TWI613275B - Quantum dot composite material and manufacturing method and application thereof - Google Patents

Quantum dot composite material and manufacturing method and application thereof Download PDF

Info

Publication number
TWI613275B
TWI613275B TW105132612A TW105132612A TWI613275B TW I613275 B TWI613275 B TW I613275B TW 105132612 A TW105132612 A TW 105132612A TW 105132612 A TW105132612 A TW 105132612A TW I613275 B TWI613275 B TW I613275B
Authority
TW
Taiwan
Prior art keywords
quantum dot
inorganic perovskite
light
perovskite quantum
emitting diode
Prior art date
Application number
TW105132612A
Other languages
Chinese (zh)
Other versions
TW201718825A (en
Inventor
王宏嘉
張學杰
林欣穎
湯安慈
劉如熹
蔡宗良
李育群
陳靜儀
童鴻鈞
Original Assignee
隆達電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 隆達電子股份有限公司 filed Critical 隆達電子股份有限公司
Priority to CN201611040437.3A priority Critical patent/CN107017325B/en
Priority to US15/362,120 priority patent/US10436973B2/en
Priority to EP16201099.5A priority patent/EP3192846B1/en
Priority to KR1020160162206A priority patent/KR20170063417A/en
Priority to JP2016232625A priority patent/JP6631973B2/en
Publication of TW201718825A publication Critical patent/TW201718825A/en
Application granted granted Critical
Publication of TWI613275B publication Critical patent/TWI613275B/en
Priority to US16/548,901 priority patent/US10816716B2/en

Links

Abstract

量子點複合材料及其製造方法與應用。量子點複合材料包括全無機鈣鈦礦量子點及修飾性保護。全無機鈣鈦礦量子點具有化學通式CsPb(ClaBr1-a-bIb)3,其中0a1,0b1。修飾性保護在全無機鈣鈦礦量子點的表面上。 Quantum dot composite materials and methods for their manufacture and applications. Quantum dot composites include all-inorganic perovskite quantum dots and modification protection. The all-inorganic perovskite quantum dots have a chemical formula of CsPb(Cl a Br 1-ab I b ) 3 , of which 0 a 1,0 b 1. The modification is protected on the surface of the all inorganic perovskite quantum dots.

Description

量子點複合材料及其製造方法與應用 Quantum dot composite material and its manufacturing method and application

本發明是有關於一種量子點複合材料及其製造方法與應用,且特別是有關於一種具有修飾性保護之量子點複合材料及其製造方法與應用。 The invention relates to a quantum dot composite material and a manufacturing method and application thereof, and in particular to a quantum dot composite material with modified protection and a manufacturing method and application thereof.

現階段之常見發光材料以螢光粉及量子點最為普遍。然而目前螢光粉市場已趨向飽和,且螢光粉之放光光譜之半高寬普遍過寬,而至今難以突破,此導致應用於裝置上之技術受限制。於是人們紛紛趨向量子點領域發展使之成為現階段研究潮流。 Fluorescent powders and quantum dots are the most common luminescent materials at this stage. However, the current phosphor powder market has become saturated, and the half-height width of the spectroscopic spectrum of the phosphor powder is generally too wide, and it has been difficult to break through so far, which has led to limitations in the technology applied to the device. Therefore, people have become the research trend in the field of vector sub-points.

奈米材料其顆粒介於1至100奈米並依照大小而分類。半導體奈米晶體(nano crystals;NCs)又稱之為量子點(quantum dots;QDs),其顆粒尺寸歸類為0維之奈米材料。奈米材料被廣泛使用於發光二極體、太陽能電池、生物標記等應用,其獨特之光學、電學及磁學特性使之成為研究新興產業。 Nanomaterials have particles ranging from 1 to 100 nm and are classified according to size. Semiconductor nanocrystals (NCs) are also called quantum dots (QDs), and their particle size is classified into 0-dimensional nanomaterials. Nano materials are widely used in applications such as light-emitting diodes, solar cells, and biomarkers. Their unique optical, electrical, and magnetic properties make them an emerging industry.

量子點具窄半高寬之特性,故其放光特性應用於發光二極體裝置上將可有效解決傳統螢光粉色域不夠寬廣之問題, 格外引起關注。 Quantum dots have the characteristics of narrow half-height and wide, so the light-emitting characteristics applied to the light-emitting diode device can effectively solve the problem that the traditional fluorescent pink domain is not broad enough. Especially cause concern.

本揭露係有關於一種量子點複合材料及其製造方法與應用。 The disclosure relates to a quantum dot composite material and a method and application thereof.

根據本揭露之一方面,提出一種量子點複合材料。量子點複合材料包括全無機鈣鈦礦量子點及修飾性保護在全無機鈣鈦礦量子點的表面上。全無機鈣鈦礦量子點具有化學通式CsPb(ClaBr1-a-bIb)3,其中0

Figure TWI613275BD00001
a
Figure TWI613275BD00002
1,0
Figure TWI613275BD00003
b
Figure TWI613275BD00004
1。 According to one aspect of the present disclosure, a quantum dot composite material is proposed. Quantum dot composites include all-inorganic perovskite quantum dots and are modified to protect the surface of all inorganic perovskite quantum dots. The all-inorganic perovskite quantum dots have a chemical formula of CsPb(Cl a Br 1-ab I b ) 3 , of which 0
Figure TWI613275BD00001
a
Figure TWI613275BD00002
1,0
Figure TWI613275BD00003
b
Figure TWI613275BD00004
1.

根據本揭露之另一方面,提出一種波長轉換膜,其包括量子點複合材料。量子點複合材料包括具有修飾性保護的全無機鈣鈦礦量子點及修飾性保護在全無機鈣鈦礦量子點的表面上。全無機鈣鈦礦量子點具有化學通式CsPb(ClaBr1-a-bIb)3,其中0

Figure TWI613275BD00005
a
Figure TWI613275BD00006
1,0
Figure TWI613275BD00007
b
Figure TWI613275BD00008
1。 In accordance with another aspect of the present disclosure, a wavelength conversion film is provided that includes a quantum dot composite. Quantum dot composites include fully inorganic perovskite quantum dots with modified protection and are modified to protect the surface of the all inorganic perovskite quantum dots. The all-inorganic perovskite quantum dots have a chemical formula of CsPb(Cl a Br 1-ab I b ) 3 , of which 0
Figure TWI613275BD00005
a
Figure TWI613275BD00006
1,0
Figure TWI613275BD00007
b
Figure TWI613275BD00008
1.

根據本揭露之又另一方面,提出一種量子點複合材料的製造方法,其包括以下步驟:提供全無機鈣鈦礦量子點,其中該全無機鈣鈦礦量子點具有化學通式CsPb(ClaBr1-a-bIb)3,0

Figure TWI613275BD00009
a
Figure TWI613275BD00010
1,0
Figure TWI613275BD00011
b
Figure TWI613275BD00012
1,以及形成修飾性保護在該全無機鈣鈦礦量子點的表面上。 According to yet another aspect of the present disclosure, a method of producing a composite quantum dot, comprising the steps of: providing a full-inorganic perovskite of the quantum dot, wherein the quantum dot full-inorganic perovskite having the general chemical formula CsPb (Cl a Br 1-ab I b ) 3 ,0
Figure TWI613275BD00009
a
Figure TWI613275BD00010
1,0
Figure TWI613275BD00011
b
Figure TWI613275BD00012
1, and the formation of a modification is protected on the surface of the all-inorganic perovskite quantum dot.

根據本揭露之再又另一方面,提出一種發光裝置,其包括一發光二極體晶片與一波長轉換材料。波長轉換材料可被該發光二極體射出之第一光線激發而發出不同於該第一光線之波長的第二光線。波長轉換材料包括數個量子點複合材料。量子 點複合材料各包括全無機鈣鈦礦量子點及修飾性保護在全無機鈣鈦礦量子點的表面上。全無機鈣鈦礦量子點具有化學通式CsPb(ClaBr1-a-bIb)3,其中0

Figure TWI613275BD00013
a
Figure TWI613275BD00014
1,0
Figure TWI613275BD00015
b
Figure TWI613275BD00016
1。 According to still another aspect of the present disclosure, a light emitting device including a light emitting diode chip and a wavelength converting material is provided. The wavelength converting material is excited by the first light emitted by the light emitting diode to emit a second light different from the wavelength of the first light. The wavelength converting material includes a plurality of quantum dot composite materials. The quantum dot composites each comprise all inorganic perovskite quantum dots and are modified to protect the surface of the all inorganic perovskite quantum dots. The all-inorganic perovskite quantum dots have a chemical formula of CsPb(Cl a Br 1-ab I b ) 3 , of which 0
Figure TWI613275BD00013
a
Figure TWI613275BD00014
1,0
Figure TWI613275BD00015
b
Figure TWI613275BD00016
1.

根據本揭露之另一方面,提出一種量子點發光二極體(QLED),其包括一發光層。發光層含有量子點複合材料。量子點複合材料包括全無機鈣鈦礦量子點及修飾性保護在全無機鈣鈦礦量子點的表面上。全無機鈣鈦礦量子點具有化學通式CsPb(ClaBr1-a-bIb)3,其中0

Figure TWI613275BD00017
a
Figure TWI613275BD00018
1,0
Figure TWI613275BD00019
b
Figure TWI613275BD00020
1。 In accordance with another aspect of the present disclosure, a quantum dot light emitting diode (QLED) is provided that includes a light emitting layer. The luminescent layer contains a quantum dot composite. Quantum dot composites include all-inorganic perovskite quantum dots and are modified to protect the surface of all inorganic perovskite quantum dots. The all-inorganic perovskite quantum dots have a chemical formula of CsPb(Cl a Br 1-ab I b ) 3 , of which 0
Figure TWI613275BD00017
a
Figure TWI613275BD00018
1,0
Figure TWI613275BD00019
b
Figure TWI613275BD00020
1.

為了對本揭露之上述及其他方面有更佳的瞭解,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下: In order to better understand the above and other aspects of the present disclosure, the preferred embodiments are described below in detail with reference to the accompanying drawings.

11、31、41、74‧‧‧量子點複合材料 11, 31, 41, 74‧‧‧ Quantum dot composites

13‧‧‧全無機鈣鈦礦量子點 13‧‧‧All inorganic perovskite quantum dots

15A‧‧‧介孔顆粒 15A‧‧‧Mesoporous particles

15B‧‧‧聚合物包覆體 15B‧‧‧ polymer coating

15C、15D‧‧‧修飾性保護 15C, 15D‧‧‧Modified protection

102、202、302、3102、3202‧‧‧發光二極體晶片 102, 202, 302, 3102, 3202‧‧‧Light Emitter Wafer

302s‧‧‧出光面 302s‧‧‧Glossy

3102S1、3102S2‧‧‧表面 3102S1, 3102S2‧‧‧ surface

104、204‧‧‧基底 104, 204‧‧‧Base

106‧‧‧磊晶結構 106‧‧‧ epitaxial structure

108‧‧‧第一型半導體層 108‧‧‧First type semiconductor layer

110‧‧‧主動層 110‧‧‧ active layer

112‧‧‧第二型半導體層 112‧‧‧Second type semiconductor layer

114、214、2048、3214、3214R、3214G、3214B、3214W‧‧‧ 第一電極 114, 214, 2048, 3214, 3214R, 3214G, 3214B, 3214W‧‧ First electrode

116、216、2050、3216‧‧‧第二電極 116, 216, 2050, 3216‧‧‧ second electrode

318、418、518、618、718、818、918、1018、1118、1218、1318、1418、1518、1618、1718、2018、2218、2318‧‧‧發光二極體封裝結構 318, 418, 518, 618, 718, 818, 918, 1018, 1118, 1218, 1318, 1418, 1518, 1618, 1718, 2018, 2218, 2318 ‧ ‧ LED package structure

320、2761‧‧‧基座 320, 2761‧‧‧ base

321‧‧‧固晶區 321‧‧‧ Gujing District

322‧‧‧杯壁 322‧‧‧ cup wall

323、1523‧‧‧容置空間 323, 1523‧‧‧ accommodating space

324、324A、324B、724、3124、3124R、3124G、3124B、3124W‧‧‧波長轉換層 324, 324A, 324B, 724, 3124, 3124R, 3124G, 3124B, 3124W‧‧‧ wavelength conversion layer

326‧‧‧反射牆 326‧‧‧Reflection wall

326s‧‧‧頂面 326s‧‧‧ top

428、628‧‧‧結構元件 428, 628‧‧‧ structural components

428a、628a‧‧‧容置區 428a, 628a‧‧‧ accommodating area

530、1830、1830A、1830B、1830C、1830D‧‧‧光學層 530, 1830, 1830A, 1830B, 1830C, 1830D‧‧‧ optical layers

1737、2837‧‧‧透明膠體 1737, 2837‧‧‧Transparent colloid

1134‧‧‧間隔空間 1134‧‧‧Interval space

1536‧‧‧導電件 1536‧‧‧Electrical parts

1822‧‧‧光源 1822‧‧‧Light source

1838‧‧‧側光式背光模組 1838‧‧‧Side-light backlight module

1938‧‧‧直下式背光模組 1938‧‧‧Direct type backlight module

2538、2638、3038‧‧‧發光裝置 2538, 2638, 3038‧‧‧ illuminating devices

1820‧‧‧框架 1820‧‧‧Frame

1840‧‧‧反射片 1840‧‧‧reflector

1842‧‧‧導光板 1842‧‧‧Light guide plate

1842a‧‧‧入光面 1842a‧‧‧Glossy

1842b‧‧‧出光面 1842b‧‧‧Glossy

1844‧‧‧反射片 1844‧‧‧reflector

1946‧‧‧光學層 1946‧‧‧Optical layer

2051‧‧‧直立部分 2051‧‧‧Upright part

2053‧‧‧橫腳部分 2053‧‧‧cross leg

2352‧‧‧導電板 2352‧‧‧ Conductive plate

2354‧‧‧導電條 2354‧‧‧ Conductive strip

1855、2155、2555‧‧‧電路板 1855, 2155, 2555‧‧‧ boards

2456、2756、2856、2956‧‧‧插件式發光單元 2456, 2756, 2856, 2956‧‧‧ plug-in lighting unit

2157‧‧‧接墊 2157‧‧‧ pads

2658‧‧‧燈殼 2658‧‧‧Light shell

2660‧‧‧散熱器 2660‧‧‧heatsink

2762‧‧‧第一基板 2762‧‧‧First substrate

2764‧‧‧第二基板 2764‧‧‧second substrate

2766‧‧‧第一電極插腳 2766‧‧‧First electrode prong

2768‧‧‧第二電極插腳 2768‧‧‧Second electrode pins

2770‧‧‧第一接觸墊 2770‧‧‧First contact pad

2772‧‧‧第二接觸墊 2772‧‧‧Second contact pad

2774‧‧‧絕緣層 2774‧‧‧Insulation

3076‧‧‧殼體 3076‧‧‧shell

3078‧‧‧透明燈罩 3078‧‧‧Transparent lampshade

3080‧‧‧電路板 3080‧‧‧Circuit board

3082‧‧‧驅動電路 3082‧‧‧ drive circuit

3184‧‧‧發光裝置 3184‧‧‧Lighting device

3577、3677‧‧‧波長轉換膜 3577, 3677‧‧‧ wavelength conversion film

3579‧‧‧透明基體 3579‧‧‧Transparent substrate

3687‧‧‧透明基板 3687‧‧‧Transparent substrate

3689‧‧‧量子點薄層 3689‧‧ ‧ thin layer of quantum dots

3763‧‧‧發光層 3763‧‧‧Lighting layer

3765‧‧‧電洞注入層 3765‧‧‧ hole injection layer

3767‧‧‧電子注入層 3767‧‧‧electron injection layer

3769‧‧‧陽極 3769‧‧‧Anode

3775‧‧‧陰極 3775‧‧‧ cathode

S‧‧‧間隔層 S‧‧‧ spacer

第1A圖繪示根據一實施例之量子點複合材料的製造方法。 FIG. 1A illustrates a method of fabricating a quantum dot composite according to an embodiment.

第1B圖繪示根據一實施例之量子點複合材料的結構。 FIG. 1B illustrates the structure of a quantum dot composite according to an embodiment.

第2圖繪示根據一實施例之量子點複合材料的結構。 FIG. 2 illustrates the structure of a quantum dot composite according to an embodiment.

第3A圖繪示根據一實施例之量子點複合材料的結構。 FIG. 3A illustrates the structure of a quantum dot composite according to an embodiment.

第3B圖繪示根據一實施例之量子點複合材料的結構。 FIG. 3B illustrates the structure of a quantum dot composite according to an embodiment.

第3C圖繪示根據一實施例之修飾性保護為配體交換的量子點複合材料。 Figure 3C depicts a quantum dot composite material modified for ligand exchange according to an embodiment.

第3D圖繪示根據一實施例之修飾性保護為微乳化法形成之微胞的量子點複合材料。 FIG. 3D illustrates a quantum dot composite material modified to protect microvesicles formed by microemulsification according to an embodiment.

第3E圖繪示根據一實施例之修飾性保護為含矽材料包覆體的量子點複合材料。 FIG. 3E illustrates a quantum dot composite material modifiedly protected as a coating of a cerium-containing material according to an embodiment.

第3F圖繪示根據一實施例之修飾性保護為含矽材料包覆體的量子點複合材料。 FIG. 3F illustrates a quantum dot composite material modifiedly protected as a coating of a cerium-containing material according to an embodiment.

第4圖繪示根據一實施例之量子點複合材料的結構。 Figure 4 illustrates the structure of a quantum dot composite according to an embodiment.

第5圖繪示根據一實施例之發光二極體晶片。 FIG. 5 illustrates a light emitting diode wafer according to an embodiment.

第6圖繪示根據一實施例之發光二極體晶片。 FIG. 6 illustrates a light emitting diode wafer according to an embodiment.

第7圖繪示根據一實施例之發光二極體封裝結構。 FIG. 7 illustrates a light emitting diode package structure according to an embodiment.

第8圖繪示根據一實施例之發光二極體封裝結構。 FIG. 8 illustrates a light emitting diode package structure according to an embodiment.

第9圖繪示根據一實施例之發光二極體封裝結構。 FIG. 9 illustrates a light emitting diode package structure according to an embodiment.

第10圖繪示根據一實施例之發光二極體封裝結構。 FIG. 10 illustrates a light emitting diode package structure according to an embodiment.

第11圖繪示根據一實施例之發光二極體封裝結構。 FIG. 11 illustrates a light emitting diode package structure according to an embodiment.

第12圖繪示根據一實施例之發光二極體封裝結構。 FIG. 12 illustrates a light emitting diode package structure according to an embodiment.

第13圖繪示根據一實施例之發光二極體封裝結構。 FIG. 13 illustrates a light emitting diode package structure according to an embodiment.

第14圖繪示根據一實施例之發光二極體封裝結構。 FIG. 14 illustrates a light emitting diode package structure according to an embodiment.

第15圖繪示根據一實施例之發光二極體封裝結構。 FIG. 15 illustrates a light emitting diode package structure according to an embodiment.

第16圖繪示根據一實施例之發光二極體封裝結構。 FIG. 16 illustrates a light emitting diode package structure according to an embodiment.

第17圖繪示根據一實施例之發光二極體封裝結構。 FIG. 17 illustrates a light emitting diode package structure according to an embodiment.

第18圖繪示根據一實施例之發光二極體封裝結構。 FIG. 18 illustrates a light emitting diode package structure according to an embodiment.

第19圖繪示根據一實施例之發光二極體封裝結構。 FIG. 19 illustrates a light emitting diode package structure according to an embodiment.

第20圖繪示根據一實施例之發光二極體封裝結構。 FIG. 20 illustrates a light emitting diode package structure according to an embodiment.

第21圖繪示根據一實施例之發光二極體封裝結構。 FIG. 21 illustrates a light emitting diode package structure according to an embodiment.

第22圖繪示根據一實施例之顯示模組。 Figure 22 illustrates a display module in accordance with an embodiment.

第23圖繪示根據一實施例之顯示模組。 Figure 23 illustrates a display module in accordance with an embodiment.

第24圖繪示根據一實施例之發光二極體封裝結構的立體圖。 FIG. 24 is a perspective view of a light emitting diode package structure according to an embodiment.

第25圖繪示根據一實施例之發光二極體封裝結構的透視圖。 Figure 25 is a perspective view of a light emitting diode package structure in accordance with an embodiment.

第26圖繪示根據一實施例之發光二極體封裝結構的立體圖。 FIG. 26 is a perspective view of a light emitting diode package structure according to an embodiment.

第27圖至第30圖繪示根據一實施例之發光裝置的製造方法。 27 to 30 illustrate a method of fabricating a light emitting device according to an embodiment.

第31圖繪示根據一實施例之插件式發光單元。 FIG. 31 illustrates a plug-in type light emitting unit according to an embodiment.

第32圖繪示根據一實施例之插件式發光單元。 Figure 32 illustrates a plug-in lighting unit in accordance with an embodiment.

第33圖繪示根據一實施例之插件式發光單元。 Figure 33 illustrates a plug-in lighting unit in accordance with an embodiment.

第34圖繪示根據一實施例之發光裝置。 Figure 34 illustrates a light emitting device in accordance with an embodiment.

第35圖繪示根據一實施例之波長轉換膜。 Figure 35 illustrates a wavelength conversion film in accordance with an embodiment.

第36圖繪示根據一實施例之波長轉換膜。 Figure 36 illustrates a wavelength conversion film in accordance with an embodiment.

第37圖繪示根據一實施例之量子點發光二極體的立體圖。 Figure 37 is a perspective view of a quantum dot light emitting diode according to an embodiment.

第38圖繪示根據一實施例之發光裝置對應一畫素部分的立體圖。 38 is a perspective view of a portion of a pixel corresponding to a pixel device according to an embodiment.

第39圖繪示根據一實施例之發光裝置對應一畫素部分的剖面圖。 Figure 39 is a cross-sectional view showing a portion of a pixel corresponding to a pixel device according to an embodiment.

第40圖為根據實施例之全無機鈣鈦礦量子點之X光繞射圖譜。 Figure 40 is an X-ray diffraction pattern of an all-inorganic perovskite quantum dot according to an embodiment.

第41圖為根據實施例之全無機鈣鈦礦量子點的光激發螢光光譜圖。 Figure 41 is a photoexcited fluorescence spectrum of an all inorganic perovskite quantum dot according to an embodiment.

第42圖顯示根據實施例之全無機鈣鈦礦量子點的CIE圖譜位置。 Figure 42 shows the CIE map position of an all inorganic perovskite quantum dot according to an embodiment.

第43圖為根據實施例之全無機鈣鈦礦量子點之X光繞射圖 譜。 Figure 43 is an X-ray diffraction pattern of an all-inorganic perovskite quantum dot according to an embodiment. Spectrum.

第44圖為根據實施例之全無機鈣鈦礦量子點的光激發螢光光譜圖。 Figure 44 is a photoexcited fluorescence spectrum of an all inorganic perovskite quantum dot according to an embodiment.

第45圖顯示根據實施例之全無機鈣鈦礦量子點的CIE圖譜位置。 Figure 45 shows the CIE map position of an all inorganic perovskite quantum dot according to an embodiment.

第46圖為根據實施例之全無機鈣鈦礦量子點的光激發螢光光譜圖。 Figure 46 is a photoexcited fluorescence spectrum of an all inorganic perovskite quantum dot according to an embodiment.

第47圖為比較例無修飾性保護之全無機鈣鈦礦量子點(PQDs)與實施例量子點複合材料(MP-PQDs)之光激發螢光光譜圖。 Figure 47 is a photoexcited fluorescence spectrum of the comparative inorganic non-modified perovskite quantum dots (PQDs) and the example quantum dot composites (MP-PQDs).

第48圖為發光二極體封裝結構的光激發螢光光譜圖。 Figure 48 is a photo-excited fluorescence spectrum of a light-emitting diode package structure.

第49圖為發光二極體封裝結構的光激發螢光光譜圖。 Figure 49 is a photo-excited fluorescence spectrum of the light-emitting diode package structure.

第50圖為發光二極體封裝結構之CIE圖譜位置。 Figure 50 is a CIE map position of the LED package structure.

第51圖為無機鈣鈦礦量子點與量子點複合材料之光激發螢光光譜圖。 Figure 51 is a photo-excited fluorescence spectrum of inorganic perovskite quantum dots and quantum dot composites.

第52圖為無機鈣鈦礦量子點與量子點複合材料之熱穩定性測試結果。 Figure 52 is the thermal stability test results of inorganic perovskite quantum dots and quantum dot composites.

第53圖為量子點複合材料之熱回覆性測試結果。 Figure 53 shows the results of the thermal reproducibility test for quantum dot composites.

第54圖為發光二極體封裝結構經時之光輸出功率曲線。 Figure 54 is a graph showing the light output power of the light-emitting diode package structure over time.

第55圖顯示量子點複合材料與一般綠色螢光粉之放光光譜比較。 Figure 55 shows the comparison of the emission spectra of quantum dot composites with typical green phosphors.

第56圖顯示實施例與比較例之白光發光二極體封裝結構之電致放光圖譜比較。 Fig. 56 is a view showing a comparison of electroluminescence spectra of the white light emitting diode package structures of the embodiment and the comparative example.

第57圖顯示實施例與比較例之白光發光二極體封裝結構之NTSC比較。 Fig. 57 shows an NTSC comparison of the white light emitting diode package structure of the embodiment and the comparative example.

第58圖為實施例之量子點複合材料與比較例之無機鈣鈦礦量子點以熱控制器測試熱穩定性結果。 Figure 58 is a graph showing the results of thermal stability testing of the quantum dot composite of the examples and the inorganic perovskite quantum dots of the comparative examples by a thermal controller.

第59A圖為實施例之量子點複合材料的熱循環測試的結果。 Figure 59A is a graph showing the results of a thermal cycle test of the quantum dot composite of the examples.

第59B圖為比較例無機鈣鈦礦量子點熱循環測試的結果。 Figure 59B is a graph showing the results of a comparative inorganic perovskite quantum dot thermal cycle test.

第60圖為實施例發光二極體封裝結構的耐溫測試曲線,其中量子點複合材料包括綠色全無機鈣鈦礦量子點與聚合物包覆之修飾性保護。 Figure 60 is a temperature resistance test curve of the light-emitting diode package structure of the embodiment, wherein the quantum dot composite material comprises a modified protection of green all-inorganic perovskite quantum dots and polymer coating.

第61圖為實施例發光二極體封裝結構的耐溫測試曲線,其中量子點複合材料包括綠色全無機鈣鈦礦量子點,且修飾性保護為兩層膜結構其中內層為含矽材料包覆體、外層為聚合物包覆體。 Figure 61 is a temperature resistance test curve of the light-emitting diode package structure of the embodiment, wherein the quantum dot composite material comprises green all-inorganic perovskite quantum dots, and the modification protection is a two-layer film structure, wherein the inner layer is a germanium-containing material package. The cover and the outer layer are polymer coating bodies.

第62圖為實施例發光二極體封裝結構的耐溫測試曲線,其中量子點複合材料包括綠色全無機鈣鈦礦量子點,且修飾性保護係為介孔顆粒。 Figure 62 is a temperature resistance test curve of the light-emitting diode package structure of the embodiment, wherein the quantum dot composite material comprises green all-inorganic perovskite quantum dots, and the modified protection system is mesoporous particles.

第63圖為比較例之發光二極體封裝結構的耐溫測試曲線。 Fig. 63 is a temperature resistance test curve of the light emitting diode package structure of the comparative example.

第64圖為實施例之量子點複合材料與比較例無機鈣鈦礦量子點的光穩定性測試結果。 Fig. 64 is a graph showing the results of photostability test of the quantum dot composite of the example and the comparative inorganic perovskite quantum dot.

第65圖係實施例之波長轉換膜放光光譜(λ ex=460nm)與葉綠素a與葉綠色b吸收光譜之比較。 Fig. 65 is a comparison of the wavelength conversion film emission spectrum (λ ex = 460 nm) and the chlorophyll a and leaf green b absorption spectra of the examples.

第66A圖係比較例紅色螢光粉之放光光譜與葉綠素a吸收光譜之比較。 Figure 66A is a comparison of the luminescence spectrum of the comparative red luminescent powder with the chlorophyll a absorption spectrum.

第66B圖係比較例紅色螢光粉之放光光譜與葉綠素a吸收光譜之比較。 Figure 66B is a comparison of the luminescence spectrum of the comparative red luminescent powder with the chlorophyll a absorption spectrum.

第66C圖係比較例紅色螢光粉之放光光譜與葉綠素a吸收光 譜之比較。 Figure 66C shows the luminescence spectrum and chlorophyll a absorption light of the comparative example red phosphor Comparison of the spectrum.

此揭露內容之實施例係提出一種量子點複合材料及其應用。量子點複合材料包括全無機鈣鈦礦量子點能展現出半高寬窄的放光光譜及優異的純色性。此外,全無機鈣鈦礦量子點的表面上具有修飾性保護,因此量子點複合材料具有良好的穩定性。 Embodiments of this disclosure present a quantum dot composite and its use. Quantum dot composites include all-inorganic perovskite quantum dots that exhibit a half-height and wide spectral spectroscopy and excellent solid color. In addition, all inorganic perovskite quantum dots have a modified protection on the surface, so the quantum dot composite has good stability.

須注意的是,本揭露並非顯示出所有可能的實施例,未於本揭露提出的其他實施態樣也可能可以應用。再者,圖式上的尺寸比例並非按照實際產品等比例繪製。因此,說明書和圖示內容僅作敘述實施例之用,而非作為限縮本揭露保護範圍之用。另外,實施例中之敘述,例如細部結構、製程步驟和材料應用等等,僅為舉例說明之用,並非對本揭露欲保護之範圍做限縮。實施例之步驟和結構各之細節可在不脫離本揭露之精神和範圍內根據實際應用製程之需要而加以變化與修飾。以下是以相同/類似的符號表示相同/類似的元件做說明。 It should be noted that the disclosure does not show all possible embodiments, and other embodiments not disclosed in the disclosure may also be applied. Furthermore, the dimensional ratios on the drawings are not drawn in proportion to the actual product. Therefore, the description and illustration are for illustrative purposes only and are not intended to be limiting. In addition, the description in the embodiments, such as the detailed structure, the process steps, the material application, and the like, are for illustrative purposes only and are not intended to limit the scope of the disclosure. The details of the steps and the details of the embodiments may be varied and modified in accordance with the needs of the actual application process without departing from the spirit and scope of the disclosure. The same/similar symbols are used to describe the same/similar elements.

