TW201720909A - Wavelength-converting material and application thereof - Google Patents

Wavelength-converting material and application thereof Download PDF

Info

Publication number
TW201720909A
TW201720909A TW105131057A TW105131057A TW201720909A TW 201720909 A TW201720909 A TW 201720909A TW 105131057 A TW105131057 A TW 105131057A TW 105131057 A TW105131057 A TW 105131057A TW 201720909 A TW201720909 A TW 201720909A
Authority
TW
Taiwan
Prior art keywords
inorganic perovskite
perovskite quantum
light
quantum dot
wavelength conversion
Prior art date
Application number
TW105131057A
Other languages
Chinese (zh)
Other versions
TWI598429B (en
Inventor
林欣穎
王宏嘉
湯安慈
劉如熹
蔡宗良
李育群
陳靜儀
童鴻鈞
Original Assignee
隆達電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 隆達電子股份有限公司 filed Critical 隆達電子股份有限公司
Priority to CN201610909380.XA priority Critical patent/CN106816520A/en
Priority to US15/358,339 priority patent/US20170155020A1/en
Priority to JP2016231083A priority patent/JP6478964B2/en
Priority to DE102016223645.8A priority patent/DE102016223645A1/en
Priority to KR1020160162205A priority patent/KR20170066257A/en
Publication of TW201720909A publication Critical patent/TW201720909A/en
Application granted granted Critical
Publication of TWI598429B publication Critical patent/TWI598429B/en

Links

Abstract

A wavelength-converting material and application thereof are provided. The wavelength-converting material includes an all-inorganic perovskite quantum dot having a chemical formula of CsPb(ClaBr1-a-bIb)3, wherein 0 ≤ a ≤ 1, 0 ≤ b ≤ 1.

Description

波長轉換材料及其應用 Wavelength conversion materials and their applications

本發明是有關於一種波長轉換材料及其應用,且特別是有關於一種包括全無機鈣鈦礦量子點的波長轉換材料及其應用。 This invention relates to a wavelength converting material and its use, and more particularly to a wavelength converting material comprising all inorganic perovskite quantum dots and uses thereof.

現階段之常見發光材料以螢光粉及量子點最為普遍。然而目前螢光粉市場已趨向飽和,且螢光粉之放光光譜之半高寬普遍過寬,而至今難以突破,此導致應用於裝置上之技術受限制。於是入們紛紛趨向量子點領域發展使之成為現階段研究潮流。 Fluorescent powders and quantum dots are the most common luminescent materials at this stage. However, the current phosphor powder market has become saturated, and the half-height width of the spectroscopic spectrum of the phosphor powder is generally too wide, and it has been difficult to break through so far, which has led to limitations in the technology applied to the device. Therefore, the development of the vector sub-points has become the current research trend.

奈米材料其顆粒介於1至100奈米並依照大小而分類。半導體奈米晶體(nano crystals;NCs)又稱之為量子點(quantum dots;QDs),其顆粒尺寸歸類為0維之奈米材料。奈米材料被廣泛使用於發光二極體、太陽能電池、生物標記等應用,其獨特之光學、電學及磁學特性使之成為研究新興產業。 Nanomaterials have particles ranging from 1 to 100 nm and are classified according to size. Semiconductor nanocrystals (NCs) are also called quantum dots (QDs), and their particle size is classified into 0-dimensional nanomaterials. Nano materials are widely used in applications such as light-emitting diodes, solar cells, and biomarkers. Their unique optical, electrical, and magnetic properties make them an emerging industry.

量子點具窄半高寬之特性,故其放光特性應用於發光二極體裝置上將可有效解決傳統螢光粉色域不夠寬廣之問題,格外引起關注。 Quantum dots have the characteristics of narrow half-height and wide, so the light-emitting characteristics applied to the light-emitting diode device can effectively solve the problem that the traditional fluorescent pink domain is not broad enough, which is particularly concerned.

本揭露係有關於一種波長轉換材料及其應用。 The disclosure relates to a wavelength converting material and its use.

根據本揭露之一方面,提出一種發光裝置,其包括一發光二極體晶片與一波長轉換材料。波長轉換材料可被發光二極體晶片射出之第一光線激發而發出不同於第一光線之波長的第二光線。波長轉換材料包括全無機鈣鈦礦量子點。全無機鈣鈦礦量子點具有化學通式CsPb(ClaBr1-a-bIb)3,其中0a1,0b1。 According to one aspect of the present disclosure, a light emitting device is provided that includes a light emitting diode chip and a wavelength converting material. The wavelength converting material is excited by the first light emitted by the light emitting diode chip to emit a second light different from the wavelength of the first light. Wavelength converting materials include all inorganic perovskite quantum dots. The all-inorganic perovskite quantum dots have a chemical formula of CsPb(Cl a Br 1-ab I b ) 3 , of which 0 a 1,0 b 1.

根據本揭露之另一方面,提出一種波長轉換材料,其包括兩種以上不同性質的全無機鈣鈦礦量子點。全無機鈣鈦礦量子點具有化學通式CsPb(ClaBr1-a-bIb)3,其中0a1,0b1。 In accordance with another aspect of the present disclosure, a wavelength converting material is proposed that includes two or more different inorganic perovskite quantum dots. The all-inorganic perovskite quantum dots have a chemical formula of CsPb(Cl a Br 1-ab I b ) 3 , of which 0 a 1,0 b 1.

為了對本揭露之上述及其他方面有更佳的瞭解,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下: In order to better understand the above and other aspects of the present disclosure, the preferred embodiments are described below in detail with reference to the accompanying drawings.

102、202、302、3102、3202‧‧‧發光二極體晶片 102, 202, 302, 3102, 3202‧‧‧Light Emitter Wafer

302s‧‧‧出光面 302s‧‧‧Glossy

3102S1、3102S2‧‧‧表面 3102S1, 3102S2‧‧‧ surface

104、204‧‧‧基底 104, 204‧‧‧Base

106‧‧‧磊晶結構 106‧‧‧ epitaxial structure

108‧‧‧第一型半導體層 108‧‧‧First type semiconductor layer

110‧‧‧主動層 110‧‧‧ active layer

112‧‧‧第二型半導體層 112‧‧‧Second type semiconductor layer

114、214、2048、3214、3214R、3214G、3214B、3214W‧‧‧第一電極 114, 214, 2048, 3214, 3214R, 3214G, 3214B, 3214W‧‧‧ first electrode

116、216、2050、3216‧‧‧第二電極 116, 216, 2050, 3216‧‧‧ second electrode

318、418、518、618、718、818、918、1018、1118、1218、 1318、1418、1518、1618、1718、2018、2218、2318‧‧‧發光二極體封裝結構 318, 418, 518, 618, 718, 818, 918, 1018, 1118, 1218, 1318, 1418, 1518, 1618, 1718, 2018, 2218, 2318‧ ‧ light emitting diode package structure

320、2761‧‧‧基座 320, 2761‧‧‧ base

321‧‧‧固晶區 321‧‧‧ Gujing District

322‧‧‧杯壁 322‧‧‧ cup wall

323、1523‧‧‧容置空間 323, 1523‧‧‧ accommodating space

324、324A、324B、724、3124、3124R、3124G、3124B、3124W‧‧‧波長轉換層 324, 324A, 324B, 724, 3124, 3124R, 3124G, 3124B, 3124W‧‧‧ wavelength conversion layer

326‧‧‧反射牆 326‧‧‧Reflection wall

326s‧‧‧頂面 326s‧‧‧ top

428、628‧‧‧結構元件 428, 628‧‧‧ structural components

428a、628a‧‧‧容置區 428a, 628a‧‧‧ accommodating area

530、1830、1830A、1830B、1830C、1830D‧‧‧光學層 530, 1830, 1830A, 1830B, 1830C, 1830D‧‧‧ optical layers

1737、2837‧‧‧透明膠體 1737, 2837‧‧‧Transparent colloid

1134‧‧‧間隔空間 1134‧‧‧Interval space

1536‧‧‧導電件 1536‧‧‧Electrical parts

1822‧‧‧光源 1822‧‧‧Light source

1838‧‧‧側光式背光模組 1838‧‧‧Side-light backlight module

1938‧‧‧直下式背光模組 1938‧‧‧Direct type backlight module

2538、2638、3038‧‧‧發光裝置 2538, 2638, 3038‧‧‧ illuminating devices

1820‧‧‧框架 1820‧‧‧Frame

1840‧‧‧反射片 1840‧‧‧reflector

1842‧‧‧導光板 1842‧‧‧Light guide plate

1842a‧‧‧入光面 1842a‧‧‧Glossy

1842b‧‧‧出光面 1842b‧‧‧Glossy

1844‧‧‧反射片 1844‧‧‧reflector

1946‧‧‧光學層 1946‧‧‧Optical layer

2051‧‧‧直立部分 2051‧‧‧Upright part

2053‧‧‧橫腳部分 2053‧‧‧cross leg

2352‧‧‧導電板 2352‧‧‧ Conductive plate

2354‧‧‧導電條 2354‧‧‧ Conductive strip

1855、2155、2555‧‧‧電路板 1855, 2155, 2555‧‧‧ boards

2456、2756、2856、2956‧‧‧插件式發光單元 2456, 2756, 2856, 2956‧‧‧ plug-in lighting unit

2157‧‧‧接墊 2157‧‧‧ pads

2658‧‧‧燈殼 2658‧‧‧Light shell

2660‧‧‧散熱器 2660‧‧‧heatsink

2762‧‧‧第一基板 2762‧‧‧First substrate

2764‧‧‧第二基板 2764‧‧‧second substrate

2766‧‧‧第一電極插腳 2766‧‧‧First electrode prong

2768‧‧‧第二電極插腳 2768‧‧‧Second electrode pins

2770‧‧‧第一接觸墊 2770‧‧‧First contact pad

2772‧‧‧第二接觸墊 2772‧‧‧Second contact pad

2774‧‧‧絕緣層 2774‧‧‧Insulation

3076‧‧‧殼體 3076‧‧‧shell

3078‧‧‧透明燈罩 3078‧‧‧Transparent lampshade

3080‧‧‧電路板 3080‧‧‧Circuit board

3082‧‧‧驅動電路 3082‧‧‧ drive circuit

3184‧‧‧發光裝置 3184‧‧‧Lighting device

S‧‧‧間隔層 S‧‧‧ spacer

第1圖繪示根據一實施例之發光二極體晶片。 FIG. 1 illustrates a light emitting diode wafer according to an embodiment.

