報告,而不是在WTRU不具有終止或已經終止的PHR禁止計時器的傳輸時間間隔中。
在一個實施例中,一種管理與無線發射/接收單元(WTRU)相關聯的功率餘量報告的方法可以包括:基於功率管理功率減小(P-MPR)的變化長度和變化量來確定是否觸發功率餘量報告而作為所確定的結果;以及基於所確定的結果來觸發對功率餘量的報告。
在一個實施例中,一種管理與無線發射/接收單元(WTRU)相關聯的功率餘量報告的方法可以包括:確定與在多個傳輸時間間隔(TTI)上採取的功率管理功率減小(P-MPR)相關聯的狀況是否臨時改變而作為所確定的結果;以及基於所確定的結果來觸發功率餘量報告。
在一個實施例中,該方法還可以包括:WTRU通過連續確定各個不同TTI中的P-MPR,從而確定用於多個TTI的P-MPR。
在一個實施例中,確定狀況是否發生臨時變化可以包括:確定TTI期間的P-MPR值是否為了滿足所述狀況而已經變化超出門檻值時段。
在一個實施例中,確定TTI期間的P-MPR的值是否為了滿足所述狀況而已經變化超出門檻值時段可以包括:設置相對於當前時間的指定時段作為回顧視窗;以及確定在該回顧視窗中是否滿足所述狀況。
在一個實施例中,確定在回顧視窗中是否滿足所述狀況可以包括:確定在超出門檻值時段的回顧視窗的至少一部分之中是否存在所述 狀況。
在一個實施例中,設置相對於當前時間的門檻值時段作為回顧視窗可以包括:將回顧視窗設置成相對於當前時間的指定時段。
在一個實施例中,該方法還可以包括:在當前時間改變的時候改變回顧視窗。
在一個實施例中,觸發對功率餘量的報告可以包括:回應於在觸發禁止時間內觸發了先前功率餘量報告,禁止觸發功率餘量報告,直到超出觸發禁止時間。
在一個實施例中,該方法還可以包括:使用與關聯於回顧視窗的多個P-MPR中的一個或多個P-MPR相關聯的P-MPR來計算在功率餘量報告中報告的後移值。
在一個實施例中,可以為具有上行鏈路授權的每一個活動分量載波重複計算在功率餘量報告中報告的後移值。
在一個實施例中,計算後移值可以包括:確定下列值之一:(1)P-MPR的最高值;(2)P-MPR的最低值;(3)P-MPR的平均值;或者(4)P-MPR的中值;以及將所確定的一個值包含在功率餘量報告中。
在一個實施例中,該方法還可以包括:修改由於功率管理後移(P-MPR)所導致的PHR觸發,以便消除PHR中的虛擬餘量報告導致的偏差。
在一個實施例中,一種用於管理與無線發射/接收單元(WTRU)相關聯的功率餘量報告的方法可以包括:確定第一後移值,其中所述第一後移值指示與下列各項中的至少一項相關聯的用於WTRU的傳 輸功率值的第一減小:(1)最大功率減小(MPR)或(2)額外MPR(A-MPR);基於功率管理功率減小(P-MPR)來確定第二後移值,其中所述第二後移值指示用於WTRU的傳輸功率值的第二減小;基於第一或第二後移值中的哪一個處於支配地位來選擇第一或第二後移值之一;以及根據所選擇的後移值來報告功率餘量。
在一個實施例中,一種由無線發射/接收單元(WTRU)實施的管理傳輸功率的方法可以包括:在傳輸時間間隔(TTI)中,基於後移變化或後移影響來觸發功率餘量報告(PHR),以使所述後移是所述功率管理功率減小和別的值之中的較大值;以及在TTI中傳送PHR。
在一個實施例中,一種由無線發射/接收單元(WTRU)實施的管理傳輸功率的方法可以包括:基於後移變化或後移影響來觸發功率餘量報告(PHR),其中基於功率管理的後移被用於計算WTRU的最大輸出功率。
在一個實施例中,一種由無線發射/接收單元(WTRU)實施的管理傳輸功率的方法可以包括:基於後移變化或後移影響來觸發功率餘量報告(PHR),其中基於功率管理的後移被用於計算WTRU的最大輸出功率;以及消除虛擬PHR引起的PHR觸發。
在一個實施例中,該方法還可以包括:修改由於基於功率管理的後移(P-MPR)導致的PHR觸發,以便消除PHR中的虛擬餘量報告導致的偏差。
在一個實施例中,該方法還可以包括:將功率餘量計算為WTRU計算的發射功率與所配置的最大輸出功率之間的差值。
在一個實施例中,計算功率餘量可以包括:計算用於多個分量載波(CC)中的每一個的功率餘量的值。
在一個實施例中,該方法還可以包括:基於最大功率減小(MPR)、額外MPR(AMPR)以及非MPR效果來確定後移值,其中所述非MPR效果與基於功率管理的後移相對應。
在一個實施例中,該方法還可以包括:並行應用MPR/A-MPR與非MPR效果。
在一個實施例中,非MPR效果可以減小子訊框中的每個分量載波的最大輸出功率。
在一個實施例中,觸發PHR可以包括:回應於檢測到基於功率管理的後移變化來觸發PHR生成。
在一個實施例中,該方法還可以包括:在PHR中指示基於功率管理的後移如何影響所報告的每一個分量載波的最大輸出功率。
在一個實施例中,觸發PHR可以包括:在基於功率管理的後移對每一個分量載波的最大輸出功率值的影響超出了門檻值的情況下執行觸發。
在一個實施例中,該方法還可以包括:回應於WTRU在PHR中報告的每一個分量載波的最大輸出功率值的變化而應用一個變化的基於功率管理的後移。
在一個實施例中,該方法還可以包括:當WTRU處於開啟(ON)狀態時,所述WTRU使用基於功率管理的後移。
在一個實施例中,在傳輸是叢發性的情況下,WTRU回應於 第一傳輸叢發來觸發PHR,其中所述PHR包含了每一個分量載波的減小的最大輸出功率值。
在一個實施例中,該方法還可以包括:將資訊元素的叢發模式設置成開啟(ON)。
在一個實施例中,該方法還可以包括:發送包含了每一個分量載波的最大輸出功率值的PHR,其中所述最大輸出功率值具有自最後出現PHR時起的時段中發生的最差情況的後移。
在一個實施例中,該方法還可以包括:在每一個分量載波的最大輸出功率值可能受到基於功率管理的後移的影響的情況下,在虛擬PHR中報告每一個分量載波的最大輸出功率值。
在一個實施例中,該方法還可以包括使用下列各項之一來設置最大功率輸出:(1)以WTRU操作在一個以上的頻帶為基礎的第一模式;或者(2)以WTRU操作在一個頻帶上為基礎的第二模式。
在一個實施例中,對於每一個波段來說,下列各項中的至少一項可以是不同的:最大功率減小(MPR)、額外MPR(A-MPR)、△Tc或是基於功率管理的後移。
在一個實施例中,該方法還可以包括:在物理上行鏈路控制通道(PUCCH)和物理上行鏈路共用通道(PUSCH)上同時傳送上行鏈路控制資訊(UCI),並且WTRU的總的發射功率沒有超出Pcmax,以及PUCCH的功率與帶有UCI的PUSCH的功率相加的總和沒有超出Pcmax的情況下,可以同等地縮放沒有UCI的PUSCH。
在一個實施例中,該方法還可以包括:在WTRU的總發射功 率即將超出Pcmax,並且PUCCH功率與帶有UCI的PUSCH的功率的總和即將超出Pcmax的情況下,縮放帶有UCI的PUSCH,並且不傳送沒有UCI的PUSCH。
在一個實施例中,基於功率管理的後移可被應用於所配置的最大傳輸功率的最小界限。
在一個實施例中,該方法還可以包括:在與觸發PHR相關聯的狀況發生變化之後,在觸發PHR之前等待一時間。
在一個實施例中,功率後移值可以是特定於分量載波(CC)的。
在一個實施例中,觸發PHR可以包括基於支配最大功率計算的預定因素來觸發PHR。
在一個實施例中,一種管理無線發射/接收單元(WTRU)的傳輸功率的方法可以包括:確定功率管理功率減小(P-MPR);確定用於減小WTRU的最大傳輸功率值的後移值;以及根據所確定的後移值來調整傳輸功率。
在一個實施例中,確定後移值可以包括:基於P-MPR來計算後移值。
在一個實施例中,確定後移值可以包括:確定用於減小WTRU的最大傳輸功率值的另一個值;以及在所述另一個值與P-MPR之間選擇一個值作為選定值。
在一個實施例中,該方法還可以包括:將所述另一個值與P-MPR相比較;以及回應於所述另一個值大於P-MPR,根據所述另一個值 而不是P-MPR來調整最大傳輸功率。
在一個實施例中,該方法還可以包括:將所述另一個值與P-MPR相比較;以及回應於所述另一個值小於P-MPR,根據所述P-MPR而不是另一個值來調整最大傳輸功率。
在一個實施例中,所述另一個值可以基於用於WTRU執行傳輸的每一個分量載波的最大功率減小(MPR)和額外MPR(A-MPR)。
在一個實施例中,該方法還可以包括:確定WTRU的分量載波功率總和是否超出最大傳輸功率而作為所確定的結果;以及根據所確定的結果來縮放用於WTRU進行傳輸的分量載波的傳輸功率,以使所縮放的傳輸功率合成不超出最大傳輸功率。
在一個實施例中,該方法還可以包括:將最大輸出功率配置在上限與下限之間,其中所述下限是通過以下等式設置的:PCMAX_L=MIN{PEMAX,-△TC,,PPowerClass-MAX(MPR+A-MPR,P-PR)-△TC,}
Figure TWI613892BD00116
其中PEMAX是用信號通告給WTRU的物理量,△TC是基於WTRU傳輸頻率的功率減小,PPowerClass是WTRU功率等級的最大功率,MPR是WTRU的最大功率減小,A-MPR是額外MPR,以及P-MPR是功率管理功率減小。
在一個實施例中,該方法還可以包括:將用於單個分量載波的最大輸出功率配置在上限與下限之間,其中所述下限是通過以下等式設置的:PCMAX_L,c=MIN{PEMAX,c-△TC,c,PPowerClass-MAX(MPR+A-MPR,P-PR)-△TC,c}
Figure TWI613892BD00117
其中PEMAX,c是用信號通告給WTRU的物理量,△TC,c是用 於單個分量載波的基於WTRU傳輸頻率的功率減小,PPowerClass是WTRU功率等級的最大功率,MPR是WTRU的最大功率減小,A-MPR是額外MPR,以及P-MPR是功率管理功率減小。
在一個實施例中,該方法還可以包括:回應於在未執行縮放處理的情況下WTRU計算的上行鏈路分量載波(CC)功率總和超出最大傳輸功率限度,在傳輸之前由WTRU縮放所述CC功率,以免超出最大傳輸功率限度。
在一個實施例中,一種管理無線發射/接收單元(WTRU)的傳輸功率的方法可以包括:確定與在多個傳輸時間間隔(TTI)上採取的功率管理功率減小(P-MPR)相關聯的狀況是否發生臨時變化而作為所確定的結果;以及基於所確定的結果來調整WTRU的功率傳輸。
在一個實施例中,該方法還可以包括:WTRU通過連續測量各個不同的TTI中的P-MPR,從而確定用於多個TTI的P-MPR。
在一個實施例中,確定狀況是否發生臨時變化可以包括:確定TTI中的P-MPR值超出門檻值時段。
在一個實施例中,確定TTI中的P-MPR值是否為了滿足所述狀況而已經變化超出門檻值時段可以包括:設置相對於當前時間的指定時段作為回顧視窗;以及確定在該回顧視窗中是否滿足所述狀況。
在一個實施例中,確定在回顧視窗中是否滿足所述狀況可以包括:確定在超出門檻值時段的所述回顧視窗的至少一部分之中是否存在所述狀況。
在一個實施例中,設置相對於當前時間的門檻值時段作為回 顧視窗可以包括:將回顧視窗設置成相對於當前時間的指定時段。
在一個實施例中,該方法還可以包括在當前時間改變的時候改變回顧視窗。
在一個實施例中,計算後移值可以包括:確定下列值之一:(1)P-MPR的最高值;(2)P-MPR的最低值;(3)P-MPR的平均值;或者(4)P-MPR的中值;以及在調整WTRU的最大傳輸功率的過程中使用所確定的值。
在一個實施例中,一種被配置成報告功率餘量的無線發射/接收單元(WTRU)可以包括:處理器,被配置成:確定功率管理功率減小(P-MPR),以及確定用於減小WTRU的最大傳輸功率值的後移值;以及發射/接收單元,被配置成根據處理器確定的後移值來報告功率餘量。
在一個實施例中,該處理器可以被配置成基於P-MPR來計算後移值。
在一個實施例中,處理器可以被配置成:確定用於減小WTRU的最大傳輸功率值的另一個值;在所述另一個值與P-MPR之間選擇一個值作為選定值;以及基於該選定值來計算後移值。
在一個實施例中,處理器可以被配置成至少基於至少特定吸收率(SAR)來計算P-MPR,其中所述SAR指示與WTRU相關聯的射頻能量吸收率。
在一個實施例中,處理器可以被配置成:將所述另一個值與P-MPR相比較;以及回應於所述另一個值大於P-MPR,根據所述另一個值而不是P-MPR來計算後移值。