實施例中,量子點複合材料包括全無機鈣鈦礦量子點及修飾性保護在全無機鈣鈦礦量子點的表面上。 In an embodiment, the quantum dot composite comprises all inorganic perovskite quantum dots and is modified to protect on the surface of the all inorganic perovskite quantum dots.

全無機鈣鈦礦量子點具有化學通式CsPb(ClaBr1-a-bIb)3,其中0

Figure TWI613275BD00021
a
Figure TWI613275BD00022
1,0
Figure TWI613275BD00023
b
Figure TWI613275BD00024
1。實施例之全無機鈣鈦礦量子點能受第一光線激發而發出不同於第一光線之波長的第二 光線,並具有具優異的量子效率,能展現出半高寬窄的放光光譜及優異的純色性,因此光線波長轉換效果佳,且應用在發光裝置能提升發光效果。在一實施例中,第一光線是由藍光發光二極體或紫外光發光二極體所發射出來。 The all-inorganic perovskite quantum dots have a chemical formula of CsPb(Cl a Br 1-ab I b ) 3 , of which 0
Figure TWI613275BD00021
a
Figure TWI613275BD00022
1,0
Figure TWI613275BD00023
b
Figure TWI613275BD00024
1. The all-inorganic perovskite quantum dot of the embodiment can be excited by the first light to emit a second light having a wavelength different from that of the first light, and has excellent quantum efficiency, and can exhibit a half-height width and wide spectral spectrum and excellent The pure color, therefore, the light wavelength conversion effect is good, and the application in the light-emitting device can enhance the luminous effect. In one embodiment, the first light is emitted by a blue light emitting diode or an ultraviolet light emitting diode.

全無機鈣鈦礦量子點可藉由成分及/或尺寸之調整,依能帶寬度之差異(Band Gap)改變發光顏色(第二光線波長),例如從藍色、綠色到紅色色域,能夠彈性運用。 The all-inorganic perovskite quantum dots can be changed by the composition and/or size adjustment, and the luminescence color (second ray wavelength) can be changed by the band width (Band Gap), for example, from blue, green to red gamut. Flexible use.

全無機鈣鈦礦量子點具有奈米級尺寸。舉例來說,全無機鈣鈦礦量子點的粒徑範圍為1nm至100nm,例如1nm至20nm。 The all inorganic perovskite quantum dots have a nanometer size. For example, the total inorganic perovskite quantum dots have a particle size ranging from 1 nm to 100 nm, such as from 1 nm to 20 nm.

舉例來說,全無機鈣鈦礦量子點具有化學通式CsPb(ClaBr1-a)3,其中0

Figure TWI613275BD00025
a
Figure TWI613275BD00026
1;或全無機鈣鈦礦量子點具有化學通式CsPb(Br1-bIb)3,其中0
Figure TWI613275BD00027
b
Figure TWI613275BD00028
1。 For example, a fully inorganic perovskite quantum dot has the chemical formula CsPb(Cl a Br 1-a ) 3 , where 0
Figure TWI613275BD00025
a
Figure TWI613275BD00026
1; or an all-inorganic perovskite quantum dot having the chemical formula CsPb(Br 1-b I b ) 3 , wherein 0
Figure TWI613275BD00027
b
Figure TWI613275BD00028
1.

實施例中,全無機鈣鈦礦量子點可為藍色量子點。舉例來說,在具有化學通式CsPb(ClaBr1-a)3的例子中,當0<a

Figure TWI613275BD00029
1時,全無機鈣鈦礦量子點為藍色量子點。及/或,粒徑範圍7nm至10nm的全無機鈣鈦礦量子點為藍色量子點。一實施例中,從藍色量子點激發出之(第二)光線的波峰位置為400nm至500nm,半高寬為10nm至30nm。 In embodiments, the all inorganic perovskite quantum dots can be blue quantum dots. For example, in the example of the chemical formula CsPb(Cl a Br 1-a ) 3 , when 0<a
Figure TWI613275BD00029
At 1 o'clock, the all-inorganic perovskite quantum dots are blue quantum dots. And/or, the all inorganic perovskite quantum dots having a particle size ranging from 7 nm to 10 nm are blue quantum dots. In one embodiment, the (second) light excited from the blue quantum dots has a peak position of 400 nm to 500 nm and a full width at half maximum of 10 nm to 30 nm.

實施例中,全無機鈣鈦礦量子點可為紅色量子點。舉例來說,在具有化學通式CsPb(Br1-bIb)3的例子中,當0.5

Figure TWI613275BD00030
b
Figure TWI613275BD00031
1時,全無機鈣鈦礦量子點為紅色量子點。及/或,粒徑範圍10nm 至14nm的全無機鈣鈦礦量子點為的紅色量子點。一實施例中,從紅色量子點激發出之(第二)光線的波峰位置為570nm至700nm,半高寬為20nm至60nm。 In embodiments, the fully inorganic perovskite quantum dots can be red quantum dots. For example, in the example of the chemical formula CsPb(Br 1-b I b ) 3 , when 0.5
Figure TWI613275BD00030
b
Figure TWI613275BD00031
At 1 o'clock, the all inorganic perovskite quantum dots are red quantum dots. And/or red quantum dots of all inorganic perovskite quantum dots having a particle size ranging from 10 nm to 14 nm. In one embodiment, the (second) light excited from the red quantum dots has a peak position of 570 nm to 700 nm and a full width at half maximum of 20 nm to 60 nm.

實施例中,全無機鈣鈦礦量子點可為綠色量子點。舉例來說,在具有化學通式CsPb(Br1-bIb)3的例子中,當0

Figure TWI613275BD00032
b<0.5時,全無機鈣鈦礦量子點為綠色量子點。及/或,粒徑範圍8nm至12nm的全無機鈣鈦礦量子點為的綠色量子點。一實施例中,綠色全無機鈣鈦礦量子點激發出之(第二)光線的波峰位置範圍為500~570nm,半高寬範圍為15nm~40nm。 In embodiments, the all inorganic perovskite quantum dots can be green quantum dots. For example, in the example having the chemical formula CsPb(Br 1-b I b ) 3 , when 0
Figure TWI613275BD00032
When b < 0.5, the all inorganic perovskite quantum dots are green quantum dots. And/or green quantum dots of all inorganic perovskite quantum dots having a particle size ranging from 8 nm to 12 nm. In one embodiment, the (second) light excited by the green all-inorganic perovskite quantum dots has a peak position ranging from 500 to 570 nm and a full width at half maximum ranging from 15 nm to 40 nm.

形成在全無機鈣鈦礦量子點上的修飾性保護可對全無機鈣鈦礦量子點提供保護功效,避免全無機鈣鈦礦量子點受其他鄰近的波長轉換材料影響性質,例如能避免不同組成之全無機鈣鈦礦量子點之間離子交換現象而影響所期望的組成與光性質,包括放光位置改變、半高寬變寬等不良影響。修飾性保護也避免全無機鈣鈦礦量子點受到外在環境例如熱、光、水份、氧氣之影響而性質退損。因此,量子點複合材料的修飾性保護能提高無機鈣鈦礦量子點對環境之耐受性,並能保護全無機鈣鈦礦量子點維持期望的組成與光性質,提高穩定性及使用壽命,也能進一步提升使用量子點複合材料之裝置產品的信賴性。 The modified protection formed on the all-inorganic perovskite quantum dots provides protection for all inorganic perovskite quantum dots, avoiding the properties of all inorganic perovskite quantum dots being affected by other adjacent wavelength converting materials, for example, avoiding different compositions The ion exchange phenomenon between the all-inorganic perovskite quantum dots affects the desired composition and optical properties, including adverse effects such as changes in the position of the light, and the broadening of the FWHM. Modular protection also avoids the loss of properties of all inorganic perovskite quantum dots from external environments such as heat, light, moisture, and oxygen. Therefore, the modified protection of quantum dot composites can improve the environmental tolerance of inorganic perovskite quantum dots, and can protect the total inorganic perovskite quantum dots to maintain the desired composition and optical properties, improve stability and service life. It can also further enhance the reliability of device products using quantum dot composite materials.

實施例中,修飾性保護可包括介孔顆粒(mesoporous particle)、無機殼層包覆體、配體交換(ligand exchange)、微膠囊包覆體、聚合物包覆體、含矽材料包覆體、氧化或氮化介電包覆 體或上述之組合,可對全無機鈣鈦礦量子點提供物理性或化學性的修飾保護特性。 In an embodiment, the cosmetic protection may include mesoporous particles, inorganic shell coatings, ligand exchanges, microcapsule coatings, polymer coatings, and cerium-containing materials. Body, oxide or nitride dielectric coating The combination or combination of the above provides physical or chemical modification protection properties to the all inorganic perovskite quantum dots.

實施例中,介孔顆粒表面具有複數孔隙。介孔顆粒的粒徑尺寸可為200nm至1000nm。介孔顆粒之孔隙的尺寸大於或實質上等於全無機鈣鈦礦量子點的粒徑尺寸,以容納全無機鈣鈦礦量子點埋在孔隙中。例如孔隙的尺寸可為1nm至100nm,或2nm至20nm。由於介孔顆粒比表面積高,因此能對全無機鈣鈦礦量子點產生強吸附性,其中全無機鈣鈦礦量子點能以物理吸附的方式進入孔隙中。實施例中,介孔顆粒的材料可包括二氧化矽(silica),其透光度高,不會使來自全無機鈣鈦礦量子點的出光效率下降。 In an embodiment, the surface of the mesoporous particles has a plurality of pores. The mesoporous particles may have a particle size of from 200 nm to 1000 nm. The pore size of the mesoporous particles is greater than or substantially equal to the particle size of the all inorganic perovskite quantum dots to accommodate the inclusion of all inorganic perovskite quantum dots in the pores. For example, the size of the pores may be from 1 nm to 100 nm, or from 2 nm to 20 nm. Due to the high specific surface area of mesoporous particles, it can strongly adsorb all-inorganic perovskite quantum dots, and the all-inorganic perovskite quantum dots can enter the pores by physical adsorption. In embodiments, the material of the mesoporous particles may comprise silica, which has high transparency and does not degrade the light extraction efficiency from the all-inorganic perovskite quantum dots.

無機殼層包覆體的材料可包括含有II族、III族、V族、VI族元素之二元或三元化合物,例如CuInS2、PbS、PbSe、PbTe、PbSeS、PbSeTe、PbSTe或SnPbS,或III-V族或是II-VI族二元、三元之化合物,例如ZnS、ZnSe、ZnTe、CdS、CdTe、ZnCdS、InP,其中一種材料或是包含兩種以上材料的組合。 The material of the inorganic shell coating may include a binary or ternary compound containing a Group II, Group III, Group V, Group VI element, such as CuInS2, PbS, PbSe, PbTe, PbSeS, PbSeTe, PbSTe or SnPbS, or A III-V or II-VI binary, ternary compound such as ZnS, ZnSe, ZnTe, CdS, CdTe, ZnCdS, InP, one of which may comprise a combination of two or more materials.

實施例中,配體交換可由對全無機鈣鈦礦量子點表面進行配體交換處理所形成,可例如使用三正辛基氧化膦(Tri-n-octyl phosphine oxide;TOPO)、9,10-二氫-9-氧雜-10-磷菲-10-氧化物(9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide;DOPO)、油酸(oleic acid)、寡聚物(oligomer)、含硫化合物或上述之組合提供配體。配體之間也能彼此進行高分子聚合作用,或寡 聚反應。 In an embodiment, the ligand exchange may be formed by subjecting the surface of the all-inorganic perovskite quantum dot to a ligand exchange treatment, for example, Tri-n-octyl phosphine oxide (TOPO), 9,10- 1,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide; DOPO, oleic acid, oligomer A sulfur-containing compound or a combination thereof provides a ligand. Polymers can also be polymerized with each other, or Polymerization reaction.

一實施例中,配體交換係對全無機鈣鈦礦量子點之表面進行硫化處理所形成。硫化處理例如包括將全無機鈣鈦礦量子點與含硫化合物進行配體交換反應。舉例來說,硫化處理中使用的含硫化合物可包括含硫之四級銨鹽。 In one embodiment, the ligand exchange system is formed by subjecting the surface of the all-inorganic perovskite quantum dots to a sulfurization treatment. The vulcanization treatment includes, for example, a ligand exchange reaction of a wholly inorganic perovskite quantum dot with a sulfur-containing compound. For example, the sulfur-containing compound used in the sulfurization treatment may include a sulfur-containing quaternary ammonium salt.

一實施例中,舉例來說,用以形成配體交換的硫化處理可包括提供一油酸與全無機鈣鈦礦量子點混合,並提供一具有含硫化合物的硫處理試劑和油酸、全無機鈣鈦礦量子點混合。一實施例中,硫處理試劑的製備方法包括將溶有含鹵素之四級銨鹽之有機溶液與溶有鹼金屬硫化物之水溶液進行混合以得到硫處理試劑。舉例來說,硫化處理中使用的含鹵素之四級銨鹽的通式可為R4NX,其中R為一至二十個碳鏈之烷基、烷氧基、苯基、或烷基苯基,X為氯、溴或碘。烷基苯基例如甲苯基與對二甲苯基等。含鹵素之四級銨鹽例如雙十二烷基二甲基溴化銨、十六烷基三甲基氯化銨、四丁基溴化銨。鹼金屬硫化物例如硫化鈉等。 In one embodiment, for example, the vulcanization treatment to form a ligand exchange can include providing a oleic acid mixed with an all-inorganic perovskite quantum dot and providing a sulfur treatment reagent having a sulfur-containing compound and oleic acid, Inorganic perovskite quantum dot mixing. In one embodiment, the sulfur treatment reagent is prepared by mixing an organic solution in which a halogen-containing quaternary ammonium salt is dissolved with an aqueous solution in which an alkali metal sulfide is dissolved to obtain a sulfur treatment reagent. For example, the halogen-containing quaternary ammonium salt used in the sulfurization treatment may have the formula R 4 NX, wherein R is an alkyl group, an alkoxy group, a phenyl group, or an alkylphenyl group of one to twenty carbon chains. , X is chlorine, bromine or iodine. Alkylphenyl groups such as tolyl and p-xylylene. Halogen-containing quaternary ammonium salts such as dodecyldimethylammonium bromide, cetyltrimethylammonium chloride, tetrabutylammonium bromide. An alkali metal sulfide such as sodium sulfide or the like.

含硫之四級銨鹽可例如包括雙十二烷基二甲基硫化銨(Didodecyl dimethylammonium sulfide,SDDA)、十六烷基三甲基硫化銨(Hexadecyltrimethylammonium sulfide,SHTA)、四丁基硫化銨(Tetrabutylammonium sulfide,STBA)等。雙十二烷基二甲基硫化銨(SDDA)可由雙十二烷基二甲基溴化銨(陽離子)與硫離子(陰離子)反應而得。十六烷基三甲基硫化銨(SHTA)可由十六烷基三甲基氯化銨與硫離子反應而得。四丁基硫化銨(STBA)可由四丁 基溴化銨與硫離子反應而得。 The sulfur-containing quaternary ammonium salt may, for example, include didodecyl dimethylammonium sulfide (SDDA), Hexadecyltrimethylammonium sulfide (SHTA), tetrabutylammonium sulfide ( Tetrabutylammonium sulfide, STBA), etc. Di-dodecyldimethylammonium sulfide (SDDA) can be obtained by reacting dodecyldimethylammonium bromide (cation) with a sulfide ion (anion). Cetyltrimethylammonium sulfide (SHTA) can be obtained by reacting cetyltrimethylammonium chloride with sulfur ions. Tetrabutylammonium sulfide (STBA) can be tetrabutyl The ammonium bromide is reacted with sulfur ions.

微膠囊包覆體可包覆全無機鈣鈦礦量子點或介孔顆粒。此外,可利用微乳化法形成微胞以將全無機鈣鈦礦量子點或介孔顆粒包覆在微膠囊包覆體中。 The microcapsule coating can coat all inorganic perovskite quantum dots or mesoporous particles. In addition, microvesicles can be used to form micelles to coat all inorganic perovskite quantum dots or mesoporous particles in a microcapsule coating.

聚合物包覆體可包覆全無機鈣鈦礦量子點。一些實施例中,聚合物包覆體可包覆孔隙中埋有全無機鈣鈦礦量子點的介孔顆粒。舉例來說,聚合物包覆體的材料可包括聚甲基丙烯酸甲酯(PMMA)、聚對苯二甲酸乙二醇酯(PET)、聚間苯二甲酸乙二酯(PEN)、聚苯乙烯(PS)、聚偏氟乙烯(PVDF)、聚乙酸乙烯酯(PVAC)、聚丙烯(PP)、聚醯胺(PA)、聚羧酸酯(PC)、聚醯亞胺(PI)、環氧樹脂(epoxy)、矽膠(silicone)或上述之組合。一實施例中,可在全無機鈣鈦礦量子點與上述材料中的一種或更多種混合狀態下進行材料之聚合反應,使得聚合物包覆體形成包覆全無機鈣鈦礦量子點/介孔顆粒,以形成量子點複合材料。聚合物包覆體可為高分子包覆體。 The polymer coating can coat all inorganic perovskite quantum dots. In some embodiments, the polymer coating can coat mesoporous particles in which all inorganic perovskite quantum dots are buried in the pores. For example, the material of the polymer coating may include polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polyethylene isophthalate (PEN), poly benzene. Ethylene (PS), polyvinylidene fluoride (PVDF), polyvinyl acetate (PVAC), polypropylene (PP), polyamine (PA), polycarboxylate (PC), polyimine (PI), Epoxy, silicone or a combination of the above. In one embodiment, the polymerization of the material may be carried out in a state in which the wholly inorganic perovskite quantum dots are mixed with one or more of the above materials, such that the polymer coating forms a coated inorganic nitrile quantum dot/ Mesoporous particles to form a quantum dot composite. The polymer coating body may be a polymer coating body.

含矽材料包覆體可包括SiOR、SiO2、Si(OR)4或Si(OMe)3C3H6S、或矽鈦氧類包覆體,或其它氧化矽(silica)材料,或上述之組合。一些實施例中,含矽材料包覆體可對全無機鈣鈦礦量子點提供化學性修飾保護。 The ruthenium-containing material coating may include SiOR, SiO 2 , Si(OR) 4 or Si(OMe) 3 C 3 H 6 S, or ruthenium titanium oxide-based coating, or other silica material, or The combination. In some embodiments, the ruthenium containing material coating provides chemical modification protection to the all inorganic perovskite quantum dots.

氧化或氮化介電包覆體可包括金屬氧化物或金屬氮化物,例如Al2O3、Si3N3等,或上述之組合。 The oxidized or nitrided dielectric coating may include a metal oxide or a metal nitride such as Al 2 O 3 , Si 3 N 3 , or the like, or a combination thereof.

第1A圖至第4圖繪示出根據實施例之量子點複合 材料的結構。 1A to 4 illustrate quantum dot compounding according to an embodiment The structure of the material.

請參照第1A及1B圖,量子點複合材料11包括全無機鈣鈦礦量子點13與修飾性保護在全無機鈣鈦礦量子點13的表面上,此例之修飾性保護係介孔顆粒15A,其中全無機鈣鈦礦量子點13係埋在介孔顆粒15A的孔隙中。 Referring to FIGS. 1A and 1B, the quantum dot composite 11 includes all-inorganic perovskite quantum dots 13 and is modified and protected on the surface of the all-inorganic perovskite quantum dots 13, in this case, the modified protective system mesoporous particles 15A. Wherein the wholly inorganic perovskite quantum dot 13 is buried in the pores of the mesoporous particles 15A.

請參照第2圖,其繪示之量子點複合材料31與第1圖所示之量子點複合材料11的差異在於修飾性保護更包括包覆體15B包覆介孔顆粒15A與埋在介孔顆粒15A之孔隙中的全無機鈣鈦礦量子點13。舉例來說,包覆體15B包括聚合物包覆體(例如高分子聚合物)、含矽材料包覆體(如SiO2等)、氧化或氮化介電包覆體(如Al2O3、Si3N3等)、微膠囊包覆體之其中一種或上述之任意組合。此外,包覆體15B的材質具有透光性。 Referring to FIG. 2, the difference between the quantum dot composite material 31 and the quantum dot composite material 11 shown in FIG. 1 is that the modification protection further includes the cladding body 15B covering the mesoporous particles 15A and buried in the mesopores. Fully inorganic perovskite quantum dots 13 in the pores of particle 15A. For example, the covering body 15B includes a polymer coating body (for example, a high molecular polymer), a cerium-containing material coating body (such as SiO 2 or the like), an oxidized or nitrided dielectric coating body (such as Al 2 O 3 ). , Si 3 N 3 , etc.), one of the microcapsule coatings or any combination of the above. Further, the material of the covering body 15B is light transmissive.

請參照第3A及3B圖,量子點複合材料41包括全無機鈣鈦礦量子點13與形成在全無機鈣鈦礦量子點13之表面上的修飾性保護15C。修飾性保護15C可以是一種無機殼層包覆體。如圖所示,全無機鈣鈦礦量子點13作為核(core)與核的表面受無機殼層包覆體包覆而形成一核殻(core-shell)結構的量子點複合材料41。無機殼層包覆體的材料可包括含有II族、III族、V族、VI族元素之二元或三元化合物,例如CuInS2、PbS、PbSe、PbTe、PbSeS、PbSeTe、PbSTe或SnPbS,或III-V族或是II-VI族二元、三元之化合物,例如ZnS、ZnSe、ZnTe、CdS、CdTe、ZnCdS、InP,其中一種材料或是包含兩種以上材料的組合。 Referring to FIGS. 3A and 3B, the quantum dot composite 41 includes an all-inorganic perovskite quantum dot 13 and a modifying protection 15C formed on the surface of the all-inorganic perovskite quantum dot 13. The modifying protection 15C can be an inorganic shell coating. As shown, the all-inorganic perovskite quantum dots 13 are coated as a core-shell structure with a core-shell structure as a core and a surface of a core coated with an inorganic shell coating. The material of the inorganic shell coating may include a binary or ternary compound containing a Group II, Group III, Group V, Group VI element, such as CuInS2, PbS, PbSe, PbTe, PbSeS, PbSeTe, PbSTe or SnPbS, or A III-V or II-VI binary, ternary compound such as ZnS, ZnSe, ZnTe, CdS, CdTe, ZnCdS, InP, one of which may comprise a combination of two or more materials.

一實施例中,修飾性保護15C可包括配體交換。如第3C圖所示,利用全無機鈣鈦礦量子點13表面上之配體進行修飾,將其配體末端之常見離去基(例如Br、I等等)進行聚合反應(polymerization),使其配體末端具有寡聚物或是高分子結構。 In one embodiment, the modifying protection 15C can include ligand exchange. As shown in Fig. 3C, the ligand on the surface of the all-inorganic perovskite quantum dot 13 is modified to carry out polymerization of a common leaving group at the end of the ligand (e.g., Br, I, etc.). The end of the ligand has an oligomer or a polymer structure.

一實施例中,修飾性保護15C可包括微膠囊包覆體,其可利用微乳化法形成之微胞包覆全無機鈣鈦礦量子點13,使其表面具有親水或是疏水特性,如第3D圖所示。 In one embodiment, the cosmetic protection 15C may comprise a microcapsule coating which can coat the all-inorganic perovskite quantum dots 13 by microvesicles to form a surface having hydrophilic or hydrophobic properties, such as 3D illustration.

一實施例中,修飾性保護15C可包括含矽材料包覆體所形成之單層膜(殼層)或是多層膜結構,其中含矽材料包覆體可包括SiOR、SiO2、Si(OR)4或Si(OMe)3C3H6S、或矽鈦氧類包覆體,或其它氧化矽(silica)材料,或上述之組合。如第3E圖所示,全無機鈣鈦礦量子點13受SiOR材料所修飾。如第3F圖所示,全無機鈣鈦礦量子點13受SiO2材料所包覆。 In one embodiment, the decorative protection 15C may comprise a single layer film (shell layer) formed by a coating of a cerium-containing material or a multilayer film structure, wherein the cerium-containing material coating body may include SiOR, SiO 2 , Si (OR) 4 or Si(OMe) 3 C 3 H 6 S, or a ruthenium titanium oxide coating, or other silica material, or a combination thereof. As shown in Figure 3E, the fully inorganic perovskite quantum dots 13 are modified by a SiOR material. As shown in Figure 3F, the fully inorganic perovskite quantum dots 13 are coated with a SiO 2 material.

請參照第4圖,其繪示之量子點複合材料71與第3圖所示之量子點複合材料41的差異在於修飾性保護15D為兩層(殼層)之多層膜結構,可分別包括無機殼層包覆體、配體交換、微膠囊包覆體、含矽材料包覆體,或上述任意之組合。在其他實施例中,修飾性保護可為其他更多層膜例如三層膜、四層膜等之(殼層)結構。 Referring to FIG. 4, the difference between the quantum dot composite material 71 and the quantum dot composite material 41 shown in FIG. 3 is that the modification protection 15D is a two-layer (shell) multilayer film structure, which may include none. The shell layer coating body, the ligand exchange, the microcapsule coating body, the cerium-containing material coating body, or any combination thereof. In other embodiments, the cosmetic protection may be a (shell) structure of other more layers of film, such as a three layer film, a four layer film, or the like.

本揭露之量子點複合材料並不限於如第1圖至第4圖所示之結構,而可根據本揭露所述實施例適當調變。 The quantum dot composite of the present disclosure is not limited to the structures as shown in Figs. 1 to 4, but may be suitably modulated according to the embodiment of the present disclosure.

實施例中,舉例來說,量子點複合材料可在形成如 第3A至3F圖或第4圖所示結構之量子點複合材料或其他具有更多層膜例如三層膜、四層膜等修飾性保護的量子點複合材料之後,再埋入介孔顆粒的孔隙中所形成。例如係先對全無機鈣鈦礦量子點之表面進行配體交換反應或硫化處理之後,再將表面形成有配體交換的全無機鈣鈦礦量子點埋入介孔顆粒的孔隙中以形成量子點複合材料。 In an embodiment, for example, a quantum dot composite can be formed as After the quantum dot composite material of the structure shown in FIG. 3A to 3F or FIG. 4 or other quantum dot composite material having more protective layers such as a three-layer film or a four-layer film, the mesoporous particles are buried. Formed in the pores. For example, after performing a ligand exchange reaction or a vulcanization treatment on the surface of the all-inorganic perovskite quantum dot, a total inorganic perovskite quantum dot having a ligand exchanged on the surface is buried in the pore of the mesoporous particle to form a quantum. Point composite.

實施例中,舉例來說,量子點複合材料可使用如第3A至3F圖或第4圖所示結構之量子點複合材料或其他具有更多層膜例如三層膜、四層膜等修飾性保護的量子點複合材料埋入介孔顆粒的孔隙之後,再更進一步在介孔顆粒上形成包覆體(例如聚合物包覆體、含矽材料包覆體或氧化或氮化介電包覆體)包覆所形成。例如係先將表面形成有配體交換的全無機鈣鈦礦量子點埋入介孔顆粒的孔隙之後,再以包覆體包覆介孔顆粒以形成量子點複合材料。 In the embodiment, for example, the quantum dot composite material may use a quantum dot composite material having a structure as shown in FIG. 3A to 3F or FIG. 4 or other modifiers having more layers such as a three-layer film or a four-layer film. After the protected quantum dot composite is buried in the pores of the mesoporous particles, an additional coating is formed on the mesoporous particles (for example, a polymer coating, a coating containing a niobium material, or an oxidized or nitrided dielectric coating). Body) formed by coating. For example, the all-inorganic perovskite quantum dots having the surface-formed ligand exchange are first embedded in the pores of the mesoporous particles, and then the mesoporous particles are coated with the coating to form a quantum dot composite.

根據實施例之量子點複合材料可應用於各種領域之波長轉換元件、發光裝置、光電轉換裝置,例如發光二極體封裝、量子點發光二極體(QLED)、植物照明、顯示器、太陽能電池、生物螢光標記(Bio Label)、影像感測器等。由於根據實施例之量子點複合材料的放光特性優異且性質穩定,因此應用於各種產品能提升產品效能穩定性及使用壽命。 The quantum dot composite according to the embodiment can be applied to wavelength conversion elements, light-emitting devices, and photoelectric conversion devices in various fields, such as a light-emitting diode package, a quantum dot light-emitting diode (QLED), a plant illumination, a display, a solar cell, Bio Label, Biosensor, Image Sensor, etc. Since the quantum dot composite material according to the embodiment has excellent light-emitting characteristics and stable properties, it can be applied to various products to improve product performance stability and service life.

實施例中,發光裝置包括發光二極體晶片與波長轉換材料。波長轉換材料包括上述量子點複合材料。波長轉換材料 (量子點複合材料)可被發光二極體晶片射出之第一光線激發而發出不同於第一光線之波長的第二光線。 In an embodiment, the light emitting device comprises a light emitting diode chip and a wavelength converting material. The wavelength converting material includes the above quantum dot composite. Wavelength conversion material The (quantum dot composite) can be excited by the first light emitted by the light emitting diode chip to emit a second light different from the wavelength of the first light.

可於波長轉換材料中挑選至少一種全無機鈣鈦礦量子點CsPb(ClaBr1-a-bIb)3上形成修飾性保護成為量子點複合材料提升裝置的穩定性及使用壽命。 The modification protection of the at least one all-inorganic perovskite quantum dot CsPb (Cl a Br 1-ab I b ) 3 can be selected as a stability and service life of the quantum dot composite lifting device.