第2圖繪示根據一實施例之發光二極體晶片。 FIG. 2 illustrates a light emitting diode wafer according to an embodiment.

第3圖繪示根據一實施例之發光二極體封裝結構。 FIG. 3 illustrates a light emitting diode package structure according to an embodiment.

第4圖繪示根據一實施例之發光二極體封裝結構。 FIG. 4 illustrates a light emitting diode package structure according to an embodiment.

第5圖繪示根據一實施例之發光二極體封裝結構。 FIG. 5 illustrates a light emitting diode package structure according to an embodiment.

第6圖繪示根據一實施例之發光二極體封裝結構。 FIG. 6 illustrates a light emitting diode package structure according to an embodiment.

第7圖繪示根據一實施例之發光二極體封裝結構。 FIG. 7 illustrates a light emitting diode package structure according to an embodiment.

第8圖繪示根據一實施例之發光二極體封裝結構。 FIG. 8 illustrates a light emitting diode package structure according to an embodiment.

第9圖繪示根據一實施例之發光二極體封裝結構。 FIG. 9 illustrates a light emitting diode package structure according to an embodiment.

第10圖繪示根據一實施例之發光二極體封裝結構。 FIG. 10 illustrates a light emitting diode package structure according to an embodiment.

第11圖繪示根據一實施例之發光二極體封裝結構。 FIG. 11 illustrates a light emitting diode package structure according to an embodiment.

第12圖繪示根據一實施例之發光二極體封裝結構。 FIG. 12 illustrates a light emitting diode package structure according to an embodiment.

第13圖繪示根據一實施例之發光二極體封裝結構。 FIG. 13 illustrates a light emitting diode package structure according to an embodiment.

第14圖繪示根據一實施例之發光二極體封裝結構。 FIG. 14 illustrates a light emitting diode package structure according to an embodiment.

第15圖繪示根據一實施例之發光二極體封裝結構。 FIG. 15 illustrates a light emitting diode package structure according to an embodiment.

第16圖繪示根據一實施例之發光二極體封裝結構。 FIG. 16 illustrates a light emitting diode package structure according to an embodiment.

第17圖繪示根據一實施例之發光二極體封裝結構。 FIG. 17 illustrates a light emitting diode package structure according to an embodiment.

第18圖繪示根據一實施例之顯示模組。 Figure 18 illustrates a display module in accordance with an embodiment.

第19圖繪示根據一實施例之顯示模組。 FIG. 19 illustrates a display module according to an embodiment.

第20圖繪示根據一實施例之發光二極體封裝結構的立體圖。 FIG. 20 is a perspective view of a light emitting diode package structure according to an embodiment.

第21圖繪示根據一實施例之發光二極體封裝結構的透視圖。 21 is a perspective view of a light emitting diode package structure in accordance with an embodiment.

第22圖繪示根據一實施例之發光二極體封裝結構的立體圖。 FIG. 22 is a perspective view of a light emitting diode package structure according to an embodiment.

第23圖至第26圖繪示根據一實施例之發光裝置的製造方法。 23 to 26 illustrate a method of fabricating a light emitting device according to an embodiment.

第27圖繪示根據一實施例之插件式發光單元。 Figure 27 illustrates a plug-in lighting unit in accordance with an embodiment.

第28圖繪示根據一實施例之插件式發光單元。 Figure 28 illustrates a plug-in lighting unit in accordance with an embodiment.

第29圖繪示根據一實施例之插件式發光單元。 FIG. 29 illustrates a plug-in type light emitting unit according to an embodiment.

第30圖繪示根據一實施例之發光裝置。 Figure 30 illustrates a light emitting device in accordance with an embodiment.

第31圖繪示根據一實施例之發光裝置對應一畫素部分的立 體圖。 FIG. 31 is a diagram showing a portion of a illuminating device corresponding to a pixel portion according to an embodiment. Body map.

第32圖繪示根據一實施例之發光裝置對應一畫素部分的剖面圖。 Figure 32 is a cross-sectional view showing a portion of a pixel corresponding to a pixel device according to an embodiment.

第33圖為根據實施例之全無機鈣鈦礦量子點之X光繞射圖譜。 Figure 33 is an X-ray diffraction pattern of an all-inorganic perovskite quantum dot according to an embodiment.

第34圖為根據實施例之全無機鈣鈦礦量子點的光激發螢光光譜圖。 Figure 34 is a photoexcited fluorescence spectrum of an all inorganic perovskite quantum dot according to an embodiment.

第35圖顯示根據實施例之全無機鈣鈦礦量子點的CIE圖譜位置。 Figure 35 shows the CIE map position of an all inorganic perovskite quantum dot according to an embodiment.

第36圖為根據實施例之全無機鈣鈦礦量子點之X光繞射圖譜。 Figure 36 is an X-ray diffraction pattern of an all inorganic perovskite quantum dot according to an embodiment.

第37圖為根據實施例之全無機鈣鈦礦量子點的光激發螢光光譜圖。 Figure 37 is a photoexcited fluorescence spectrum of an all inorganic perovskite quantum dot according to an embodiment.

第38圖顯示根據實施例之全無機鈣鈦礦量子點的CIE圖譜位置。 Figure 38 shows the CIE map position of an all inorganic perovskite quantum dot according to an embodiment.

第39圖為根據實施例之全無機鈣鈦礦量子點的光激發螢光光譜圖。 Figure 39 is a photoexcited fluorescence spectrum of an all inorganic perovskite quantum dot according to an embodiment.

第40圖為根據實施例之藍色發光二極體晶片搭配紅色全無機鈣鈦礦量子點與黃色螢光粉之發光二極體封裝結構的光激發螢光光譜圖。 Figure 40 is a photo-excited fluorescence spectrum of a light-emitting diode package of a blue light-emitting diode wafer with red all-inorganic perovskite quantum dots and yellow phosphor powder according to an embodiment.

第41圖顯示根據實施例之發光二極體封裝結構之發光色點的CIE圖譜位置分佈。 Figure 41 shows the CIE map position distribution of the illuminating color points of the light emitting diode package structure according to the embodiment.

第42圖為根據實施例之顯示發光二極體晶片激發全無機鈣鈦礦量子點CsPbBr3與CsPbI3時的光激發螢光光譜圖。 Figure 42 is a photo-excited fluorescence spectrum showing the excitation of the all-inorganic perovskite quantum dots CsPbBr 3 and CsPbI 3 by a light-emitting diode wafer according to an embodiment.

第43圖顯示發光二極體晶片激發全無機鈣鈦礦量子點CsPbBr3與CsPbI3時的CIE圖譜位置分佈。 Figure 43 shows the CIE map position distribution of the luminescent diode wafers excited by the all inorganic perovskite quantum dots CsPbBr 3 and CsPbI 3 .

此揭露內容之實施例係提出一種波長轉換材料及其應用。波長轉換材料包括全無機鈣鈦礦量子點,其具有化學通式CsPb(ClaBr1-a-bIb)3,能藉由組成及/或尺寸改變發光波長,使用彈性大。此外,全無機鈣鈦礦量子點能展現出半高寬窄的放光光譜及優異的純色性,因此應用在照明光源或顯示裝置等發光裝置時能提升發光效果,如演色性、顯色度、色域等。 Embodiments of the disclosure present a wavelength conversion material and its use. The wavelength converting material includes an all-inorganic perovskite quantum dot having a chemical formula of CsPb(Cl a Br 1-ab I b ) 3 , which can change the emission wavelength by composition and/or size, and has a large elasticity. In addition, the all-inorganic perovskite quantum dots can exhibit a half-height and wide-range luminescence spectrum and excellent solid color, so that when used in an illumination device such as an illumination source or a display device, the luminescence effect can be enhanced, such as color rendering, color rendering, Color gamut and so on.

須注意的是,本揭露並非顯示出所有可能的實施例,未於本揭露提出的其他實施態樣也可能可以應用。再者,圖式上的尺寸比例並非按照實際產品等比例繪製。因此,說明書和圖示內容僅作敘述實施例之用,而非作為限縮本揭露保護範圍之用。另外,實施例中之敘述,例如細部結構、製程步驟和材料應用等等,僅為舉例說明之用,並非對本揭露欲保護之範圍做限縮。實施例之步驟和結構各之細節可在不脫離本揭露之精神和範圍內根據實際應用製程之需要而加以變化與修飾。以下是以相同/類似的符號表示相同/類似的元件做說明。 It should be noted that the disclosure does not show all possible embodiments, and other embodiments not disclosed in the disclosure may also be applied. Furthermore, the dimensional ratios on the drawings are not drawn in proportion to the actual product. Therefore, the description and illustration are for illustrative purposes only and are not intended to be limiting. In addition, the description in the embodiments, such as the detailed structure, the process steps, the material application, and the like, are for illustrative purposes only and are not intended to limit the scope of the disclosure. The details of the steps and the details of the embodiments may be varied and modified in accordance with the needs of the actual application process without departing from the spirit and scope of the disclosure. The same/similar symbols are used to describe the same/similar elements.

實施例中,發光裝置包括發光二極體晶片與波長轉換材料。波長轉換材料可被發光二極體晶片射出之第一光線激發而發出不同於第一光線之波長的第二光線。 In an embodiment, the light emitting device comprises a light emitting diode chip and a wavelength converting material. The wavelength converting material is excited by the first light emitted by the light emitting diode chip to emit a second light different from the wavelength of the first light.

實施例中,波長轉換材料包括全無機鈣鈦礦量子點, 其具有化學通式CsPb(ClaBr1-a-bIb)3,其中0a1,0b1。實施例之全無機鈣鈦礦量子點具有具優異的量子效率,能展現出半高寬窄的放光光譜及優異的純色性,因此應用在發光裝置能提升發光效果。 In an embodiment, the wavelength converting material comprises an all-inorganic perovskite quantum dot having the chemical formula CsPb(Cl a Br 1-ab I b ) 3 , wherein a 1,0 b 1. The all-inorganic perovskite quantum dots of the examples have excellent quantum efficiency, can exhibit a half-height width and wide spectral emission spectrum and excellent solid color, and thus can be used in a light-emitting device to enhance the luminous effect.