在一個實施例中,處理器可以被配置成:將所述另一個值與P-MPR相比較;以及回應於所述另一個值小於P-MPR,根據所述P-MPR而不是所述另一個值來計算後移值。
在一個實施例中,處理器可以被配置成以最大功率減小(MPR)和額外MPR(A-MPR)作為所述另一個值的基礎。
在一個實施例中,處理器可以被配置成:通過對基於MPR和A-MPR的值執行代數組合來計算所述另一個值。
在一個實施例中,處理器可以被配置成將P-MPR、後移值以及功率餘量報告與下列各項之一相關聯:(1)與WTRU相關聯的分量載波或者(2)與WTRU相關聯的分量載波的合成。
在一個實施例中,發射/接收單元可以被配置成為每一個分量載波發送與之關聯的功率餘量報告。
在一個實施例中,發射/接收單元可以被配置成經由無線電資源控制發信號來發送合成功率餘量,其中該餘量是從與WTRU的單個活動分量載波相關聯的功率後移中計算的。
在一個實施例中,處理器可以被配置成使用所述另一個值與P-PR中的最大值來計算最大功率輸出。
在一個實施例中,處理器可以被配置成:使用P-MPR以及所述另一個值與別的值的合成值中的最大值來計算最大輸出功率。
在一個實施例中,處理器可以被配置成:將最大輸出功率配置在上限與下限之間,其中所述下限是通過以下等式設置的: PCMAX_L=MIN{PEMAX,-△TC,,PPowerClass-MAX(MPR+A-MPR,P-PR)-△TC,}
其中PEMAX是用信號通告給WTRU的物理量,△TC是基於WTRU傳輸頻率的功率減小,PPowerClass是WTRU功率等級的最大功率,MPR是WTRU的最大功率減小,A-MPR是額外MPR,以及P-MPR是功率管理功率減小。
在一個實施例中,處理器可以被配置成:將用於單個分量載波的最大輸出功率設置在上限與下限之間,其中所述下限是通過以下等式設置的:PCMAX_L,c=MIN{PEMAX,c-△TC,c,PPowerClass-MAX(MPR+A-MPR,P-PR)-△TC,c}
其中PEMAX,c是用信號通告給WTRU的物理量,△TC,c是用於單個分量載波的基於WTRU傳輸頻率的功率減小,PPowerClass是WTRU功率等級的最大功率,MPR是WTRU的最大功率減小,A-MPR是額外MPR,以及P-MPR是功率管理功率減小。
在一個實施例中,處理器可以被配置成確定WTRU是否應用了基於P-MPR的後移值;以及發射/接收單元可以被配置成回應於WTRU應用了基於P-MPR的後移值,向網路資源報告WTRU應用了基於P-MPR的後移值。
在一個實施例中,處理器可以被配置成:當所述後移值基於P-MPR時,設置支配地位指示符;以及發射/接收單元可以被配置成將所述支配地位指示符發送給網路資源。
在一個實施例中,處理器可以被配置成設置支配地位指示符 以作為媒體存取控制器(MAC)控制元素(CE);以及發射/接收單元可以被配置成向網路資源發送該MACCE。
在一個實施例中,處理器可以被配置成:設置下列各項之一:(1)用於受P-MPR影響的每一個分量載波的相應支配地位指示符;或者(2)與WTRU相關聯的單個支配地位指示符。
在一個實施例中,處理器可以被配置成將所述支配地位指示符設置成下列各項之一:(1)響應於受P-MPR影響的後移值的第一邏輯級;或者(2)響應於不受P-MPR影響的後移值的第二邏輯級;以及觸發功率餘量報告(PHR)。
在一個實施例中,一種被配置成管理功率餘量報告(PHR)的無線發射/接收單元WTRU)可以包括:處理器,被配置成確定在第一時段是否將發生針對分量載波(CC)的真實傳輸;確定針對CC發生真實傳輸的時候之先前時段;將關聯於第一時段的CC的P-MPR與關聯於先前時段的CC的P-MPR相比較;以及根據比較結果來觸發PHR。
在一個實施例中,處理器可以被配置成確定在第一時段中上行鏈路授權是否與分量載波相關聯。
在一個實施例中,處理器可以被配置成:回應於關聯於第一時段的CC的P-MPR和關聯於先前時段的CC的P-MPR相差一門檻值而觸發所述PHR。
在一個實施例中,處理器可以被配置成獲取與第一時段相關聯的CC的P-MPR;獲取與先前時段相關聯的CC的P-MPR;以及確定與第一時段相關聯的CC的P-MPR與關聯於先前時段的CC的P-MPR是否相差一門 檻值。
在一個實施例中,處理器可以被配置成回應於與第一時段相關聯的CC的功率後移與關聯於先前時段的CC的功率後移相差一門檻值,觸發功率餘量報告。
在一個實施例中,先前時段可以是WTRU發送PHR的最近時段,其中所述PHR包括與用於CC的真實傳輸相對應的功率餘量;並且第一時段可以是與當前傳輸時間間隔相關聯的時段,先前時段是與WTRU發送PHR的最近的先前傳輸時間間隔相關聯的時段,其中所述PHR包括與用於CC的真實傳輸相對應的功率餘量。
在一個實施例中,處理器可以被配置成:在WTRU具有用於CC上的新傳輸的上行鏈路資源的傳輸時間間隔中觸發功率餘量報告,而不是在WTRU不具有用於CC上的新傳輸的上行鏈路資源的傳輸時間間隔中。
在一個實施例中,處理器可以被配置成:在WTRU具有終止或已經終止的PHR禁止計時器的傳輸時間間隔中觸發功率餘量報告,而不是在WTRU不具有終止或已經終止的PHR禁止計時器的傳輸時間間隔中。
在一個實施例中,一種被配置成管理功率餘量報告的無線發射/接收單元(WTRU)可以包括:處理器,被配置成確定與在多個傳輸時間間隔(TTI)上採取的功率管理功率減小(P-MPR)相關聯的狀況是否臨時改變而作為所確定的結果;以及基於所確定的結果來觸發對功率餘量的報告。
在一個實施例中,處理器可以被配置成通過連續計算各個不同TTI中的P-MPR,以便確定用於多個TTI的P-MPR。
在一個實施例中,處理器可以被配置確定在TTI中的P-MPR值是否為了滿足所述狀況而已經改變超出門檻值時段。
在一個實施例中,處理器可以被配置成設置相對於當前時間的指定時段作為回顧視窗;以及確定在該回顧視窗中是否滿足所述狀況。
在一個實施例中,處理器可以被配置成確定在大於門檻值時段的回顧視窗的至少一部分中是否存在所述狀況。
在一個實施例中,處理器可以被配置成:將回顧視窗設置成相對於當前時間的指定時段。
在一個實施例中,處理器可以被配置成在當前時間改變時改變回顧視窗。
在一個實施例中,處理器可以被配置成:回應於在觸發禁止時間內以別的方式觸發功率餘量報告而禁止觸發所述功率餘量報告直到超出觸發禁止時間。
在一個實施例中,處理器可以被配置成:使用與關聯於回顧視窗的多個P-MPR中的一個或多個P-MPR相關聯的P-MPR來計算後移值。
在一個實施例中,處理器可以被配置成確定下列值之一:(1)P-MPR的最高值;(2)P-MPR的最低值;(3)P-MPR的平均值;或者(4)P-MPR的中值;以及將所確定的值包含在功率餘量報告中。
在一個實施例中,處理器可以被配置成修改由於功率管理後移導致的PHR觸發,以消除PHR中的虛擬餘量報告導致的偏差。
在一個實施例中,一種被配置成管理功率餘量報告的無線發射/接收單元(WTRU)還包括:處理器,被配置成基於下列各項中的至少 一項來確定指示用於WTRU的傳輸功率值的第一減小的第一後移值:(1)最大功率減小(MPR)或(2)額外MPR(A-MPR);基於功率管理功率減小(P-MPR)來確定第二後移值,其中該第二後移值指示用於WTRU的傳輸功率值的第二減小;基於第一或第二後移值中的哪一個處於支配地位來選擇第一或第二後移值之一;以及發射/接收單元,被配置成根據處理器選擇的後移值來報告功率餘量。
在一個實施例中,一種被配置成管理傳輸功率的無線發射/接收單元(WTRU)可以包括:處理器,被配置成在傳輸時間間隔(TTI)中基於功率管理後移變化或功率管理對所述後移的影響來觸發功率餘量報告(PHR);以及發射/接收單元,被配置成在TTI中傳送PHR。
在一個實施例中,一種被配置成管理傳輸功率的無線發射/接收單元(WTRU)可以包括:處理器,被配置成基於後移變化或後移影響來觸發功率餘量報告(PHR),其中基於功率管理的後移被用於計算WTRU的最大輸出功率;在一個實施例中,一種被配置成管理傳輸功率的無線發射/接收單元(WTRU)可以包括:處理器,被配置成確定用於減小傳輸功率的基於功率管理的後移;以及發射/接收單元,被配置成基於所確定的基於功率管理的後移來報告減小的傳輸功率。
在一個實施例中,一種被配置成管理傳輸功率的無線發射/接收單元(WTRU)可以包括:處理器,被配置成基於後移變化或後移影響來觸發功率餘量報告(PHR),其中基於功率管理的後移被用於計算WTRU的最大輸出功率;以及消除虛擬PHR引發的PHR觸發。
在一個實施例中,處理器可以被配置成修改由於基於功率管理的後移導致的PHR觸發,以消除PHR中的虛擬餘量報告導致的偏差。
在一個實施例中,處理器可以被配置成將功率餘量計算為WTRU計算的發射功率與所配置的最大輸出功率之間的差值。
在一個實施例中,處理器可以被配置成計算用於多個分量載波(CC)中的每一個的功率餘量的值。
在一個實施例中,處理器可以被配置成基於最大功率減小(MPR)、額外MPR(AMPR)以及非MPR效果來確定後移值,所述非MPR效果與基於功率管理的後移相對應。
在一個實施例中,處理器可以被配置成並行應用MPR/A-MPR和非MPR效果。
在一個實施例中,非MPR效果可以減小子訊框中的每一個分量載波的最大輸出功率。
在一個實施例中,處理器可以被配置成回應於檢測到基於功率管理的後移變化來觸發PHR生成。
在一個實施例中,處理器可以被配置成在PHR中指示基於功率管理的後移如何影響所報告的每一個分量載波的最大輸出功率。在一個實施例中,處理器可以被配置成在基於功率管理的後移對每一個分量載波的最大輸出功率值的影響超出門檻值的情況下執行觸發。
在一個實施例中,處理器可以被配置成響應於WTRU在PHR中報告的每一個分量載波的最大輸出功率值發生變化而應用變化的基於功率管理的後移。
在一個實施例中,處理器可以被配置成在WTRU處於開啟狀態的時候使用基於功率管理的後移。
在一個實施例中,處理器可以被配置成在所述傳輸是叢發性的情況下,回應於第一傳輸叢發而觸發PHR,其中所述PHR包括減小的每一個分量載波的最大輸出功率。
在一個實施例中,處理器可以被配置成在所述傳輸是叢發性的情況下將資訊元素叢發模式設置成開啟。
在一個實施例中,處理器可以被配置成發送包含了每一個分量載波的最大輸出功率值的PHR,其中所述最大輸出功率值具有自最後發生PHR起的一時段中發生的最差情況的後移。
在一個實施例中,發射/接收單元可以被配置成在每一個分量載波的最大輸出功率受到基於功率管理的後移影響的情況下,在虛擬PHR中報告每一個分量載波的最大輸出功率。
在一個實施例中,處理器可以被配置成使用下列各項之一來設置最大功率輸出:(1)以WTRU操作在一個以上的頻帶上為基礎的第一模式;或者(2)以WTRU操作在一個頻帶上為基礎的第二模式。
在一個實施例中,對於每一個頻帶來說,作為非MPR效果的下列各項中的至少一項可以是不同的:最大功率減小(MPR)、額外MPR(A-MPR)、△Tc或是基於功率管理的後移。
在一個實施例中,處理器可以被配置成:在同時在物理上行鏈路控制通道(PUCCH)和物理上行鏈路共用通道(PUSCH)上傳送上行鏈路控制資訊(UCI),WTRU的總的發射功率沒有超出Pcmax,以及PUCCH 的功率加上帶有UCI的PUSCH的功率的總和沒有超出Pcmax的情況下,可以同等地縮放沒有UCI的PUSCH。
在一個實施例中,處理器可以被配置成:在WTRU的總發射功率即將超出Pcmax,並且PUCCH功率與帶有UCI的PUSCH的功率的總和即將超出Pcmax的情況下,縮放帶有UCI的PUSCH,並且不傳送沒有UCI的PUSCH。
在一個實施例中,處理器可以被配置成將基於功率管理的後移應用於所配置的最大傳輸功率的最小界。
在一個實施例中,處理器可以被配置成在與觸發PHR相關聯的狀況發生變化之後,在觸發PHR之前等待一時間。
在一個實施例中,處理器可以被配置成基於支配最大功率計算的預定因素來觸發PHR。
在一個實施例中,一種儲存了程式碼的非臨時電腦可讀儲存介質可以實施這裏的任一方法。
1000‧‧‧方法
1010、1020、1030‧‧‧方框
P-MPR‧‧‧功率管理功率減小
WTRU‧‧‧無線發射/接收單元