發光裝置中的波長轉換材料(或波長轉換層)並不限於使用單一種量子點複合材料/全無機鈣鈦礦量子點,換句話說,可使用兩種以上(即兩種、三種、四種、或更多種)不同型態修飾性保護的量子點複合材料及/或性質不同的全無機鈣鈦礦量子點。全無機鈣鈦礦量子點的性質可依據材料化學式及/或尺寸改變。 The wavelength conversion material (or wavelength conversion layer) in the light-emitting device is not limited to use a single quantum dot composite material/all inorganic perovskite quantum dots, in other words, two or more types may be used (ie, two, three, four types). , or more) different types of modified quantum dot composites and/or all inorganic perovskite quantum dots of different properties. The nature of the all inorganic perovskite quantum dots can vary depending on the chemical formula and/or size of the material.

舉例來說,全無機鈣鈦礦量子點包括性質不同的第一全無機鈣鈦礦量子點與第二全無機鈣鈦礦量子點混合。其他實施例中,全無機鈣鈦礦量子點更包括性質不同於第一全無機鈣鈦礦量子點與第二全無機鈣鈦礦量子點的第三、第四、或更多種的全無機鈣鈦礦量子點混合。 For example, the all-inorganic perovskite quantum dots include a first all-inorganic perovskite quantum dot of a different nature mixed with a second all-inorganic perovskite quantum dot. In other embodiments, the all-inorganic perovskite quantum dots further comprise a third, fourth, or more total inorganic having properties different from the first all-inorganic perovskite quantum dots and the second all-inorganic perovskite quantum dots. Perovskite quantum dot mixing.

舉例來說,第一全無機鈣鈦礦量子點與第二全無機鈣鈦礦量子點可具有不同的粒徑。其他實施例中,全無機鈣鈦礦量子點更包括粒徑不同於第一全無機鈣鈦礦量子點與第二全無機鈣鈦礦量子點的第三、第四、或更多種的全無機鈣鈦礦量子點。 For example, the first fully inorganic perovskite quantum dot and the second fully inorganic perovskite quantum dot can have different particle sizes. In other embodiments, the all-inorganic perovskite quantum dots further comprise a third, fourth, or more of a particle size different from the first all-inorganic perovskite quantum dot and the second all-inorganic perovskite quantum dot. Inorganic perovskite quantum dots.

一些實施例中,第一全無機鈣鈦礦量子點與第二全無機鈣鈦礦量子點皆具有化學通式CsPb(ClaBr1-a-bIb)3,0

Figure TWI613275BD00033
a
Figure TWI613275BD00034
1, 0
Figure TWI613275BD00035
b
Figure TWI613275BD00036
1。其中,第一全無機鈣鈦礦量子點與第二全無機鈣鈦礦量子點具有不同的a。及/或,第一全無機鈣鈦礦量子點與第二全無機鈣鈦礦量子點具有不同的b。此概念亦可延伸至具有第三、第四、或更多種之全無機鈣鈦礦量子點的例子中。 In some embodiments, the first all-inorganic perovskite quantum dot and the second all-inorganic perovskite quantum dot each have a chemical formula of CsPb(Cl a Br 1-ab I b ) 3 ,0
Figure TWI613275BD00033
a
Figure TWI613275BD00034
1, 0
Figure TWI613275BD00035
b
Figure TWI613275BD00036
1. Wherein, the first all-inorganic perovskite quantum dot has a different a from the second all-inorganic perovskite quantum dot. And/or, the first all-inorganic perovskite quantum dot has a different b than the second all-inorganic perovskite quantum dot. This concept can also be extended to examples having third, fourth, or more all-inorganic perovskite quantum dots.

舉例來說,第一全無機鈣鈦礦量子點與第二全無機鈣鈦礦量子點可選自具有化學通式CsPb(Br1-bIb)3且0.5

Figure TWI613275BD00037
b
Figure TWI613275BD00038
1的紅色量子點、具有化學通式CsPb(Br1-bIb)3且0
Figure TWI613275BD00039
b<0.5的綠色量子點及具有化學通式CsPb(ClaBr1-a)3且0<a
Figure TWI613275BD00040
1的藍色量子點所組成的群組。或者,第一全無機鈣鈦礦量子點與第二全無機鈣鈦礦量子點可選自粒徑範圍為10nm至14nm的紅色全無機鈣鈦礦量子點、粒徑範圍為8nm至12nm的綠色全無機鈣鈦礦量子點及粒徑範圍為7nm至10nm的藍色全無機鈣鈦礦量子點所組成的群組。 For example, the first all-inorganic perovskite quantum dot and the second all-inorganic perovskite quantum dot may be selected from the group consisting of the chemical formula CsPb(Br 1-b I b ) 3 and 0.5
Figure TWI613275BD00037
b
Figure TWI613275BD00038
a red quantum dot of 1 having a chemical formula of CsPb(Br 1-b I b ) 3 and 0
Figure TWI613275BD00039
Green quantum dots with b<0.5 and having the chemical formula CsPb(Cl a Br 1-a ) 3 and 0<a
Figure TWI613275BD00040
A group of 1 blue quantum dots. Alternatively, the first all-inorganic perovskite quantum dot and the second all-inorganic perovskite quantum dot may be selected from red all-inorganic perovskite quantum dots having a particle size ranging from 10 nm to 14 nm, and having a particle size ranging from 8 nm to 12 nm. A group consisting of all inorganic perovskite quantum dots and blue all-inorganic perovskite quantum dots having a particle size ranging from 7 nm to 10 nm.

波長轉換材料(或波長轉換層)可更包括其他種螢光材料,包括無機螢光材料及/或有機螢光材料與全無機鈣鈦礦量子點一起使用。此處無機螢光材料/有機螢光材料可指不同於所述之全無機鈣鈦礦量子點CsPb(ClaBr1-a-bIb)3的其他種類螢光量子點及/或非量子點結構的螢光材料。 The wavelength converting material (or wavelength converting layer) may further comprise other fluorescent materials, including inorganic fluorescent materials and/or organic fluorescent materials, for use with fully inorganic perovskite quantum dots. Here, the inorganic fluorescent material/organic fluorescent material may refer to other kinds of fluorescent quantum dots and/or non-quantum dot structures different from the all-inorganic perovskite quantum dot CsPb (Cl a Br 1-ab I b ) 3 described. Fluorescent material.

舉例來說,無機螢光材料例如鋁酸鹽螢光粉(如LuYAG、GaYAG、YAG等)、矽酸物螢光粉、硫化物螢光粉、氮化物螢光粉、氟化物螢光粉等。有機螢光材料包括下列化合物所組成之群組,其群組包含單分子結構、多分子結構、寡聚物(Oligomer)以及聚合物(Polymer),其化合物具有perylene基團的 化合物、具有benzimidazole基團的化合物、具有Naphthalene基團的化合物、具有anthracene基團的化合物、具有phenanthrene基團的化合物、具有fluorene基團的化合物、具有9-fluorenone基團的化合物、具有carbazole基團的化合物、具有glutarimide基團的化合物、具有1,3-diphenylbenzene基團的化合物、具有benzopyrene基團的化合物、具有pyrene基團的化合物、具有pyridine基團的化合物、具有thiophene基團的化合物、具有2,3-dihydro-1H-benzo[de]isoquinoline-1,3-dione基團的化合物、具有benzimidazole基團的化合物及其組合。舉例來說,黃色螢光材料例如YAG:Ce,及/或氮氧化物、矽酸鹽、氮化物成分之無機型黃色螢光粉,及/或有機型黃色螢光粉。紅色螢光粉例如包括氟化螢光粉A2[MF6]:Mn4+,其中A是選自於Li、Na、K、Rb、Cs、NH4、及其組合所構成的群組,M是選自於Ge、Si、Sn、Ti、Zr及其組合所構成的群族。或者,紅色螢光粉可包括(Sr,Ca)S:Eu、(Ca,Sr)2Si5N8:Eu、CaAlSiN3:Eu、(Sr,Ba)3SiO5:Eu。 For example, inorganic fluorescent materials such as aluminate fluorescent powder (such as LuYAG, GaYAG, YAG, etc.), phthalic acid fluorescent powder, sulfide fluorescent powder, nitride fluorescent powder, fluoride fluorescent powder, etc. . The organic fluorescent material comprises a group consisting of a single molecule structure, a multi-molecular structure, an oligomer (Oligomer), and a polymer, the compound having a perylene group, having a benzimidazole group. a compound of a group, a compound having a Naphthalene group, a compound having an anthracene group, a compound having a phenanthrene group, a compound having a fluorene group, a compound having a 9-fluorenone group, a compound having a carbazole group, having a glutarimide a compound of a group, a compound having a 1,3-diphenylbenzene group, a compound having a benzopyrene group, a compound having a pyrene group, a compound having a pyridine group, a compound having a thiophene group, having 2,3-dihydro a compound of the -1H-benzo[de]isoquinoline-1,3-dione group, a compound having a benzimidazole group, and a combination thereof. For example, a yellow fluorescent material such as YAG:Ce, and/or an inorganic yellow fluorescent powder of an oxynitride, a cerium salt, a nitride component, and/or an organic yellow fluorescent powder. The red fluorescent powder includes, for example, a fluorinated phosphor A 2 [MF 6 ]: Mn 4+ , wherein A is a group selected from the group consisting of Li, Na, K, Rb, Cs, NH 4 , and combinations thereof. M is a group selected from the group consisting of Ge, Si, Sn, Ti, Zr, and combinations thereof. Alternatively, the red phosphor may include (Sr, Ca)S: Eu, (Ca, Sr) 2 Si 5 N 8 :Eu, CaAlSiN 3 :Eu, (Sr,Ba) 3 SiO 5 :Eu.

一實施例中,舉例來說,發光裝置使用藍色發光二極體晶片,且波長轉換材料使用含有化學通式CsPb(Br1-bIb)3其中0

Figure TWI613275BD00041
b<0.5及/或粒徑範圍8nm至12nm之綠色量子點(例如CsPbBr3)的量子點複合材料與紅色螢光粉K2SiF6:Mn4+之混合。 In one embodiment, for example, the illuminating device uses a blue light emitting diode wafer, and the wavelength converting material is used to contain a chemical formula of CsPb(Br 1-b I b ) 3
Figure TWI613275BD00041
A mixture of a quantum dot composite of b < 0.5 and/or a green quantum dot (eg, CsPbBr 3 ) having a particle size ranging from 8 nm to 12 nm and a red phosphor K 2 SiF 6 :Mn 4+ .

量子點複合材料可應用在各種發光裝置例如照明燈具或用於手機螢幕、電視螢幕等之顯示器的發光模組(前光模組、背光模組)、顯示器之面板畫素或次畫素具有優勢。再者,當使用 越多種不同成分的全無機鈣鈦礦量子點,亦即使用越多種不同發光波之全無機鈣鈦礦量子點時,發光裝置的放射光譜越寬,甚至能達到全譜(full spectrum)的需求。因此,使用本揭露含有全無機鈣鈦礦量子點的量子點複合材料能提高顯示裝置的色域,也能有效提升顯示裝置色純度與色彩真實性,也可大幅提升NTSC。 Quantum dot composite materials can be applied to various light-emitting devices such as lighting fixtures or light-emitting modules (front light modules, backlight modules) for display screens of mobile phones, television screens, etc., panel pixels or sub-pictures of displays have advantages . Again, when using The more inorganic inorganic perovskite quantum dots of different compositions, that is, the more inorganic perovskite quantum dots using different kinds of illuminating waves, the wider the emission spectrum of the illuminating device, and even the full spectrum requirement. . Therefore, the use of the quantum dot composite material containing the all-inorganic perovskite quantum dots can improve the color gamut of the display device, and can also effectively improve the color purity and color authenticity of the display device, and can also greatly enhance the NTSC.

舉例來說,發光裝置可應用在發光二極體封裝結構上。以白光發光二極體封裝結構為例,波長轉換材料含有綠色全無機鈣鈦礦量子點與紅色全無機鈣鈦礦量子點受藍光發光二極體激發,或波長轉換材料含有紅色全無機鈣鈦礦量子點與黃色螢光粉受藍光發光二極體激發,或波長轉換材料含有綠色全無機鈣鈦礦量子點與紅色螢光粉受藍光發光二極體激發,或波長轉換材料含有紅色全無機鈣鈦礦量子點、綠色全無機鈣鈦礦量子點、與藍色全無機鈣鈦礦量子點受紫外光發光二極體激發。 For example, the light emitting device can be applied to a light emitting diode package structure. Taking a white light emitting diode package structure as an example, the wavelength conversion material contains green all-inorganic perovskite quantum dots and red all-inorganic perovskite quantum dots excited by blue light-emitting diodes, or the wavelength converting material contains red all-inorganic calcium-titanium. The mineral quantum dots and the yellow fluorescent powder are excited by the blue light emitting diode, or the wavelength converting material contains the green all inorganic perovskite quantum dots and the red fluorescent powder excited by the blue light emitting diode, or the wavelength converting material contains the red all inorganic Perovskite quantum dots, green all-inorganic perovskite quantum dots, and blue all-inorganic perovskite quantum dots are excited by ultraviolet light-emitting diodes.

第5圖繪示根據一實施例之發光二極體晶片102。發光二極體晶片102包括基底104、磊晶結構106、第一電極114與第二電極116。磊晶結構106包括從基底104依序堆疊的第一型半導體層108、主動層110與第二型半導體層112。第一電極114與第二電極116分別連接第一型半導體層108與第二型半導體層112。基底104可包括絕緣材料(如:藍寶石材料)或半導體材料。第一型半導體層108與第二型半導體層112具有相反的導電類型。例如第一型半導體層108具有N型半導體層,而第二型半導體層112具有P型半導體層,其中第一電極114為N電極, 第二電極116為P電極。例如第一型半導體層108具有P型半導體層,而第二型半導體層112具有N型半導體層,其中第一電極114為P電極,第二電極116為N電極。發光二極體晶片102的安裝型態可使用面朝上(face-up)安裝者、覆晶(flip chip)安裝者之任一者。在以覆晶安裝的實施中,並倒置發光二極體晶片102使第一電極114與第二電極116面向基板例如電路板而透過焊料電性連接接觸墊。 FIG. 5 illustrates a light emitting diode wafer 102 in accordance with an embodiment. The light emitting diode wafer 102 includes a substrate 104, an epitaxial structure 106, a first electrode 114 and a second electrode 116. The epitaxial structure 106 includes a first type semiconductor layer 108, an active layer 110, and a second type semiconductor layer 112 that are sequentially stacked from the substrate 104. The first electrode 114 and the second electrode 116 are connected to the first type semiconductor layer 108 and the second type semiconductor layer 112, respectively. Substrate 104 may comprise an insulating material (eg, a sapphire material) or a semiconductor material. The first type semiconductor layer 108 and the second type semiconductor layer 112 have opposite conductivity types. For example, the first type semiconductor layer 108 has an N type semiconductor layer, and the second type semiconductor layer 112 has a P type semiconductor layer, wherein the first electrode 114 is an N electrode, The second electrode 116 is a P electrode. For example, the first type semiconductor layer 108 has a P type semiconductor layer, and the second type semiconductor layer 112 has an N type semiconductor layer, wherein the first electrode 114 is a P electrode and the second electrode 116 is an N electrode. The mounting type of the light-emitting diode wafer 102 may be any of a face-up mounter or a flip chip mounter. In the flip-chip mounting process, the LED array 102 is inverted such that the first electrode 114 and the second electrode 116 face the substrate, such as a circuit board, and the contact pads are electrically connected through the solder.

第6圖繪示根據另一實施例之發光二極體晶片202,其是一個垂直式發光二極體晶片。發光二極體晶片202包括基底204與磊晶結構106。磊晶結構106包括從基底204依序堆疊的第一型半導體層108、主動層110與第二型半導體層112。第一電極214與第二電極216分別連接基底204與第二型半導體層112。基底204之材料係為選自於金屬、合金、導體、半導體及上述之組合的其中之一。基底204可包括導電型與第一型半導體層108相同的半導體材料,或可與第一型半導體層108形成歐姆接觸的導電材料例如金屬等。例如第一型半導體層108具有N型半導體層,而第二型半導體層112具有P型半導體層,其中第一電極214為N電極,第二電極216為P電極。例如第一型半導體層108具有P型半導體層,而第二型半導體層112具有N型半導體層,其中第一電極214為P電極,第二電極216為N電極。 FIG. 6 illustrates a light emitting diode chip 202 according to another embodiment, which is a vertical light emitting diode chip. The light emitting diode chip 202 includes a substrate 204 and an epitaxial structure 106. The epitaxial structure 106 includes a first type semiconductor layer 108, an active layer 110, and a second type semiconductor layer 112 that are sequentially stacked from the substrate 204. The first electrode 214 and the second electrode 216 are respectively connected to the substrate 204 and the second type semiconductor layer 112. The material of the substrate 204 is selected from the group consisting of metals, alloys, conductors, semiconductors, and combinations thereof. The substrate 204 may include a semiconductor material of the same conductivity type as the first type semiconductor layer 108, or a conductive material such as metal or the like that may form an ohmic contact with the first type semiconductor layer 108. For example, the first type semiconductor layer 108 has an N type semiconductor layer, and the second type semiconductor layer 112 has a P type semiconductor layer, wherein the first electrode 214 is an N electrode and the second electrode 216 is a P electrode. For example, the first type semiconductor layer 108 has a P type semiconductor layer, and the second type semiconductor layer 112 has an N type semiconductor layer, wherein the first electrode 214 is a P electrode and the second electrode 216 is an N electrode.

在一實施例中,P型半導體層可為P型GaN材料,而N型半導體層可為N型GaN材料。在一實施例中,P型半導 體層可為P型AlGaN材料,而N型半導體層可為N型AlGaN材料。主動層110是多重量子井結構。 In an embodiment, the P-type semiconductor layer may be a P-type GaN material, and the N-type semiconductor layer may be an N-type GaN material. In an embodiment, the P-type semi-conductive The bulk layer may be a P-type AlGaN material, and the N-type semiconductor layer may be an N-type AlGaN material. The active layer 110 is a multiple quantum well structure.

一實施例中,發光二極體晶片102、202射出之第一光線的波長為220nm至480nm。一實施例中,發光二極體晶片102、202可為紫外光發光二極體晶片,發射出第一光線的波長為200nm至400nm。一實施例中,發光二極體晶片102、202可為藍色發光二極體晶片,發射出第一光線的波長為430nm至480nm。 In one embodiment, the first light emitted by the LED chips 102, 202 has a wavelength of 220 nm to 480 nm. In one embodiment, the LED chips 102, 202 can be ultraviolet light emitting diode chips, and emit a first light having a wavelength of 200 nm to 400 nm. In one embodiment, the LED chips 102, 202 can be blue LED chips, and the first light is emitted at a wavelength of 430 nm to 480 nm.

實施例中,發光裝置的波長轉換材料可包含在波長轉換層中,及/或摻雜在透光基材中。一些實施例中,波長轉換材料可塗佈在發光二極體晶片的發光面上。以下發光裝置以一些使用波長轉換材料之裝置為例說明。 In an embodiment, the wavelength converting material of the light emitting device can be included in the wavelength converting layer and/or doped in the light transmissive substrate. In some embodiments, the wavelength converting material can be coated on the light emitting face of the light emitting diode wafer. The following illuminating devices are exemplified by some devices using wavelength converting materials.

第7圖繪示根據一實施例之發光二極體封裝結構318。發光二極體封裝結構318包括發光二極體晶片302、基座320、波長轉換層324與反射牆326。基座320具有一固晶區321以及一杯壁322圍繞固晶區321且定義出一容置空間323。發光二極體晶片302配置在容置空間323中,並且可以透過黏著膠固定在基座320的固晶區321上。波長轉換層324位在發光二極體晶片302的出光側,更詳細地說,波長轉換層324位於容置空間323的上方對應發光二極體晶片302的出光面302s,並且位在杯壁322的頂面上。反射牆326可環繞配置於波長轉換層324的外側壁上並位在杯壁322的頂面上。反射牆326為具有光反射性質且低漏光之材料,例如反射性玻璃、石英、光反射貼片、高分子 塑料或其它合適的材料形成。高分子塑料可以為聚甲基丙烯酸甲脂(polymethyl methacrylate,PMMA)、乙烯對苯二甲酸酯(polyethylene terephthalate,PET)、聚苯乙烯(polystyrene,PS)、聚乙烯(polypropylene,PP)、尼龍(polyamide,PA)、聚碳酸酯(polycarbonate,PC)、環氧樹脂(epoxy)以及矽膠(silicone)等之其中一種材料或兩種以上材料的組合。反射牆326的光反射能力可以藉由添加其他填充粒子而改變。填充粒子可以具有不同粒徑或不同材質的複合材料。填充粒子的材料可以為例如二氧化鈦(TiO2)、二氧化矽(SiO2)、三氧化二鋁(Al2O3)、氮化硼(BN)、氧化鋅(ZnO)等。此概念可應用至其他實施例,且之後不再重複說明。此例中,發光二極體晶片302與波長轉換層324之間是以杯壁322定義出之容置空間323中的空隙(air gap)互相隔開,換句話說,容置空間323中並未填充其他與發光二極體晶片302接觸的物質。 FIG. 7 illustrates a light emitting diode package structure 318 according to an embodiment. The LED package structure 318 includes a light emitting diode chip 302, a susceptor 320, a wavelength conversion layer 324, and a reflective wall 326. The pedestal 320 has a solid crystal region 321 and a cup wall 322 surrounding the die bonding region 321 and defines an accommodating space 323. The LED chip 302 is disposed in the accommodating space 323 and can be fixed on the die bonding region 321 of the susceptor 320 through an adhesive. The wavelength conversion layer 324 is located on the light exiting side of the LED substrate 302. In more detail, the wavelength conversion layer 324 is located above the accommodating space 323 corresponding to the light emitting surface 302s of the LED array 302, and is located at the cup wall 322. On the top. The reflective wall 326 can be disposed on the outer sidewall of the wavelength conversion layer 324 and positioned on the top surface of the cup wall 322. The reflective wall 326 is formed of a material having light reflective properties and low light leakage, such as reflective glass, quartz, light reflective patches, polymeric plastics, or other suitable materials. The polymer plastic may be polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polystyrene (PS), polyethylene (PP), nylon. One of materials (polyamide, PA), polycarbonate (PC), epoxy, and silicone, or a combination of two or more materials. The light reflecting power of the reflective wall 326 can be varied by adding other filler particles. The filler particles can have composite materials of different particle sizes or different materials. The material of the filler particles may be, for example, titanium oxide (TiO 2 ), cerium oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), boron nitride (BN), zinc oxide (ZnO), or the like. This concept can be applied to other embodiments, and the description will not be repeated later. In this example, the gap between the LED chip 302 and the wavelength conversion layer 324 is separated by an air gap in the accommodating space 323 defined by the cup wall 322. In other words, the space 323 is accommodated. Other materials in contact with the LED substrate 302 are not filled.

實施例中,波長轉換層324包括一或更多種波長轉換材料。因此,發光二極體封裝結構318的發光性質可透過波長轉換層324予以調整。一些實施例中,波長轉換層324也包括透光基材,波長轉換材料摻雜於其中。波長轉換層324例如至少包括一種上述量子點複合材料摻雜於透光基材中。實施例中,透光基材包括透明膠體,而透明膠體的材料可以是聚甲基丙烯酸甲脂(polymethyl methacrylate,PMMA)、乙烯對苯二甲酸酯(polyethylene terephthalate,PET)、聚苯乙烯(polystyrene,PS)、聚乙烯(polypropylene,PP)、尼龍(polyamide,PA)、聚碳酸酯 (polycarbonate,PC)、聚亞醯胺(polyimide,PI)、聚二甲基矽氧烷(polydimethylsiloxane,PDMS)、環氧樹脂(epoxy)以及矽膠(silicone)等之其中一種材料或兩種以上材料的組合。實施例中,透光基材包括玻璃材料或陶瓷材料,量子點複合材料與玻璃材料或陶瓷材料混合製造成一玻璃量子點薄膜或一陶瓷量子點薄膜。 In an embodiment, the wavelength conversion layer 324 includes one or more wavelength converting materials. Therefore, the luminescent properties of the LED package structure 318 can be adjusted through the wavelength conversion layer 324. In some embodiments, the wavelength conversion layer 324 also includes a light transmissive substrate into which the wavelength converting material is doped. The wavelength conversion layer 324 includes, for example, at least one of the above-described quantum dot composite materials doped in a light transmissive substrate. In an embodiment, the light transmissive substrate comprises a transparent colloid, and the transparent colloid material may be polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polystyrene (polyvinyl methacrylate). Polystyrene, PS), Polypropylene (PP), Polyamide (PA), Polycarbonate (polycarbonate, PC), polyimide (PI), polydimethylsiloxane (PDMS), epoxy (epoxy) and silicone (silicone) or one or more of two or more materials The combination. In an embodiment, the light transmissive substrate comprises a glass material or a ceramic material, and the quantum dot composite material is mixed with a glass material or a ceramic material to form a glass quantum dot film or a ceramic quantum dot film.

一些實施例中,波長轉換層324與發光二極體晶片302係(此例以容置空間323)互相隔開,這可避免波長轉換層324因太靠近發光二極體晶片302而影響熱穩定性及化學穩定性,而能提高波長轉換層324的壽命並提升發光二極體封裝結構產品之信賴性。此概念將不再重複說明。 In some embodiments, the wavelength conversion layer 324 and the LED array 302 (in this case, the accommodating space 323) are spaced apart from each other, which may prevent the wavelength conversion layer 324 from being thermally stable due to being too close to the LED substrate 302. The chemical and chemical stability can improve the lifetime of the wavelength conversion layer 324 and improve the reliability of the LED package structure product. This concept will not be repeated.

其他變換實施例中,杯壁322定義出之容置空間323中的空隙(air gap)也可以填入透明封裝膠體(未繪示),透明封裝膠體可以是聚甲基丙烯酸甲脂(polymethyl methacrylate,PMMA)、乙烯對苯二甲酸酯(polyethylene terephthalate,PET)、聚苯乙烯(polystyrene,PS)、聚乙烯(polypropylene,PP)、尼龍(polyamide,PA)、聚碳酸酯(polycarbonate,PC)、聚亞醯胺(polyimide,PI)、聚二甲基矽氧烷(polydimethylsiloxane,PDMS)、環氧樹脂(epoxy)以及矽膠(silicone)等其中一種材料或是包含兩種以上材料的組合。一些實施例中,此透明封裝膠體可摻雜一或更多種波長轉換材料。其他變換實施例中,一或更多種波長轉換材料可塗佈在發光二極體晶片302的發光面上。因此,除了波長轉換層324,發光二極體封裝結構的發光性質更可透過含有波長轉換材料的封裝(透明) 膠體及/或位在發光二極體晶片302之表面上之含有波長轉換材料的塗層予以調整。波長轉換層324、封裝膠體及/或塗層的波長轉換材料的種類可視產品實質需求適當調整變化。此概念可應用至其他實施例,且之後不再重複說明。 In other alternative embodiments, the air gap defined in the accommodating space 323 of the cup wall 322 may also be filled in a transparent encapsulant (not shown), and the transparent encapsulant may be polymethyl methacrylate. , PMMA), polyethylene terephthalate (PET), polystyrene (PS), polyethylene (polypropylene, PP), nylon (polyamide, PA), polycarbonate (polycarbonate, PC) One of materials such as polyimide (PI), polydimethylsiloxane (PDMS), epoxy, and silicone or a combination of two or more materials. In some embodiments, the transparent encapsulant can be doped with one or more wavelength converting materials. In other alternative embodiments, one or more wavelength converting materials may be coated on the light emitting face of the light emitting diode chip 302. Therefore, in addition to the wavelength conversion layer 324, the light-emitting properties of the light-emitting diode package structure are more transparent to the package (transparent) containing the wavelength conversion material. The colloid and/or the coating containing the wavelength converting material on the surface of the LED substrate 302 is adjusted. The type of wavelength conversion material of the wavelength conversion layer 324, the encapsulant and/or the coating may be appropriately adjusted depending on the actual needs of the product. This concept can be applied to other embodiments, and the description will not be repeated later.

第8圖繪示根據一實施例之發光二極體封裝結構418,其與第7圖發光二極體封裝結構318的差異說明如下。發光二極體封裝結構418更包括結構元件428用以支撐、封裝、或保護波長轉換層324。如圖所示,結構元件428具有一容置區428a用以容置波長轉換層324,使波長轉換層324之上、下表面被結構元件428覆蓋。結構元件428位於杯壁322的頂面上,藉此支撐波長轉換層324位於容置空間323的上方對應發光二極體晶片302的出光面302s。結構元件428較佳以透明材質或可透光材質形成,以避免阻擋波長轉換層324的出光。結構元件428也可具有封裝材料性質。舉例來說,結構元件428可包括石英、玻璃、高分子塑料之材料。或者,結構元件428能用以保護波長轉換層324,阻隔水氣或氧氣等會對其性質造成負面影響的外界物質。實施例中,結構元件428可為阻障膜(barrier film)及/或矽鈦氧化物設置於波長轉換層324表面來阻隔水氣或氧氣等外界物質。矽鈦氧化物可如SiTiO4之類玻璃材料,其具有光穿透性與抗氧化性,可以塗佈或貼膜方式設置於波長轉換層324表面。阻障膜的材料可包括無機材料,例如金屬氧化物(如SiO2、Al2O3等)或金屬氮化物(如Si3N3等),且可以是多層阻障膜以塗佈或貼膜方式設置於波 長轉換層324表面。此概念可應用至其他實施例,且之後不再重複說明。反射牆326可環繞配置於結構元件428的外側壁上並位在杯壁322的頂面上。 FIG. 8 illustrates a light emitting diode package structure 418 according to an embodiment, which is different from the light emitting diode package structure 318 of FIG. The light emitting diode package structure 418 further includes a structural element 428 for supporting, encapsulating, or protecting the wavelength conversion layer 324. As shown, the structural component 428 has a receiving region 428a for receiving the wavelength converting layer 324 such that the upper and lower surfaces of the wavelength converting layer 324 are covered by the structural component 428. The structural component 428 is located on the top surface of the cup wall 322, thereby supporting the wavelength conversion layer 324 above the accommodating space 323 corresponding to the light emitting surface 302s of the LED array 302. The structural component 428 is preferably formed of a transparent material or a light transmissive material to avoid blocking light exiting the wavelength conversion layer 324. Structural element 428 can also have encapsulating material properties. For example, structural component 428 can comprise a material of quartz, glass, polymeric plastic. Alternatively, structural element 428 can be used to protect wavelength conversion layer 324 from foreign materials such as moisture or oxygen that can adversely affect its properties. In an embodiment, the structural element 428 may be a barrier film and/or a tantalum titanium oxide disposed on the surface of the wavelength conversion layer 324 to block foreign matter such as moisture or oxygen. The niobium titanium oxide may be a glass material such as SiTiO4, which has light transmittance and oxidation resistance, and may be coated or film-coated on the surface of the wavelength conversion layer 324. The material of the barrier film may include an inorganic material such as a metal oxide (such as SiO 2 , Al 2 O 3 , etc.) or a metal nitride (such as Si 3 N 3 , etc.), and may be a multilayer barrier film for coating or filming. The mode is disposed on the surface of the wavelength conversion layer 324. This concept can be applied to other embodiments, and the description will not be repeated later. The reflective wall 326 can be disposed around the outer sidewall of the structural member 428 and on the top surface of the cup wall 322.