全無機鈣鈦礦量子點可藉由成分及/或尺寸之調整,依能帶寬度之差異(Band Gap)改變發光顏色(第二光線波長),例如從藍色、綠色到紅色色域,能夠彈性運用。 The all-inorganic perovskite quantum dots can be changed by the composition and/or size adjustment, and the luminescence color (second ray wavelength) can be changed by the band width (Band Gap), for example, from blue, green to red gamut. Flexible use.

全無機鈣鈦礦量子點具有奈米級尺寸。舉例來說,全無機鈣鈦礦量子點的粒徑範圍為1nm至100nm,例如1nm至20nm。 The all inorganic perovskite quantum dots have a nanometer size. For example, the total inorganic perovskite quantum dots have a particle size ranging from 1 nm to 100 nm, such as from 1 nm to 20 nm.

舉例來說,全無機鈣鈦礦量子點具有化學通式CsPb(ClaBr1-a)3,其中0a1;或全無機鈣鈦礦量子點具有化學通式CsPb(Br1-bIb)3,其中0b1。 For example, a fully inorganic perovskite quantum dot has the chemical formula CsPb(Cl a Br 1-a ) 3 , where 0 a 1; or an all-inorganic perovskite quantum dot having the chemical formula CsPb(Br 1-b I b ) 3 , wherein 0 b 1.

實施例中,全無機鈣鈦礦量子點可為藍色量子點。舉例來說,在具有化學通式CsPb(ClaBr1-a)3的例子中,當0<a1時,全無機鈣鈦礦量子點為藍色量子點。及/或,粒徑範圍7nm至10nm的全無機鈣鈦礦量子點為藍色量子點。一實施例中,從藍色量子點激發出之(第二)光線的波峰位置為400nm至500nm,半高寬為10nm至30nm。 In embodiments, the all inorganic perovskite quantum dots can be blue quantum dots. For example, in the example of the chemical formula CsPb(Cl a Br 1-a ) 3 , when 0<a At 1 o'clock, the all-inorganic perovskite quantum dots are blue quantum dots. And/or, the all inorganic perovskite quantum dots having a particle size ranging from 7 nm to 10 nm are blue quantum dots. In one embodiment, the (second) light excited from the blue quantum dots has a peak position of 400 nm to 500 nm and a full width at half maximum of 10 nm to 30 nm.

實施例中,全無機鈣鈦礦量子點可為紅色量子點。舉例來說,在具有化學通式CsPb(Br1-bIb)3的例子中,當0.5b1時,全無機鈣鈦礦量子點為紅色量子點。及/或,粒徑範圍10nm 至14nm的全無機鈣鈦礦量子點為的紅色量子點。一實施例中,從紅色量子點激發出之(第二)光線的波峰位置為570nm至700nm,半高寬為20nm至60nm。 In embodiments, the fully inorganic perovskite quantum dots can be red quantum dots. For example, in the example of the chemical formula CsPb(Br 1-b I b ) 3 , when 0.5 b At 1 o'clock, the all inorganic perovskite quantum dots are red quantum dots. And/or red quantum dots of all inorganic perovskite quantum dots having a particle size ranging from 10 nm to 14 nm. In one embodiment, the (second) light excited from the red quantum dots has a peak position of 570 nm to 700 nm and a full width at half maximum of 20 nm to 60 nm.

實施例中,全無機鈣鈦礦量子點可為綠色量子點。舉例來說,在具有化學通式CsPb(Br1-bIb)3的例子中,當0b<0.5時,全無機鈣鈦礦量子點為綠色量子點。及/或,粒徑範圍8nm至12nm的全無機鈣鈦礦量子點為的綠色量子點。一實施例中,綠色全無機鈣鈦礦量子點激發出之(第二)光線的波峰位置範圍為500~570nm,半高寬範圍為15nm~40nm。 In embodiments, the all inorganic perovskite quantum dots can be green quantum dots. For example, in the example having the chemical formula CsPb(Br 1-b I b ) 3 , when 0 When b < 0.5, the all inorganic perovskite quantum dots are green quantum dots. And/or green quantum dots of all inorganic perovskite quantum dots having a particle size ranging from 8 nm to 12 nm. In one embodiment, the (second) light excited by the green all-inorganic perovskite quantum dots has a peak position ranging from 500 to 570 nm and a full width at half maximum ranging from 15 nm to 40 nm.

實施例中,發光裝置中的波長轉換材料(或波長轉換層)並不限於使用單一種全無機鈣鈦礦量子點,換句話說,可使用兩種以上(即兩種、三種、四種、或更多種)性質不同的全無機鈣鈦礦量子點。全無機鈣鈦礦量子點的性質可依據材料化學式及/或尺寸改變。 In the embodiment, the wavelength conversion material (or wavelength conversion layer) in the light-emitting device is not limited to use a single type of all-inorganic perovskite quantum dots, in other words, two or more types (ie, two, three, four, Or more) all inorganic perovskite quantum dots of different nature. The nature of the all inorganic perovskite quantum dots can vary depending on the chemical formula and/or size of the material.

舉例來說,全無機鈣鈦礦量子點包括性質不同的第一全無機鈣鈦礦量子點與第二全無機鈣鈦礦量子點混合。其他實施例中,全無機鈣鈦礦量子點更包括性質不同於第一全無機鈣鈦礦量子點與第二全無機鈣鈦礦量子點的第三、第四、或更多種的全無機鈣鈦礦量子點混合。 For example, the all-inorganic perovskite quantum dots include a first all-inorganic perovskite quantum dot of a different nature mixed with a second all-inorganic perovskite quantum dot. In other embodiments, the all-inorganic perovskite quantum dots further comprise a third, fourth, or more total inorganic having properties different from the first all-inorganic perovskite quantum dots and the second all-inorganic perovskite quantum dots. Perovskite quantum dot mixing.

舉例來說,第一全無機鈣鈦礦量子點與第二全無機鈣鈦礦量子點可具有不同的粒徑。其他實施例中,全無機鈣鈦礦量子點更包括粒徑不同於第一全無機鈣鈦礦量子點與第二全無 機鈣鈦礦量子點的第三、第四、或更多種的全無機鈣鈦礦量子點。 For example, the first fully inorganic perovskite quantum dot and the second fully inorganic perovskite quantum dot can have different particle sizes. In other embodiments, the all-inorganic perovskite quantum dots further comprise a particle size different from the first all-inorganic perovskite quantum dot and the second all-nothing The third, fourth, or more all-inorganic perovskite quantum dots of the perovskite quantum dots.

一些實施例中,第一全無機鈣鈦礦量子點與第二全無機鈣鈦礦量子點皆具有化學通式CsPb(ClaBr1-a-bIb)3,0a1,0b1。其中,第一全無機鈣鈦礦量子點與第二全無機鈣鈦礦量子點具有不同的a。及/或,第一全無機鈣鈦礦量子點與第二全無機鈣鈦礦量子點具有不同的b。此概念亦可延伸至具有第三、第四、或更多種之全無機鈣鈦礦量子點的例子中。 In some embodiments, the first all-inorganic perovskite quantum dot and the second all-inorganic perovskite quantum dot each have a chemical formula of CsPb(Cl a Br 1-ab I b ) 3 ,0 a 1,0 b 1. Wherein, the first all-inorganic perovskite quantum dot has a different a from the second all-inorganic perovskite quantum dot. And/or, the first all-inorganic perovskite quantum dot has a different b than the second all-inorganic perovskite quantum dot. This concept can also be extended to examples having third, fourth, or more all-inorganic perovskite quantum dots.

舉例來說,第一全無機鈣鈦礦量子點與第二全無機鈣鈦礦量子點可選自具有化學通式CsPb(Br1-bIb)3且0.5b1的紅色量子點、具有化學通式CsPb(Br1-bIb)3且0b<0.5的綠色量子點及具有化學通式CsPb(ClaBr1-a)3且0<a1的藍色量子點所組成的群組。或者,第一全無機鈣鈦礦量子點與第二全無機鈣鈦礦量子點可選自粒徑範圍為10nm至14nm的紅色全無機鈣鈦礦量子點、粒徑範圍為8nm至12nm的綠色全無機鈣鈦礦量子點及粒徑範圍為7nm至10nm的藍色全無機鈣鈦礦量子點所組成的群組。 For example, the first all-inorganic perovskite quantum dot and the second all-inorganic perovskite quantum dot may be selected from the group consisting of the chemical formula CsPb(Br 1-b I b ) 3 and 0.5 b a red quantum dot of 1 having a chemical formula of CsPb(Br 1-b I b ) 3 and 0 Green quantum dots with b<0.5 and having the chemical formula CsPb(Cl a Br 1-a ) 3 and 0<a A group of 1 blue quantum dots. Alternatively, the first all-inorganic perovskite quantum dot and the second all-inorganic perovskite quantum dot may be selected from red all-inorganic perovskite quantum dots having a particle size ranging from 10 nm to 14 nm, and having a particle size ranging from 8 nm to 12 nm. A group consisting of all inorganic perovskite quantum dots and blue all-inorganic perovskite quantum dots having a particle size ranging from 7 nm to 10 nm.

全無機鈣鈦礦量子點可應用在各種發光裝置例如照明燈具或用於手機螢幕、電視螢幕等之顯示器的發光模組(前光模組、背光模組)、顯示器之面板畫素或次畫素具有優勢。再者,當使用越多種不同成分的全無機鈣鈦礦量子點,亦即使用越多種不同發光波之全無機鈣鈦礦量子點時,發光裝置的放射光譜越寬,甚至能達到全譜(full spectrum)的需求。因此,使用本揭露之全無 機鈣鈦礦量子點能提高顯示裝置的色域,也能有效提升顯示裝置色純度與色彩真實性,也可大幅提升NTSC。 The all-inorganic perovskite quantum dots can be applied to various light-emitting devices such as lighting fixtures or light-emitting modules (front light modules, backlight modules) for display screens of mobile phones, television screens, etc., panel pixels or secondary paintings of displays It has advantages. Furthermore, when more inorganic inorganic perovskite quantum dots are used, that is, when more inorganic ilmenite quantum dots are used, the wider the emission spectrum of the illuminating device can reach the full spectrum ( Full spectrum) demand. Therefore, the use of this disclosure is not The perovskite quantum dots can improve the color gamut of the display device, and can also effectively improve the color purity and color authenticity of the display device, and can also greatly enhance the NTSC.