Claims (20)

  1. 一種管理與一無線發射/接收單元(WTRU)相關聯的功率餘量報告的方法,該方法包括:針對一傳輸時間間隔(TTI),決定在一服務胞元上該WTRU是否包含至少一個真實上行鏈路傳輸,以及當該WTRU在該服務胞元上包含至少一個其他真實上行鏈路傳輸時,在一最後一個功率餘量報告被該WTRU傳送之後,用於該服務胞元的一功率管理功率減小(P-MPR)的改變是否已經高於一門檻值;以及針對該TTI,在該服務胞元上,該WTRU包含該至少一個真實上行鏈路傳輸、以及當該WTRU包含在該服務胞元上該至少一個其他的真實上行鏈路傳輸時,在由該WTRU傳送該最後一個功率餘量報告之後用於該服務胞元的該P-MPR的改變已經高於該門檻值的情況下,觸發一新的功率餘量報告。
  2. 如申請專利範圍第1項所述的方法,其中,該新的功率餘量報告與一當前TTI相關聯,而且該最後一個功率餘量報告與一最接近的先前TTI相關聯,為了該最接近的先前TTI,該WTRU包括在該服務胞元上的任一個真實傳輸。
  3. 如申請專利範圍第1項所述的方法,其中,在以下任一情況時:(1)該WTRU針對一相關聯的TTI,具有在該服務胞元上用於傳輸的一上行鏈路資源授權;(2)該WTRU針對該相關聯的TTI,具有在該服務胞元上,被分配用於傳輸的一上行鏈路資源;或 (3)針對該相關聯的TTI,在該服務胞元上,該WTRU將提供一物理上行鏈路控制通道(PUCCH)傳輸,則該WTRU包含在該服務胞元上的該至少一個真實上行鏈路傳輸。
  4. 如申請專利範圍第3項所述的方法,其中,利用上行鏈路授權或半靜態持續排程,針對該相關聯的TTI,在該服務胞元上,該發射/接收單元具有分配用於傳輸的該上行鏈路資源。
  5. 如申請專利範圍第1項所述的方法,其中,在以下任何一者成立的情況下:(1)針對該其他的TTI,在該服務胞元上,該WTRU具有用於傳輸的一上行鏈路資源授權;(2)針對該其他的TTI,在該服務胞元上,該WTRU具有被分配用於傳輸的一上行鏈路資源;或(3)針對該其他的TTI,在該服務胞元上,該WTRU提供一物理上行鏈路控制通道(PUCCH)傳輸,在與該最後一個功率餘量報告相關聯的另一個TTI中,在該服務胞元上,該WTRU包括該至少一個其他真實上行鏈路傳輸。
  6. 如申請專利範圍第5項所述的方法,其中,利用上行鏈路授權或半靜態持續排程,針對該其他的TTI,在該服務胞元上,該WTRU具有分配用於傳輸的該上行鏈路資源。
  7. 如申請專利範圍第1項所述的方法,其中,針對該TTI,在該WTRU具有分配用於新的傳輸的一上行鏈路資源的又一情況下,該WTRU觸發該新的功率餘量報告。
  8. 如申請專利範圍第1項所述的方法,其中,該P-MPR由以下任何一者所作用:(1)在一特定吸收率(SAR)中的一改變;(2)在該WTRU對於該WTRU的一使用者的鄰近度中的一改變;或(3)1xEV-DO資料傳輸。
  9. 一種管理與一無線發射/接收單元(WTRU)相關聯的功率餘量報告的方法,該方法包括:針對一傳輸時間間隔(TTI),一服務胞元上,決定該WTRU是否具有用於傳輸的一上行鏈路資源授權、以及當該WTRU具有在該服務胞元上用於傳輸的另一個上行鏈路資源授權時,在由該WTRU一功率餘量報告的一最後一個傳輸之後,用於該服務胞元的一功率管理功率減小(P-MPR)的改變是否已經高於一門檻值;以及針對該TTI,在該服務胞元上在該WTRU具有用於傳輸的該上行鏈路資源授權、以及當該WTRU在該服務胞元上具有用於傳輸的該其他上行鏈路資源授權時,在由該WTRU的該功率餘量報告的該最後一個傳輸之後,用於該服務胞元的該P-MPR的改變高於該門檻值的情況下,觸發一新的功率餘量報告。
  10. 如申請專利範圍第9項所述的方法,其中,該新的功率餘量報告與一當前TTI相關聯,而且該功率餘量報告的該最後一個傳輸與一最接近的先前TTI相關聯,為了該最接近的先前TTI,該WTRU包括任何上行鏈路資源授權。
  11. 如申請專利範圍第9項所述的方法,其中該P-MPR由以下任何一者所作用:(1)在一特定吸收率(SAR)中的一改變;(2)在該WTRU對於該 WTRU的一使用者的鄰近度中的一改變;或(3)1xEV-DO資料傳輸。
  12. 一種被配置成管理功率餘量報告的無線發射/接收單元(WTRU),包括:一處理器,被配置成:針對一傳輸時間間隔(TTI),在一服務胞元上,決定是否包含至少一個真實鏈路傳輸、以及在該服務胞元上,當至少一個其他真實上行鏈路傳輸被該WTRU包含時,在一最後一個功率餘量報告被該WTRU傳送之後,用於該服務胞元的一功率管理功率減小(P-MPR)的改變是否已經高於一門檻值;一發射/接收單元,被配置成:針對該TTI,在該服務胞元上該至少一個真實上行鏈路傳輸被該WTRU所包含、以及在該服務胞元上,在該至少一個其他真實上行鏈路傳輸被該WTRU所包含時,在該最後一個功率餘量報告被該WTRU傳送之後,用於該服務胞元的該P-MPR的改變已經高於該門檻值的情況下,觸發一新的功率餘量報告。
  13. 如申請專利範圍第12項所述的WTRU,其中,該新的功率餘量報告與一當前TTI相關聯,而且該最後一個功率餘量報告與一最接近的先前TTI相關聯,為了該最接近的先前TTI,該WTRU包括在該服務胞元上的任一個真實傳輸。
  14. 如申請專利範圍第12項所述的WTRU,其中,在以下任何一者的情況下:(1)針對一相關聯的TTI,在該服務胞元上,該WTRU具有用於傳輸的一上行鏈路資源授權;(2)針對該相關聯的TTI,在該服務胞元上,該WTRU具有被分配用於 傳輸的一上行鏈路資源;或(3)針對該相關聯的TTI,在該服務胞元上,該WTRU將提供一物理上行鏈路控制通道(PUCCH)傳輸,在該服務胞元上,該發射/接收單元被配置成包含該至少一個真實上行鏈路傳輸。
  15. 如申請專利範圍第12項所述的WTRU,其中,利用上行鏈路授權或半靜態持續排程,針對一相關聯的TTI,在該服務胞元上,該發射/接收單元被配置成接收用於傳輸的該上行鏈路資源的一分配。
  16. 如申請專利範圍第12項所述的WTRU,其中,針對該TTI,在該WTRU具有分配用於新的傳輸的一上行鏈路資源的又一情況下,該處理器被配置成觸發該新的功率餘量報告。
  17. 如申請專利範圍第12項所述的WTRU,其中,該處理器被配置成維持用於P-MPR的一數值,其由以下任何一者所作用:(1)在一特定吸收率(SAR)中的一改變;(2)在該WTRU對於該WTRU的一使用者的鄰近度中的一改變;或(3)1xEV-DO資料傳輸。
  18. 一種被配置成管理功率餘量報告的無線發射/接收單元(WTRU),包括:一處理器,被配置成:針對一傳輸時間間隔(TTI),在一服務胞元上,決定該WTRU是否具有用於傳輸的一上行鏈路資源授權、以及在該服務胞元上,當該WTRU具有用於傳輸的其他上行鏈路資源授權時,在由該WTRU一功率餘量報告的 一最後一個傳輸之後,用於該服務胞元的一功率管理功率減小(P-MPR)的改變是否已經高於一門檻值;以及一發射/接收單元,被配置成:針對該TTI,在該服務胞元上,在該WTRU具有用於傳輸的該上行鏈路資源授權、以及在該服務胞元上,當該WTRU具有用於傳輸的該其他上行鏈路資源授權時,在由該WTRU該功率餘量報告的該最後一個傳輸之後,用於該服務胞元的該P-MPR的改變已經高於該門檻值的情況下,觸發一新的功率餘量報告。
  19. 如申請專利範圍第18項所述的WTRU,其中,該新的功率餘量報告與一當前TTI相關聯,而且該功率餘量報告的該最後一個傳輸與一最接近的先前TTI相關聯,為了該最接近的先前TTI,該WTRU包括任一個上行鏈路資源授權。
  20. 如申請專利範圍第18項所述的WTRU,其中,所述處理器被配置成:維持用於P-MPR的一數值,其由以下任何一者所作用:(1)在一特定吸收率(SAR)中的一改變;(2)在該WTRU對於該WTRU的一使用者的鄰近度中的一改變;或(3)1xEV-DO資料傳輸。
TW104141380A 2011-01-07 2012-01-06 處理額外功率後移方法、裝置及系統 TWI613892B (zh)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
US201161430903P 2011-01-07 2011-01-07
US61/430,903 2011-01-07
US201161442095P 2011-02-11 2011-02-11
US61/442,095 2011-02-11
US201161466899P 2011-03-23 2011-03-23
US61/466,899 2011-03-23
US201161468432P 2011-03-28 2011-03-28
US61/468,432 2011-03-28
US201161473635P 2011-04-08 2011-04-08
US61/473,635 2011-04-08
US201161523113P 2011-08-12 2011-08-12
US61/523,113 2011-08-12