第9圖繪示根據一實施例之發光二極體封裝結構518,其與第8圖發光二極體封裝結構418的差異在於,發光二極體封裝結構518更包括光學層530配置在反射牆326與結構元件428上。光學層530可用以調整光的出光路徑。舉例來說,光學層530可為含有擴散粒子的透明膠體,透明膠體可以是聚甲基丙烯酸甲脂(polymethyl methacrylate,PMMA)、乙烯對苯二甲酸酯(polyethylene terephthalate,PET)、聚苯乙烯(polystyrene,PS)、聚乙烯(polypropylene,PP)、尼龍(polyamide,PA)、聚碳酸酯(polycarbonate,PC)、聚亞醯胺(polyimide,PI)、聚二甲基矽氧烷(polydimethylsiloxane,PDMS)、環氧樹脂(epoxy)以及矽膠(silicone)等其中一種材料或是包含兩種以上材料的組合。擴散粒子可包括TiO2、SiO2、Al2O3、BN、ZnO等,擴散粒子可具有相同或不同的粒徑。此概念亦可應用至其他實施例,之後不再重複說明。舉例來說,可應用在第7圖的發光二極體封裝結構318、第10圖的發光二極體封裝結構618、第14圖的發光二極體封裝結構1018等等,在波長轉換層324上設置一光學層530以調整光的出光路徑。 FIG. 9 illustrates a light emitting diode package structure 518 according to an embodiment, which differs from the light emitting diode package structure 418 of FIG. 8 in that the light emitting diode package structure 518 further includes an optical layer 530 disposed on the reflective wall. 326 and structural element 428. The optical layer 530 can be used to adjust the light exit path of the light. For example, the optical layer 530 may be a transparent colloid containing diffusing particles, and the transparent colloid may be polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polystyrene. (polystyrene, PS), polyethylene (polypropylene, PP), nylon (polyamide, PA), polycarbonate (polycarbonate, PC), polyimide (PI), polydimethylsiloxane (polydimethylsiloxane, One of materials such as PDMS), epoxy, and silicone or a combination of two or more materials. The diffusion particles may include TiO 2 , SiO 2 , Al 2 O 3 , BN, ZnO, etc., and the diffusion particles may have the same or different particle diameters. This concept can also be applied to other embodiments, and the description will not be repeated. For example, the light emitting diode package structure 318 of FIG. 7 , the light emitting diode package structure 618 of FIG. 10 , the light emitting diode package structure 1018 of FIG. 14 , and the like may be applied to the wavelength conversion layer 324 . An optical layer 530 is disposed to adjust the light exiting path of the light.

第10圖繪示根據一實施例之發光二極體封裝結構618,其與第7圖發光二極體封裝結構318的差異說明如下。發 光二極體封裝結構618更包括結構元件628,具有一容置區628a用以容置且支撐波長轉換層324跨過發光二極體晶片302並設置在杯壁322上。此種位在波長轉換層324下表面的結構元件628較佳以透明材質或可透光材質形成,以避免阻擋波長轉換層324的出光,例如石英、玻璃、高分子塑料、或其它合適的材料,此概念可應用至其他實施例,且之後不再重複說明。 FIG. 10 illustrates a light emitting diode package structure 618 according to an embodiment, which is described below with respect to the light emitting diode package structure 318 of FIG. hair The photodiode package structure 618 further includes a structural component 628 having a receiving region 628a for receiving and supporting the wavelength conversion layer 324 across the LED substrate 302 and disposed on the cup wall 322. The structural component 628 located on the lower surface of the wavelength conversion layer 324 is preferably formed of a transparent material or a light transmissive material to avoid blocking the light output of the wavelength conversion layer 324, such as quartz, glass, polymer, or other suitable material. This concept can be applied to other embodiments, and the description will not be repeated later.

第11圖繪示根據一實施例之發光二極體封裝結構718,其與第7圖發光二極體封裝結構318的差異說明如下。發光二極體封裝結構718係省略第7圖所示的波長轉換層324與反射牆326,而包括波長轉換層724填滿在容置空間323中。波長轉換層724可包括透明膠體與波長轉換材料。透明膠體可用作封裝膠體,且波長轉換材料可摻雜在透明膠體中。波長轉換層724可覆蓋發光二極體晶片302,或可進一步覆蓋在基座320上。波長轉換層724的透明膠體可以是聚甲基丙烯酸甲脂(polymethyl methacrylate,PMMA)、乙烯對苯二甲酸酯(polyethylene terephthalate,PET)、聚苯乙烯(polystyrene,PS)、聚乙烯(polypropylene,PP)、尼龍(polyamide,PA)、聚碳酸酯(polycarbonate,PC)、聚亞醯胺(polyimide,PI)、聚二甲基矽氧烷(polydimethylsiloxane,PDMS)、環氧樹脂(epoxy)以及矽膠(silicone)等其中一種材料或是包含兩種以上材料的組合。 FIG. 11 illustrates a light emitting diode package structure 718 according to an embodiment, which is different from the light emitting diode package structure 318 of FIG. The light emitting diode package structure 718 omits the wavelength conversion layer 324 and the reflective wall 326 shown in FIG. 7 , and includes the wavelength conversion layer 724 filled in the accommodating space 323 . The wavelength conversion layer 724 can include a transparent colloid and a wavelength converting material. A transparent colloid can be used as the encapsulant, and the wavelength converting material can be doped in the transparent colloid. The wavelength conversion layer 724 can cover the LED array 302 or can be further overlying the pedestal 320. The transparent colloid of the wavelength conversion layer 724 may be polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polystyrene (PS), or polyethylene (polypropylene). PP), nylon (polyamide, PA), polycarbonate (polycarbonate, PC), polyimide (PI), polydimethylsiloxane (PDMS), epoxy (epoxy) and silicone One of the materials such as (silicone) or a combination of two or more materials.

第12圖繪示根據一實施例之發光二極體封裝結構818,其與第11圖發光二極體封裝結構718的差異在於,發光二 極體封裝結構818更包括結構元件628,跨過波長轉換層724而配置在杯壁322上,能用以保護波長轉換層724的波長轉換材料不受外界物質例如水氣或氧氣的損壞影響。實施例中,結構元件628可為阻障膜(barrier film)及/或矽鈦氧化物設置於波長轉換層724表面來阻隔水氣或氧氣等外界物質。矽鈦氧化物可如SiTiO4之類玻璃材料,其具有光穿透性與抗氧化性,可以塗佈或貼膜方式設置於波長轉換層724表面。阻障膜的材料可包括無機材料,例如金屬氧化物(如SiO2、Al2O3等)或金屬氮化物(如Si3N3等),且可以是多層阻障膜以塗佈或貼膜方式設置於波長轉換層724表面。 FIG. 12 illustrates a light emitting diode package structure 818 according to an embodiment, which differs from the light emitting diode package structure 718 of FIG. 11 in that the light emitting diode package structure 818 further includes a structural element 628 that spans the wavelength. The conversion layer 724 is disposed on the cup wall 322 to protect the wavelength conversion material of the wavelength conversion layer 724 from damage by foreign matter such as moisture or oxygen. In an embodiment, the structural element 628 may be a barrier film and/or a niobium titanium oxide disposed on the surface of the wavelength conversion layer 724 to block foreign matter such as moisture or oxygen. The niobium titanium oxide may be a glass material such as SiTiO4, which has light transmittance and oxidation resistance, and may be coated or film-coated on the surface of the wavelength conversion layer 724. The material of the barrier film may include an inorganic material such as a metal oxide (such as SiO 2 , Al 2 O 3 , etc.) or a metal nitride (such as Si 3 N 3 , etc.), and may be a multilayer barrier film for coating or filming. The mode is disposed on the surface of the wavelength conversion layer 724.

第13圖繪示根據一實施例之發光二極體封裝結構918,其包括基座320、發光二極體晶片302、波長轉換層324與反射牆326。發光二極體晶片302配置在基座320的固晶區上。波長轉換層324配置在發光二極體晶片302的出光面上。反射牆326配置在波長轉換層324的側壁上。發光二極體晶片302可透過穿過波長轉換層324之開口(未顯示)的打線電性連接基座320。 FIG. 13 illustrates a light emitting diode package structure 918 including a pedestal 320, a light emitting diode chip 302, a wavelength conversion layer 324, and a reflective wall 326, in accordance with an embodiment. The light emitting diode chip 302 is disposed on the die bonding region of the susceptor 320. The wavelength conversion layer 324 is disposed on the light-emitting surface of the light-emitting diode wafer 302. The reflective wall 326 is disposed on the sidewall of the wavelength conversion layer 324. The LED chip 302 can be electrically connected to the pedestal 320 through a wire that passes through an opening (not shown) of the wavelength conversion layer 324.

第14圖繪示根據一實施例之發光二極體封裝結構1018,其與第13圖發光二極體封裝結構918的差異說明如下。發光二極體封裝結構1018更包括光學層530配置在波長轉換層324與反射牆326上。發光二極體晶片302可透過穿過波長轉換層324與光學層530之開口(未顯示)的打線電性連接基座320。打 線可穿出光學層530的上表面或側表面拉出。 FIG. 14 illustrates a light emitting diode package structure 1018 according to an embodiment, which is different from the light emitting diode package structure 918 of FIG. The LED package 1018 further includes an optical layer 530 disposed on the wavelength conversion layer 324 and the reflective wall 326. The LED chip 302 can be electrically connected to the pedestal 320 through a wire that passes through the opening of the wavelength conversion layer 324 and the optical layer 530 (not shown). hit The wire can be pulled out of the upper or side surface of the optical layer 530.

第15圖繪示根據一實施例之發光二極體封裝結構1118,其包括發光二極體晶片302、波長轉換層324與反射牆326。反射牆326環繞著發光二極體晶片302的側壁且形成一間隔空間1134,反射牆326的高度高於發光二極體晶片302。波長轉換層324設置在反射牆326的頂面326s上,藉由間隔空間1134與發光二極體晶片302保持一距離,這可避免因太靠近發光二極體晶片302而影響波長轉換層324的熱穩定性及化學穩定性,能提高波長轉換層324的壽命並提升發光二極體封裝結構產品之信賴性,此概念將不再重複說明。 FIG. 15 illustrates a light emitting diode package structure 1118 including a light emitting diode chip 302, a wavelength conversion layer 324, and a reflective wall 326, in accordance with an embodiment. The reflective wall 326 surrounds the sidewall of the LED chip 302 and forms a spacer space 1134 having a higher height than the LED array 302. The wavelength conversion layer 324 is disposed on the top surface 326s of the reflective wall 326, and is separated from the LED substrate 302 by the spacing space 1134. This can avoid affecting the wavelength conversion layer 324 due to being too close to the LED substrate 302. The thermal stability and chemical stability can improve the lifetime of the wavelength conversion layer 324 and improve the reliability of the LED package structure. This concept will not be repeated.

第16圖繪示根據一實施例之發光二極體封裝結構1218,其與第15圖的發光二極體封裝結構1118差異在於,波長轉換層324設置在反射牆326的內側壁上。 FIG. 16 illustrates a light emitting diode package structure 1218 according to an embodiment, which differs from the light emitting diode package structure 1118 of FIG. 15 in that a wavelength conversion layer 324 is disposed on an inner sidewall of the reflective wall 326.

第17圖繪示根據一實施例之發光二極體封裝結構1318,其與第15圖的發光二極體封裝結構1118差異說明如下。發光二極體封裝結構1318更包括結構元件428,其中波長轉換層324設置在結構元件428定義出的容置區428a中。結構元件428能用以支撐、封裝、或保護波長轉換層324。包覆波長轉換層324的結構元件428設置在反射牆326的頂面326s上,而以間隔空間1134隔開發光二極體晶片302。結構元件428較佳以透明材質或可透光材質形成,以避免阻擋波長轉換層324的出光,也可具有封裝材料性質,舉例來說,結構元件428可包括石英、玻璃、高 分子塑料之材料。或者,結構元件428能用以保護波長轉換層324,阻隔水氣或氧氣等會對其性質造成負面影響的外界物質。實施例中,結構元件428可為阻障膜(barrier film)及/或矽鈦氧化物設置於波長轉換層324表面來阻隔水氣或氧氣等外界物質。矽鈦氧化物可如SiTiO4之類玻璃材料,其具有光穿透性與抗氧化性,可以塗佈或貼膜方式設置於波長轉換層324表面。阻障膜的材料可包括無機材料,例如金屬氧化物(如SiO2、Al2O3等)或金屬氮化物(如Si3N3等),且可以是多層阻障膜以塗佈或貼膜方式設置於波長轉換層324表面。 FIG. 17 illustrates a light emitting diode package structure 1318 according to an embodiment, which is different from the light emitting diode package structure 1118 of FIG. 15 as follows. The light emitting diode package structure 1318 further includes a structural element 428, wherein the wavelength conversion layer 324 is disposed in the receiving region 428a defined by the structural element 428. Structural element 428 can be used to support, encapsulate, or protect wavelength conversion layer 324. The structural elements 428 overlying the wavelength conversion layer 324 are disposed on the top surface 326s of the reflective wall 326, while the light emitting diode wafer 302 is spaced apart by a spacing space 1134. The structural component 428 is preferably formed of a transparent material or a light transmissive material to avoid blocking the light output of the wavelength conversion layer 324, and may also have packaging material properties. For example, the structural component 428 may include materials of quartz, glass, and polymer plastic. . Alternatively, structural element 428 can be used to protect wavelength conversion layer 324 from foreign materials such as moisture or oxygen that can adversely affect its properties. In an embodiment, the structural element 428 may be a barrier film and/or a tantalum titanium oxide disposed on the surface of the wavelength conversion layer 324 to block foreign matter such as moisture or oxygen. The niobium titanium oxide may be a glass material such as SiTiO4, which has light transmittance and oxidation resistance, and may be coated or film-coated on the surface of the wavelength conversion layer 324. The material of the barrier film may include an inorganic material such as a metal oxide (such as SiO 2 , Al 2 O 3 , etc.) or a metal nitride (such as Si 3 N 3 , etc.), and may be a multilayer barrier film for coating or filming. The mode is disposed on the surface of the wavelength conversion layer 324.

一實施例中,間隔空間1134可以是未被其它材料填充的空隙(empty space)。另一實施例中,間隔空間1134較佳以透明材質或可透光材質形成,以避免阻擋波長轉換層324的出光,例如石英、玻璃、高分子塑料、或其它合適的材料。 In one embodiment, the spacing space 1134 can be an empty space that is not filled with other materials. In another embodiment, the spacing space 1134 is preferably formed of a transparent material or a light transmissive material to avoid blocking light from the wavelength conversion layer 324, such as quartz, glass, polymer, or other suitable materials.

實施例中,發光二極體封裝結構318、418、518、618、718、818、918、1018、1118、1218或1318發出白光。發光二極體晶片302可為藍色發光二極體晶片。波長轉換層324/波長轉換層724包含黃色螢光粉YAG:Ce與紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3,其中0.5

Figure TWI613275BD00042
b
Figure TWI613275BD00043
1;及/或,紅色全無機鈣鈦礦量子點的粒徑範圍為10nm至14nm。紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3上可形成有修飾性保護,亦即波長轉換層324/波長轉換層724係包含紅色量子點複合材料。 In an embodiment, the light emitting diode package structure 318, 418, 518, 618, 718, 818, 918, 1018, 1118, 1218 or 1318 emits white light. The light emitting diode chip 302 can be a blue light emitting diode wafer. The wavelength conversion layer 324 / wavelength conversion layer 724 comprises yellow phosphor powder YAG: Ce and red all inorganic perovskite quantum dots CsPb (Br 1-b I b ) 3 , of which 0.5
Figure TWI613275BD00042
b
Figure TWI613275BD00043
1; and/or, the red all inorganic perovskite quantum dots have a particle size ranging from 10 nm to 14 nm. The red all-inorganic perovskite quantum dot CsPb(Br 1-b I b ) 3 can be modified to protect, that is, the wavelength conversion layer 324 / wavelength conversion layer 724 comprises a red quantum dot composite.

實施例中,發光二極體封裝結構318、418、518、 618、718、818、918、1018、1118、1218或1318發出白光。發光二極體晶片302可為藍色發光二極體晶片。波長轉換層324/波長轉換層724包含綠色全無機鈣鈦礦量子點CsPb(Br1-bIb)3與紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3,其中綠色全無機鈣鈦礦量子點的b參數範圍是0

Figure TWI613275BD00044
b<0.5,紅色全無機鈣鈦礦量子點的b參數範圍0.5
Figure TWI613275BD00045
b
Figure TWI613275BD00046
1;及/或,綠色全無機鈣鈦礦量子點的粒徑範圍為8nm至12nm,紅色全無機鈣鈦礦量子點的粒徑範圍為10nm至14nm。實施例中,綠色全無機鈣鈦礦量子點CsPb(Br1-bIb)3與紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3其中至少一者係包含在量子點複合材料中,亦即其表面係形成有修飾性保護。 In an embodiment, the light emitting diode package structure 318, 418, 518, 618, 718, 818, 918, 1018, 1118, 1218 or 1318 emits white light. The light emitting diode chip 302 can be a blue light emitting diode wafer. The wavelength conversion layer 324 / wavelength conversion layer 724 comprises a green all-inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 and a red all-inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 , wherein green The b-parameter range of the all-inorganic perovskite quantum dots is 0.
Figure TWI613275BD00044
b<0.5, b parameter range of red all inorganic perovskite quantum dots 0.5
Figure TWI613275BD00045
b
Figure TWI613275BD00046
1; and/or, the green all-inorganic perovskite quantum dots have a particle size ranging from 8 nm to 12 nm, and the red all-inorganic perovskite quantum dots have a particle size ranging from 10 nm to 14 nm. In an embodiment, at least one of the green all-inorganic perovskite quantum dot CsPb(Br 1-b I b ) 3 and the red all-inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 is included in the quantum dot In the composite material, that is, the surface thereof is formed with a modification protection.

實施例中,發光二極體封裝結構318、418、518、618、718、818、918、1018、1118、1218或1318發出白光,發光二極體晶片302可為紫外光發光二極體晶片。波長轉換層324/波長轉換層724包含藍色全無機鈣鈦礦量子點CsPb(ClaBr1-a)3、綠色全無機鈣鈦礦量子點CsPb(Br1-bIb)3、紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3,其中藍色全無機鈣鈦礦量子點的a參數範圍是0<a

Figure TWI613275BD00047
1,綠色全無機鈣鈦礦量子點的b參數範圍是0
Figure TWI613275BD00048
b<0.5,紅色全無機鈣鈦礦量子點的b參數範圍0.5
Figure TWI613275BD00049
b
Figure TWI613275BD00050
1;及/或,藍色全無機鈣鈦礦量子點的粒徑範圍為7nm至10nm,綠色全無機鈣鈦礦量子點的粒徑範圍為8nm至12nm,紅色全無機鈣鈦礦量子點的粒徑範圍為10nm至14nm。實施例中,藍色全無機鈣鈦礦量子點CsPb(ClaBr1-a)3、綠色全無機鈣鈦礦量子點CsPb(Br1-bIb)3及紅色 全無機鈣鈦礦量子點CsPb(Br1-bIb)3其中至少一者係包含在量子點複合材料中,亦即其表面係形成有修飾性保護。 In an embodiment, the light emitting diode package structure 318, 418, 518, 618, 718, 818, 918, 1018, 1118, 1218 or 1318 emits white light, and the light emitting diode chip 302 may be an ultraviolet light emitting diode chip. The wavelength conversion layer 324 / wavelength conversion layer 724 comprises a blue all-inorganic perovskite quantum dot CsPb (Cl a Br 1-a ) 3 , a green all-inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 , red The all-inorganic perovskite quantum dot CsPb(Br 1-b I b ) 3 , wherein the a parameter range of the blue all-inorganic perovskite quantum dot is 0<a
Figure TWI613275BD00047
1, the b parameter range of the green all-inorganic perovskite quantum dot is 0
Figure TWI613275BD00048
b<0.5, b parameter range of red all inorganic perovskite quantum dots 0.5
Figure TWI613275BD00049
b
Figure TWI613275BD00050
1; and/or, the blue all-inorganic perovskite quantum dots have a particle size ranging from 7 nm to 10 nm, and the green all-inorganic perovskite quantum dots have a particle size ranging from 8 nm to 12 nm, and the red all-inorganic perovskite quantum dots The particle size ranges from 10 nm to 14 nm. In the examples, the blue all-inorganic perovskite quantum dot CsPb(Cl a Br 1-a ) 3 , the green all-inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 and the red all-inorganic perovskite quantum At least one of the points CsPb(Br 1-b I b ) 3 is contained in the quantum dot composite, that is, the surface system is formed with a modification protection.

第18圖繪示根據一實施例之發光二極體封裝結構1418,其包括發光二極體晶片302、反射牆326與波長轉換層324。反射牆326設置在發光二極體晶片302的側表面上。波長轉換層324配置在發光二極體晶片302的上表面(出光面)上。波長轉換層324可包括性質不同的第一波長轉換層324A與第二波長轉換層324B。一實施例中,舉例來說,第一波長轉換層324A含有紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3,出光波長的波峰位置為570nm至700nm之間,第二波長轉換層324B含有綠色全無機鈣鈦礦量子點CsPb(Br1-bIb)3,出光波長的波峰位置為500nm至570nm之間,其中綠色全無機鈣鈦礦量子點的b參數範圍是0

Figure TWI613275BD00051
b<0.5,紅色全無機鈣鈦礦量子點的b參數範圍0.5
Figure TWI613275BD00052
b
Figure TWI613275BD00053
1;及/或,綠色全無機鈣鈦礦量子點為粒徑範圍8nm至12nm,紅色全無機鈣鈦礦量子點的粒徑範圍為10nm至14nm,但本揭露並不限於此。實施例中,綠色全無機鈣鈦礦量子點CsPb(Br1-bIb)3及紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3其中至少一者係包含在量子點複合材料中,亦即其表面係形成有修飾性保護。發光二極體晶片302可以覆晶的方式藉由其第一電極302a與第二電極302b電性連接在基座或電路板(未顯示)。 FIG. 18 illustrates a light emitting diode package structure 1418 including a light emitting diode chip 302, a reflective wall 326, and a wavelength conversion layer 324, in accordance with an embodiment. The reflective wall 326 is disposed on a side surface of the light emitting diode wafer 302. The wavelength conversion layer 324 is disposed on the upper surface (light-emitting surface) of the light-emitting diode wafer 302. The wavelength conversion layer 324 may include a first wavelength conversion layer 324A and a second wavelength conversion layer 324B of different properties. In one embodiment, for example, the first wavelength conversion layer 324A contains a red all-inorganic perovskite quantum dot CsPb(Br 1-b I b ) 3 , and the peak position of the light-emitting wavelength is between 570 nm and 700 nm, and the second wavelength The conversion layer 324B contains a green all-inorganic perovskite quantum dot CsPb(Br 1-b I b ) 3 , and the peak position of the light-emitting wavelength is between 500 nm and 570 nm, wherein the b-parameter range of the green all-inorganic perovskite quantum dot is 0.
Figure TWI613275BD00051
b<0.5, b parameter range of red all inorganic perovskite quantum dots 0.5
Figure TWI613275BD00052
b
Figure TWI613275BD00053
1; and/or, the green all-inorganic perovskite quantum dots have a particle size ranging from 8 nm to 12 nm, and the red all-inorganic perovskite quantum dots have a particle diameter ranging from 10 nm to 14 nm, but the disclosure is not limited thereto. In an embodiment, at least one of the green all-inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 and the red all-inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 is included in the quantum dot In the composite material, that is, the surface thereof is formed with a modification protection. The LED chip 302 can be electrically connected to the susceptor or the circuit board (not shown) by the first electrode 302a and the second electrode 302b.

第19圖繪示根據一實施例之發光二極體封裝結構1518,其包括基座320、發光二極體晶片302、波長轉換層724 與反射牆326。反射牆326設置在基座320上並定義出容置空間1523。發光二極體晶片302配置在容置空間1523中,並以覆晶的方式電性連接基座320上的導電件1536。波長轉換層724填充在容置空間1523中,並與發光二極體晶片302接觸。 FIG. 19 illustrates a light emitting diode package structure 1518 including a pedestal 320, a light emitting diode chip 302, and a wavelength conversion layer 724 according to an embodiment. With reflective wall 326. The reflective wall 326 is disposed on the pedestal 320 and defines an accommodating space 1523. The LED chip 302 is disposed in the accommodating space 1523 and electrically connected to the conductive member 1536 on the susceptor 320 in a flip chip manner. The wavelength conversion layer 724 is filled in the accommodating space 1523 and is in contact with the luminescent diode chip 302.

第20圖繪示根據一實施例之發光二極體封裝結構1618,其與第19圖的發光二極體封裝結構1518差異在於,發光二極體封裝結構1618更包括結構元件628配置在波長轉換層724與反射牆326上,用以封裝、保護波長轉換層724,避免波長轉換層724受到外界物質例如水氣或氧氣的影響而損壞。實施例中,結構元件628可為阻障膜(barrier film)及/或矽鈦氧化物設置於波長轉換層724表面來阻隔水氣或氧氣等外界物質。矽鈦氧化物可如SiTiO4之類玻璃材料,其具有光穿透性與抗氧化性,可以塗佈或貼膜方式設置於波長轉換層724與反射牆326的表面。阻障膜的材料可包括無機材料,例如金屬氧化物(如SiO2、Al2O3等)或金屬氮化物(如Si3N3等),且可以是多層阻障膜以塗佈或貼膜方式設置於波長轉換層724與反射牆326的表面。 FIG. 20 illustrates a light emitting diode package structure 1618 according to an embodiment, which differs from the light emitting diode package structure 1518 of FIG. 19 in that the light emitting diode package structure 1618 further includes a structural element 628 configured for wavelength conversion. The layer 724 and the reflective wall 326 are used to encapsulate and protect the wavelength conversion layer 724 to prevent the wavelength conversion layer 724 from being damaged by external substances such as moisture or oxygen. In an embodiment, the structural element 628 may be a barrier film and/or a niobium titanium oxide disposed on the surface of the wavelength conversion layer 724 to block foreign matter such as moisture or oxygen. The niobium titanium oxide may be a glass material such as SiTiO4, which has light transmittance and oxidation resistance, and may be coated or film-coated on the surface of the wavelength conversion layer 724 and the reflection wall 326. The material of the barrier film may include an inorganic material such as a metal oxide (such as SiO 2 , Al 2 O 3 , etc.) or a metal nitride (such as Si 3 N 3 , etc.), and may be a multilayer barrier film for coating or filming. The manner is disposed on the surface of the wavelength conversion layer 724 and the reflective wall 326.

實施例中,發光二極體封裝結構1518、1618發出白光。發光二極體晶片302可為藍色發光二極體晶片。波長轉換層724包含紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3與黃色螢光粉YAG:Ce,其中0.5

Figure TWI613275BD00054
b
Figure TWI613275BD00055
1;及/或,紅色全無機鈣鈦礦量子點的粒徑範圍為10nm至14nm。實施例中,紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3係包含在量子點複合材料中,亦即其表面係形成有 修飾性保護。 In an embodiment, the LED package structures 1518, 1618 emit white light. The light emitting diode chip 302 can be a blue light emitting diode wafer. The wavelength conversion layer 724 comprises a red all-inorganic perovskite quantum dot CsPb(Br 1-b I b ) 3 and a yellow phosphor YAG:Ce, wherein 0.5
Figure TWI613275BD00054
b
Figure TWI613275BD00055
1; and/or, the red all inorganic perovskite quantum dots have a particle size ranging from 10 nm to 14 nm. In the examples, the red all-inorganic perovskite quantum dot CsPb(Br 1-b I b ) 3 is included in the quantum dot composite, that is, the surface system is formed with a modification protection.

實施例中,發光二極體封裝結構1518、1618發出白光。發光二極體晶片302可為藍色發光二極體晶片。波長轉換層724包含綠色全無機鈣鈦礦量子點CsPb(Br1-bIb)3與紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3,其中綠色全無機鈣鈦礦量子點的b參數範圍是0

Figure TWI613275BD00056
b<0.5,紅色全無機鈣鈦礦量子點的b參數範圍0.5
Figure TWI613275BD00057
b
Figure TWI613275BD00058
1;及/或,綠色全無機鈣鈦礦量子點的粒徑範圍為8nm至12nm,紅色全無機鈣鈦礦量子點的粒徑範圍為10nm至14nm。實施例中,綠色全無機鈣鈦礦量子點CsPb(Br1-bIb)3及紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3其中至少一者係包含在量子點複合材料中,亦即其表面係形成有修飾性保護。 In an embodiment, the LED package structures 1518, 1618 emit white light. The light emitting diode chip 302 can be a blue light emitting diode wafer. The wavelength conversion layer 724 comprises a green all-inorganic perovskite quantum dot CsPb(Br 1-b I b ) 3 and a red all-inorganic perovskite quantum dot CsPb(Br 1-b I b ) 3 , wherein the green all-inorganic perovskite The b parameter range of a quantum dot is 0.
Figure TWI613275BD00056
b<0.5, b parameter range of red all inorganic perovskite quantum dots 0.5
Figure TWI613275BD00057
b
Figure TWI613275BD00058
1; and/or, the green all-inorganic perovskite quantum dots have a particle size ranging from 8 nm to 12 nm, and the red all-inorganic perovskite quantum dots have a particle size ranging from 10 nm to 14 nm. In an embodiment, at least one of the green all-inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 and the red all-inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 is included in the quantum dot In the composite material, that is, the surface thereof is formed with a modification protection.