舉例來說,一些實施例中,發光裝置包括至少兩種具有化學通式CsPb(Br1-bIb)3且性質不同的全無機鈣鈦礦量子點,能使得發光裝置的NTSC達到90%以上。一些實施例中,發光裝置包括至少四種具有化學通式CsPb(Br1-bIb)3且性質不同的全無機鈣鈦礦量子點,能使得發光裝置能展現出至少75之平均演色性指數(Ra)。 For example, in some embodiments, the illuminating device comprises at least two wholly inorganic perovskite quantum dots having the chemical formula CsPb(Br 1-b I b ) 3 and different properties, which can make the NTSC of the illuminating device reach 90% the above. In some embodiments, the illuminating device comprises at least four wholly inorganic perovskite quantum dots having chemical formula CsPb(Br 1-b I b ) 3 and different properties, which enables the illuminating device to exhibit an average color rendering of at least 75 Index (Ra).

舉例來說,發光裝置可應用在發光二極體封裝結構上。以白光發光二極體封裝結構為例,波長轉換材料含有綠色全無機鈣鈦礦量子點與紅色全無機鈣鈦礦量子點受藍光發光二極體激發,或波長轉換材料含有紅色全無機鈣鈦礦量子點與黃色螢光粉受藍光發光二極體激發,或波長轉換材料含有綠色全無機鈣鈦礦量子點與紅色螢光粉受藍光發光二極體激發,或波長轉換材料含有紅色全無機鈣鈦礦量子點、綠色全無機鈣鈦礦量子點、與藍色全無機鈣鈦礦量子點受紫外光發光二極體激發。 For example, the light emitting device can be applied to a light emitting diode package structure. Taking a white light emitting diode package structure as an example, the wavelength conversion material contains green all-inorganic perovskite quantum dots and red all-inorganic perovskite quantum dots excited by blue light-emitting diodes, or the wavelength converting material contains red all-inorganic calcium-titanium. The mineral quantum dots and the yellow fluorescent powder are excited by the blue light emitting diode, or the wavelength converting material contains the green all inorganic perovskite quantum dots and the red fluorescent powder excited by the blue light emitting diode, or the wavelength converting material contains the red all inorganic Perovskite quantum dots, green all-inorganic perovskite quantum dots, and blue all-inorganic perovskite quantum dots are excited by ultraviolet light-emitting diodes.

波長轉換材料(或波長轉換層)可更包括其他種螢光材料,包括無機螢光材料及/或有機螢光材料與全無機鈣鈦礦量子點一起使用。此處無機螢光材料/有機螢光材料可指不同於所述之全無機鈣鈦礦量子點CsPb(ClaBr1-a-bIb)3的其他種類螢光量子點及/或非量子點結構的螢光材料。 The wavelength converting material (or wavelength converting layer) may further comprise other fluorescent materials, including inorganic fluorescent materials and/or organic fluorescent materials, for use with fully inorganic perovskite quantum dots. Here, the inorganic fluorescent material/organic fluorescent material may refer to other kinds of fluorescent quantum dots and/or non-quantum dot structures different from the all-inorganic perovskite quantum dot CsPb (Cl a Br 1-ab I b ) 3 described. Fluorescent material.

舉例來說,無機螢光材料例如鋁酸鹽螢光粉(如 LuYAG、GaYAG、YAG等)、矽酸物螢光粉、硫化物螢光粉、氮化物螢光粉、氟化物螢光粉等。有機螢光材料係選自由下列化合物所組成之群組,其群組包含單分子結構、多分子結構、寡聚物(Oligomer)以及聚合物(Polymer),其化合物具有perylene基團的化合物、具有benzimidazole基團的化合物、具有Naphthalene基團的化合物、具有anthracene基團的化合物、具有phenanthrene基團的化合物、具有fluorene基團的化合物、具有9-fluorenone基團的化合物、具有carbazole基團的化合物、具有glutarimide基團的化合物、具有1,3-diphenylbenzene基團的化合物、具有benzopyrene基團的化合物、具有pyrene基團的化合物、具有pyridine基團的化合物、具有thiophene基團的化合物、具有2,3-dihydro-1H-benzo[de]isoquinoline-1,3-dione基團的化合物、具有benzimidazole基團的化合物及其組合。舉例來說,黃色螢光材料例如YAG:Ce,及/或氮氧化物、矽酸鹽、氮化物成分之無機型黃色螢光粉,及/或有機型黃色螢光粉。紅色螢光粉例如包括氟化螢光粉A2[MF6]:Mn4+,其中A是選自於Li、Na、K、Rb、Cs、NH4、及其組合所構成的群組,M是選自於Ge、Si、Sn、Ti、Zr及其組合所構成的群族。或者,紅色螢光粉可包括(Sr,Ca)S:Eu、(Ca,Sr)2Si5N8:Eu、CaAlSiN3:Eu、(Sr,Ba)3SiO5:Eu。 For example, inorganic fluorescent materials such as aluminate fluorescent powder (such as LuYAG, GaYAG, YAG, etc.), phthalic acid fluorescent powder, sulfide fluorescent powder, nitride fluorescent powder, fluoride fluorescent powder, etc. . The organic fluorescent material is selected from the group consisting of a monomolecular structure, a multimolecular structure, an oligomer (Oligomer), and a polymer, the compound having a perylene group, having a compound of a benzimidazole group, a compound having a Naphthalene group, a compound having an anthracene group, a compound having a phenanthrene group, a compound having a fluorene group, a compound having a 9-fluorenone group, a compound having a carbazole group, a compound having a glutarimide group, a compound having a 1,3-diphenylbenzene group, a compound having a benzopyrene group, a compound having a pyrene group, a compound having a pyridine group, a compound having a thiophene group, having 2, 3 a compound of the -dihydro-1H-benzo[de]isoquinoline-1,3-dione group, a compound having a benzimidazole group, and a combination thereof. For example, a yellow fluorescent material such as YAG:Ce, and/or an inorganic yellow fluorescent powder of an oxynitride, a cerium salt, a nitride component, and/or an organic yellow fluorescent powder. The red fluorescent powder includes, for example, a fluorinated phosphor A 2 [MF 6 ]: Mn 4+ , wherein A is a group selected from the group consisting of Li, Na, K, Rb, Cs, NH 4 , and combinations thereof. M is a group selected from the group consisting of Ge, Si, Sn, Ti, Zr, and combinations thereof. Alternatively, the red phosphor may include (Sr, Ca)S: Eu, (Ca, Sr) 2 Si 5 N 8 :Eu, CaAlSiN 3 :Eu, (Sr,Ba) 3 SiO 5 :Eu.

第1圖繪示根據一實施例之發光二極體晶片102。發光二極體晶片102包括基底104、磊晶結構106、第一電極114與第二電極116。磊晶結構106包括從基底104依序堆疊的第一 型半導體層108、主動層110與第二型半導體層112。第一電極114與第二電極116分別連接第一型半導體層108與第二型半導體層112。基底104可包括絕緣材料(如:藍寶石材料)或半導體材料。第一型半導體層108與第二型半導體層112具有相反的導電類型。例如第一型半導體層108具有N型半導體層,而第二型半導體層112具有P型半導體層,其中第一電極114為N電極,第二電極116為P電極。例如第一型半導體層108具有P型半導體層,而第二型半導體層112具有N型半導體層,其中第一電極114為P電極,第二電極116為N電極。發光二極體晶片102的安裝型態可使用面朝上(face-up)安裝者、覆晶(flip chip)安裝者之任一者。在以覆晶安裝的實施中,並倒置發光二極體晶片102使第一電極114與第二電極116面向基板例如電路板而透過焊料電性連接接觸墊。 FIG. 1 illustrates a light emitting diode wafer 102 in accordance with an embodiment. The light emitting diode wafer 102 includes a substrate 104, an epitaxial structure 106, a first electrode 114 and a second electrode 116. The epitaxial structure 106 includes a first stack from the substrate 104 in sequence The semiconductor layer 108, the active layer 110 and the second semiconductor layer 112. The first electrode 114 and the second electrode 116 are connected to the first type semiconductor layer 108 and the second type semiconductor layer 112, respectively. Substrate 104 may comprise an insulating material (eg, a sapphire material) or a semiconductor material. The first type semiconductor layer 108 and the second type semiconductor layer 112 have opposite conductivity types. For example, the first type semiconductor layer 108 has an N type semiconductor layer, and the second type semiconductor layer 112 has a P type semiconductor layer, wherein the first electrode 114 is an N electrode and the second electrode 116 is a P electrode. For example, the first type semiconductor layer 108 has a P type semiconductor layer, and the second type semiconductor layer 112 has an N type semiconductor layer, wherein the first electrode 114 is a P electrode and the second electrode 116 is an N electrode. The mounting type of the light-emitting diode wafer 102 may be any of a face-up mounter or a flip chip mounter. In the flip-chip mounting process, the LED array 102 is inverted such that the first electrode 114 and the second electrode 116 face the substrate, such as a circuit board, and the contact pads are electrically connected through the solder.