Publications (2)

Publication Number Publication Date
TW201620259A TW201620259A (zh) 2016-06-01
TWI613892B true TWI613892B (zh) 2018-02-01

Family

ID=45531586

Family Applications (3)

Application Number Title Priority Date Filing Date
TW101100635A TWI549440B (zh) 2011-01-07 2012-01-06 處理額外功率後移方法、裝置及系統
TW101200399U TWM441274U (en) 2011-01-07 2012-01-06 Apparatus and systems for handling additional power backoff
TW104141380A TWI613892B (zh) 2011-01-07 2012-01-06 處理額外功率後移方法、裝置及系統

Family Applications Before (2)

Application Number Title Priority Date Filing Date
TW101100635A TWI549440B (zh) 2011-01-07 2012-01-06 處理額外功率後移方法、裝置及系統
TW101200399U TWM441274U (en) 2011-01-07 2012-01-06 Apparatus and systems for handling additional power backoff

Country Status (9)

Country Link
US (3) US9020556B2 (zh)
EP (2) EP3214875B1 (zh)
JP (3) JP5873107B2 (zh)
KR (1) KR101853156B1 (zh)
CN (3) CN103299690B (zh)
BR (1) BR112013017378A2 (zh)
RU (1) RU2586637C2 (zh)
TW (3) TWI549440B (zh)
WO (1) WO2012094573A2 (zh)