實施例中,發光二極體封裝結構1518、1618發出白光,發光二極體晶片302可為紫外光發光二極體晶片。波長轉換層724包含藍色全無機鈣鈦礦量子點CsPb(ClaBr1-a)3、綠色全無機鈣鈦礦量子點CsPb(Br1-bIb)3、紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3,其中藍色全無機鈣鈦礦量子點的a參數範圍是0<a

Figure TWI613275BD00059
1,綠色全無機鈣鈦礦量子點的b參數範圍是0
Figure TWI613275BD00060
b<0.5,紅色全無機鈣鈦礦量子點的b參數範圍0.5
Figure TWI613275BD00061
b
Figure TWI613275BD00062
1;及/或,藍色全無機鈣鈦礦量子點的粒徑範圍為7nm至10nm,綠色全無機鈣鈦礦量子點的粒徑範圍為8nm至12nm,紅色全無機鈣鈦礦量子點的粒徑範圍為10nm至14nm。實施例中,藍色全無機鈣鈦礦量子點CsPb(ClaBr1-a)3、綠色全無機鈣鈦礦量子點CsPb(Br1-bIb)3及紅色 全無機鈣鈦礦量子點CsPb(Br1-bIb)3其中至少一者係包含在量子點複合材料中,亦即其表面係形成有修飾性保護。 In an embodiment, the LED package structures 1518, 1618 emit white light, and the LED chip 302 can be an ultraviolet light emitting diode chip. The wavelength conversion layer 724 comprises a blue all-inorganic perovskite quantum dot CsPb (Cl a Br 1-a ) 3 , a green all-inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 , and a red all-inorganic perovskite The quantum dot CsPb(Br 1-b I b ) 3 , wherein the a parameter range of the blue all-inorganic perovskite quantum dot is 0<a
Figure TWI613275BD00059
1, the b parameter range of the green all-inorganic perovskite quantum dot is 0
Figure TWI613275BD00060
b<0.5, b parameter range of red all inorganic perovskite quantum dots 0.5
Figure TWI613275BD00061
b
Figure TWI613275BD00062
1; and/or, the blue all-inorganic perovskite quantum dots have a particle size ranging from 7 nm to 10 nm, and the green all-inorganic perovskite quantum dots have a particle size ranging from 8 nm to 12 nm, and the red all-inorganic perovskite quantum dots The particle size ranges from 10 nm to 14 nm. In the examples, the blue all-inorganic perovskite quantum dot CsPb(Cl a Br 1-a ) 3 , the green all-inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 and the red all-inorganic perovskite quantum At least one of the points CsPb(Br 1-b I b ) 3 is contained in the quantum dot composite, that is, the surface system is formed with a modification protection.

第21圖繪示根據一實施例之發光二極體封裝結構1718,其包括基座320、發光二極體晶片302、波長轉換層324與透明膠體1737。發光二極體晶片302以覆晶的方式電性連接基座320。波長轉換層324配置在發光二極體晶片302的上表面與側表面上,並可延伸至基座320的上表面上。一實施例中,舉例來說,第一波長轉換層324A含有紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3,出光波長的波峰位置為570nm至700nm之間,第二波長轉換層324B含有綠色全無機鈣鈦礦量子點CsPb(Br1-bIb)3,出光波長的波峰位置為500nm至570nm之間,其中綠色全無機鈣鈦礦量子點的b參數範圍是0

Figure TWI613275BD00063
b<0.5,紅色全無機鈣鈦礦量子點的b參數範圍0.5
Figure TWI613275BD00064
b
Figure TWI613275BD00065
1;及/或,綠色全無機鈣鈦礦量子點為粒徑範圍8nm至12nm,紅色全無機鈣鈦礦量子點的粒徑範圍為10nm至14nm,但本揭露並不限於此。實施例中,綠色全無機鈣鈦礦量子點CsPb(Br1-bIb)3及紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3其中至少一者係包含在量子點複合材料中,亦即其表面係形成有修飾性保護。透明膠體1737可用作封裝膠體,覆蓋波長轉換層324與基座320。 FIG. 21 illustrates a light emitting diode package structure 1718 including a pedestal 320, a light emitting diode chip 302, a wavelength conversion layer 324, and a transparent colloid 1737, in accordance with an embodiment. The LED chip 302 is electrically connected to the susceptor 320 in a flip chip manner. The wavelength conversion layer 324 is disposed on the upper surface and the side surface of the light emitting diode wafer 302 and may extend onto the upper surface of the susceptor 320. In one embodiment, for example, the first wavelength conversion layer 324A contains a red all-inorganic perovskite quantum dot CsPb(Br 1-b I b ) 3 , and the peak position of the light-emitting wavelength is between 570 nm and 700 nm, and the second wavelength The conversion layer 324B contains a green all-inorganic perovskite quantum dot CsPb(Br 1-b I b ) 3 , and the peak position of the light-emitting wavelength is between 500 nm and 570 nm, wherein the b-parameter range of the green all-inorganic perovskite quantum dot is 0.
Figure TWI613275BD00063
b<0.5, b parameter range of red all inorganic perovskite quantum dots 0.5
Figure TWI613275BD00064
b
Figure TWI613275BD00065
1; and/or, the green all-inorganic perovskite quantum dots have a particle size ranging from 8 nm to 12 nm, and the red all-inorganic perovskite quantum dots have a particle diameter ranging from 10 nm to 14 nm, but the disclosure is not limited thereto. In an embodiment, at least one of the green all-inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 and the red all-inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 is included in the quantum dot In the composite material, that is, the surface thereof is formed with a modification protection. The transparent colloid 1737 can be used as an encapsulant covering the wavelength conversion layer 324 and the pedestal 320.

第22圖繪示根據一實施例之應用在側光式背光模組1838。側光式背光模組1838包括框架1820、光源1822、導光板1842。光源1822包括一電路板1855位於框架1820上以及如 第17圖所述之複數發光二極體封裝結構1318位在電路板1855上,其中發光二極體封裝結構1318之出光方向是面向導光板1842之一入光面1842a。框架1820具有反射片1840可助於發光二極體封裝結構1318射出的光線能集中往導光板1842,光線再經由導光板1842的出光面1842b往上方的光學層1830(或顯示面板)射出。光學層1830可例如包括光學層1830A、1830B、1830C、1830D。舉例來說,光學層1830A與1830D可為擴散片,光學層1830B、1830C可為增亮片。導光板1842的下方可配置反射片1844,以進一步將光線向上導往光學層1830A、1830B、1830C、1830D(或顯示面板,未顯示)。實施例之側光式背光模組並不限於使用如第17圖所述之發光二極體封裝結構1318,也可使用於此所揭露的其他發光二極體封裝結構。 FIG. 22 illustrates an application of the edge-lit backlight module 1838 according to an embodiment. The edge-lit backlight module 1838 includes a frame 1820, a light source 1822, and a light guide plate 1842. Light source 1822 includes a circuit board 1855 located on frame 1820 and as The plurality of LED package structures 1318 are shown on the circuit board 1855. The light-emitting diode package 1318 has a light-emitting direction that is one of the light-emitting surfaces 1842a of the light guide plate 1842. The frame 1820 has a reflective sheet 1840. The light emitted from the LED package structure 1318 can be concentrated on the light guide plate 1842. The light is then emitted through the light-emitting surface 1842b of the light guide plate 1842 to the upper optical layer 1830 (or display panel). Optical layer 1830 can include, for example, optical layers 1830A, 1830B, 1830C, 1830D. For example, optical layers 1830A and 1830D can be diffusion sheets, and optical layers 1830B, 1830C can be brightness enhancing sheets. A reflective sheet 1844 can be disposed beneath the light guide plate 1842 to further direct light up to the optical layers 1830A, 1830B, 1830C, 1830D (or display panel, not shown). The edge-lit backlight module of the embodiment is not limited to the use of the light-emitting diode package structure 1318 as described in FIG. 17, and other light-emitting diode package structures disclosed herein may be used.

第23圖繪示根據一實施例之應用在直下式背光模組1938,其包括二次光學1946設置在發光二極體封裝結構1318上。發光二極體封裝結構1318的出光方向是面向光學層1830。反射片1840可助於發光二極體封裝結構1318射出的光線能集中射往光學層1830(或顯示面板)。實施例之直下式背光模組並不限於使用如第17圖所述之發光二極體封裝結構1318,也可使用於此所揭露的其他發光二極體封裝結構。 FIG. 23 illustrates a direct-lit backlight module 1938 that includes a secondary optics 1946 disposed on the LED package structure 1318, in accordance with an embodiment. The light exiting direction of the light emitting diode package structure 1318 is toward the optical layer 1830. The reflective sheet 1840 can facilitate the concentrated emission of light from the LED package structure 1318 to the optical layer 1830 (or display panel). The direct type backlight module of the embodiment is not limited to the use of the light emitting diode package structure 1318 as described in FIG. 17, and other light emitting diode package structures disclosed herein may be used.

第24圖與第25圖分別繪示根據一實施例之發光二極體封裝結構2018的立體圖與透視圖。發光二極體封裝結構2018包括第一電極2048與第二電極2050用於與外部作電性連接,如 連接在電路板2155的接墊2157上。如圖所示,第一電極2048與第二電極2050係具有L形狀,其直立部分2051係在基座320底部並裸露出基座320,連接直立部分2051的橫腳部分2053係嵌在杯壁322中並裸露出杯壁322。發光二極體晶片302的正、負電極可以打線的方式電性連接第一電極2048與第二電極2050的直立部分2051。波長轉換層724填充在由基座320、杯壁322所定義之容置空間323中。 24 and 25 are respectively a perspective view and a perspective view of a light emitting diode package structure 2018 according to an embodiment. The LED package structure 2018 includes a first electrode 2048 and a second electrode 2050 for electrically connecting to the outside, such as It is connected to the pad 2157 of the circuit board 2155. As shown, the first electrode 2048 and the second electrode 2050 have an L shape, the upright portion 2051 is attached to the bottom of the base 320 and the base 320 is exposed, and the leg portion 2053 connecting the upright portion 2051 is embedded in the cup wall. The cup wall 322 is exposed in 322. The positive and negative electrodes of the LED chip 302 can be electrically connected to the first electrode 2048 and the upright portion 2051 of the second electrode 2050. The wavelength conversion layer 724 is filled in the accommodating space 323 defined by the susceptor 320 and the cup wall 322.

第26圖繪示根據一實施例之發光二極體封裝結構2218的立體圖,其與第24圖、第25圖所示之發光二極體封裝結構2018的差異為L形的第一電極2048與第二電極2050,其直立部分2051係延伸超出基座320與杯壁322,且其橫腳部分2053係連接直立部分2051並且往背向杯壁322的方向延伸而電性連接電路板2155的接墊2157。 FIG. 26 is a perspective view of a light emitting diode package structure 2218 according to an embodiment, which is different from the light emitting diode package structure 2018 shown in FIGS. 24 and 25 by an L-shaped first electrode 2048 and The second electrode 2050 has an upright portion 2051 extending beyond the base 320 and the cup wall 322, and the leg portion 2053 is connected to the upright portion 2051 and extends in a direction away from the cup wall 322 to electrically connect the circuit board 2155. Pad 2157.

一些實施例中,第24圖及第25圖的發光二極體封裝結構2018、第26圖的發光二極體封裝結構2218,其基座320與杯壁322為透明材質所構成,因此發光二極體晶片302發出的光線能從發光面直接(未被不透光材質阻擋或經反射材質反射)射出發光二極體封裝結構2018、2218,例如光線能以垂直於基座320的方向往上、下兩面射出,而廣角(例如大於180度)出光。 In some embodiments, the LED package structure 2018 of FIG. 24 and FIG. 25 and the LED package structure 2218 of FIG. 26 have a base 320 and a cup wall 322 which are made of a transparent material, so that the light is emitted. The light emitted by the polar body chip 302 can be directly emitted from the light emitting surface (not blocked by the opaque material or reflected by the reflective material) to emit the LED package structures 2018, 2218, for example, the light can be directed upward in the direction perpendicular to the pedestal 320. The lower two sides are shot, and the wide angle (for example, greater than 180 degrees) is emitted.

第27圖至第30圖繪示根據一實施例之發光裝置的製造方法。 27 to 30 illustrate a method of fabricating a light emitting device according to an embodiment.

請參照第27圖,圖案化導電板2352,以在導電板 2352形成互相分開的數個導電條2354。可以蝕刻的方式對導電板2352進行圖案化步驟。然後,配置發光二極體封裝結構2318在導電板2352上,其中發光二極體封裝結構2318的第一電極與第二電極(未繪示)對應導電條2354,使得發光二極體封裝結構2318電性連接導電板2352。一實施例中,可進行回焊(reflow)製程將第一電極與第二電極接合至不同的導電條2354。然後,對導電板2352進行切割步驟,以得到如第28圖所示之插件式發光單元2456。一實施例中,可以沖壓(punch)的方式進行切割。 Referring to FIG. 27, the conductive plate 2352 is patterned to be on the conductive plate. 2352 forms a plurality of conductive strips 2354 that are separated from each other. The conductive plate 2352 can be patterned in a etched manner. Then, the light emitting diode package structure 2318 is disposed on the conductive plate 2352, wherein the first electrode and the second electrode (not shown) of the light emitting diode package structure 2318 correspond to the conductive strip 2354, so that the light emitting diode package structure 2318 The conductive plate 2352 is electrically connected. In one embodiment, a reflow process can be performed to bond the first electrode and the second electrode to different conductive strips 2354. Then, the conductive plate 2352 is subjected to a cutting step to obtain a plug-in type light-emitting unit 2456 as shown in Fig. 28. In one embodiment, the cutting can be performed in a punch manner.

請參照第29圖,然後,將插件式發光單元2456插設於電路板2555上,以得到具發光燈條型態的發光裝置2538。插件式發光單元2456可藉由作為第一電極與第二電極的導電條2354電性連接至電路板2555。一實施例中,電路板2555具有驅動電路,能用以提供插件式發光單元2456作用所需的電力。 Referring to FIG. 29, the plug-in type light-emitting unit 2456 is then inserted on the circuit board 2555 to obtain a light-emitting device 2538 having a light-emitting strip type. The plug-in type light emitting unit 2456 can be electrically connected to the circuit board 2555 by the conductive strips 2354 as the first electrodes and the second electrodes. In one embodiment, the circuit board 2555 has a drive circuit that can be used to provide the power required for the plug-in illumination unit 2456 to function.

請參照第30圖,將具發光燈條型態的發光裝置2538配置在散熱器2660上,並設置燈殼2658罩住發光裝置2538,而得到具燈管結構的發光裝置2638。 Referring to FIG. 30, a light-emitting device 2538 having a light-emitting strip type is disposed on the heat sink 2660, and a lamp housing 2658 is disposed to cover the light-emitting device 2538 to obtain a light-emitting device 2638 having a lamp structure.

實施例中,發光二極體封裝結構2318可例如應用第7圖至第21圖所述的發光二極體封裝結構318、418、518、618、718、818、918、1018、1118、1218、1318、1418、1518、1618、1718。一些實施例中,發光二極體封裝結構2318係應用第7圖至第12圖的發光二極體封裝結構318、418、518、618、718、818,其中基座320與杯壁322為透明材質所構成,因此發光二極體晶 片302發出的光線能從發光面直接(未被不透光材質阻擋或經反射材質反射)射出發光二極體封裝結構318、418、518、618、718、818、2318,例如光線能以垂直於基座320的方向往上、下兩面射出,而廣角(例如大於180度)出光。 In an embodiment, the LED package structure 2318 can apply, for example, the LED package structures 318, 418, 518, 618, 718, 818, 918, 1018, 1118, 1218, as described in FIGS. 7-21. 1318, 1418, 1518, 1618, 1718. In some embodiments, the LED package structure 2318 applies the LED package structures 318, 418, 518, 618, 718, and 818 of FIGS. 7 to 12, wherein the pedestal 320 and the cup wall 322 are transparent. Light-emitting diode crystal The light emitted by the sheet 302 can be directly emitted from the light emitting surface (not blocked by the opaque material or reflected by the reflective material) to emit the LED package structure 318, 418, 518, 618, 718, 818, 2318, for example, the light can be vertical It is emitted in the direction of the pedestal 320 to the upper and lower sides, and is emitted at a wide angle (for example, greater than 180 degrees).

一些實施例中,發光二極體封裝結構2318/插件式發光單元2456發出白光。發光二極體晶片302可為藍色發光二極體晶片,波長轉換材料包含紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3與黃色螢光粉YAG:Ce,其中0.5

Figure TWI613275BD00066
b
Figure TWI613275BD00067
1。及/或,紅色全無機鈣鈦礦量子點的粒徑範圍為10nm至14nm。實施例中,紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3係包含在量子點複合材料中,亦即其表面係形成有修飾性保護。 In some embodiments, the LED package 2318/plug-in lighting unit 2456 emits white light. The light emitting diode chip 302 can be a blue light emitting diode wafer, and the wavelength converting material comprises red all inorganic perovskite quantum dots CsPb(Br 1-b I b ) 3 and yellow fluorescent powder YAG:Ce, wherein 0.5
Figure TWI613275BD00066
b
Figure TWI613275BD00067
1. And/or, the red all inorganic perovskite quantum dots have a particle size ranging from 10 nm to 14 nm. In the examples, the red all-inorganic perovskite quantum dot CsPb(Br 1-b I b ) 3 is included in the quantum dot composite, that is, the surface system is formed with a modification protection.

實施例中,發光二極體封裝結構2318/插件式發光單元2456發出白光。發光二極體晶片302可為藍色發光二極體晶片,波長轉換材料包含綠色全無機鈣鈦礦量子點CsPb(Br1-bIb)3與紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3,其中綠色全無機鈣鈦礦量子點的b參數範圍是0

Figure TWI613275BD00068
b<0.5,紅色全無機鈣鈦礦量子點的b參數範圍0.5
Figure TWI613275BD00069
b
Figure TWI613275BD00070
1。及/或,綠色全無機鈣鈦礦量子點的粒徑範圍為8nm至12nm,紅色全無機鈣鈦礦量子點的粒徑範圍為10nm至14nm。實施例中,綠色全無機鈣鈦礦量子點CsPb(Br1-bIb)3及紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3其中至少一者係包含在量子點複合材料中,亦即其表面係形成有修飾性保護。 In an embodiment, the light emitting diode package structure 2318/plug-in light emitting unit 2456 emits white light. The light-emitting diode chip 302 can be a blue light-emitting diode wafer, and the wavelength conversion material comprises a green all-inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 and a red all-inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 , wherein the b parameter range of the green all-inorganic perovskite quantum dot is 0
Figure TWI613275BD00068
b<0.5, b parameter range of red all inorganic perovskite quantum dots 0.5
Figure TWI613275BD00069
b
Figure TWI613275BD00070
1. And/or, the green all-inorganic perovskite quantum dots have a particle size ranging from 8 nm to 12 nm, and the red all-inorganic perovskite quantum dots have a particle size ranging from 10 nm to 14 nm. In an embodiment, at least one of the green all-inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 and the red all-inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 is included in the quantum dot In the composite material, that is, the surface thereof is formed with a modification protection.

實施例中,發光二極體封裝結構2318/插件式發光單 元2456發出白光。發光二極體晶片302可為紫外光發光二極體晶片,波長轉換材料包含藍色全無機鈣鈦礦量子點CsPb(ClaBr1-a)3、綠色全無機鈣鈦礦量子點CsPb(Br1-bIb)3、紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3。其中藍色全無機鈣鈦礦量子點的a參數範圍是0<a

Figure TWI613275BD00071
1、綠色全無機鈣鈦礦量子點的b參數範圍是0
Figure TWI613275BD00072
b<0.5,紅色全無機鈣鈦礦量子點的b參數範圍0.5
Figure TWI613275BD00073
b
Figure TWI613275BD00074
1。及/或,藍色全無機鈣鈦礦量子點的粒徑範圍為7nm至10nm,綠色全無機鈣鈦礦量子點的粒徑範圍為8nm至12nm,紅色全無機鈣鈦礦量子點的粒徑範圍為10nm至14nm。實施例中,藍色全無機鈣鈦礦量子點CsPb(ClaBr1-a)3、綠色全無機鈣鈦礦量子點CsPb(Br1-bIb)3及紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3其中至少一者係包含在量子點複合材料中,亦即其表面係形成有修飾性保護。 In an embodiment, the light emitting diode package structure 2318/plug-in light emitting unit 2456 emits white light. The light emitting diode chip 302 can be an ultraviolet light emitting diode chip, and the wavelength converting material comprises a blue all-inorganic perovskite quantum dot CsPb (Cl a Br 1-a ) 3 , and a green all-inorganic perovskite quantum dot CsPb ( Br 1-b I b ) 3 , red all inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 . The a parameter range of the blue all-inorganic perovskite quantum dot is 0<a
Figure TWI613275BD00071
1. The b parameter range of the green all-inorganic perovskite quantum dot is 0.
Figure TWI613275BD00072
b<0.5, b parameter range of red all inorganic perovskite quantum dots 0.5
Figure TWI613275BD00073
b
Figure TWI613275BD00074
1. And/or, the blue all-inorganic perovskite quantum dots have a particle size ranging from 7 nm to 10 nm, and the green all-inorganic perovskite quantum dots have a particle size ranging from 8 nm to 12 nm, and the particle size of the red all-inorganic perovskite quantum dots The range is from 10 nm to 14 nm. In the examples, the blue all-inorganic perovskite quantum dot CsPb(Cl a Br 1-a ) 3 , the green all-inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 and the red all-inorganic perovskite quantum At least one of the points CsPb(Br 1-b I b ) 3 is contained in the quantum dot composite, that is, the surface system is formed with a modification protection.

第31圖繪示根據一實施例之插件式發光單元2756。插件式發光單元2756包括發光二極體晶片302、基座2761、第一電極插腳2766及第二電極插腳2768。基座2761包括第一基板2762、第二基板2764與絕緣層2774。絕緣層2774配置在第一基板2762與第二基板2764之間,以電性隔離第一基板2762與第二基板2764。發光二極體晶片302配置在用作固晶板之基座2761內的固晶區上,其中,發光二極體晶片302係跨過絕緣層2774並且以覆晶方式配置在第一基板2762與第二基板2764上,且發光二極體晶片302的正、負電極電性連接第一基板2762與第二基板2764上的第一接觸墊2770與第二接觸墊2772,藉此電性連 接分別從第一基板2762與第二基板2764延伸的第一電極插腳2766及第二電極插腳2768。發光二極體晶片302可藉由焊料(未顯示)電性連接第一接觸墊2770與第二接觸墊2772。 FIG. 31 illustrates a plug-in lighting unit 2756 in accordance with an embodiment. The plug-in type light emitting unit 2756 includes a light emitting diode chip 302, a base 2761, a first electrode pin 2766, and a second electrode pin 2768. The susceptor 2761 includes a first substrate 2762, a second substrate 2764, and an insulating layer 2774. The insulating layer 2774 is disposed between the first substrate 2762 and the second substrate 2764 to electrically isolate the first substrate 2762 and the second substrate 2764. The LED chip 302 is disposed on a die attach region in the susceptor 2761 serving as a die plate, wherein the LED chip 302 is disposed across the insulating layer 2774 and is flip-chip disposed on the first substrate 2762 and On the second substrate 2764, the positive and negative electrodes of the LED substrate 302 are electrically connected to the first contact pad 2770 and the second contact pad 2772 on the first substrate 2762 and the second substrate 2764, thereby electrically connecting First electrode pins 2766 and second electrode pins 2768 extending from the first substrate 2762 and the second substrate 2764, respectively. The LED chip 302 can be electrically connected to the first contact pad 2770 and the second contact pad 2772 by solder (not shown).

第32圖繪示根據另一實施例之插件式發光單元2856。插件式發光單元2856包括透明膠體2837與如第31圖所述的插件式發光單元2756。透明膠體2837包覆整個發光二極體晶片302與基座2761,並包覆部分第一電極插腳2766及第二電極插腳2768。 Figure 32 illustrates a plug-in lighting unit 2856 in accordance with another embodiment. The plug-in lighting unit 2856 includes a transparent colloid 2837 and a plug-in lighting unit 2756 as described in FIG. The transparent colloid 2837 covers the entire LED chip 302 and the pedestal 2761 and covers a portion of the first electrode pin 2766 and the second electrode pin 2768.

第33圖繪示根據又另一實施例之插件式發光單元2956,其與第32圖所示之插件式發光單元2856的主要差異在於,透明膠體2837包覆整個發光二極體晶片302,並包覆基座2761之與發光二極體晶片302相同側的部分表面,而未包覆第一電極插腳2766及第二電極插腳2768。 FIG. 33 illustrates a plug-in type light-emitting unit 2956 according to still another embodiment, which differs from the plug-in type light-emitting unit 2856 shown in FIG. 32 in that a transparent colloid 2837 covers the entire LED chip 302, and A portion of the surface of the pedestal 2761 on the same side as the illuminating diode chip 302 is covered, and the first electrode pin 2766 and the second electrode pin 2768 are not covered.

實施例中,插件式發光單元2856或2956可包括波長轉換材料摻雜於透明膠體2837中,或含有波長轉換材料的波長轉換層設置於發光二極體晶片302的表面。實施例中,透明膠體2837可為任何具透光性的高分子膠材,例如,PMMA、PET、PEN、PS、PP、PA、PC、PI、PDMS、Epoxy、silicone或其他合適的材料,或上述之組合。透明膠體2837可視實際需求摻雜其他物質以調整出光性質。例如可摻雜擴散粒子以改變出光路徑。擴散粒子可包括TiO2、SiO2、Al2O3、BN、ZnO等,可具有相同或不同的粒徑。 In an embodiment, the plug-in lighting unit 2856 or 2956 may include a wavelength converting material doped in the transparent colloid 2837, or a wavelength converting layer containing a wavelength converting material disposed on the surface of the LED wafer 302. In an embodiment, the transparent colloid 2837 can be any translucent polymer glue, such as PMMA, PET, PEN, PS, PP, PA, PC, PI, PDMS, Epoxy, silicone or other suitable materials, or Combination of the above. The transparent colloid 2837 can be doped with other substances according to actual needs to adjust the light properties. For example, diffusion particles can be doped to change the light path. The diffusion particles may include TiO 2 , SiO 2 , Al 2 O 3 , BN, ZnO, etc., and may have the same or different particle diameters.

第34圖繪示根據一實施例之發光裝置3038。球燈泡型的態發光裝置3038包括如第33圖所示之插件式發光單元2956、殼體3076、透明燈罩3078與電路板3080。插件式發光單元2956插設於電路板3080,並電性連接電路板3080,藉此電性連接至電路板3080的驅動電路3082。插件式發光單元2956連同電路板3080設置在由相連之殼體3076與透明燈罩3078所定義出的容置空間中。 Figure 34 illustrates a light emitting device 3038 in accordance with an embodiment. The bulb type illumination device 3038 includes a plug-in type illumination unit 2956, a housing 3076, a transparent cover 3078, and a circuit board 3080 as shown in FIG. The plug-in type light-emitting unit 2956 is inserted into the circuit board 3080 and electrically connected to the circuit board 3080, thereby being electrically connected to the driving circuit 3082 of the circuit board 3080. The plug-in lighting unit 2956, along with the circuit board 3080, is disposed in an accommodation space defined by the associated housing 3076 and the transparent shade 3078.

此揭露所述的透明膠體可為任何具透光性的高分子膠材,例如,PMMA、PET、PEN、PS、PP、PA、PC、PI、PDMS、Epoxy、silicone或其他合適的材料,或上述之組合。 The transparent colloid disclosed in the disclosure may be any translucent polymer glue, for example, PMMA, PET, PEN, PS, PP, PA, PC, PI, PDMS, Epoxy, silicone or other suitable materials, or Combination of the above.

透明膠體可視實際需求摻雜其他物質以調整出光性質。例如可摻雜擴散粒子以改變出光路徑。擴散粒子可包括TiO2、SiO2、Al2O3、BN、ZnO等,可具有相同或不同的粒徑。 The transparent colloid can be doped with other substances according to actual needs to adjust the light properties. For example, diffusion particles can be doped to change the light path. The diffusion particles may include TiO 2 , SiO 2 , Al 2 O 3 , BN, ZnO, etc., and may have the same or different particle diameters.

實施例之發光裝置並不限於以上所述的範例,也可包括其他種設計的發光二極體封裝結構、應用於顯示裝置的發光模組例如背光模組或前光模組、或照明裝置例如燈管、燈泡,或可具有其他型態結構。 The illuminating device of the embodiment is not limited to the above examples, and may also include other types of illuminating diode package structures, illuminating modules applied to display devices such as backlight modules or front light modules, or lighting devices. The lamp, bulb, or other type of structure.

單一個發光二極體封裝結構單元並不限於使用單一個發光二極體晶片,也可使用二或更多個相同或不同發光顏色/波長的發光二極體晶片。 A single light-emitting diode package structure unit is not limited to the use of a single light-emitting diode wafer, and two or more light-emitting diode chips of the same or different light-emitting colors/wavelengths may be used.

實施例中,發光二極體封裝結構2018、2218以及插件式發光單元2856、2956發出白光。發光二極體晶片302可為 藍色發光二極體晶片,波長轉換材料包含紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3與黃色螢光粉YAG:Ce,其中0.5

Figure TWI613275BD00075
b
Figure TWI613275BD00076
1。及/或,紅色全無機鈣鈦礦量子點的粒徑範圍為10nm至14nm。實施例中,紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3係包含在量子點複合材料中,亦即其表面係形成有修飾性保護。 In an embodiment, the LED package structures 2018, 2218 and the plug-in lighting units 2856, 2956 emit white light. The light emitting diode chip 302 can be a blue light emitting diode wafer, and the wavelength converting material comprises red all inorganic perovskite quantum dots CsPb(Br 1-b I b ) 3 and yellow fluorescent powder YAG:Ce, wherein 0.5
Figure TWI613275BD00075
b
Figure TWI613275BD00076
1. And/or, the red all inorganic perovskite quantum dots have a particle size ranging from 10 nm to 14 nm. In the examples, the red all-inorganic perovskite quantum dot CsPb(Br 1-b I b ) 3 is included in the quantum dot composite, that is, the surface system is formed with a modification protection.