第2圖繪示根據另一實施例之發光二極體晶片202,其是一個垂直式發光二極體晶片。發光二極體晶片202包括基底204與磊晶結構106。磊晶結構106包括從基底204依序堆疊的第一型半導體層108、主動層110與第二型半導體層112。第一電極214與第二電極216分別連接基底204與第二型半導體層112。基底204之材料係為選自於金屬、合金、導體、半導體及上述之組合的其中之一。基底204可包括導電型與第一型半導體層108相同的半導體材料,或可與第一型半導體層108形成歐姆接觸的導電材料例如金屬等。例如第一型半導體層108具有N型半導體 層,而第二型半導體層112具有P型半導體層,其中第一電極214為N電極,第二電極216為P電極。例如第一型半導體層108具有P型半導體層,而第二型半導體層112具有N型半導體層,其中第一電極214為P電極,第二電極216為N電極。 FIG. 2 illustrates a light emitting diode chip 202 according to another embodiment, which is a vertical light emitting diode chip. The light emitting diode chip 202 includes a substrate 204 and an epitaxial structure 106. The epitaxial structure 106 includes a first type semiconductor layer 108, an active layer 110, and a second type semiconductor layer 112 that are sequentially stacked from the substrate 204. The first electrode 214 and the second electrode 216 are respectively connected to the substrate 204 and the second type semiconductor layer 112. The material of the substrate 204 is selected from the group consisting of metals, alloys, conductors, semiconductors, and combinations thereof. The substrate 204 may include a semiconductor material of the same conductivity type as the first type semiconductor layer 108, or a conductive material such as metal or the like that may form an ohmic contact with the first type semiconductor layer 108. For example, the first type semiconductor layer 108 has an N type semiconductor The second type semiconductor layer 112 has a P-type semiconductor layer, wherein the first electrode 214 is an N electrode and the second electrode 216 is a P electrode. For example, the first type semiconductor layer 108 has a P type semiconductor layer, and the second type semiconductor layer 112 has an N type semiconductor layer, wherein the first electrode 214 is a P electrode and the second electrode 216 is an N electrode.

在一實施例中,P型半導體層可為P型GaN材料,而N型半導體層可為N型GaN材料。在一實施例中,P型半導體層可為P型AlGaN材料,而N型半導體層可為N型AlGaN材料。主動層110是多重量子井結構。 In an embodiment, the P-type semiconductor layer may be a P-type GaN material, and the N-type semiconductor layer may be an N-type GaN material. In an embodiment, the P-type semiconductor layer may be a P-type AlGaN material, and the N-type semiconductor layer may be an N-type AlGaN material. The active layer 110 is a multiple quantum well structure.

一實施例中,發光二極體晶片102、202射出之第一光線的波長為220nm至480nm。一實施例中,發光二極體晶片102、202可為紫外光發光二極體晶片,發射出第一光線的波長為200nm至400nm。一實施例中,發光二極體晶片102、202可為藍色發光二極體晶片,發射出第一光線的波長為430nm至480nm。 In one embodiment, the first light emitted by the LED chips 102, 202 has a wavelength of 220 nm to 480 nm. In one embodiment, the LED chips 102, 202 can be ultraviolet light emitting diode chips, and emit a first light having a wavelength of 200 nm to 400 nm. In one embodiment, the LED chips 102, 202 can be blue LED chips, and the first light is emitted at a wavelength of 430 nm to 480 nm.

實施例中,發光裝置的波長轉換材料可包含在波長轉換層中,及/或摻雜在透光基材中。一些實施例中,波長轉換材料可塗佈在發光二極體晶片的發光面上。以下發光裝置以一些使用波長轉換材料之裝置為例說明。 In an embodiment, the wavelength converting material of the light emitting device can be included in the wavelength converting layer and/or doped in the light transmissive substrate. In some embodiments, the wavelength converting material can be coated on the light emitting face of the light emitting diode wafer. The following illuminating devices are exemplified by some devices using wavelength converting materials.

第3圖繪示根據一實施例之發光二極體封裝結構318。發光二極體封裝結構318包括發光二極體晶片302、基座320、波長轉換層324與反射牆326。基座320具有一固晶區321以及一杯壁322圍繞固晶區321且定義出一容置空間323。發光二極體晶片302配置在容置空間323中,並且可以透過黏著膠固 定在基座320的固晶區321上。波長轉換層324位在發光二極體晶片302的出光側,更詳細地說,波長轉換層324位於容置空間323的上方對應發光二極體晶片302的出光面302s,並且位在杯壁322的頂面上。反射牆326可環繞配置於波長轉換層324的外側壁上並位在杯壁322的頂面上。反射牆326為具有光反射性質且低漏光之材料,例如反射性玻璃、石英、光反射貼片、高分子塑料或其它合適的材料形成。高分子塑料可以為聚甲基丙烯酸甲脂(polymethyl methacrylate,PMMA)、乙烯對苯二甲酸酯(polyethylene terephthalate,PET)、聚苯乙烯(polystyrene,PS)、聚乙烯(polypropylene,PP)、尼龍(polyamide,PA)、聚碳酸酯(polycarbonate,PC)、環氧樹脂(epoxy)以及矽膠(silicone)等之其中一種材料或兩種以上材料的組合。反射牆326的光反射能力可以藉由添加其他填充粒子而改變。填充粒子可以具有不同粒徑或不同材質的複合材料。填充粒子的材料可以為例如二氧化鈦(TiO2)、二氧化矽(SiO2)、三氧化二鋁(Al2O3)、氮化硼(BN)、氧化鋅(ZnO)等。此概念可應用至其他實施例,且之後不再重複說明。此例中,發光二極體晶片302與波長轉換層324之間是以杯壁322定義出之容置空間323中的空隙(air gap)互相隔開,換句話說,容置空間323中並未填充其他與發光二極體晶片302接觸的物質。 FIG. 3 illustrates a light emitting diode package structure 318 in accordance with an embodiment. The LED package structure 318 includes a light emitting diode chip 302, a susceptor 320, a wavelength conversion layer 324, and a reflective wall 326. The pedestal 320 has a solid crystal region 321 and a cup wall 322 surrounding the die bonding region 321 and defines an accommodating space 323. The LED chip 302 is disposed in the accommodating space 323 and can be fixed on the die bonding region 321 of the susceptor 320 through an adhesive. The wavelength conversion layer 324 is located on the light exiting side of the LED substrate 302. In more detail, the wavelength conversion layer 324 is located above the accommodating space 323 corresponding to the light emitting surface 302s of the LED array 302, and is located at the cup wall 322. On the top. The reflective wall 326 can be disposed on the outer sidewall of the wavelength conversion layer 324 and positioned on the top surface of the cup wall 322. The reflective wall 326 is formed of a material having light reflective properties and low light leakage, such as reflective glass, quartz, light reflective patches, polymeric plastics, or other suitable materials. The polymer plastic may be polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polystyrene (PS), polyethylene (PP), nylon. One of materials (polyamide, PA), polycarbonate (PC), epoxy, and silicone, or a combination of two or more materials. The light reflecting power of the reflective wall 326 can be varied by adding other filler particles. The filler particles can have composite materials of different particle sizes or different materials. The material of the filler particles may be, for example, titanium oxide (TiO 2 ), cerium oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), boron nitride (BN), zinc oxide (ZnO), or the like. This concept can be applied to other embodiments, and the description will not be repeated later. In this example, the gap between the LED chip 302 and the wavelength conversion layer 324 is separated by an air gap in the accommodating space 323 defined by the cup wall 322. In other words, the space 323 is accommodated. Other materials in contact with the LED substrate 302 are not filled.

實施例中,波長轉換層324包括一或更多種波長轉換材料。因此,發光二極體封裝結構318的發光性質可透過波長轉換層324予以調整。一些實施例中,波長轉換層324也包括透 光基材,波長轉換材料摻雜於其中。波長轉換層324例如至少包括一種上述全無機鈣鈦礦量子點CsPb(ClaBr1-a-bIb)3摻雜於透光基材中。實施例中,透光基材包括透明膠體,而透明膠體的材料可以是聚甲基丙烯酸甲脂(polymethyl methacrylate,PMMA)、乙烯對苯二甲酸酯(polyethylene terephthalate,PET)、聚苯乙烯(polystyrene,PS)、聚乙烯(polypropylene,PP)、尼龍(polyamide,PA)、聚碳酸酯(polycarbonate,PC)、聚亞醯胺(polyimide,PI)、聚二甲基矽氧烷(polydimethylsiloxane,PDMS)、環氧樹脂(epoxy)以及矽膠(silicone)等之其中一種材料或兩種以上材料的組合。實施例中,透光基材包括玻璃材料或陶瓷材料,全無機鈣鈦礦量子點與玻璃材料或陶瓷材料混合製造成一玻璃量子點薄膜或一陶瓷量子點薄膜。 In an embodiment, the wavelength conversion layer 324 includes one or more wavelength converting materials. Therefore, the luminescent properties of the LED package structure 318 can be adjusted through the wavelength conversion layer 324. In some embodiments, the wavelength conversion layer 324 also includes a light transmissive substrate into which the wavelength converting material is doped. The wavelength conversion layer 324 includes, for example, at least one of the above-described all-inorganic perovskite quantum dots CsPb (Cl a Br 1-ab I b ) 3 doped in a light-transmitting substrate. In an embodiment, the light transmissive substrate comprises a transparent colloid, and the transparent colloid material may be polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polystyrene (polyvinyl methacrylate). Polystyrene, PS), Polypropylene (PP), Polyamide (PA), Polycarbonate (PC), Polyimide (PI), Polydimethylsiloxane (PDMS) ), epoxy or silicone, or a combination of two or more materials. In an embodiment, the light transmissive substrate comprises a glass material or a ceramic material, and the total inorganic perovskite quantum dots are mixed with a glass material or a ceramic material to form a glass quantum dot film or a ceramic quantum dot film.

一些實施例中,波長轉換層324與發光二極體晶片302係(此例以容置空間323)互相隔開,這可避免波長轉換層324因太靠近發光二極體晶片302而影響熱穩定性及化學穩定性,而能提高波長轉換層324的壽命並提升發光二極體封裝結構產品之信賴性。此概念將不再重複說明。 In some embodiments, the wavelength conversion layer 324 and the LED array 302 (in this case, the accommodating space 323) are spaced apart from each other, which may prevent the wavelength conversion layer 324 from being thermally stable due to being too close to the LED substrate 302. The chemical and chemical stability can improve the lifetime of the wavelength conversion layer 324 and improve the reliability of the LED package structure product. This concept will not be repeated.