Families Citing this family (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8818441B2 (en) * 2009-10-02 2014-08-26 Interdigital Patent Holdings, Inc. Method and apparatus for controlling transmit power of transmissions on more than one component carrier
KR101740366B1 (ko) * 2010-06-28 2017-05-29 삼성전자주식회사 이동 통신 시스템에서 역방향 최대 전송 전력을 보고하는 방법 및 장치
WO2012002684A2 (en) 2010-06-28 2012-01-05 Samsung Electronics Co., Ltd. Method and apparatus for reporting maximum transmission power in wireless communication
BR112013010913A2 (pt) * 2010-11-11 2016-08-23 Ericsson Telefon Ab L M controle de agregação de portadora baseado em mensagem de grupo
US9413395B2 (en) * 2011-01-13 2016-08-09 Google Technology Holdings LLC Inter-modulation distortion reduction in multi-mode wireless communication terminal
US8442564B2 (en) * 2011-01-13 2013-05-14 Motorola Mobility Llc Inter-modulation distortion reduction in multi-mode wireless communication terminal
KR102073027B1 (ko) 2011-04-05 2020-02-04 삼성전자 주식회사 반송파 집적 기술을 사용하는 무선통신시스템에서 복수 개의 타임 정렬 타이머 운용 방법 및 장치
CN107613523B (zh) 2011-02-15 2021-12-28 三星电子株式会社 用户设备优先级的功率余量报告方法和装置
WO2012111975A2 (ko) * 2011-02-15 2012-08-23 엘지전자 주식회사 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치
CN103477679B (zh) * 2011-02-15 2017-11-21 三星电子株式会社 用户设备优先级的功率余量报告方法和装置
JP6125437B2 (ja) 2011-02-21 2017-05-10 サムスン エレクトロニクス カンパニー リミテッド 端末送信電力量を效率的に報告する方法及び装置
KR101995293B1 (ko) 2011-02-21 2019-07-02 삼성전자 주식회사 반송파 집적 기술을 사용하는 시분할 무선통신시스템에서 부차반송파의 활성화 또는 비활성화 방법 및 장치
KR20120108345A (ko) * 2011-03-23 2012-10-05 주식회사 팬택 잉여전력보고의 수행장치 및 방법
KR101862410B1 (ko) * 2011-03-29 2018-05-29 엘지전자 주식회사 상향링크 시간 동기 관리 방법 및 장치
JP5368503B2 (ja) * 2011-03-31 2013-12-18 株式会社エヌ・ティ・ティ・ドコモ 移動局及び無線通信システムに使用される方法
KR101948801B1 (ko) 2011-04-11 2019-02-18 삼성전자주식회사 Mbms 지원 사용자 장치의 데이터 수신 방법 및 장치
KR20170000395A (ko) * 2011-04-29 2017-01-02 후지쯔 가부시끼가이샤 최대 구성 전송 전력을 보고하기 위한 방법 및 단말 기기
US9185666B2 (en) * 2011-05-06 2015-11-10 Qualcomm Incorporated Power headroom reporting related to power management maximum power reduction
KR101898109B1 (ko) 2011-05-10 2018-09-13 삼성전자 주식회사 무선통신시스템에서 셀 선택 방법 및 장치
WO2012173430A2 (ko) * 2011-06-15 2012-12-20 엘지전자 주식회사 무선 접속 시스템에서 신호 전송 방법 및 이를 위한 장치
US20130051261A1 (en) * 2011-06-21 2013-02-28 Telefonaktiebolaget Lm Ericsson (Publ) Selecting Uplink Multi-Antenna Transmission to Enhance Coverage
US9369971B2 (en) * 2011-09-28 2016-06-14 Sharp Kabushiki Kaisha Mobile station device, communication system, communication method, and integrated circuit
WO2013066085A1 (ko) * 2011-11-01 2013-05-10 엘지전자 주식회사 무선통신 시스템에서 채널 상태 정보 전송 방법 및 장치
US9642114B2 (en) * 2011-11-04 2017-05-02 Intel Corporation Path-loss estimation for uplink power control in a carrier aggregation environment
KR101986865B1 (ko) 2011-11-04 2019-06-07 인터디지탈 패튼 홀딩스, 인크 다수의 타이밍 어드밴스와 관련된 다수의 컴포넌트 반송파 상의 무선 전송에 대한 전력 제어를 위한 방법 및 장치
WO2013141647A1 (ko) * 2012-03-22 2013-09-26 엘지전자 주식회사 무선 접속 시스템에서 상향링크 전송 파워 제어 방법 및 이를 위한 장치
EP3474611B1 (en) 2012-05-11 2020-08-19 LG Electronics Inc. Method and apparatus for performing power headroom reporting procedure in wireless communication system
US9467941B2 (en) * 2012-06-07 2016-10-11 Qualcomm Incorporated Power based fast dormancy
EP2693815A1 (en) * 2012-08-03 2014-02-05 Panasonic Corporation Power headroom reporting for in-device coexistence interference avoidance
CA2880503C (en) * 2012-08-06 2018-03-20 Nokia Corporation Apparatus and method for support of additional maximum power reduction by user equipment
US9204356B2 (en) * 2012-09-04 2015-12-01 Apple Inc. Reducing call drops in uplink power limited scenarios
GB2505892B (en) * 2012-09-12 2015-09-23 Broadcom Corp Methods, apparatus and computer programs for controlling power of wireless transmissions
JP2014072778A (ja) 2012-09-28 2014-04-21 Ntt Docomo Inc 無線通信システム、基地局装置、ユーザ端末及び無線通信方法
GB2506445B (en) * 2012-10-01 2015-06-10 Broadcom Corp Apparatus, methods and computer programs for signalling transmitted output power
CN103929800B (zh) * 2013-01-11 2017-09-29 电信科学技术研究院 一种pucch功率控制方法及装置
US9173095B2 (en) * 2013-03-11 2015-10-27 Intel Corporation Techniques for authenticating a device for wireless docking
US9282523B2 (en) * 2013-04-26 2016-03-08 Mediatek Inc. Maximum output power configuration with UE preference in carrier aggregation
US9603098B2 (en) * 2013-05-02 2017-03-21 Samsung Electronics Co., Ltd. Method and apparatus for controlling uplink power in wireless communication system
US9615336B2 (en) * 2013-05-23 2017-04-04 Qualcomm Incorporated Uplink power headroom management for connectivity with logically separate cells
US9871544B2 (en) 2013-05-29 2018-01-16 Microsoft Technology Licensing, Llc Specific absorption rate mitigation
JP6199606B2 (ja) * 2013-05-29 2017-09-20 株式会社Nttドコモ 無線通信システムおよび移動端末装置
US10893488B2 (en) 2013-06-14 2021-01-12 Microsoft Technology Licensing, Llc Radio frequency (RF) power back-off optimization for specific absorption rate (SAR) compliance
US10149258B2 (en) * 2013-07-09 2018-12-04 Sharp Kabushiki Kaisha Terminal apparatus, base station apparatus, communication method and integrated circuit
CN105340337B (zh) * 2013-07-09 2020-02-04 夏普株式会社 终端装置、基站装置以及通信方法
US10341965B2 (en) 2013-08-05 2019-07-02 Lg Electronics Inc. Method for power headroom reporting and device therefor
US9907094B2 (en) * 2013-09-16 2018-02-27 Lg Electronics Inc. Random access procedures in a wireless network employing TDD scheme
US10440663B2 (en) 2013-09-20 2019-10-08 Lg Electronics Inc. Triggering power headroom reporting in TDD system
JP6301094B2 (ja) * 2013-09-26 2018-03-28 株式会社Nttドコモ ユーザ端末および無線通信方法
US9532253B2 (en) * 2013-09-26 2016-12-27 Sharp Kabushiki Kaisha Systems and methods for multi-connectivity operation
EP2854460B1 (en) 2013-09-27 2017-04-05 Sun Patent Trust Power control and power headroom reporting for dual connectivity
KR101611825B1 (ko) * 2013-11-08 2016-04-14 주식회사 케이티 상향링크 전송 전력을 제어하는 방법과 그 장치
US9992755B2 (en) 2013-12-20 2018-06-05 Lg Electronics Inc. Method for power headroom reporting and device therefor
US10172102B2 (en) * 2013-12-22 2019-01-01 Lg Electronics Inc. Method for power headroom reporting and device therefor
US10044095B2 (en) 2014-01-10 2018-08-07 Microsoft Technology Licensing, Llc Radiating structure with integrated proximity sensing
US9563316B2 (en) 2014-01-10 2017-02-07 Microsoft Technology Licensing, Llc Radiofrequency-wave-transparent capacitive sensor pad
US9813997B2 (en) 2014-01-10 2017-11-07 Microsoft Technology Licensing, Llc Antenna coupling for sensing and dynamic transmission
US9867148B2 (en) 2014-01-31 2018-01-09 Nokia Solutions And Networks Oy Power control for transmissions to first and second base stations
JP6209458B2 (ja) * 2014-02-03 2017-10-04 株式会社Nttドコモ 移動局及び移動通信方法
EP3116259B1 (en) * 2014-03-06 2019-05-08 Sharp Kabushiki Kaisha Terminal device, base station device, communication system, control method, and integrated circuit
JP6031058B2 (ja) * 2014-03-20 2016-11-24 株式会社Nttドコモ ユーザ端末、無線基地局、無線通信システム及び無線通信方法
US10448374B2 (en) 2014-03-21 2019-10-15 Samsung Electronics Co., Ltd. Power headroom report method of dual-connectivity UE in mobile communication system
WO2015159874A1 (ja) * 2014-04-18 2015-10-22 株式会社Nttドコモ ユーザ装置、及び上り送信電力情報送信方法
US9769769B2 (en) 2014-06-30 2017-09-19 Microsoft Technology Licensing, Llc Detecting proximity using antenna feedback
WO2016021588A1 (ja) * 2014-08-04 2016-02-11 シャープ株式会社 端末装置、基地局装置および方法
US9785174B2 (en) 2014-10-03 2017-10-10 Microsoft Technology Licensing, Llc Predictive transmission power control for back-off
US9860897B2 (en) 2014-10-07 2018-01-02 Qualcomm Incorporated Techniques for transmitting uplink control information for a component carrier