實施例中,發光二極體封裝結構2018、2218以及插件式發光單元2856、2956發出白光。發光二極體晶片302可為藍色發光二極體晶片,波長轉換材料包含綠色全無機鈣鈦礦量子點CsPb(Br1-bIb)3與紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3,其中綠色全無機鈣鈦礦量子點的b參數範圍是0

Figure TWI613275BD00077
b<0.5,紅色全無機鈣鈦礦量子點的b參數範圍0.5
Figure TWI613275BD00078
b
Figure TWI613275BD00079
1。及/或,綠色全無機鈣鈦礦量子點的粒徑範圍為8nm至12nm,紅色全無機鈣鈦礦量子點的粒徑範圍為10nm至14nm。實施例中,綠色全無機鈣鈦礦量子點CsPb(Br1-bIb)3及紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3其中至少一者係包含在量子點複合材料中,亦即其表面係形成有修飾性保護。 In an embodiment, the LED package structures 2018, 2218 and the plug-in lighting units 2856, 2956 emit white light. The light-emitting diode chip 302 can be a blue light-emitting diode wafer, and the wavelength conversion material comprises a green all-inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 and a red all-inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 , wherein the b parameter range of the green all-inorganic perovskite quantum dot is 0
Figure TWI613275BD00077
b<0.5, b parameter range of red all inorganic perovskite quantum dots 0.5
Figure TWI613275BD00078
b
Figure TWI613275BD00079
1. And/or, the green all-inorganic perovskite quantum dots have a particle size ranging from 8 nm to 12 nm, and the red all-inorganic perovskite quantum dots have a particle size ranging from 10 nm to 14 nm. In an embodiment, at least one of the green all-inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 and the red all-inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 is included in the quantum dot In the composite material, that is, the surface thereof is formed with a modification protection.

實施例中,發光二極體封裝結構2018、2218以及插件式發光單元2856、2956發出白光。發光二極體晶片302可為紫外光發光二極體晶片,波長轉換材料包含藍色全無機鈣鈦礦量子點CsPb(ClaBr1-a)3、綠色全無機鈣鈦礦量子點CsPb(Br1-bIb)3、紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3。其中藍色全無機鈣鈦礦量子點的a參數範圍是0<a

Figure TWI613275BD00080
1、綠色全無機鈣鈦礦量子點的b參 數範圍是0
Figure TWI613275BD00081
b<0.5,紅色全無機鈣鈦礦量子點的b參數範圍0.5
Figure TWI613275BD00082
b
Figure TWI613275BD00083
1。及/或,藍色全無機鈣鈦礦量子點的粒徑範圍為7nm至10nm,綠色全無機鈣鈦礦量子點的粒徑範圍為8nm至12nm,紅色全無機鈣鈦礦量子點的粒徑範圍為10nm至14nm。實施例中,藍色全無機鈣鈦礦量子點CsPb(ClaBr1-a)3、綠色全無機鈣鈦礦量子點CsPb(Br1-bIb)3及紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3其中至少一者係包含在量子點複合材料中,亦即其表面係形成有修飾性保護。 In an embodiment, the LED package structures 2018, 2218 and the plug-in lighting units 2856, 2956 emit white light. The light emitting diode chip 302 can be an ultraviolet light emitting diode chip, and the wavelength converting material comprises a blue all-inorganic perovskite quantum dot CsPb (Cl a Br 1-a ) 3 , and a green all-inorganic perovskite quantum dot CsPb ( Br 1-b I b ) 3 , red all inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 . The a parameter range of the blue all-inorganic perovskite quantum dot is 0<a
Figure TWI613275BD00080
1. The b parameter range of the green all-inorganic perovskite quantum dot is 0.
Figure TWI613275BD00081
b<0.5, b parameter range of red all inorganic perovskite quantum dots 0.5
Figure TWI613275BD00082
b
Figure TWI613275BD00083
1. And/or, the blue all-inorganic perovskite quantum dots have a particle size ranging from 7 nm to 10 nm, and the green all-inorganic perovskite quantum dots have a particle size ranging from 8 nm to 12 nm, and the particle size of the red all-inorganic perovskite quantum dots The range is from 10 nm to 14 nm. In the examples, the blue all-inorganic perovskite quantum dot CsPb(Cl a Br 1-a ) 3 , the green all-inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 and the red all-inorganic perovskite quantum At least one of the points CsPb(Br 1-b I b ) 3 is contained in the quantum dot composite, that is, the surface system is formed with a modification protection.

實施例之量子點複合材料亦可應用至波長轉換膜。 The quantum dot composite of the examples can also be applied to a wavelength conversion film.

第35圖繪示根據一實施例之波長轉換膜3577,其包括量子點複合材料(例如第1圖至第4圖所示之量子點複合材料11、31、41、71,或其它型態之量子點複合材料)與透明基體3579,其中量子點複合材料係混合在透明基體3579中。透明基體3579的材料可以是聚甲基丙烯酸甲脂(polymethyl methacrylate,PMMA)、乙烯對苯二甲酸酯(polyethylene terephthalate,PET)、聚苯乙烯(polystyrene,PS)、聚乙烯(polypropylene,PP)、尼龍(polyamide,PA)、聚碳酸酯(polycarbonate,PC)、聚亞醯胺(polyimide,PI)、聚二甲基矽氧烷(polydimethylsiloxane,PDMS)、環氧樹脂(epoxy)以及矽膠(silicone)等之其中一種材料或兩種以上材料的組合。實施例中,透明基體3579可包括玻璃材料或陶瓷材料,量子點複合材料與玻璃材料或陶瓷材料混合製造成一玻璃量子點薄膜或一陶瓷量子點薄膜。透明基體3579可為可撓的 或不可撓的材料。 Figure 35 illustrates a wavelength conversion film 3577 comprising quantum dot composites (e.g., quantum dot composites 11, 31, 41, 71, shown in Figures 1 through 4, or other types), in accordance with an embodiment. The quantum dot composite) is combined with a transparent substrate 3579 in which the quantum dot composite is mixed in a transparent substrate 3579. The material of the transparent substrate 3579 may be polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polystyrene (PS), polyethylene (polypropylene, PP). , nylon (polyamide, PA), polycarbonate (polycarbonate, PC), polyimide (PI), polydimethylsiloxane (PDMS), epoxy (epoxy) and silicone (silicone) Or one of the materials or a combination of two or more materials. In an embodiment, the transparent substrate 3579 may comprise a glass material or a ceramic material, and the quantum dot composite material is mixed with a glass material or a ceramic material to form a glass quantum dot film or a ceramic quantum dot film. The transparent substrate 3579 can be flexible Or inflexible material.

第36圖繪示根據另一實施例之波長轉換膜3677,其包括量子點複合材料(例如第1圖至第4圖所示之量子點複合材料11、31、41、71,或其它型態之量子點複合材料)與透明基板3687。量子點複合材料可例如以塗佈的方式配置在透明基板3687上形成量子點薄層3689。波長轉換膜3677可為可撓基板或不可撓基板。透明基板3687的材料可以是聚甲基丙烯酸甲脂(polymethyl methacrylate,PMMA)、乙烯對苯二甲酸酯(polyethylene terephthalate,PET)、聚苯乙烯(polystyrene,PS)、聚乙烯(polypropylene,PP)、尼龍(polyamide,PA)、聚碳酸酯(polycarbonate,PC)、聚亞醯胺(polyimide,PI)、聚二甲基矽氧烷(polydimethylsiloxane,PDMS)、環氧樹脂(epoxy)以及矽膠(silicone)等之其中一種材料或兩種以上材料的組合。實施例中,透明基板3687包括玻璃材料或陶瓷材料。 Figure 36 illustrates a wavelength conversion film 3677 comprising a quantum dot composite (e.g., quantum dot composites 11, 31, 41, 71, shown in Figures 1 through 4, or other types) according to another embodiment. The quantum dot composite) and the transparent substrate 3687. The quantum dot composite can be formed on the transparent substrate 3687, for example, in a coating manner to form a thin layer of quantum dots 3689. The wavelength conversion film 3677 can be a flexible substrate or a non-flexible substrate. The material of the transparent substrate 3687 may be polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polystyrene (PS), polyethylene (polypropylene, PP). , nylon (polyamide, PA), polycarbonate (polycarbonate, PC), polyimide (PI), polydimethylsiloxane (PDMS), epoxy (epoxy) and silicone (silicone) Or one of the materials or a combination of two or more materials. In an embodiment, the transparent substrate 3687 comprises a glass material or a ceramic material.

實施例中,如第35圖、第36圖所示之波長轉換膜3577、3677可設計成在吸收太陽光後,將太陽光中原本對植物生長沒有助益的波長光線轉換成能供植物吸收而能益於成長的波長光線射出。例如葉綠素可吸收600-700nm之紅光,且紅光可促進植物之生長、開花並延長花期。舉例來說,波長轉換膜之量子點複合材料係使用的紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3,其中0.5

Figure TWI613275BD00084
b
Figure TWI613275BD00085
1及/或粒徑範圍為10nm至14nm,放出之紅光的波長範圍在620nm至680nm。量子點複合材料具有修飾性保護在全無機 鈣鈦礦量子點上,能提高全無機鈣鈦礦量子點對太陽光的耐受性,增加產品之穩定性及使用壽命。 In the embodiment, the wavelength conversion films 3577 and 3677 as shown in FIG. 35 and FIG. 36 can be designed to convert wavelength light in the sunlight which is not beneficial to plant growth into a plant for absorption after absorbing sunlight. Light rays that can benefit from growth are emitted. For example, chlorophyll can absorb red light of 600-700 nm, and red light can promote plant growth, flowering and prolong flowering. For example, a quantum dot composite of a wavelength conversion film is a red all-inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 , of which 0.5
Figure TWI613275BD00084
b
Figure TWI613275BD00085
1 and/or particle size ranges from 10 nm to 14 nm, and the emitted red light has a wavelength in the range of 620 nm to 680 nm. Quantum dot composites have modified protection on all inorganic perovskite quantum dots, which can improve the tolerance of all inorganic perovskite quantum dots to sunlight and increase the stability and service life of the products.

實施例中,包括量子點複合材料的波長轉換材料亦可應用至微縮化裝置技術。以下以根據實施例之量子點發光二極體與畫素結構為例作說明。 In embodiments, wavelength converting materials including quantum dot composites can also be applied to the microsizer technology. Hereinafter, the quantum dot light-emitting diode and the pixel structure according to the embodiment will be described as an example.

第37圖繪示根據一實施例之量子點發光二極體(QLED)的立體圖。量子點發光二極體包括發光層3763,發光層3763含有全無機鈣鈦礦量子點複合材料,例如紅色全無機鈣鈦礦量子點複合材料、綠色全無機鈣鈦礦量子點複合材料、藍色全無機鈣鈦礦量子點複合材料或其組合。發光層3763可配置在電洞注入層3765與電子注入層3767之間。陽極3769例如透光陽極可配置在電洞注入層3765上。陰極3775可配置在電子注入層3767上。其中,紅色量子點複合材料包括紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3,0.5

Figure TWI613275BD00086
b
Figure TWI613275BD00087
1,及/或粒徑範圍為10nm至14nm,且紅色全無機鈣鈦礦量子點表面具有修飾性保護;綠色量子點複合材料包括綠色全無機鈣鈦礦量子點CsPb(Br1-bIb)3,0
Figure TWI613275BD00088
b<0.5,及/或粒徑範圍為8nm至12nm,且綠色全無機鈣鈦礦量子點表面具有修飾性保護;藍色量子點複合材料包括藍色全無機鈣鈦礦量子點CsPb(ClaBr1-a)3,其中0<a
Figure TWI613275BD00089
1及/或粒徑範圍為7nm至10nm,且藍色全無機鈣鈦礦量子點表面具有修飾性保護。 Figure 37 is a perspective view of a quantum dot light emitting diode (QLED) according to an embodiment. The quantum dot light emitting diode comprises a light emitting layer 3763, and the light emitting layer 3763 comprises an all-inorganic perovskite quantum dot composite material, such as a red all-inorganic perovskite quantum dot composite material, a green all-inorganic perovskite quantum dot composite material, and a blue color. All inorganic perovskite quantum dot composites or combinations thereof. The light emitting layer 3763 may be disposed between the hole injection layer 3765 and the electron injection layer 3767. An anode 3769, such as a light transmissive anode, can be disposed on the hole injection layer 3765. The cathode 3775 can be disposed on the electron injection layer 3767. Among them, the red quantum dot composite material includes a red all-inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 , 0.5
Figure TWI613275BD00086
b
Figure TWI613275BD00087
1, and / or particle size range of 10nm to 14nm, and the red all inorganic perovskite quantum dot surface has a modified protection; green quantum dot composite material includes green all inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 ,0
Figure TWI613275BD00088
b<0.5, and/or particle size range from 8 nm to 12 nm, and the green all-inorganic perovskite quantum dot surface has modified protection; the blue quantum dot composite material includes blue all-inorganic perovskite quantum dot CsPb (Cl a Br 1-a ) 3 , where 0<a
Figure TWI613275BD00089
1 and/or particle size ranges from 7 nm to 10 nm, and the blue all-inorganic perovskite quantum dot surface has modified protection.

實施例中,包括量子點複合材料的波長轉換材料亦可應用至尺寸微縮化的發光裝置,例如微型發光二極體 (Micro LED)比一般發光二極體尺寸更小。 In an embodiment, the wavelength converting material including the quantum dot composite material can also be applied to a size-reduced light-emitting device, such as a miniature light-emitting diode. (Micro LED) is smaller than the size of a general light-emitting diode.

舉例來說,請同時參閱第38圖與第39圖,分別繪示根據一實施例之發光裝置的立體圖與剖面圖。實施例中,發光裝置3184可為一微型化發光二極體裝置,包括一發光二極體晶片3102、數個波長轉換層3124以及數個間隔層S。發光二極體晶片3102包括互為相反側的表面3102S1與表面3102S2,其中表面3102S1是發光二極體晶片3102的出光面。這些波長轉換層3124位在發光二極體晶片3102的出光側,更詳細地說,這些波長轉換層3124間隔配置在發光二極體晶片3102之一表面3102S1。這些間隔層S位於發光二極體晶片3102的表面3102S1上且間隔配置在這些波長轉換層3124之間。 For example, please refer to FIG. 38 and FIG. 39 simultaneously, respectively, which are a perspective view and a cross-sectional view of a light emitting device according to an embodiment. In an embodiment, the light-emitting device 3184 can be a miniaturized light-emitting diode device, including a light-emitting diode chip 3102, a plurality of wavelength conversion layers 3124, and a plurality of spacer layers S. The light-emitting diode wafer 3102 includes surfaces 3102S1 and 3102S2 on opposite sides of each other, wherein the surface 3102S1 is a light-emitting surface of the light-emitting diode wafer 3102. These wavelength conversion layers 3124 are located on the light-emitting side of the light-emitting diode wafer 3102. More specifically, these wavelength conversion layers 3124 are spaced apart from one surface 3102S1 of the light-emitting diode wafer 3102. These spacer layers S are located on the surface 3102S1 of the light-emitting diode wafer 3102 and are disposed between the wavelength conversion layers 3124 at intervals.

一實施例中,發光二極體晶片3102為垂直式發光二極體晶片,包括第一電極3214與第二電極3216,分別位在表面3102S1與表面3102S2上。發光二極體晶片3102的出光側與第一電極3214位在相同側。 In one embodiment, the LED chip 3102 is a vertical LED chip, including a first electrode 3214 and a second electrode 3216, which are respectively disposed on the surface 3102S1 and the surface 3102S2. The light-emitting side of the light-emitting diode wafer 3102 is located on the same side as the first electrode 3214.

一實施例中,波長轉換層3124至少包括波長轉換層3124R、3124G、3124B,其可被發光二極體晶片3102激發分別分出紅光、綠光、藍光。於此組態可做為一畫素配置應用於顯示器中,其中不同波長轉換層3124可分為不同次畫素,即對應紅色次畫素的波長轉換層3124R、對應綠色次畫素的波長轉換層3124G及對應藍色次畫素的波長轉換層3124B。 In one embodiment, the wavelength conversion layer 3124 includes at least a wavelength conversion layer 3124R, 3124G, 3124B that can be excited by the LED chip 3102 to separate red, green, and blue light, respectively. The configuration can be applied to the display as a pixel configuration, wherein the different wavelength conversion layers 3124 can be divided into different sub-pixels, that is, the wavelength conversion layer 3124R corresponding to the red sub-pixel, and the wavelength conversion corresponding to the green sub-pixel. Layer 3124G and wavelength conversion layer 3124B corresponding to blue sub-pixels.

實施例中,波長轉換層3124更包括一對應白色次畫 素的波長轉換層3124W,也透過間隔層S與波長轉換層3124R、3124G、3124B隔開配置在發光二極體晶片3102的表面3102S1上。 In an embodiment, the wavelength conversion layer 3124 further includes a corresponding white sub-picture. The wavelength conversion layer 3124W of the element is also disposed on the surface 3102S1 of the light-emitting diode wafer 3102 via the spacer layer S and the wavelength conversion layers 3124R, 3124G, and 3124B.

畫素至少包括紅色次畫素、綠色次畫素及藍色次畫素,也能根據設計配置白色次畫素。畫素或次畫素能以陣列的方式排列。 The pixels include at least a red sub-pixel, a green sub-pixel, and a blue sub-pixel, and the white sub-pixel can also be configured according to the design. The pixels or sub-pixels can be arranged in an array.

實施例中,間隔層S的材質可包括吸收光物質或反射光物質,能避免對應不同顏色之次畫素的光線彼此影響,以提高顯示器的顯示效果。吸收光物質可包括例如黑膠等。反射光物質可包括例如白膠等。 In the embodiment, the material of the spacer layer S may include an absorbing or reflecting light material, which can prevent the light corresponding to the sub-pixels of different colors from affecting each other to improve the display effect of the display. The light absorbing material may include, for example, black glue or the like. The light-reflecting substance may include, for example, white glue or the like.

此外,第一電極3214可包括分別對應紅色次畫素、綠色次畫素、藍色次畫素及白色次畫素的第一電極3214R、3214G、3214B、3214W。第二電極3216可為紅色次畫素、綠色次畫素、藍色次畫素及白色次畫素的共用電極,其他實施例中也可類似第一電極3214配置為對應不同色之次畫素的分開電極。透過分開控制的電極,不同色之次畫素可定址、單獨驅動點亮。 In addition, the first electrode 3214 may include first electrodes 3214R, 3214G, 3214B, and 3214W corresponding to the red sub-pixel, the green sub-pixel, the blue sub-pixel, and the white sub-pixel, respectively. The second electrode 3216 may be a common electrode of a red sub-pixel, a green sub-pixel, a blue sub-pixel, and a white sub-pixel. In other embodiments, the first electrode 3214 may be configured to correspond to a sub-pixel of different colors. Separate electrodes. Through the separately controlled electrodes, the sub-pixels of different colors can be addressed and individually driven to illuminate.

實施例中,舉例來說,發光二極體晶片3102可為紫外光發光二極體晶片,發射出第一光線的波長為200nm至400nm。或發光二極體晶片3102可為藍光發光二極體晶片,發射出第一光線的波長為430nm至480nm。 In an embodiment, for example, the LED chip 3102 can be an ultraviolet light emitting diode chip, and the first light is emitted at a wavelength of 200 nm to 400 nm. Or the light emitting diode chip 3102 can be a blue light emitting diode chip, and emit a first light having a wavelength of 430 nm to 480 nm.

實施例中,對應紅色次畫素的波長轉換層3124R的波長轉換材料可包括紅色量子點複合材料,其包括紅色全無機鈣 鈦礦量子點CsPb(Br1-bIb)3,0.5

Figure TWI613275BD00090
b
Figure TWI613275BD00091
1,及/或粒徑範圍為10nm至14nm,且紅色全無機鈣鈦礦量子點的表面具有修飾性保護。對應綠色次畫素的波長轉換層3124G的波長轉換材料可包括綠色量子點複合材料,其包括綠色全無機鈣鈦礦量子點CsPb(Br1-bIb)3,0
Figure TWI613275BD00092
b<0.5,及/或粒徑範圍為8nm至12nm,且綠色全無機鈣鈦礦量子點的表面具有修飾性保護。對應藍色次畫素的波長轉換層3124B的波長轉換材料可包括藍色量子點複合材料,其包括藍色全無機鈣鈦礦量子點CsPb(ClaBr1-a)3,其中0<a
Figure TWI613275BD00093
1及/或粒徑範圍為7nm至10nm,且藍色全無機鈣鈦礦量子點的表面具有修飾性保護,及/或藍色螢光粉。波長轉換材料可摻雜在透光基材中。 In an embodiment, the wavelength converting material corresponding to the red sub-pixel wavelength converting layer 3124R may comprise a red quantum dot composite comprising red all inorganic perovskite quantum dots CsPb (Br 1-b I b) 3 , 0.5
Figure TWI613275BD00090
b
Figure TWI613275BD00091
1, and / or particle size ranging from 10 nm to 14 nm, and the surface of the red all-inorganic perovskite quantum dot has a modification protection. The wavelength converting material corresponding to the wavelength conversion layer 3124G of the green sub-pixel may include a green quantum dot composite including a green all-inorganic perovskite quantum dot CsPb (Br 1-b I b) 3 ,0
Figure TWI613275BD00092
b < 0.5, and / or particle size ranging from 8 nm to 12 nm, and the surface of the green all-inorganic perovskite quantum dot has a cosmetic protection. The wavelength converting material corresponding to the blue sub-pixel wavelength converting layer 3124B may comprise a blue quantum dot composite comprising a blue all-inorganic perovskite quantum dot CsPb(Cl a Br 1-a ) 3 , where 0<a
Figure TWI613275BD00093
1 and/or particle size ranges from 7 nm to 10 nm, and the surface of the blue all-inorganic perovskite quantum dots has a modifying protection, and/or a blue phosphor. The wavelength converting material can be doped in the light transmissive substrate.

在另一實施例中,在發光二極體晶片3102為藍色發光二極體晶片的例子中,對應藍色次畫素的波長轉換層3124B可為透明的基材,直接由發光二極體晶片3102提供對應藍色次畫素的藍色光線。對應白色次畫素的波長轉換層3124W可包括黃色螢光粉,例如YAG:Ce,其可受發光二極體晶片3102發出之部分第一光線(藍光,波長可為430nm至480nm)激發出黃光,黃光與剩餘藍光混合而發出白光。 In another embodiment, in the example where the LED chip 3102 is a blue LED chip, the wavelength conversion layer 3124B corresponding to the blue sub-pixel can be a transparent substrate directly from the LED. Wafer 3102 provides blue light corresponding to the blue sub-pixels. The wavelength conversion layer 3124W corresponding to the white sub-pixel may include a yellow phosphor, such as YAG:Ce, which may be excited by a portion of the first light (blue light, wavelength 430 nm to 480 nm) emitted by the LED chip 3102. Light, yellow light mixed with the remaining blue light to emit white light.

實施例中,如第38圖及第39圖所示的微型發光二極體可應用至微型發光二極體顯示器(Micro LED display)。與一般的發光二極體技術相比,微型發光二極體尺寸小,且畫素間距係從毫米級降至微米級,因此能在一個積體電路晶片上形成高密度且尺寸微小的發光二極體陣列,且色彩更容易準確的調試,有 更長的發光壽命和更高的亮度以及具有較佳的材料穩定性、壽命長、無影像烙印等優點。此技術之優點尚能利用發光二極體高效率、高亮度、高可靠度及反應時間快等特點,並且具自發光無需背光源的特性,更具節能、機構簡易、體積小、薄型等優勢。此外,微型發光二極體技術能達高解析度。 In the embodiment, the miniature light-emitting diodes as shown in FIGS. 38 and 39 can be applied to a micro LED display. Compared with the general light-emitting diode technology, the miniature light-emitting diode has a small size and the pixel pitch is reduced from millimeter to micrometer, so that a high-density and small-sized light-emitting light can be formed on one integrated circuit wafer. Polar body array, and color is easier to debug accurately, there are Longer illuminating life and higher brightness, as well as better material stability, long life, no image imprinting and so on. The advantages of this technology can still utilize the characteristics of high efficiency, high brightness, high reliability and fast response time of the light-emitting diode, and the characteristics of self-illumination without backlight, more energy-saving, simple mechanism, small size, thin shape, etc. . In addition, the miniature light-emitting diode technology achieves high resolution.

為讓本揭露能更明顯易懂,下文特舉實施例作詳細說明如下: In order to make the disclosure more obvious and easy to understand, the following specific embodiments are described in detail below:

[製備全無機鈣鈦礦量子點] [Preparation of all inorganic perovskite quantum dots]

首先,合成Cs前驅物:將0.814g之Cs2CO3、40mL之十八烯(octadecene;ODE)及2.5mL之油酸(oleic acid;OA)加入100mL三頸瓶中,於真空且溫度120℃之環境下進行除水一小時後,再於氮氣系統下加熱至150℃,直到Cs2CO3與油酸反應完全而得Cs前驅物(油酸銫(Cs-Oleate)前驅物)。 First, the synthesis of Cs precursor: 0.814g of Cs 2 CO 3 , 40mL of octadecene (ODE) and 2.5mL of oleic acid (OA) into a 100mL three-necked flask, under vacuum and temperature 120 After removing water for one hour in an environment of ° C, it was heated to 150 ° C under a nitrogen system until Cs 2 CO 3 was completely reacted with oleic acid to obtain a Cs precursor (Cs-Oleate precursor).

然後,將5mL之ODE與0.188mmol之PbX2(X=Cl、Br、或I,其決定全無機鈣鈦礦量子點的鹵素成分)加入25mL三頸瓶,於真空且溫度120℃的環境下進行除水一小時後,將0.5mL之油胺(oleylamine)及0.5mL之OA於氮氣系統下注射進三頸瓶中,待溶液澄清後提高溫度至140-200℃(加熱溫度可調節全無機鈣鈦礦量子點的顆粒大小),接著將0.4mL之Cs-Oleate前驅物快速注射進三頸瓶中並等待5秒後,以冰水浴冷卻反應系統後,離心純化出全無機鈣鈦礦量子點CsPb(ClaBr1-a-bIb)3Then, 5 mL of ODE and 0.188 mmol of PbX 2 (X=Cl, Br, or I, which determines the halogen component of the total inorganic perovskite quantum dot) are added to a 25 mL three-necked flask under vacuum at a temperature of 120 ° C. After one hour of water removal, 0.5 mL of oleylamine and 0.5 mL of OA were injected into a three-necked flask under a nitrogen system. After the solution was clarified, the temperature was raised to 140-200 ° C (heating temperature can be adjusted to full inorganic The particle size of the perovskite quantum dot), then 0.4 mL of the Cs-Oleate precursor was quickly injected into the three-necked flask and waited for 5 seconds. After cooling the reaction system in an ice water bath, the whole inorganic perovskite quantum was purified by centrifugation. Point CsPb(Cl a Br 1-ab I b ) 3 .

[紅色/綠色全無機鈣鈦礦量子點CsPb(Br 1-b I b ) 3 ] [Red/Green Fully Inorganic Perovskite Quantum Dots CsPb(Br 1-b I b ) 3 ]

第40圖為全無機鈣鈦礦量子點CsPb(Br1-bIb)3之X光繞射圖譜。第40圖之由下方往上依序為全無機鈣鈦礦量子點CsPbI3、CsPb(Br0.2I0.8)3、CsPb(Br0.3I0.7)3、CsPb(Br0.4I0.6)3、CsPb(Br0.5I0.5)3、CsPb(Br0.6I0.4)3、CsPb(Br0.8I0.2)3、CsPbBr3,成核溫度皆為180℃時之XRD圖譜,將上述不同比例Br與I之鈣鈦礦量子點XRD圖譜與已知之立方體相(cubic phase)CsPbI3、CsPbBr3標準圖譜相比對,可發現所有合成之全無機鈣鈦礦量子點CsPb(Br1-bIb)3的XRD波峰位置皆與立方體相標準圖譜一致,表示合成之全無機鈣鈦礦量子點CsPb(Br1-bIb)3皆為立方體相。 Figure 40 is an X-ray diffraction pattern of an all-inorganic perovskite quantum dot CsPb(Br 1-b I b ) 3 . In Fig. 40, from the bottom to the top are all inorganic perovskite quantum dots CsPbI 3 , CsPb (Br 0.2 I 0.8 ) 3 , CsPb (Br 0.3 I 0.7 ) 3 , CsPb (Br 0.4 I 0.6 ) 3 , CsPb ( Br 0.5 I 0.5 ) 3 , CsPb (Br 0.6 I 0.4 ) 3 , CsPb (Br 0.8 I 0.2 ) 3 , CsPbBr 3 , XRD patterns at nucleation temperatures of 180 ° C, the above different ratios of Br and I calcium and titanium The XRD peak of all synthesized inorganic-inorganic perovskite quantum dots CsPb(Br 1-b I b ) 3 can be found by comparing the XRD pattern of the mineral quantum dots with the known cubic phase CsPbI 3 and CsPbBr 3 standard spectra. The positions are consistent with the cubic phase standard map, indicating that the synthesized all-inorganic perovskite quantum dots CsPb (Br 1-b I b ) 3 are cubic phases.

第41圖為全無機鈣鈦礦量子點CsPb(Br1-bIb)3之歸一化(Normalized)光激發螢光(PL)光譜圖,其中使用460nm激發光。其顯示之波峰位置(最強放光位置)與半高寬(FWHM)之數據列示於表1。第42圖顯示全無機鈣鈦礦量子點CsPb(Br1-bIb)3之CIE圖譜位置。 Figure 41 is a normalized photoexcited fluorescence (PL) spectrum of an all inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 using 460 nm excitation light. The peak position (strongest light release position) and the full width at half maximum (FWHM) of the data are shown in Table 1. Figure 42 shows the CIE map position of the all inorganic perovskite quantum dot CsPb(Br 1-b I b ) 3 .