其他變換實施例中,杯壁322定義出之容置空間323中的空隙(air gap)也可以填入透明封裝膠體(未繪示),透明封裝膠體可以是聚甲基丙烯酸甲脂(polymethyl methacrylate,PMMA)、乙烯對苯二甲酸酯(polyethylene terephthalate,PET)、聚苯乙烯(polystyrene,PS)、聚乙烯(polypropylene,PP)、尼龍(polyamide, PA)、聚碳酸酯(polycarbonate,PC)、聚亞醯胺(polyimide,PI)、聚二甲基矽氧烷(polydimethylsiloxane,PDMS)、環氧樹脂(epoxy)以及矽膠(silicone)等其中一種材料或是包含兩種以上材料的組合。一些實施例中,此透明封裝膠體可摻雜一或更多種波長轉換材料。其他變換實施例中,一或更多種波長轉換材料可塗佈在發光二極體晶片302的發光面上。因此,除了波長轉換層324,發光二極體封裝結構的發光性質更可透過含有波長轉換材料的封裝(透明)膠體及/或位在發光二極體晶片302之表面上之含有波長轉換材料的塗層予以調整。波長轉換層324、封裝膠體及/或塗層的波長轉換材料的種類可視產品實質需求適當調整變化。此概念可應用至其他實施例,且之後不再重複說明。 In other alternative embodiments, the air gap defined in the accommodating space 323 of the cup wall 322 may also be filled in a transparent encapsulant (not shown), and the transparent encapsulant may be polymethyl methacrylate. , PMMA), polyethylene terephthalate (PET), polystyrene (PS), polyethylene (PP), nylon (polyamide, PA), polycarbonate (PC), polyimide (PI), polydimethylsiloxane (PDMS), epoxy (epoxy) and silicone (silicone) Or a combination of two or more materials. In some embodiments, the transparent encapsulant can be doped with one or more wavelength converting materials. In other alternative embodiments, one or more wavelength converting materials may be coated on the light emitting face of the light emitting diode chip 302. Therefore, in addition to the wavelength conversion layer 324, the light emitting properties of the light emitting diode package structure are more transparent to the package (transparent) colloid containing the wavelength conversion material and/or the wavelength conversion material on the surface of the light emitting diode chip 302. The coating is adjusted. The type of wavelength conversion material of the wavelength conversion layer 324, the encapsulant and/or the coating may be appropriately adjusted depending on the actual needs of the product. This concept can be applied to other embodiments, and the description will not be repeated later.

第4圖繪示根據一實施例之發光二極體封裝結構418,其與第3圖發光二極體封裝結構318的差異說明如下。發光二極體封裝結構418更包括結構元件428用以支撐、封裝、或保護波長轉換層324。如圖所示,結構元件428具有一容置區428a用以容置波長轉換層324,使波長轉換層324之上、下表面被結構元件428覆蓋。結構元件428位於杯壁322的頂面上,藉此支撐波長轉換層324位於容置空間323的上方對應發光二極體晶片302的出光面302s。結構元件428較佳以透明材質或可透光材質形成,以避免阻擋波長轉換層324的出光。結構元件428也可具有封裝材料性質。舉例來說,結構元件428可包括石英、玻璃、高分子塑料之材料。或者,結構元件428能用以保護波長轉換層 324,阻隔水氣或氧氣等會對其性質造成負面影響的外界物質。實施例中,結構元件428可為阻障膜(barrier film)及/或矽鈦氧化物設置於波長轉換層324表面來阻隔水氣或氧氣等外界物質。矽鈦氧化物可如SiTiO4之類玻璃材料,其具有光穿透性與抗氧化性,可以塗佈或貼膜方式設置於波長轉換層324表面。阻障膜的材料可包括無機材料,例如金屬氧化物(如SiO2、Al2O3等)或金屬氮化物(如Si3N3等),且可以是多層阻障膜以塗佈或貼膜方式設置於波長轉換層324表面。此概念可應用至其他實施例,且之後不再重複說明。反射牆326可環繞配置於結構元件428的外側壁上並位在杯壁322的頂面上。 FIG. 4 illustrates a light emitting diode package structure 418 according to an embodiment, which is different from the light emitting diode package structure 318 of FIG. The light emitting diode package structure 418 further includes a structural element 428 for supporting, encapsulating, or protecting the wavelength conversion layer 324. As shown, the structural component 428 has a receiving region 428a for receiving the wavelength converting layer 324 such that the upper and lower surfaces of the wavelength converting layer 324 are covered by the structural component 428. The structural component 428 is located on the top surface of the cup wall 322, thereby supporting the wavelength conversion layer 324 above the accommodating space 323 corresponding to the light emitting surface 302s of the LED array 302. The structural component 428 is preferably formed of a transparent material or a light transmissive material to avoid blocking light exiting the wavelength conversion layer 324. Structural element 428 can also have encapsulating material properties. For example, structural component 428 can comprise a material of quartz, glass, polymeric plastic. Alternatively, structural element 428 can be used to protect wavelength conversion layer 324 from foreign materials such as moisture or oxygen that can adversely affect its properties. In an embodiment, the structural element 428 may be a barrier film and/or a tantalum titanium oxide disposed on the surface of the wavelength conversion layer 324 to block foreign matter such as moisture or oxygen. The niobium titanium oxide may be a glass material such as SiTiO 4 which has light transmittance and oxidation resistance and may be coated or film-coated on the surface of the wavelength conversion layer 324. The material of the barrier film may include an inorganic material such as a metal oxide (such as SiO 2 , Al 2 O 3 , etc.) or a metal nitride (such as Si 3 N 3 , etc.), and may be a multilayer barrier film for coating or filming. The mode is disposed on the surface of the wavelength conversion layer 324. This concept can be applied to other embodiments, and the description will not be repeated later. The reflective wall 326 can be disposed around the outer sidewall of the structural member 428 and on the top surface of the cup wall 322.

第5圖繪示根據一實施例之發光二極體封裝結構518,其與第4圖發光二極體封裝結構418的差異在於,發光二極體封裝結構518更包括光學層530配置在反射牆326與結構元件428上。光學層530可用以調整光的出光路徑。舉例來說,光學層530可為含有擴散粒子的透明膠體,透明膠體可以是聚甲基丙烯酸甲脂(polymethyl methacrylate,PMMA)、乙烯對苯二甲酸酯(polyethylene terephthalate,PET)、聚苯乙烯(polystyrene,PS)、聚乙烯(polypropylene,PP)、尼龍(polyamide,PA)、聚碳酸酯(polycarbonate,PC)、聚亞醯胺(polyimide,PI)、聚二甲基矽氧烷(polydimethylsiloxane,PDMS)、環氧樹脂(epoxy)以及矽膠(silicone)等其中一種材料或是包含兩種以上材料的組合。擴散粒子可包括TiO2、SiO2、Al2O3、BN、ZnO等,擴散粒子可具有相同或不同 的粒徑。此概念亦可應用至其他實施例,之後不再重複說明。舉例來說,可應用在第3圖的發光二極體封裝結構318、第6圖的發光二極體封裝結構618、第10圖的發光二極體封裝結構1018等等,在波長轉換層324上設置一光學層530以調整光的出光路徑。 FIG. 5 illustrates a light emitting diode package structure 518 according to an embodiment, which differs from the light emitting diode package structure 418 of FIG. 4 in that the light emitting diode package structure 518 further includes an optical layer 530 disposed on the reflective wall. 326 and structural element 428. The optical layer 530 can be used to adjust the light exit path of the light. For example, the optical layer 530 may be a transparent colloid containing diffusing particles, and the transparent colloid may be polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polystyrene. (polystyrene, PS), polyethylene (polypropylene, PP), nylon (polyamide, PA), polycarbonate (polycarbonate, PC), polyimide (PI), polydimethylsiloxane (polydimethylsiloxane, One of materials such as PDMS), epoxy, and silicone or a combination of two or more materials. The diffusion particles may include TiO 2 , SiO 2 , Al 2 O 3 , BN, ZnO, etc., and the diffusion particles may have the same or different particle diameters. This concept can also be applied to other embodiments, and the description will not be repeated. For example, the light emitting diode package structure 318 of FIG. 3, the light emitting diode package structure 618 of FIG. 6, the light emitting diode package structure 1018 of FIG. 10, and the like may be applied to the wavelength conversion layer 324. An optical layer 530 is disposed to adjust the light exiting path of the light.

第6圖繪示根據一實施例之發光二極體封裝結構618,其與第3圖發光二極體封裝結構318的差異說明如下。發光二極體封裝結構618更包括結構元件628,具有一容置區628a用以容置且支撐波長轉換層324跨過發光二極體晶片302並設置在杯壁322上。此種位在波長轉換層324下表面的結構元件628較佳以透明材質或可透光材質形成,以避免阻擋波長轉換層324的出光,例如石英、玻璃、高分子塑料、或其它合適的材料,此概念可應用至其他實施例,且之後不再重複說明。 FIG. 6 illustrates a light emitting diode package structure 618 according to an embodiment, which is different from the light emitting diode package structure 318 of FIG. The LED package structure 618 further includes a structural component 628 having a receiving region 628a for receiving and supporting the wavelength conversion layer 324 across the LED substrate 302 and disposed on the cup wall 322. The structural component 628 located on the lower surface of the wavelength conversion layer 324 is preferably formed of a transparent material or a light transmissive material to avoid blocking the light output of the wavelength conversion layer 324, such as quartz, glass, polymer, or other suitable material. This concept can be applied to other embodiments, and the description will not be repeated later.