JP6575032B2 (ja) * 2014-11-06 2019-09-18 シャープ株式会社 端末装置、基地局装置、および通信方法
EP3018951A1 (en) * 2014-11-07 2016-05-11 Alcatel Lucent Method and apparatus to handle multi-carrier operation in case of cellular service communication and proximity service communication
US9871545B2 (en) 2014-12-05 2018-01-16 Microsoft Technology Licensing, Llc Selective specific absorption rate adjustment
US9820236B2 (en) * 2015-03-27 2017-11-14 Intel IP Corporation Power compensation in multi-carrier transmitters
WO2016171420A1 (en) 2015-04-18 2016-10-27 Lg Electronics Inc. Method for transmitting a buffer status reporting for lte-wlan aggregation system and a device therefor
US10080198B2 (en) * 2015-05-18 2018-09-18 Motorola Mobility Llc Method and apparatus for determining that an almost-contiguous resource allocation A-MPR applies to an uplink transmission
US10461786B2 (en) * 2015-12-07 2019-10-29 Telefonaktiebolaget Lm Ericsson (Publ) Apparatus and method for controlling amplifiers
US10013038B2 (en) 2016-01-05 2018-07-03 Microsoft Technology Licensing, Llc Dynamic antenna power control for multi-context device
US10009856B2 (en) * 2016-02-08 2018-06-26 Motorola Mobility Llc Method and apparatus for transmitting PUCCH with a lower A-MPR
GB2548902A (en) * 2016-04-01 2017-10-04 Tcl Communication Ltd Cellular communication system devices and methods
EP3446432A1 (en) 2016-04-20 2019-02-27 Convida Wireless, LLC Configurable reference signals
EP3451751A4 (en) * 2016-04-28 2019-12-04 NTT DoCoMo, Inc. USER EQUIPMENT, BASE STATION AND COMMUNICATION METHOD
WO2017196212A1 (en) * 2016-05-10 2017-11-16 Telefonaktiebolaget Lm Ericsson (Publ) Network node and method for ue specific power handling
CN109644089B (zh) 2016-06-15 2022-04-26 康维达无线有限责任公司 用于新无线电的无许可上行链路传输
CN108306718B (zh) * 2016-08-31 2020-11-24 中国电信股份有限公司 载波聚合的方法、系统以及基站
US10727991B2 (en) * 2016-09-22 2020-07-28 Qualcomm Incorporated Integrating LTE and new radio
US10057863B2 (en) * 2016-10-07 2018-08-21 Futurewei Technologies, Inc. Apparatus, computer program, and method for setting a power of a cell node based on cell node gradient information
US10932276B2 (en) 2016-11-03 2021-02-23 Convida Wireless, Llc Frame structure in NR
EP3536054B1 (en) * 2016-11-04 2021-10-27 Telefonaktiebolaget LM Ericsson (publ) Deriving configured output power with different tti
US10123278B2 (en) * 2016-11-14 2018-11-06 Qualcomm Incorporated Techniques and apparatuses for adjusting transmission power for power-limited uplink carrier aggregation scenarios
US10098127B2 (en) * 2017-01-09 2018-10-09 Qualcomm Incorporated Techniques and apparatuses for differential back-off for long term evolution advanced (LTE-A) uplink carrier aggregation (ULCA)
US10461406B2 (en) 2017-01-23 2019-10-29 Microsoft Technology Licensing, Llc Loop antenna with integrated proximity sensing
US10337886B2 (en) 2017-01-23 2019-07-02 Microsoft Technology Licensing, Llc Active proximity sensor with adaptive electric field control
CN111447664A (zh) 2017-03-03 2020-07-24 南通朗恒通信技术有限公司 一种被用于功率调整的用户设备、基站中的方法和装置
CN110121916B (zh) 2017-03-22 2024-02-13 Oppo广东移动通信有限公司 无线通信方法和设备
US10224974B2 (en) 2017-03-31 2019-03-05 Microsoft Technology Licensing, Llc Proximity-independent SAR mitigation
US10470140B2 (en) * 2017-05-04 2019-11-05 Qualcomm Incorporated Power headroom report for uplink split bearer communications
US11284358B2 (en) 2017-07-10 2022-03-22 Lg Electronics Inc. Method for transmitting a power headroom reporting in wireless communication system and a device therefor
JP7313282B2 (ja) * 2017-08-04 2023-07-24 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム
CN111052812B (zh) * 2017-09-14 2023-10-20 联想(新加坡)私人有限公司 功率余量报告生成
JP2019062343A (ja) * 2017-09-26 2019-04-18 シャープ株式会社 端末装置、基地局装置、および、通信方法
EP4156801A1 (en) * 2017-11-15 2023-03-29 InterDigital Patent Holdings, Inc. Method and device for power headroom reporting in 5g nr
US10602459B2 (en) * 2018-03-05 2020-03-24 Parallel Wireless, Inc. Base station power management using solar panel and battery forecasting
WO2019219011A1 (zh) * 2018-05-14 2019-11-21 Oppo广东移动通信有限公司 无线通信的方法、设备和系统
US10827441B2 (en) * 2018-06-20 2020-11-03 Lenovo (Singapore) Pte. Ltd. Power headroom report generation
CN113498158B (zh) * 2018-08-10 2023-04-14 中兴通讯股份有限公司 功率控制方法和装置、确定目标接收功率的方法和装置
CN110831140A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 一种功率确定方法和装置
WO2020029265A1 (zh) 2018-08-10 2020-02-13 北京小米移动软件有限公司 上行资源的分配方法、装置、设备及存储介质
WO2020031161A1 (en) * 2018-08-10 2020-02-13 Lenovo (Singapore) Pte. Ltd. Method and apparatus for determining per carrier additional maximum power reduction for dual carrier operation
US10681644B2 (en) * 2018-08-21 2020-06-09 Qualcomm Incorporated Reporting actual uplink transmission power
EP3858023A1 (en) 2018-09-27 2021-08-04 Convida Wireless, Llc Sub-band operations in unlicensed spectrums of new radio
CN110536401B (zh) * 2018-09-29 2022-09-06 中兴通讯股份有限公司 确定phr的方法、装置、用户设备、系统及存储介质
US10925007B2 (en) * 2018-11-02 2021-02-16 Apple Inc. Dynamic power reduction requests for wireless communications
WO2020165881A1 (en) * 2019-02-15 2020-08-20 Lenovo (Singapore) Pte. Ltd. Method and apparatus for selectively applying the power adjustment of a transmit power control command
US11129109B2 (en) * 2019-05-06 2021-09-21 Qualcomm Incorporated Uplink transmission techniques for exposure limited transmissions
US11924819B2 (en) * 2019-05-24 2024-03-05 Qualcomm Incorporated Power limits based on signal type for managing maximum permissible exposure
EP4000316A1 (en) * 2019-07-18 2022-05-25 Nokia Technologies Oy Power exposure reporting for wireless networks
KR20210019814A (ko) * 2019-08-13 2021-02-23 삼성전자주식회사 Sar에 기반하여 송신 전력을 백-오프하는 전자 장치 및 그 동작 방법
CN110536397A (zh) * 2019-08-13 2019-12-03 中兴通讯股份有限公司 一种信息发送方法、信息接收方法及装置
US11387949B2 (en) * 2019-08-16 2022-07-12 Apple Inc. Transmitting acknowledgment messages on preferred link in 5G carrier aggregation
GB201913562D0 (en) * 2019-09-20 2019-11-06 Nokia Technologies Oy MPE Assistance in telecommunication systems
WO2021168655A1 (en) * 2020-02-25 2021-09-02 Qualcomm Incorporated Techniques for modifying uplink communications to avoid maximum permissible exposure (mpe) in wireless communications
WO2021188764A1 (en) 2020-03-18 2021-09-23 Comcast Cable Communications, Llc Exposure detection and reporting for wireless communications
KR20210129559A (ko) * 2020-04-20 2021-10-28 삼성전자주식회사 차세대 이동 통신 시스템에서 휴면 부분 대역폭을 고려한 phr 트리거링 방법과 phr 구성 방법 및 장치
CN115486146A (zh) * 2020-05-20 2022-12-16 Oppo广东移动通信有限公司 上报功率回退信息的方法及装置、网络设备、终端设备
CN115699599A (zh) * 2020-06-05 2023-02-03 高通股份有限公司 多面板功率报告技术
BR112022025000A2 (pt) * 2020-07-22 2023-01-31 Ericsson Telefon Ab L M Método realizado por um dispositivo sem fio e dispositivo sem fio para relatar para uma estação-base
US11917559B2 (en) 2020-08-26 2024-02-27 Qualcomm Incorporated Time-averaged radio frequency (RF) exposure per antenna group
US11540228B2 (en) * 2021-05-26 2022-12-27 Qualcomm Incorporated Power control in serving cell with neighboring cells operating in different direction or full-duplex mode
US11870516B2 (en) 2021-07-14 2024-01-09 Samsung Electronics Co., Ltd. Apparatus and methods for better estimation of radiation power utilizing PAPC compensation
WO2023229240A1 (ko) * 2022-05-26 2023-11-30 삼성전자 주식회사 안테나를 포함하는 전자 장치 및 그 방법
WO2024080551A1 (ko) * 2022-10-13 2024-04-18 삼성전자주식회사 반사 계수에 기반하여 백 오프 동작을 수행하는 전자 장치 및 그 동작 방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100322090A1 (en) * 2009-06-18 2010-12-23 Qualcomm Incorporated Power scaling for multi-carrier high-speed uplink packet access