Figure TWI613275BD00094
Figure TWI613275BD00094
Figure TWI613275BD00095
Figure TWI613275BD00095

從第41圖、第42圖及表1發現,全無機鈣鈦礦量子點CsPb(Br1-bIb)3隨著I元素含量增加且Br元素含量減少,即b值從0.4提升至1,發光波峰產生紅位移現象,即從557nm逐漸轉移至687nm。此現象可由量子侷限效應解釋之。亦即,由於I離子粒徑大於Br離子粒徑,當全無機鈣鈦礦量子點CsPb(Br1-bIb)3中I元素含量增加時,材料尺寸將會變大而造成放光光譜發生紅位移現象。 From Fig. 41, Fig. 42 and Table 1, it is found that the total inorganic perovskite quantum dot CsPb(Br 1-b I b ) 3 increases with the content of I element and the content of Br decreases, that is, the b value increases from 0.4 to 1. The luminescence peak produces a red shift phenomenon, that is, gradually shifts from 557 nm to 687 nm. This phenomenon can be explained by the quantum confinement effect. That is, since the I ion particle size is larger than the Br ion particle size, when the content of the I element in the all-inorganic perovskite quantum dot CsPb(Br 1-b I b ) 3 increases, the material size will become large and cause the emission spectrum. A red shift occurs.

在全無機鈣鈦礦量子點CsPb(Br1-bIb)3,b=0.5-1的全無機鈣鈦礦量子點為紅色量子點。其中,紅色全無機鈣鈦礦量子點CsPb(Br0.4I0.6)3的最強放光位置為625nm,符合市面上常用之紅色放光波段。而其光波半高寬為35nm,相對於目前常見商用紅色螢光粉更窄,亦即具有較佳的純色性,當應用在發光裝置時能提高產品的放光效率,或當與其他種類螢光物質混合製得發光裝置時能增加產品之演色性。 The all-inorganic perovskite quantum dots in the all-inorganic perovskite quantum dot CsPb(Br 1-b I b ) 3 , b=0.5-1 are red quantum dots. Among them, the red strong inorganic perovskite quantum dot CsPb (Br 0.4 I 0.6 ) 3 has the strongest light-emitting position of 625 nm, which is in line with the red light-emitting band commonly used in the market. The half-height of the light wave is 35nm, which is narrower than the current common commercial red fluorescent powder, that is, it has better solid color. When applied to the light-emitting device, it can improve the light-emitting efficiency of the product, or when it is combined with other kinds of firefly. When the light substance is mixed to obtain a light-emitting device, the color rendering property of the product can be increased.

在全無機鈣鈦礦量子點CsPb(Br1-bIb)3中,b=0.4(CsPb(Br0.6I0.4)3)的全無機鈣鈦礦量子點為綠色量子點,其最強放光位置為557nm,符合市面上常用之綠色放光波段。而其光波半高寬為27nm,相對於目前常見商用綠色螢光粉更窄,亦即具有較佳的純色性,當應用在發光裝置時能提高產品的放光效率,或 當與其他種類螢光物質混合製得發光裝置時能增加產品之演色性。 In the all-inorganic perovskite quantum dot CsPb(Br 1-b I b ) 3 , the all-inorganic perovskite quantum dot with b = 0.4 (CsPb(Br 0.6 I 0.4 ) 3 ) is a green quantum dot with the strongest light emission. The position is 557nm, which is in line with the green emission band commonly used in the market. The half-height of the light wave is 27nm, which is narrower than the current common commercial green fluorescent powder, that is, it has better solid color, which can improve the light-emitting efficiency of the product when applied to the light-emitting device, or when it is combined with other kinds of firefly. When the light substance is mixed to obtain a light-emitting device, the color rendering property of the product can be increased.

[全無機鈣鈦礦量子點CsPb(Cl a Br 1-a ) 3 ] [All inorganic perovskite quantum dots CsPb(Cl a Br 1-a ) 3 ]

第43圖為全無機鈣鈦礦量子點CsPb(ClaBr1-a)33之X光繞射圖譜。a=0、0.5、1。與已知之立方體相(cubic phase)CsPBr3、CsPbCl3標準圖譜相比對,可發現所有合成之全無機鈣鈦礦量子點CsPb(ClaBr1-a)3的XRD波峰位置皆與立方體相標準圖譜一致,表示合成之全無機鈣鈦礦量子點CsPb(ClaBr1-a)3皆符合立方體相。全無機鈣鈦礦量子點CsPb(ClaBr1-a)3之成核溫度皆為180℃。 Figure 43 is an X-ray diffraction pattern of the all inorganic perovskite quantum dot CsPb (Cl a Br 1-a ) 3 3 . a = 0, 0.5, 1. Compared with the known cubic phase CsPBr3 and CsPbCl 3 standard spectra, the XRD peak positions of all synthetic all-inorganic perovskite quantum dots CsPb(Cl a Br 1-a ) 3 can be found to be in the cube phase standard. The map is consistent, indicating that the synthetic all-inorganic perovskite quantum dot CsPb (Cl a Br 1-a ) 3 conforms to the cubic phase. The nucleation temperature of the all inorganic perovskite quantum dot CsPb (Cl a Br 1-a ) 3 was 180 °C.

第44圖為全無機鈣鈦礦量子點CsPb(ClaBr1-a)3之歸一化光激發螢光光譜圖(a=0、0.5、1)。激發光波長為380nm。其顯示之波峰位置(最強放光位置)與半高寬(FWHM)之數據列示於表2。第45圖顯示全無機鈣鈦礦量子點CsPb(ClaBr1-a)3之CIE圖譜位置。 Figure 44 is a normalized photoexcited fluorescence spectrum of the all-inorganic perovskite quantum dot CsPb (Cl a Br 1-a ) 3 (a = 0, 0.5, 1). The excitation light has a wavelength of 380 nm. The peak position (strongest light release position) and the full width at half maximum (FWHM) of the displayed data are shown in Table 2. Figure 45 shows the CIE map position of the all inorganic perovskite quantum dot CsPb(Cl a Br 1-a ) 3 .

Figure TWI613275BD00096
Figure TWI613275BD00096

從第44圖、第45圖及表2發現,全無機鈣鈦礦量子點CsPb(ClaBr1-a)3隨著Cl元素含量減少且Br元素含量增加,即a值從1降低提升至0,發光波峰產生紅位移現象,即從406nm逐漸轉移至514nm。此現象可由量子侷限效應解釋之。亦即,由於Cl離子粒徑小於Br離子粒徑,當全無機鈣鈦礦量子點CsPb(ClaBr1-a)3中Cl元素含量減少時,材料尺寸將會變大而造成放光光譜發生紅位移現象。在全無機鈣鈦礦量子點CsPb(ClaBr1-a)3中,a=0(CsPbBr3,亦即化學式CsPb(Br1-bIb)3中b=1)的全無機鈣鈦礦量子點為綠色量子點,a=0.5、1(CsPb(Cl0.5Br0.5)3、CsPbCl3)的全無機鈣鈦礦量子點為藍色量子點。 From Fig. 44, Fig. 45 and Table 2, it is found that the total inorganic perovskite quantum dot CsPb(Cl a Br 1-a ) 3 increases with the content of Cl and the content of Br increases, that is, the value of a increases from 1 to 1. 0, the luminescence peak produces a red shift phenomenon, that is, gradually shifts from 406 nm to 514 nm. This phenomenon can be explained by the quantum confinement effect. That is, since the Cl ion particle size is smaller than the Br ion particle size, when the Cl element content in the all-inorganic perovskite quantum dot CsPb(Cl a Br 1-a ) 3 is decreased, the material size will become large and the emission spectrum is caused. A red shift occurs. In the all-inorganic perovskite quantum dot CsPb(Cl a Br 1-a ) 3 , a = 0 (CsPbBr 3 , that is, the chemical formula CsPb (Br 1-b I b ) 3 b = 1) of all inorganic calcium titanium The ore quantum dots are green quantum dots, and the all-inorganic perovskite quantum dots of a=0.5, 1 (CsPb(Cl 0.5 Br 0.5 ) 3 , CsPbCl 3 ) are blue quantum dots.

第46圖為合併第41圖及第44圖之歸一化光激發螢光光譜圖,顯示出全無機鈣鈦礦量子點CsPb(ClaBr1-a-bIb)3其隨Cl、Br、I元素含量改變的發光特性。發光涵蓋紅色、綠色、藍色範圍,且各光波半高寬窄。因此,能據以調整全無機鈣鈦礦量子點之成分得到各種期望發光波峰位置,且當應用在發光裝置時能藉此材料展現優異的光電性質。 Figure 46 is a normalized photoexcited fluorescence spectrum of the 41st and 44th images, showing the total inorganic perovskite quantum dot CsPb (Cl a Br 1-ab I b ) 3 with Cl, Br, The luminescent properties of the I element content change. The light covers the red, green, and blue ranges, and each light wave has a half width and a narrow width. Therefore, various desired luminescence peak positions can be obtained by adjusting the composition of the all-inorganic perovskite quantum dots, and the materials can exhibit excellent photoelectric properties when applied to a light-emitting device.

[量子點複合材料-介孔顆粒作為修飾性保護] [Quantum dot composites - mesoporous particles as a modification protection]

量子點複合材料的製備是先將合成之全無機鈣鈦礦量子點(粒徑分佈約10nm左右,晶面間距約為5.78Å)溶於非極性溶劑己烷中(10mg/ml),接著將二氧化矽介孔顆粒(孔隙尺寸約12-14nm)加入全無機鈣鈦礦量子點溶液中,以全無機鈣鈦礦量子 點比二氧化矽介孔顆粒約1:10之比例混合後,攪拌約一個小時。接著以3000rpm離心10分鐘後,即可得量子點複合材料之粉末。 The quantum dot composite is prepared by dissolving the synthesized all-inorganic perovskite quantum dots (particle size distribution about 10 nm, crystal plane spacing about 5.78 Å) in a non-polar solvent hexane (10 mg/ml), and then Cerium oxide mesoporous particles (pore size about 12-14nm) are added to the total inorganic perovskite quantum dot solution to the total inorganic perovskite quantum After mixing at a ratio of about 1:10 to the cerium oxide mesoporous particles, the mixture was stirred for about one hour. After centrifugation at 3000 rpm for 10 minutes, a powder of the quantum dot composite material was obtained.

由第47圖之比較例無修飾性保護之全無機鈣鈦礦量子點(PQDs)與實施例量子點複合材料(MP-PQDs)之光激發螢光光譜圖比較可知,量子點複合材料之全無機鈣鈦礦量子點進入介孔顆粒的孔隙後,在相同孔隙中的全無機鈣鈦礦量子點會有稍微類似團聚之現象,導致光譜約紅移10nm左右,但波峰之半高寬差異不大。 The comparison of the photoexcited fluorescence spectra of the all-inorganic perovskite quantum dots (PQDs) without modification of the comparative example of Fig. 47 with the quantum dot composites of the examples (MP-PQDs) shows that the quantum dot composites are all After the inorganic perovskite quantum dots enter the pores of the mesoporous particles, the all-inorganic perovskite quantum dots in the same pores will slightly agglomerate, causing the spectrum to be red-shifted by about 10 nm, but the difference in the half-height of the peaks is not Big.

第48、49圖為不同例子之發光二極體封裝結構的光激發螢光光譜圖。發光二極體封裝結構係將全無機鈣鈦礦量子點或量子點複合材料混合透明封裝膠體(矽膠/矽樹脂)後,點膠於藍色發光二極體晶片(發光波長450nm)上並進行固化形成。 Figures 48 and 49 are photoexcited fluorescence spectra of different examples of light emitting diode packages. The light-emitting diode package structure is obtained by mixing an all-inorganic perovskite quantum dot or a quantum dot composite material with a transparent encapsulant (silicone/germanium resin), and then dispensing on a blue light-emitting diode wafer (light-emitting wavelength: 450 nm). Curing is formed.

第48圖之比較例的結果中,曲線G-PQDs表示使用綠色全無機鈣鈦礦量子點CsPbBr3,R-PQDs表示使用紅色全無機鈣鈦礦量子點CsPb(Br0.4I0.6)3,G-PQDs+R-PQDs表示混合使用綠色全無機鈣鈦礦量子點CsPbBr3及紅色全無機鈣鈦礦量子點CsPb(Br0.4I0.6)3,其中全無機鈣鈦礦量子點上方皆未形成修飾性保護。第48圖顯示出,G-PQDs+R-PQDs曲線波峰位置偏移G-PQDs及R-PQDs曲線,且波形的半高寬變寬,此結果推測是綠色及紅色全無機鈣鈦礦量子點之間發生離子交換之現象所造成,此不穩定性質並不適合應用至產品中。 In the results of the comparative example of Fig. 48, the curve G-PQDs indicates the use of a green all-inorganic perovskite quantum dot CsPbBr 3 , and the R-PQDs indicates the use of a red all-inorganic perovskite quantum dot CsPb (Br 0.4 I 0.6 ) 3 , G -PQDs+R-PQDs means mixing green all-inorganic perovskite quantum dots CsPbBr 3 and red all-inorganic perovskite quantum dots CsPb(Br 0.4 I 0.6 ) 3 , wherein no modification is formed above the all-inorganic perovskite quantum dots Sexual protection. Figure 48 shows that the G-PQDs+R-PQDs curve peak position shifts G-PQDs and R-PQDs curves, and the full width at half maximum of the waveform is broadened. This result is presumed to be green and red all-inorganic perovskite quantum dots. This is caused by the phenomenon of ion exchange between them, and this unstable nature is not suitable for application to products.

第49圖中,R-PQDs表示使用紅色全無機鈣鈦礦量 子點CsPb(Br0.4I0.6)3(比較例),曲線MP G-PQDs表示使用二氧化矽介孔顆粒修飾性保護與綠色全無機鈣鈦礦量子點CsPbBr3構成之量子點複合材料(實施例),曲線MP G-PQDs+R-PQDs表示使用混合使用上述包括綠色全無機鈣鈦礦量子點的量子點複合材料與紅色全無機鈣鈦礦量子點(實施例)。比較第49圖之曲線可發現,使用具有修飾性保護的量子點複合材料可避免不同組成之全無機鈣鈦礦量子點之間發生離子交換之互溶現象,因此仍能展現全無機鈣鈦礦量子點各自期望的放光特性,即窄半高寬及強的發光強度。 In Fig. 49, R-PQDs indicates the use of red all-inorganic perovskite quantum dots CsPb (Br 0.4 I 0.6 ) 3 (comparative example), and the curve MP G-PQDs indicates the use of cerium oxide mesoporous particles for modification protection and green Quantum dot composite composed of inorganic perovskite quantum dots CsPbBr 3 (Example), curve MP G-PQDs+R-PQDs indicates the use of the above-mentioned quantum dot composites including green all-inorganic perovskite quantum dots and red Inorganic perovskite quantum dots (Examples). Comparing the curve of Fig. 49, it can be found that the use of the modified quantum dot composite can avoid the mutual dissolution of ion exchange between all inorganic perovskite quantum dots of different compositions, and thus can exhibit all-inorganic perovskite quantum. The respective desired light-emitting characteristics, that is, a narrow half-height width and a strong luminous intensity.

第50圖為發光二極體封裝結構之CIE圖,表示藍色發光二極體晶片(blue chip)激發由綠色全無機鈣鈦礦量子點及介孔顆粒構成之量子點複合材料(MP G-PQDs)與紅色全無機鈣鈦礦量子點(R-PQDs)的色座標表現。將根據實施例之含有修飾性保護的量子點複合材料應用於顯示器時可達NTSC 104%,比起使用一般螢光粉之顯示器的NTSC(86%)具有更優異的顯示效果。 Figure 50 is a CIE diagram of a light-emitting diode package structure, showing that a blue light-emitting diode (blue chip) excites a quantum dot composite material composed of green all-inorganic perovskite quantum dots and mesoporous particles (MP G- PQDs) and color coordinates of red all-inorganic perovskite quantum dots (R-PQDs). When the quantum dot composite material containing the modification protection according to the embodiment is applied to the display, the NTSC is 104%, which is superior to the NTSC (86%) of the display using the general fluorescent powder.

[量子點複合材料-使用配體交換、介孔顆粒、聚合物包覆體作為修飾性保護] [Quantum point composites - using ligand exchange, mesoporous particles, polymer coatings as a modification protection]

在此討論之全無機鈣鈦礦量子點CsPbBr3可參照[製備全無機鈣鈦礦量子點]所述的方式製備。 The all inorganic perovskite quantum dot CsPbBr 3 discussed herein can be prepared as described in [Preparing all inorganic perovskite quantum dots].

量子點複合材料(以CsPbBr3/SDDA表示)係對全無機鈣鈦礦量子點CsPbBr3進行表面硫處理形成。硫處理使用的硫 處理試劑(SDDA)的製備係先將雙十二烷基二甲基溴化銨(Didodecyldimethylammonium bromide,DDAB)溶於有機甲苯中,另外將硫化鈉溶於水配置成硫化鈉水溶液,將有機溶液與水溶液均勻混合即得硫處理試劑。其中在混合兩溶液過程中,水溶液中之硫離子(陰離子)會與雙十二烷基二甲基溴化銨(陽離子)結合,硫離子將會由水溶液相轉往有機甲苯相。表面硫處理的方式為取1.5mL全無機鈣鈦礦量子點CsPbBr3(10mg/mL)溶液及10μL油酸(OA)混合均勻10分鐘後,加入1.5mL硫處理試劑SDDA,以9000rpm離心並分散於正己烷中待用,即得CsPbBr3/SDDA溶液,將其烘乾即得量子點複合材料CsPbBr3/SDDA。 The quantum dot composite (expressed as CsPbBr 3 /SDDA) is formed by surface sulfur treatment of the all-inorganic perovskite quantum dot CsPbBr 3 . The sulfur treatment reagent (SDDA) used for the sulfur treatment is prepared by first dissolving didodecyldimethylammonium bromide (DDAB) in organic toluene, and dissolving sodium sulfide in water to form an aqueous solution of sodium sulfide. The sulfur solution is obtained by uniformly mixing the organic solution with the aqueous solution. In the process of mixing the two solutions, the sulfur ions (anions) in the aqueous solution are combined with the dodecyldimethylammonium bromide (cation), and the sulfur ions will be transferred from the aqueous phase to the organic toluene phase. The surface sulfur treatment method is to take 1.5mL of total inorganic perovskite quantum dot CsPbBr 3 (10mg/mL) solution and 10μL of oleic acid (OA) for 10 minutes, then add 1.5mL sulfur treatment reagent SDDA, centrifuge and disperse at 9000rpm. After being used in n-hexane, a solution of CsPbBr 3 /SDDA is obtained, which is dried to obtain a quantum dot composite CsPbBr 3 /SDDA.

量子點複合材料(以MP-CsPbBr3/SDDA表示)係將量子點複合材料CsPbBr3/SDDA溶於非極性溶劑己烷中(10mg/ml),接著將二氧化矽介孔顆粒加入混合溶液中,以全無機鈣鈦礦量子點比二氧化矽介孔顆粒約1:10之比例混合後,攪拌約一個小時。接著以4000rpm離心30分鐘後,即可得量子點複合材料MP-CsPbBr3/SDDA之粉末。 The quantum dot composite (expressed as MP-CsPbBr 3 /SDDA) is a solution of the quantum dot composite CsPbBr 3 /SDDA in a non-polar solvent hexane (10 mg/ml), followed by the addition of cerium oxide mesoporous particles to the mixed solution. After mixing the total inorganic perovskite quantum dots with the cerium oxide mesoporous particles at a ratio of about 1:10, the mixture was stirred for about one hour. After centrifugation at 4000 rpm for 30 minutes, a powder of the quantum dot composite MP-CsPbBr 3 /SDDA was obtained.

量子點複合材料(以MP-CsPbBr3/SDDA@PMMA表示)係將20mg量子點複合材料MP-CsPbBr3/SDDA、3mL甲基丙烯酸甲酯與10mg BASF催化劑混合攪拌10分鐘後將混合物放入模具並放入烘箱中經50℃處理10分鐘所製得。 The quantum dot composite (expressed as MP-CsPbBr 3 /SDDA@PMMA) was mixed with 20 mg of quantum dot composite MP-CsPbBr 3 /SDDA, 3 mL of methyl methacrylate and 10 mg of BASF catalyst for 10 minutes, and then the mixture was placed in a mold. It was prepared by placing it in an oven at 50 ° C for 10 minutes.

第51圖顯示全無機鈣鈦礦量子點與量子點複合材料之光激發螢光光譜圖。綠色全無機鈣鈦礦量子點CsPbBr3(比較 例)放光位置為515nm,半高寬為21nm左右。其經表面硫處理後(CsPbBr3/SDDA曲線,實施例)放光位置為515nm,半高寬為21nm左右。在進一步與二氧化矽介孔顆粒進行物理吸附後(MP-CsPbBr3/SDDA曲線,實施例),因全無機鈣鈦礦量子點聚集現象,表現出的放光位置紅移至524nm,半高寬為22nm。再一步形成甲基丙烯酸甲酯聚合物包覆體包覆二氧化矽介孔顆粒後(MP-CsPbBr3/SDDA@PMMA曲線,實施例),其放光位置為523nm,半高寬為22nm。 Figure 51 shows the photoexcited fluorescence spectra of all inorganic perovskite quantum dots and quantum dot composites. The green all-inorganic perovskite quantum dot CsPbBr 3 (Comparative Example) has a light-emitting position of 515 nm and a full width at half maximum of about 21 nm. After surface sulfur treatment (CsPbBr 3 /SDDA curve, examples), the light-emitting position was 515 nm, and the full width at half maximum was about 21 nm. After further physical adsorption with cerium oxide mesoporous particles (MP-CsPbBr 3 /SDDA curve, examples), due to the phenomenon of aggregation of all inorganic perovskite quantum dots, the luminescence position exhibited red shift to 524 nm, half height The width is 22nm. After further forming a methyl methacrylate polymer coating coated with cerium oxide mesoporous particles (MP-CsPbBr 3 /SDDA@PMMA curve, examples), the light-emitting position was 523 nm, and the full width at half maximum was 22 nm.

第52圖顯示全無機鈣鈦礦量子點與量子點複合材料之熱穩定性測試結果,其中量子點複合材料MP-CsPbBr3/SDDA@PMMA在100℃時放光強度可達70%,比其他材料具有更佳的熱穩定性。 Figure 52 shows the thermal stability test results of the all-inorganic perovskite quantum dots and quantum dot composites, in which the quantum dot composite MP-CsPbBr 3 /SDDA@PMMA has a light intensity of 70% at 100 ° C, which is higher than other The material has better thermal stability.

第53圖顯示量子點複合材料之熱回覆性測試結果,其中量子點複合材料MP-CsPbBr3/SDDA@PMMA在從高溫回復至室溫後,其放光強度可恢復至95%,性質相當穩定。 Figure 53 shows the results of the thermal reproducibility test of quantum dot composites. The quantum dot composite MP-CsPbBr 3 /SDDA@PMMA can recover its light intensity to 95% after returning from high temperature to room temperature. .

[發光二極體封裝結構] [Light Emitting Diode Package Structure]

第54圖為使用不同波常轉換材料之發光二極體封裝結構經時之光輸出功率(Light Output Power,LOP)曲線。使用的波常轉換材料分別為用作參考之商業用YAG螢光粉(Commercial YAG)、比較例不具有修飾性保護於其上的全無機鈣鈦礦量子點(QD W/O protection)、實施例量子點複合材料中全無機鈣鈦礦量 子點上的修飾性保護為聚合物包覆體所構成(QD W/polymer encapsulation protection)、實施例量子點複合材料中全無機鈣鈦礦量子點上的修飾性保護為兩層膜結構其中內層為含矽材料包覆體、外層為聚合物包覆體(QD W/Si base & polymer encapsulation protection)。從第54圖顯示的結果可發現,相較於不具有修飾性保護於其上的全無機鈣鈦礦量子點(比較例),發光二極體封裝結構使用根據實施例之量子點複合材料經時後的光輸出功率降低的幅度較小,表現出較佳的產品信賴性。 Figure 54 is a light output power (LOP) curve of a light-emitting diode package structure using different wave-converting materials. The wave-converting materials used were respectively commercial YAG phosphor powder (Commercial YAG) used as a reference, and all-inorganic perovskite quantum dots (QD W/O protection) on which the comparative examples were not modified, and implemented. Total inorganic perovskite in quantum dot composites The modification protection at the sub-point is composed of a polymer coating (QD W/polymer encapsulation protection), and the modification protection on the all-inorganic perovskite quantum dot in the quantum dot composite of the embodiment is a two-layer film structure. The layer is a coating of the cerium-containing material and the outer layer is a polymer coating (QD W/Si base & polymer encapsulation protection). From the results shown in Fig. 54, it was found that the light-emitting diode package structure uses the quantum dot composite material according to the embodiment as compared with the all-inorganic perovskite quantum dot (Comparative Example) which is not modifiedly protected thereon. The subsequent reduction in light output power is small and exhibits better product reliability.

[白光發光二極體封裝結構] [White light emitting diode package structure]

白光發光二極體封裝結構係將綠色螢光材料(綠色全無機鈣鈦礦量子點CsPbBr3/綠色螢光粉β-SiAlON:Eu2+)及紅色螢光材料(K2SiF6:Mn4+)加入矽膠(道康寧OE6631;A膠:B膠=1:2)中攪拌混合均勻,然後放入真空消泡機中進行消泡處理得到螢光漿料,再將螢光漿料滴加於藍光發光二極體晶片上於烘箱中進行固化(150℃持溫2小時)所形成。 The white light emitting diode package structure is a green fluorescent material (green all-inorganic perovskite quantum dot CsPbBr 3 / green fluorescent powder β-SiAlON: Eu 2+ ) and red fluorescent material (K 2 SiF 6 : Mn 4). + ) Adding silicone (Dow Corning OE6631; A glue: B glue = 1:2), stirring and mixing evenly, then putting it into a vacuum defoaming machine for defoaming to obtain a fluorescent slurry, and then adding the fluorescent slurry to the solution. The blue light-emitting diode wafer was formed by curing in an oven (150 ° C for 2 hours).

第55圖顯示白光發光二極體封裝結構所使用之含有綠色全無機鈣鈦礦量子點CsPbBr3之量子點複合材料(MP-CsPbBr3/SDDA@PMMA)與一般β-SiAlON:Eu2+綠色螢光粉之放光光譜比較。實施例之量子點複合材料MP-CsPbBr3/SDDA@PMMA具有較窄的半高寬,約23nm,且波峰位置在523nm。 Figure 55 shows a quantum dot composite (MP-CsPbBr 3 /SDDA@PMMA) containing green all-inorganic perovskite quantum dots CsPbBr 3 used in a white light emitting diode package structure and a general β-SiAlON:Eu 2+ green Comparison of the emission spectrum of phosphor powder. The quantum dot composite MP-CsPbBr 3 /SDDA@PMMA of the examples has a narrow full width at half maximum of about 23 nm and a peak position at 523 nm.

第56圖顯示實施例之白光發光二極體封裝結構(上圖,使用MP-CsPbBr3/SDDA@PMMA)與一般(比較例)之白光發光二極體封裝結構(下圖,使用β-SiAlON:Eu2+)之電致放光圖譜比較。實施例之白光發光二極體封裝結構在綠光範圍之光波半高寬較窄。 Figure 56 shows a white light emitting diode package structure of the embodiment (top view, using MP-CsPbBr 3 /SDDA@PMMA) and a general (comparative example) white light emitting diode package structure (below figure, using β-SiAlON) :Eu 2+ ) comparison of electroluminescence spectra. In the white light emitting diode package structure of the embodiment, the half-width of the light wave in the green light range is narrow.

第57圖顯示實施例之白光發光二極體封裝結構(以MP-CsPbBr3/SDDA@PMMA表示)與一般(比較例)之白光發光二極體封裝結構(以β-SiAlON:Eu2+表示)之NTSC比較。使用實施例之白光發光二極體封裝結構具有較廣色域的NTSC。 Fig. 57 is a view showing the white light emitting diode package structure (indicated by MP-CsPbBr 3 /SDDA@PMMA) of the embodiment and the white light emitting diode package structure of the general (comparative example) (indicated by β-SiAlON:Eu 2+ ) NTSC comparison. The white light emitting diode package structure of the embodiment has a wider color gamut NTSC.

[熱穩定測試] [heat stability test]

第58圖為實施例之量子點複合材料(MP-CsPbBr3)與比較例全無機鈣鈦礦量子點(CsPbBr3)以熱控制器測試熱穩定性結果,溫度範圍25℃至100℃。相較於比較例不具修飾性保護的全無機鈣鈦礦量子點CsPbBr3(曲線以CsPbBr3表示),實施例量子點複合材料(二氧化矽介孔顆粒修飾性保護中埋有全無機鈣鈦礦量子點CsPbBr3,曲線以MP-CsPbBr3表示)相對強度隨著溫度提升下降的幅度較低,表示具有較佳的熱穩定性。 Figure 58 is a graph showing the thermal stability of a quantum dot composite (MP-CsPbBr 3 ) of the example and a comparative example of an all inorganic perovskite quantum dot (CsPbBr 3 ) by a thermal controller at a temperature ranging from 25 ° C to 100 ° C. Compared with the all-inorganic perovskite quantum dot CsPbBr 3 (the curve is represented by CsPbBr 3 ) without modification protection in the comparative example, the quantum dot composite of the example (the cerium dioxide mesoporous particle modified protection is embedded with all-inorganic calcium and titanium) The mineral quantum dot CsPbBr 3 , the curve is expressed by MP-CsPbBr 3 ), the relative intensity decreases with increasing temperature, indicating better thermal stability.

第59A圖與第59B圖分別為實施例之量子點複合材料(MP-CsPbBr3)與比較例全無機鈣鈦礦量子點(CsPbBr3)熱循環測試的結果。實施例之量子點複合材料經熱循環降溫至室溫之後,其相對放光強度幾乎相同於升溫之前,且比較第59A圖與第59B 圖可發現,實施例之量子點複合材料相較於比較例具有更佳的熱穩定性。 Fig. 59A and Fig. 59B are the results of the thermal cycle test of the quantum dot composite (MP-CsPbBr 3 ) of the example and the comparative inorganic nitride quantum dot (CsPbBr 3 ), respectively. After the temperature reduction of the quantum dot composite of the embodiment to room temperature by thermal cycling, the relative light emission intensity is almost the same as before the temperature rise, and comparing the 59A and 59B, it can be found that the quantum dot composite of the embodiment is compared. The example has better thermal stability.