第7圖繪示根據一實施例之發光二極體封裝結構718,其與第3圖發光二極體封裝結構318的差異說明如下。發光二極體封裝結構718係省略第3圖所示的波長轉換層324與反射牆326,而包括波長轉換層724填滿在容置空間323中。波長轉換層724可包括透明膠體與波長轉換材料。透明膠體可用作封裝膠體,且波長轉換材料可摻雜在透明膠體中。波長轉換層724可覆蓋發光二極體晶片302,或可進一步覆蓋在基座320上。波長轉換層724的透明膠體可以是聚甲基丙烯酸甲脂(polymethyl methacrylate,PMMA)、乙烯對苯二甲酸酯(polyethylene terephthalate,PET)、聚苯乙烯(polystyrene,PS)、聚乙烯(polypropylene,PP)、尼龍(polyamide,PA)、聚碳酸酯(polycarbonate,PC)、聚亞醯胺(polyimide,PI)、聚二甲基矽氧烷(polydimethylsiloxane,PDMS)、環氧樹脂(epoxy)以及矽膠(silicone)等其中一種材料或是包含兩種以上材料的組合。 FIG. 7 illustrates a light emitting diode package structure 718 according to an embodiment, which is different from the light emitting diode package structure 318 of FIG. The light emitting diode package structure 718 omits the wavelength conversion layer 324 and the reflective wall 326 shown in FIG. 3, and includes the wavelength conversion layer 724 filled in the accommodating space 323. The wavelength conversion layer 724 can include a transparent colloid and a wavelength converting material. A transparent colloid can be used as the encapsulant, and the wavelength converting material can be doped in the transparent colloid. The wavelength conversion layer 724 can cover the LED array 302 or can be further overlying the pedestal 320. The transparent colloid of the wavelength conversion layer 724 may be polymethyl methacrylate (PMMA) or ethylene terephthalate (polyethylene). Terephthalate, PET), polystyrene (PS), polyethylene (polypropylene, PP), nylon (polyamide, PA), polycarbonate (polycarbonate, PC), polyimide (PI), poly One of materials such as polydimethylsiloxane (PDMS), epoxy, and silicone may contain a combination of two or more materials.

第8圖繪示根據一實施例之發光二極體封裝結構818,其與第7圖發光二極體封裝結構718的差異在於,發光二極體封裝結構818更包括結構元件628,跨過波長轉換層724而配置在杯壁322上,能用以保護波長轉換層724的波長轉換材料不受外界物質例如水氣或氧氣的損壞影響。實施例中,結構元件628可為阻障膜(barrier film)及/或矽鈦氧化物設置於波長轉換層724表面來阻隔水氣或氧氣等外界物質。矽鈦氧化物可如SiTiO4之類玻璃材料,其具有光穿透性與抗氧化性,可以塗佈或貼膜方式設置於波長轉換層724表面。阻障膜的材料可包括無機材料,例如金屬氧化物(如SiO2、Al2O3等)或金屬氮化物(如Si3N3等),且可以是多層阻障膜以塗佈或貼膜方式設置於波長轉換層724表面。 FIG. 8 illustrates a light emitting diode package structure 818 according to an embodiment, which differs from the light emitting diode package structure 718 of FIG. 7 in that the light emitting diode package structure 818 further includes a structural element 628 that spans the wavelength. The conversion layer 724 is disposed on the cup wall 322 to protect the wavelength conversion material of the wavelength conversion layer 724 from damage by foreign matter such as moisture or oxygen. In an embodiment, the structural element 628 may be a barrier film and/or a niobium titanium oxide disposed on the surface of the wavelength conversion layer 724 to block foreign matter such as moisture or oxygen. The niobium titanium oxide may be a glass material such as SiTiO 4 which has light transmittance and oxidation resistance and may be coated or film-coated on the surface of the wavelength conversion layer 724. The material of the barrier film may include an inorganic material such as a metal oxide (such as SiO 2 , Al 2 O 3 , etc.) or a metal nitride (such as Si 3 N 3 , etc.), and may be a multilayer barrier film for coating or filming. The mode is disposed on the surface of the wavelength conversion layer 724.

第9圖繪示根據一實施例之發光二極體封裝結構918,其包括基座320、發光二極體晶片302、波長轉換層324與反射牆326。發光二極體晶片302配置在基座320的固晶區上。波長轉換層324配置在發光二極體晶片302的出光面上。反射牆326配置在波長轉換層324的側壁上。發光二極體晶片302可透 過穿過波長轉換層324之開口(未顯示)的打線電性連接基座320。 FIG. 9 illustrates a light emitting diode package structure 918 including a pedestal 320 , a light emitting diode chip 302 , a wavelength conversion layer 324 , and a reflective wall 326 , according to an embodiment. The light emitting diode chip 302 is disposed on the die bonding region of the susceptor 320. The wavelength conversion layer 324 is disposed on the light-emitting surface of the light-emitting diode wafer 302. The reflective wall 326 is disposed on the sidewall of the wavelength conversion layer 324. The light emitting diode chip 302 can be transparent A wire passing through an opening (not shown) of the wavelength conversion layer 324 is electrically connected to the pedestal 320.

第10圖繪示根據一實施例之發光二極體封裝結構1018,其與第9圖發光二極體封裝結構918的差異說明如下。發光二極體封裝結構1018更包括光學層530配置在波長轉換層324與反射牆326上。發光二極體晶片302可透過穿過波長轉換層324與光學層530之開口(未顯示)的打線電性連接基座320。打線可穿出光學層530的上表面或側表面拉出。 FIG. 10 illustrates a light emitting diode package structure 1018 according to an embodiment, and the difference between the light emitting diode package structure 918 and the light emitting diode package structure 918 of FIG. 9 is as follows. The LED package 1018 further includes an optical layer 530 disposed on the wavelength conversion layer 324 and the reflective wall 326. The LED chip 302 can be electrically connected to the pedestal 320 through a wire that passes through the opening of the wavelength conversion layer 324 and the optical layer 530 (not shown). The wire can be pulled out through the upper surface or side surface of the optical layer 530.

第11圖繪示根據一實施例之發光二極體封裝結構1118,其包括發光二極體晶片302、波長轉換層324與反射牆326。反射牆326環繞著發光二極體晶片302的側壁且形成一間隔空間1134,反射牆326的高度高於發光二極體晶片302。波長轉換層324設置在反射牆326的頂面326s上,藉由間隔空間1134與發光二極體晶片302保持一距離,這可避免因太靠近發光二極體晶片302而影響波長轉換層324的熱穩定性及化學穩定性,能提高波長轉換層324的壽命並提升發光二極體封裝結構產品之信賴性,此概念將不再重複說明。 FIG. 11 illustrates a light emitting diode package structure 1118 including a light emitting diode chip 302, a wavelength conversion layer 324, and a reflective wall 326, in accordance with an embodiment. The reflective wall 326 surrounds the sidewall of the LED chip 302 and forms a spacer space 1134 having a higher height than the LED array 302. The wavelength conversion layer 324 is disposed on the top surface 326s of the reflective wall 326, and is separated from the LED substrate 302 by the spacing space 1134. This can avoid affecting the wavelength conversion layer 324 due to being too close to the LED substrate 302. The thermal stability and chemical stability can improve the lifetime of the wavelength conversion layer 324 and improve the reliability of the LED package structure. This concept will not be repeated.

第12圖繪示根據一實施例之發光二極體封裝結構1218,其與第11圖的發光二極體封裝結構1118差異在於,波長轉換層324設置在反射牆326的內側壁上。 FIG. 12 illustrates a light emitting diode package structure 1218 according to an embodiment, which differs from the light emitting diode package structure 1118 of FIG. 11 in that a wavelength conversion layer 324 is disposed on an inner sidewall of the reflective wall 326.

第13圖繪示根據一實施例之發光二極體封裝結構1318,其與第11圖的發光二極體封裝結構1118差異說明如下。 發光二極體封裝結構1318更包括結構元件428,其中波長轉換層324設置在結構元件428定義出的容置區428a中。結構元件428能用以支撐、封裝、或保護波長轉換層324。包覆波長轉換層324的結構元件428設置在反射牆326的頂面326s上,而以間隔空間1134隔開發光二極體晶片302。結構元件428較佳以透明材質或可透光材質形成,以避免阻擋波長轉換層324的出光,也可具有封裝材料性質,舉例來說,結構元件428可包括石英、玻璃、高分子塑料之材料。或者,結構元件428能用以保護波長轉換層324,阻隔水氣或氧氣等會對其性質造成負面影響的外界物質。實施例中,結構元件428可為阻障膜(barrier film)及/或矽鈦氧化物設置於波長轉換層324表面來阻隔水氣或氧氣等外界物質。矽鈦氧化物可如SiTiO4之類玻璃材料,其具有光穿透性與抗氧化性,可以塗佈或貼膜方式設置於波長轉換層324表面。阻障膜的材料可包括無機材料,例如金屬氧化物(如SiO2、Al2O3等)或金屬氮化物(如Si3N3等),且可以是多層阻障膜以塗佈或貼膜方式設置於波長轉換層324表面。 FIG. 13 illustrates a light emitting diode package structure 1318 according to an embodiment, which is different from the light emitting diode package structure 1118 of FIG. 11 as follows. The light emitting diode package structure 1318 further includes a structural element 428, wherein the wavelength conversion layer 324 is disposed in the receiving region 428a defined by the structural element 428. Structural element 428 can be used to support, encapsulate, or protect wavelength conversion layer 324. The structural elements 428 overlying the wavelength conversion layer 324 are disposed on the top surface 326s of the reflective wall 326, while the light emitting diode wafer 302 is spaced apart by a spacing space 1134. The structural component 428 is preferably formed of a transparent material or a light transmissive material to avoid blocking the light output of the wavelength conversion layer 324, and may also have packaging material properties. For example, the structural component 428 may include materials of quartz, glass, and polymer plastic. . Alternatively, structural element 428 can be used to protect wavelength conversion layer 324 from foreign materials such as moisture or oxygen that can adversely affect its properties. In an embodiment, the structural element 428 may be a barrier film and/or a tantalum titanium oxide disposed on the surface of the wavelength conversion layer 324 to block foreign matter such as moisture or oxygen. The niobium titanium oxide may be a glass material such as SiTiO 4 which has light transmittance and oxidation resistance and may be coated or film-coated on the surface of the wavelength conversion layer 324. The material of the barrier film may include an inorganic material such as a metal oxide (such as SiO 2 , Al 2 O 3 , etc.) or a metal nitride (such as Si 3 N 3 , etc.), and may be a multilayer barrier film for coating or filming. The mode is disposed on the surface of the wavelength conversion layer 324.

一實施例中,間隔空間1134可以是未被其它材料填充的空隙(empty space)。另一實施例中,間隔空間1134較佳以透明材質或可透光材質形成,以避免阻擋波長轉換層324的出光,例如石英、玻璃、高分子塑料、或其它合適的材料。 In one embodiment, the spacing space 1134 can be an empty space that is not filled with other materials. In another embodiment, the spacing space 1134 is preferably formed of a transparent material or a light transmissive material to avoid blocking light from the wavelength conversion layer 324, such as quartz, glass, polymer, or other suitable materials.