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030032875A (ko) 2001-10-19 2003-04-26 삼성전자주식회사 멀티캐스트 멀티미디어 방송 서비스를 제공하는 이동 통신시스템에서 순방향 데이터 채널 송신 전력을 제어하는장치 및 방법
JP4226599B2 (ja) * 2003-08-08 2009-02-18 三菱電機株式会社 通信端末及び通信システム
CN1655472A (zh) * 2004-02-13 2005-08-17 北京三星通信技术研究有限公司 对终端的发射功率进行调度的传输速率的控制方法和设备
JP2008017009A (ja) 2006-07-04 2008-01-24 Nec Corp 無線基地局及びこれを用いた送信電力制御方法
EP2198659B1 (en) * 2007-10-09 2015-06-03 Telefonaktiebolaget LM Ericsson (publ) An uplink power control method in a telecommunications network system that supports both common and separate tpc commands
US9084201B2 (en) 2008-01-25 2015-07-14 Qualcomm Incorporated Power headroom management in wireless communication systems
AU2009228928B2 (en) 2008-03-26 2014-04-03 Cellular Communications Equipment Llc Extension of power headroom reporting and trigger conditions
EP2290890A1 (en) * 2008-06-17 2011-03-02 Panasonic Corporation Radio transmission device and radio transmission method
EP2374316B1 (en) 2008-10-31 2013-11-20 InterDigital Patent Holdings, Inc. Providing control information for multi-carrier uplink transmission
US8619563B2 (en) * 2009-02-03 2013-12-31 Qualcomm Incorporated Method and apparatus for interference management in a wireless communication system
KR101457754B1 (ko) 2009-03-12 2014-11-03 인터디지탈 패튼 홀딩스, 인크 무선 링크 실패에 대한 모니터링을 위한 방법 및 장치
US20100272091A1 (en) 2009-04-27 2010-10-28 Motorola, Inc. Uplink Scheduling Supoort in Multi-Carrier Wireless Communication Systems
CN101577433B (zh) * 2009-06-03 2011-11-02 镇江赛尔尼柯自动化有限公司 船舶电站功率管理重载询问方法
US20110158117A1 (en) * 2009-06-29 2011-06-30 Qualcomm Incorporated Power headroom report for simultaneous transmissions on disparate radio access technologies
US8249091B2 (en) 2009-10-21 2012-08-21 Samsung Electronics Co., Ltd Power headroom reporting method and device for wireless communication system
US8908582B2 (en) * 2010-02-12 2014-12-09 Qualcomm Incorporated User equipment operation mode and channel or carrier prioritization
CN101895923B (zh) * 2010-06-11 2013-05-08 新邮通信设备有限公司 载波聚合通信系统中的功率余量报告方法和用户设备
EP2604085B1 (en) * 2010-08-13 2015-01-21 InterDigital Patent Holdings, Inc. In-device interference mitigation
US8565205B2 (en) * 2010-11-04 2013-10-22 Qualcomm Incorporated Specific absorption rate backoff in power headroom report
SG190005A1 (en) * 2010-12-30 2013-06-28 Ericsson Telefon Ab L M Methods and apparatuses for enabling power back-off indication in phr in a telecommunications system
CN103477679B (zh) 2011-02-15 2017-11-21 三星电子株式会社 用户设备优先级的功率余量报告方法和装置
US9036556B2 (en) * 2011-03-22 2015-05-19 Lg Electronics Inc. Apparatus and method of reporting power headroom in wireless communication system
US9185666B2 (en) * 2011-05-06 2015-11-10 Qualcomm Incorporated Power headroom reporting related to power management maximum power reduction
US20130051261A1 (en) * 2011-06-21 2013-02-28 Telefonaktiebolaget Lm Ericsson (Publ) Selecting Uplink Multi-Antenna Transmission to Enhance Coverage