第60、61、62圖為實施例發光二極體封裝結構的耐溫測試曲線,其波長轉換材料使用的量子點複合材料為綠色全無機鈣鈦礦量子點搭配不同型態之修飾性保護,分別為聚合物包覆(Green-QD W/polymer encapsulation protection)、兩層膜結構其中內層為含矽材料包覆體、外層為聚合物包覆體(Green-QD W/Si base & polymer encapsulation protection)、及介孔顆粒(Green-QD W/mesoporous)。第63圖為比較例發光二極體封裝結構的耐溫測試曲線,其中使用不具修飾性保護於其上的綠色全無機鈣鈦礦量子點(Green-QD W/O protection)。其中係以未加熱前之最大輸出功率為100%做基準而得的正規化曲線圖。曲線之數值顯示在表3。從第60、61、62、63圖及表3結果可發現,相較於比較例,實施例具有修飾性保護在全無機鈣鈦礦量子點上的量子點複合材料具有較佳的耐溫性質。 The 60th, 61st, and 62th graphs are the temperature resistance test curves of the light-emitting diode package structure of the embodiment, and the quantum dot composite material used for the wavelength conversion material is a modified modification of the green all-inorganic perovskite quantum dots with different types. They are respectively polymer-coated (Green-QD W/polymer encapsulation protection), two-layer membrane structure in which the inner layer is a coating of cerium-containing material and the outer layer is a polymer coating (Green-QD W/Si base & polymer encapsulation). Protection), and mesoporous particles (Green-QD W/mesoporous). Fig. 63 is a temperature resistance test curve of a comparative example of a light-emitting diode package structure in which green all-inorganic perovskite quantum dots (Green-QD W/O protection) which are not modified with modification are used. Among them, the normalized graph obtained by using the maximum output power before heating is 100%. The values of the curves are shown in Table 3. From the results of the 60th, 61st, 62th, 63th and 3rd tables, it can be found that the quantum dot composites with modified modification on the all inorganic perovskite quantum dots have better temperature resistance properties than the comparative examples. .

Figure TWI613275BD00097
Figure TWI613275BD00097

[光穩定測試] [Light Stability Test]

第64圖為實施例之量子點複合材料(MP-CsPbBr3)與比較例全無機鈣鈦礦量子點(CsPbBr3)的光穩定性測試結果。測試係以UV(波長365nm,功率6W)光照射散佈在己烷(hexane)中的實施例量子點複合材料MP-CsPbBr3、比較例全無機鈣鈦礦量子點CsPbBr3。經光照96小時之後,比較例全無機鈣鈦礦量子點CsPbBr3的相對放光強度與照光之前相比下降至40%。實施例量子點複合材料MP-CsPbBr3的相對放光強度與照光之前相比下降至80%,相較於比較例表現出更佳的光穩定性。 Figure 64 is a graph showing the photostability test results of the quantum dot composite (MP-CsPbBr 3 ) of the example and the comparative inorganic nitride quantum dot (CsPbBr 3 ). The test was carried out by irradiating UV (wavelength 365 nm, power 6 W) light to an example quantum dot composite MP-CsPbBr 3 dispersed in hexane, and a comparative total inorganic perovskite quantum dot CsPbBr 3 . After 96 hours of illumination, the relative emission intensity of the comparative inorganic nitride quantum dot CsPbBr 3 decreased to 40% compared to that before illumination. The relative light-emitting intensity of the quantum dot composite MP-CsPbBr 3 of the example was reduced to 80% compared with that before the illuminating, and the light stability was better than that of the comparative example.

[波長轉換膜] [wavelength conversion film]

第65圖係實施例之波長轉換膜放光光譜(λ ex=460nm)與葉綠素a(chlorophyll a)與葉綠色b(chlorophyll b)吸收光譜之比較。波長轉換膜的量子點複合材料係以紅色全無機鈣鈦礦量子點與二氧化矽介孔顆粒修飾性保護所構成。第66A至66C圖係比較例之放光光譜與葉綠素a(chlorophyll a)吸收光譜之比較,分別使用一般的紅色螢光粉CaAlSiN3:Eu2+、K2SiF6:Mn4+、CaS:Eu2+。從第65至66C圖結果可知,使用根據實施例之紅色全無機鈣鈦礦量子點所放出的紅光波長範圍更符合葉綠素a之紅光部分的吸收匹配。 Figure 65 is a comparison of the wavelength conversion film luminescence spectrum (λ ex = 460 nm) and the chlorophyll a and chlorophyll b absorption spectra of the examples. The quantum dot composite of the wavelength conversion film is composed of red all-inorganic perovskite quantum dots and cerium oxide mesoporous particles modified. In comparison with the chlorophyll a absorption spectra of the comparative examples of the 66A to 66C, the general red fluorescent powders CaAlSiN 3 :Eu 2+ , K 2 SiF 6 :Mn 4+ , CaS are used, respectively. Eu 2+ . From the results of Figs. 65 to 66C, it is understood that the red light wavelength range emitted by using the red all-inorganic perovskite quantum dots according to the examples is more in line with the absorption matching of the red portion of chlorophyll a.

根據上述實施例,包括修飾性保護在全無機鈣鈦礦 量子點上的量子點複合材料具有優異的放光特性及穩定的性質,因此應用在各種裝置產品能提升效能的穩定性及使用壽命。 According to the above embodiment, including modified protection in the all inorganic perovskite Quantum dot composites on quantum dots have excellent light-emitting properties and stable properties, so they can be used in a variety of device products to improve performance stability and service life.

綜上所述,雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In conclusion, the present invention has been disclosed in the above preferred embodiments, and is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

11‧‧‧量子點複合材料 11‧‧‧Quantum point composites

13‧‧‧全無機鈣鈦礦量子點 13‧‧‧All inorganic perovskite quantum dots

15A‧‧‧介孔顆粒 15A‧‧‧Mesoporous particles

Claims (33)

一種量子點複合材料,包括:全無機鈣鈦礦量子點,具有化學通式CsPb(ClaBr1-a-bIb)3,其中0a1,0b1,其中該全無機鈣鈦礦量子點包括具有化學通式CsPb(Br1-bIb)3且0.5b1的紅色全無機鈣鈦礦量子點、具有化學通式CsPb(Br1-bIb)3且0b<0.5的綠色全無機鈣鈦礦量子點、或具有化學通式CsPb(ClaBr1-a)3且0<a1的藍色全無機鈣鈦礦量子點;及修飾性保護,包括一外表面具有複數孔隙的介孔顆粒,該全無機鈣鈦礦量子點埋在該些孔隙中。 A quantum dot composite material comprising: an all-inorganic perovskite quantum dot having a chemical formula of CsPb(Cl a Br 1-ab I b ) 3 , wherein a 1,0 b 1, wherein the all-inorganic perovskite quantum dot comprises a chemical formula of CsPb(Br 1-b I b ) 3 and 0.5 b a red all-inorganic perovskite quantum dot of 1 having a chemical formula of CsPb(Br 1-b I b ) 3 and 0 a green all-inorganic perovskite quantum dot with b<0.5, or having the chemical formula CsPb(Cl a Br 1-a ) 3 and 0<a a blue all-inorganic perovskite quantum dot; and a modification protection comprising a mesoporous particle having a plurality of pores on the outer surface, the all-inorganic perovskite quantum dot being buried in the pores. 如申請專利範圍第1項所述之量子點複合材料,其中該修飾性保護更包括無機殼層包覆體、配體交換、微膠囊包覆體、聚合物包覆體、含矽材料包覆體、氧化或氮化介電包覆體或上述之組合在該全無機鈣鈦礦量子點的表面上,且/或該無機殼層包覆體、該微膠囊包覆體、該聚合物包覆體、該含矽材料包覆體、該氧化或氮化介電包覆體或上述之組合包覆該介孔顆粒。 The quantum dot composite material according to claim 1, wherein the modified protection further comprises an inorganic shell coating, a ligand exchange, a microcapsule coating, a polymer coating, and a bismuth-containing material package. a coated, oxidized or nitrided dielectric coating or a combination thereof as described above on the surface of the wholly inorganic perovskite quantum dot, and/or the inorganic shell coating, the microcapsule coating, the polymerization The inclusion body, the ruthenium-containing material coating, the oxidized or nitrided dielectric coating, or a combination thereof, coats the mesoporous particles. 如申請專利範圍第2項所述之量子點複合材料,其中該含矽材料包覆體包括矽鈦氧類包覆體。 The quantum dot composite material according to claim 2, wherein the cerium-containing material coating body comprises a cerium-titanium oxide-based coating body. 如申請專利範圍第1項所述之量子點複合材料,其中該修飾性保護更包括該配體交換,該全無機鈣鈦礦量子點的表面具有該配體交換且埋在該介孔顆粒的該些孔隙中。 The quantum dot composite according to claim 1, wherein the modification protection further comprises the ligand exchange, the surface of the all-inorganic perovskite quantum dot having the ligand exchanged and buried in the mesoporous particle Among these pores. 如申請專利範圍第4項所述之量子點複合材料,其中該配體交換是對全無機鈣鈦礦量子點表面進行硫處理所形成。 The quantum dot composite of claim 4, wherein the ligand exchange is formed by sulfur treatment of the surface of the all inorganic perovskite quantum dots. 如申請專利範圍第4項所述之量子點複合材料,其中該修飾性保護更包括該聚合物包覆體、該含矽材料包覆體或該氧化或氮化介電包覆體,其包覆該介孔顆粒。 The quantum dot composite material according to claim 4, wherein the modification protection further comprises the polymer coating body, the cerium-containing material coating body or the oxidized or nitrided dielectric coating body, and the package thereof The mesoporous particles are covered. 如申請專利範圍第1項所述之量子點複合材料,其中該介孔顆粒的粒徑尺寸為200nm至1000nm,該介孔顆粒之該些孔隙的尺寸為1nm至100nm。 The quantum dot composite material according to claim 1, wherein the mesoporous particles have a particle size of from 200 nm to 1000 nm, and the pores of the mesoporous particles have a size of from 1 nm to 100 nm. 如申請專利範圍第7項所述之量子點複合材料,其中該孔隙的尺寸為2nm至20nm。 The quantum dot composite of claim 7, wherein the pore has a size of from 2 nm to 20 nm. 如申請專利範圍第2項所述之量子點複合材料,其中:該介孔顆粒的材料包括二氧化矽;該無機殼層包覆體的材料包括含有II族、III族、V族或VI族元素之二元或三元化合物;該含矽材料包覆體包括SiOR、SiO2、Si(OR)4或Si(OMe)3C3H6S;該配體交換包括三正辛基氧化膦(Tri-n-octyl phosphine oxide;TOPO)、9,10-二氫-9-氧雜-10-磷菲-10-氧化物(9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide;DOPO)、油酸(oleic acid)、寡聚物(oligomer)、或含硫化合物提供配體;該聚合物包覆體的材料包括聚甲基丙烯酸甲酯(PMMA)、聚對苯二甲酸乙二醇酯(PET)、聚間苯二甲酸乙二酯(PEN)、聚苯乙烯(PS)、聚偏氟乙烯(PVDF)、聚乙酸乙烯酯(PVAC)、聚丙烯(PP)、聚醯胺(PA)、聚羧酸酯(PC)、聚醯亞胺(PI)、環氧樹脂(epoxy)或矽膠 (silicone);該氧化或氮化介電包覆體包括金屬氧化物或金屬氮化物。 The quantum dot composite material according to claim 2, wherein: the material of the mesoporous particles comprises cerium oxide; and the material of the inorganic shell coating comprises a group II, III, V or VI. a binary or ternary compound of a group element; the cerium-containing material coating comprises SiOR, SiO 2 , Si(OR) 4 or Si(OMe) 3 C 3 H 6 S; the ligand exchange comprises tri-n-octyl oxidation Tri-n-octyl phosphine oxide (TOPO), 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (9,10-dihydro-9-oxa-10-phosphaphenanthrene 10- Oxide; DOPO), oleic acid, oligomer, or sulfur-containing compound provides a ligand; the material of the polymer coating includes polymethyl methacrylate (PMMA), poly-p-phenylene Ethylene glycolate (PET), polyethylene isophthalate (PEN), polystyrene (PS), polyvinylidene fluoride (PVDF), polyvinyl acetate (PVAC), polypropylene (PP), Polyamine (PA), polycarboxylate (PC), polyimine (PI), epoxy or silicone; the oxidized or nitrided dielectric coating comprises a metal oxide or Metal nitride. 如申請專利範圍第9項所述之量子點複合材料,其中該含硫化合物包括含硫之四級銨鹽類。 The quantum dot composite according to claim 9, wherein the sulfur-containing compound comprises a sulfur-containing quaternary ammonium salt. 如申請專利範圍第1項所述之量子點複合材料,其中該全無機鈣鈦礦量子點的粒徑範圍為1nm至100nm。 The quantum dot composite according to claim 1, wherein the total inorganic perovskite quantum dot has a particle diameter ranging from 1 nm to 100 nm. 如申請專利範圍第1項所述之量子點複合材料,其中該紅色全無機鈣鈦礦量子點的粒徑範圍為10nm至14nm,該綠色全無機鈣鈦礦量子點的粒徑範圍為8nm至12nm,該藍色全無機鈣鈦礦量子點的粒徑範圍為7nm至10nm。 The quantum dot composite material according to claim 1, wherein the red all-inorganic perovskite quantum dots have a particle diameter ranging from 10 nm to 14 nm, and the green all-inorganic perovskite quantum dots have a particle diameter ranging from 8 nm to At 12 nm, the blue all inorganic perovskite quantum dots have a particle size ranging from 7 nm to 10 nm. 如申請專利範圍第1至12項任一項所述之量子點複合材料,其應用於發光二極體封裝、量子點發光二極體(QLED)、植物照明、顯示器、太陽能電池、生物螢光標記(Bio Label)、影像感測器。 The quantum dot composite material according to any one of claims 1 to 12, which is applied to a light emitting diode package, a quantum dot light emitting diode (QLED), a plant illumination, a display, a solar cell, and a bioluminescence. Bio Label, image sensor. 一種量子點複合材料的製造方法,包括:提供全無機鈣鈦礦量子點,其中該全無機鈣鈦礦量子點具有化學通式CsPb(ClaBr1-a-bIb)3,0a1,0b1;以及形成修飾性保護在該全無機鈣鈦礦量子點的表面上,其方法包括:對該全無機鈣鈦礦量子點之表面進行硫化處理,其中該硫化處理包括將該全無機鈣鈦礦量子點與含硫化合物進行配體交換反應,該含硫化合物包括含硫之四級銨鹽; 將經該硫化處理後的該全無機鈣鈦礦量子點埋入介孔顆粒之孔隙中;以及以聚合物包覆體包覆該介孔顆粒。 A method for fabricating a quantum dot composite material, comprising: providing an all-inorganic perovskite quantum dot, wherein the all-inorganic perovskite quantum dot has a chemical formula of CsPb(Cl a Br 1-ab I b ) 3 ,0 a 1,0 b And forming a modification on the surface of the all-inorganic perovskite quantum dot, the method comprising: subjecting a surface of the all-inorganic perovskite quantum dot to a vulcanization treatment, wherein the vulcanization treatment comprises the all-inorganic calcium-titanium The mineral quantum dot is subjected to a ligand exchange reaction with a sulfur-containing compound, the sulfur-containing compound comprising a sulfur-containing quaternary ammonium salt; and the vulcanized and treated total inorganic perovskite quantum dot is buried in the pore of the mesoporous particle; And coating the mesoporous particles with a polymer coating. 如申請專利範圍第14項所述之量子點複合材料的製造方法,其中該硫化處理包括:提供一油酸與該全無機鈣鈦礦量子點混合;及提供一具有該含硫化合物的硫處理試劑和該油酸、該全無機鈣鈦礦量子點混合,其中該硫處理試劑的製備方法包括將溶有含鹵素之四級銨鹽之有機溶液與溶有鹼金屬硫化物之水溶液進行混合以得到該硫處理試劑。 The method for producing a quantum dot composite according to claim 14, wherein the vulcanization treatment comprises: providing an oleic acid mixed with the all-inorganic perovskite quantum dot; and providing a sulfur treatment with the sulfur-containing compound The reagent is mixed with the oleic acid, the all-inorganic perovskite quantum dot, wherein the sulfur treatment reagent is prepared by mixing an organic solution in which a halogen-containing quaternary ammonium salt is dissolved with an aqueous solution in which an alkali metal sulfide is dissolved. The sulfur treatment reagent is obtained. 如申請專利範圍第15項所述之量子點複合材料的製造方法,其中該含鹵素之四級銨鹽的通式為R4NX,R為一至二十個碳鏈之烷基、烷氧基、苯基、或烷基苯基,X為氯、溴或碘。 The method for producing a quantum dot composite according to claim 15, wherein the halogen-containing quaternary ammonium salt has the formula R 4 NX, and R is an alkyl group of one to twenty carbon chains, an alkoxy group. , phenyl, or alkylphenyl, X is chlorine, bromine or iodine. 一種發光裝置,包括:一發光二極體晶片;以及一波長轉換材料,可被該發光二極體射出之第一光線激發而發出不同於該第一光線之波長的第二光線,該波長轉換材料包括如申請專利範圍第1至12項之任一項所述之量子點複合材料。 A light emitting device comprising: a light emitting diode wafer; and a wavelength converting material excited by the first light emitted by the light emitting diode to emit a second light different from the wavelength of the first light, the wavelength conversion The material includes a quantum dot composite as described in any one of claims 1 to 12. 如申請專利範圍第17項所述之發光裝置,其中該波長轉換材料更包括不同於該量子點複合材料的無機螢光材料或有機螢光材料。 The illuminating device of claim 17, wherein the wavelength converting material further comprises an inorganic fluorescent material or an organic fluorescent material different from the quantum dot composite. 如申請專利範圍第17項所述之發光裝置,其中,該量子點複合材料之該全無機鈣鈦礦量子點包括該綠色全無機鈣鈦礦量子點。 The illuminating device of claim 17, wherein the all-inorganic perovskite quantum dot of the quantum dot composite comprises the green all-inorganic perovskite quantum dot. 如申請專利範圍第19項所述之發光裝置,其中該全無機鈣鈦礦量子點包括具有化學通式CsPbBr3的綠色全無機鈣鈦礦量子點,該波長轉換材料更包括K2SiF6:Mn4+,該發光二極體晶片包括藍色發光二極體晶片。 The illuminating device of claim 19, wherein the all-inorganic perovskite quantum dot comprises a green all-inorganic perovskite quantum dot having a chemical formula of CsPbBr 3 , the wavelength converting material further comprising K 2 SiF 6 : Mn 4+ , the light emitting diode chip includes a blue light emitting diode wafer. 如申請專利範圍第17項所述之發光裝置,包括一波長轉換層,位在該發光二極體晶片的出光側,其中該波長轉換層包括該波長轉換材料。 The illuminating device of claim 17, comprising a wavelength conversion layer disposed on a light exiting side of the light emitting diode chip, wherein the wavelength converting layer comprises the wavelength converting material. 如申請專利範圍第21項所述之發光裝置,包括:數個該波長轉換層,間隔配置在該發光二極體晶片的該出光側;及數個間隔層,配置在該些波長轉換層之間,該些間隔層包括吸收光物質或反射光物質。 The light-emitting device of claim 21, comprising: a plurality of the wavelength conversion layers disposed at intervals on the light-emitting side of the light-emitting diode wafer; and a plurality of spacer layers disposed in the wavelength conversion layers The spacer layers include light absorbing materials or light reflecting materials. 如申請專利範圍第22項所述之發光裝置,其係為微型發光二極體。 The light-emitting device of claim 22, which is a miniature light-emitting diode. 如申請專利範圍第22項所述之發光裝置,其中該發光二極體晶片具有位在相反側的一第一電極與一第二電極,該發光二極體晶片的該出光側係與該第一電極位在相同側。 The illuminating device of claim 22, wherein the illuminating diode chip has a first electrode and a second electrode on opposite sides, and the light emitting side of the illuminating diode chip is One electrode is on the same side. 如申請專利範圍第22項所述之發光裝置,其係應用在顯 示器,並包括數個畫素,各至少包括一紅色次畫素、一綠色次畫素及一藍色次畫素,該紅色次畫素、該綠色次畫素及該藍色次畫素各包括該些波長轉換層其中之一個,該些畫素其中之一個中對應該紅色次畫素、該綠色次畫素及該藍色次畫素的該些波長轉換層係藉由該些間隔層彼此分開配置在該發光二極體晶片的該出光側。 The illuminating device according to claim 22, which is applied to the display device The display device includes a plurality of pixels, each of which includes at least one red sub-pixel, a green sub-pixel, and a blue sub-pixel, the red sub-pixel, the green sub-pixel, and the blue sub-pixel Each of the wavelength conversion layers includes one of the pixels, and the wavelength conversion layers corresponding to the red sub-pixel, the green sub-pixel, and the blue sub-pixel are separated by the intervals The layers are disposed apart from each other on the light exiting side of the light emitting diode chip. 如申請專利範圍第25項所述之發光裝置,其中該些畫素各更包括一白色次畫素,其包括該些波長轉換層之另一個,並藉由該些間隔層區隔該紅色次畫素、該綠色次畫素及該藍色次畫素。 The illuminating device of claim 25, wherein the pixels further comprise a white sub-pixel, the other one of the wavelength conversion layers, and the red layer is separated by the spacer layer The pixel, the green sub-pixel, and the blue sub-pixel. 如申請專利範圍第21項所述之發光裝置,其中該波長轉換層與該發光二極體晶片互相接觸,或互相分開。 The light-emitting device of claim 21, wherein the wavelength conversion layer and the light-emitting diode wafer are in contact with each other or are separated from each other. 如申請專利範圍第21項所述之發光裝置,其中該波長轉換層更包括一透明膠體,該波長轉換材料摻雜於該透明膠體中。 The light-emitting device of claim 21, wherein the wavelength conversion layer further comprises a transparent colloid, and the wavelength conversion material is doped in the transparent colloid. 如申請專利範圍第21項所述之發光裝置,包括數個疊置的該波長轉換層,各具有不同的發光波段。 The illuminating device of claim 21, comprising a plurality of stacked wavelength conversion layers each having a different illuminating wavelength band. 如申請專利範圍第21項所述之發光裝置,更包括一透明膠體,封裝該波長轉換層及該發光二極體晶片。 The illuminating device of claim 21, further comprising a transparent colloid encapsulating the wavelength conversion layer and the illuminating diode chip. 如申請專利範圍第21項所述之發光裝置,更包括一結構元件,擇自以下之配置方式:該結構元件具有一容置區用以容置該波長轉換層,使該波長 轉換層之上、下表面被該結構元件覆蓋,以支撐、封裝、保護該波長轉換層;該結構元件係為在該波長轉換層的下表面,並具有一容置區用以容置且支撐該波長轉換層;及該結構元件係為在該波長轉換層的上表面,用以保護該波長轉換層。 The illuminating device of claim 21, further comprising a structural component, wherein the structural component has an accommodating area for accommodating the wavelength conversion layer to enable the wavelength The upper and lower surfaces of the conversion layer are covered by the structural component to support, encapsulate, and protect the wavelength conversion layer; the structural component is on the lower surface of the wavelength conversion layer, and has an accommodating area for accommodating and supporting The wavelength conversion layer; and the structural element is on an upper surface of the wavelength conversion layer for protecting the wavelength conversion layer. 如申請專利範圍第17項所述之發光裝置,更包括一基座,該基座內具有一固晶區,其中該發光二極體晶片在該固晶區上。 The illuminating device of claim 17, further comprising a susceptor having a solid crystal region therein, wherein the illuminating diode wafer is on the die bonding region. 如申請專利範圍第17項所述之發光裝置,更包括一反射牆在該波長轉換層的外側。 The illuminating device of claim 17, further comprising a reflective wall outside the wavelength conversion layer.
TW105132612A 2015-11-30 2016-10-07 Quantum dot composite material and manufacturing method and application thereof TWI613275B (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201611040437.3A CN107017325B (en) 2015-11-30 2016-11-23 Quantum dot composite material and manufacturing method and application thereof
US15/362,120 US10436973B2 (en) 2015-11-30 2016-11-28 Quantum dot composite material and manufacturing method and application thereof
EP16201099.5A EP3192846B1 (en) 2015-11-30 2016-11-29 Quantum dot composite material and manufacturing method and application thereof
KR1020160162206A KR20170063417A (en) 2015-11-30 2016-11-30 Quantum dot composite material and manufacturing method and application thereof
JP2016232625A JP6631973B2 (en) 2015-11-30 2016-11-30 Quantum dot composite material and its production method and use
US16/548,901 US10816716B2 (en) 2015-11-30 2019-08-23 Application of quantum dot composite material

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201562260657P 2015-11-30 2015-11-30
US62/260,657 2015-11-30
US201662291552P 2016-02-05 2016-02-05
US62/291,552 2016-02-05
US201662334502P 2016-05-11 2016-05-11
US62/334,502 2016-05-11

Publications (2)

Publication Number Publication Date
TW201718825A TW201718825A (en) 2017-06-01
TWI613275B true TWI613275B (en) 2018-02-01

Family

ID=59687613

Family Applications (2)

Application Number Title Priority Date Filing Date
TW105131057A TWI598429B (en) 2015-11-30 2016-09-26 Wavelength-converting material and application thereof
TW105132612A TWI613275B (en) 2015-11-30 2016-10-07 Quantum dot composite material and manufacturing method and application thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW105131057A TWI598429B (en) 2015-11-30 2016-09-26 Wavelength-converting material and application thereof

Country Status (1)

Country Link
TW (2) TWI598429B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11355675B2 (en) 2019-05-21 2022-06-07 Lextar Electronics Corporation Wavelength converting material, and light emitting device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110945670A (en) * 2017-06-02 2020-03-31 奈科斯多特股份公司 Illumination source and display apparatus having the same
US10879434B2 (en) 2017-09-08 2020-12-29 Maven Optronics Co., Ltd. Quantum dot-based color-converted light emitting device and method for manufacturing the same
TWI658610B (en) * 2017-09-08 2019-05-01 Maven Optronics Co., Ltd. Quantum-dot-based color-converted light emitting device and method for manufacturing the same
TWI671916B (en) * 2018-04-24 2019-09-11 National Tsing Hua University Nancrystal with large absorption/emission difference and method for making the same
TWI663746B (en) * 2018-05-30 2019-06-21 國立清華大學 Luminance and color temperature tunable light source and use thereof
TWI739259B (en) * 2019-12-30 2021-09-11 財團法人工業技術研究院 Encapsulation structure
TWI769064B (en) * 2021-08-24 2022-06-21 隆達電子股份有限公司 Light emitting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101443431A (en) * 2006-03-21 2009-05-27 超点公司 Luminescent materials that emit light in the visible range or the near infrared range
CN101785114A (en) * 2007-06-22 2010-07-21 超点公司 Solar modules with enhanced efficiencies via use of spectral concentrators
CN105062193A (en) * 2015-08-14 2015-11-18 广州华睿光电材料有限公司 Printing ink composition and electronic device
CN105086993A (en) * 2015-09-11 2015-11-25 天津市中环量子科技有限公司 Fluorescent quantum dot micro-nano encapsulated composite material structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101443431A (en) * 2006-03-21 2009-05-27 超点公司 Luminescent materials that emit light in the visible range or the near infrared range
CN101785114A (en) * 2007-06-22 2010-07-21 超点公司 Solar modules with enhanced efficiencies via use of spectral concentrators
CN105062193A (en) * 2015-08-14 2015-11-18 广州华睿光电材料有限公司 Printing ink composition and electronic device
CN105086993A (en) * 2015-09-11 2015-11-25 天津市中环量子科技有限公司 Fluorescent quantum dot micro-nano encapsulated composite material structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11355675B2 (en) 2019-05-21 2022-06-07 Lextar Electronics Corporation Wavelength converting material, and light emitting device

Also Published As

Publication number Publication date
TW201720909A (en) 2017-06-16
TWI598429B (en) 2017-09-11
TW201718825A (en) 2017-06-01

Similar Documents

Publication Publication Date Title
US10816716B2 (en) Application of quantum dot composite material
TWI613275B (en) Quantum dot composite material and manufacturing method and application thereof
JP6478964B2 (en) Wavelength conversion material and use thereof
Xie et al. Quantum dots-converted light-emitting diodes packaging for lighting and display: status and perspectives
US8337721B2 (en) Broad-emission nanocrystals and methods of making and using same
Su et al. Recent progress in quantum dot based white light-emitting devices
US8847197B2 (en) Semiconductor nanoparticle-based materials
KR101643052B1 (en) Wavelength conversion substance, manufacturing method of the same and light-emitting device comprising the same
TWI680178B (en) Quantum dot material and manufacturing method thereof
US20130140600A1 (en) Semiconductor nanoparticle-containing materials and light emitting devices incorporating the same
KR102355081B1 (en) Method of manufacturing fluoride phosphor, light emitting device, display apparatus and illumination apparatus
TW201530829A (en) LED cap containing quantum dot phosphors
JP2021523530A (en) Quantum dot LED design based on resonance energy transfer
Le et al. Highly Elastic and> 200% Reversibly Stretchable Down‐Conversion White Light‐Emitting Diodes Based on Quantum Dot Gel Emitters
KR101413660B1 (en) Quantum dot-polymer composite plate for light emitting diode and method for producing the same
TWI652329B (en) Fluoride phosphor including a sheet-like crystal and manufacturing method and application thereof
TWI615458B (en) Wavelength-converting film and light emitting device and display device using the same
KR101532072B1 (en) Quantum dot-based planar white light emission device and fabricating method thereof
KR101436099B1 (en) Dual quantum dot-polymer composite plate for light emitting diode and method for producing the same
Bruckbauer et al. Organic–inorganic semiconductor heterojunctions for hybrid light-emitting diodes