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100322090A1 (en) * 2009-06-18 2010-12-23 Qualcomm Incorporated Power scaling for multi-carrier high-speed uplink packet access

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Motorola,"PHR and P_CMAX Reporting", 3GPP TSG-RAN WG2#72, R2-106478, November 15-19, 2010. *
Qualcomm Inc.,"Definition of Pcmax,c", 3GPP TSG-RAN WG1#63, R1-106348, November 15-19, 2010. *
Samsung,"Transmission power & PHR handing in CA", 3GPP TSG-RAN WG2#70, R2-103550, June 28-July 2, 2010 *
Samsung,"Transmission power & PHR handing in CA", 3GPP TSG-RAN WG2#70, R2-103550, June 28-July 2, 2010.

Also Published As

Publication number Publication date
KR101853156B1 (ko) 2018-04-27
JP6023363B2 (ja) 2016-11-09
RU2013136902A (ru) 2015-02-20
EP3214875A2 (en) 2017-09-06
KR20140039152A (ko) 2014-04-01
EP3214875A3 (en) 2017-12-06
EP3214875B1 (en) 2020-10-07
CN103299690A (zh) 2013-09-11
US9020556B2 (en) 2015-04-28
WO2012094573A2 (en) 2012-07-12
US20150195797A1 (en) 2015-07-09
JP2016077012A (ja) 2016-05-12
WO2012094573A3 (en) 2012-08-23
TW201234789A (en) 2012-08-16
JP5873107B2 (ja) 2016-03-01
US20170223641A1 (en) 2017-08-03
RU2586637C2 (ru) 2016-06-10
TWI549440B (zh) 2016-09-11
BR112013017378A2 (pt) 2016-11-22
CN107979868B (zh) 2021-04-23
US9661590B2 (en) 2017-05-23
CN103299690B (zh) 2017-10-24
TWM441274U (en) 2012-11-11
US10159051B2 (en) 2018-12-18
JP2014502128A (ja) 2014-01-23
TW201620259A (zh) 2016-06-01
CN203086742U (zh) 2013-07-24
EP2661931A2 (en) 2013-11-13
CN107979868A (zh) 2018-05-01
JP6267306B2 (ja) 2018-01-24
US20120178494A1 (en) 2012-07-12
JP2016226064A (ja) 2016-12-28

Similar Documents

Publication Publication Date Title
TWI613892B (zh) 處理額外功率後移方法、裝置及系統
US20200154374A1 (en) Device-To-Device (D2D) Cross Link Power Control
JP7150692B2 (ja) 複数のタイミングアドバンスに関連付けられた複数のコンポーネントキャリア上における無線伝送のための電力制御の方法および装置
JP7022948B2 (ja) ユーザ機器および方法
KR101701444B1 (ko) 하나보다 많은 컴포넌트 캐리어 상의 전송의 전송 전력을 제어하기 위한 방법 및 장치
EP2742749B1 (en) Methods, apparatus and systems for power control and timing advance