實施例中,發光二極體封裝結構318、418、518、618、718、818、918、1018、1118、1218或1318發出白光。發 光二極體晶片302可為藍色發光二極體晶片。波長轉換層324/波長轉換層724包含紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3與黃色螢光粉YAG:Ce,其中0.5b1;及/或,紅色全無機鈣鈦礦量子點的粒徑範圍為10nm至14nm。 In an embodiment, the light emitting diode package structure 318, 418, 518, 618, 718, 818, 918, 1018, 1118, 1218 or 1318 emits white light. The light emitting diode chip 302 can be a blue light emitting diode wafer. The wavelength conversion layer 324 / wavelength conversion layer 724 comprises a red all-inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 and a yellow phosphor YAG: Ce, wherein 0.5 b 1; and/or, the red all inorganic perovskite quantum dots have a particle size ranging from 10 nm to 14 nm.

實施例中,發光二極體封裝結構318、418、518、618、718、818、918、1018、1118、1218或1318發出白光。發光二極體晶片302可為藍色發光二極體晶片。波長轉換層324/波長轉換層724包含綠色全無機鈣鈦礦量子點CsPb(Br1-bIb)3與紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3,其中綠色全無機鈣鈦礦量子點的b參數範圍是0b<0.5,紅色全無機鈣鈦礦量子點的b參數範圍0.5b1;及/或,綠色全無機鈣鈦礦量子點的粒徑範圍為8nm至12nm,紅色全無機鈣鈦礦量子點的粒徑範圍為10nm至14nm。 In an embodiment, the light emitting diode package structure 318, 418, 518, 618, 718, 818, 918, 1018, 1118, 1218 or 1318 emits white light. The light emitting diode chip 302 can be a blue light emitting diode wafer. The wavelength conversion layer 324 / wavelength conversion layer 724 comprises a green all-inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 and a red all-inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 , wherein green The b-parameter range of the all-inorganic perovskite quantum dots is 0. b<0.5, b parameter range of red all inorganic perovskite quantum dots 0.5 b 1; and/or, the green all-inorganic perovskite quantum dots have a particle size ranging from 8 nm to 12 nm, and the red all-inorganic perovskite quantum dots have a particle size ranging from 10 nm to 14 nm.

實施例中,發光二極體封裝結構318、418、518、618、718、818、918、1018、1118、1218或1318發出白光,發光二極體晶片302可為紫外光發光二極體晶片。波長轉換層324/波長轉換層724包含藍色全無機鈣鈦礦量子點CsPb(ClaBr1-a)3、綠色全無機鈣鈦礦量子點CsPb(Br1-bIb)3、紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3,其中藍色全無機鈣鈦礦量子點的a參數範圍是0<a1,綠色全無機鈣鈦礦量子點的b參數範圍是0b<0.5,紅色全無機鈣鈦礦量子點的b參數範圍0.5b1;及/或,藍色全無機鈣鈦礦量子點的粒徑範圍為7nm至10nm,綠色全無機鈣鈦礦量子點的粒徑範圍為8nm至12nm,紅色全無機鈣鈦礦量子點的粒徑 範圍為10nm至14nm。 In an embodiment, the light emitting diode package structure 318, 418, 518, 618, 718, 818, 918, 1018, 1118, 1218 or 1318 emits white light, and the light emitting diode chip 302 may be an ultraviolet light emitting diode chip. The wavelength conversion layer 324 / wavelength conversion layer 724 comprises a blue all-inorganic perovskite quantum dot CsPb (Cl a Br 1-a ) 3 , a green all-inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 , red The all-inorganic perovskite quantum dot CsPb(Br 1-b I b ) 3 , wherein the a parameter range of the blue all-inorganic perovskite quantum dot is 0<a 1, the b parameter range of the green all-inorganic perovskite quantum dot is 0 b<0.5, b parameter range of red all inorganic perovskite quantum dots 0.5 b 1; and/or, the blue all-inorganic perovskite quantum dots have a particle size ranging from 7 nm to 10 nm, and the green all-inorganic perovskite quantum dots have a particle size ranging from 8 nm to 12 nm, and the red all-inorganic perovskite quantum dots The particle size ranges from 10 nm to 14 nm.

第14圖繪示根據一實施例之發光二極體封裝結構1418,其包括發光二極體晶片302、反射牆326與波長轉換層324。反射牆326設置在發光二極體晶片302的側表面上。波長轉換層324配置在發光二極體晶片302的上表面(出光面)上。波長轉換層324可包括性質不同的第一波長轉換層324A與第二波長轉換層324B。一實施例中,舉例來說,第一波長轉換層324A含有紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3,出光波長的波峰位置為570nm至700nm之間,第二波長轉換層324B含有綠色全無機鈣鈦礦量子點CsPb(Br1-bIb)3,出光波長的波峰位置為500nm至570nm之間,其中綠色全無機鈣鈦礦量子點的b參數範圍是0b<0.5,紅色全無機鈣鈦礦量子點的b參數範圍0.5b1;及/或,綠色全無機鈣鈦礦量子點為粒徑範圍8nm至12nm,紅色全無機鈣鈦礦量子點的粒徑範圍為10nm至14nm,但本揭露並不限於此。發光二極體晶片302可以覆晶的方式藉由其第一電極302a與第二電極302b電性連接在基座或電路板(未顯示)。 FIG. 14 illustrates a light emitting diode package structure 1418 including a light emitting diode chip 302, a reflective wall 326, and a wavelength conversion layer 324, in accordance with an embodiment. The reflective wall 326 is disposed on a side surface of the light emitting diode wafer 302. The wavelength conversion layer 324 is disposed on the upper surface (light-emitting surface) of the light-emitting diode wafer 302. The wavelength conversion layer 324 may include a first wavelength conversion layer 324A and a second wavelength conversion layer 324B of different properties. In one embodiment, for example, the first wavelength conversion layer 324A contains a red all-inorganic perovskite quantum dot CsPb(Br 1-b I b ) 3 , and the peak position of the light-emitting wavelength is between 570 nm and 700 nm, and the second wavelength The conversion layer 324B contains a green all-inorganic perovskite quantum dot CsPb(Br 1-b I b ) 3 , and the peak position of the light-emitting wavelength is between 500 nm and 570 nm, wherein the b-parameter range of the green all-inorganic perovskite quantum dot is 0. b<0.5, b parameter range of red all inorganic perovskite quantum dots 0.5 b 1; and/or, the green all-inorganic perovskite quantum dots have a particle size ranging from 8 nm to 12 nm, and the red all-inorganic perovskite quantum dots have a particle diameter ranging from 10 nm to 14 nm, but the disclosure is not limited thereto. The LED chip 302 can be electrically connected to the susceptor or the circuit board (not shown) by the first electrode 302a and the second electrode 302b.

第15圖繪示根據一實施例之發光二極體封裝結構1518,其包括基座320、發光二極體晶片302、波長轉換層724與反射牆326。反射牆326設置在基座320上並定義出容置空間1523。發光二極體晶片302配置在容置空間1523中,並以覆晶的方式電性連接基座320上的導電件1536。波長轉換層724填充在容置空間1523中,並與發光二極體晶片302接觸。 FIG. 15 illustrates a light emitting diode package structure 1518 including a pedestal 320, a light emitting diode chip 302, a wavelength conversion layer 724, and a reflective wall 326, in accordance with an embodiment. The reflective wall 326 is disposed on the pedestal 320 and defines an accommodating space 1523. The LED chip 302 is disposed in the accommodating space 1523 and electrically connected to the conductive member 1536 on the susceptor 320 in a flip chip manner. The wavelength conversion layer 724 is filled in the accommodating space 1523 and is in contact with the luminescent diode chip 302.

第16圖繪示根據一實施例之發光二極體封裝結構1618,其與第15圖的發光二極體封裝結構1518差異在於,發光二極體封裝結構1618更包括結構元件628配置在波長轉換層724與反射牆326上,用以封裝、保護波長轉換層724,避免波長轉換層724受到外界物質例如水氣或氧氣的影響而損壞。實施例中,結構元件628可為阻障膜(barrier film)及/或矽鈦氧化物設置於波長轉換層724表面來阻隔水氣或氧氣等外界物質。矽鈦氧化物可如SiTiO4之類玻璃材料,其具有光穿透性與抗氧化性,可以塗佈或貼膜方式設置於波長轉換層724與反射牆326的表面。阻障膜的材料可包括無機材料,例如金屬氧化物(如SiO2、Al2O3等)或金屬氮化物(如Si3N3等),且可以是多層阻障膜以塗佈或貼膜方式設置於波長轉換層724與反射牆326的表面。 FIG. 16 illustrates a light emitting diode package structure 1618 according to an embodiment, which differs from the light emitting diode package structure 1518 of FIG. 15 in that the light emitting diode package structure 1618 further includes a structural element 628 configured for wavelength conversion. The layer 724 and the reflective wall 326 are used to encapsulate and protect the wavelength conversion layer 724 to prevent the wavelength conversion layer 724 from being damaged by external substances such as moisture or oxygen. In an embodiment, the structural element 628 may be a barrier film and/or a niobium titanium oxide disposed on the surface of the wavelength conversion layer 724 to block foreign matter such as moisture or oxygen. The niobium titanium oxide may be a glass material such as SiTiO 4 which has light transmittance and oxidation resistance and may be applied to the surface of the wavelength conversion layer 724 and the reflection wall 326 by coating or filming. The material of the barrier film may include an inorganic material such as a metal oxide (such as SiO 2 , Al 2 O 3 , etc.) or a metal nitride (such as Si 3 N 3 , etc.), and may be a multilayer barrier film for coating or filming. The manner is disposed on the surface of the wavelength conversion layer 724 and the reflective wall 326.

實施例中,發光二極體封裝結構1518、1618發出白光。發光二極體晶片302可為藍色發光二極體晶片。波長轉換層724包含紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3與黃色螢光粉YAG:Ce,其中0.5b1;及/或,紅色全無機鈣鈦礦量子點的粒徑範圍為10nm至14nm。 In an embodiment, the LED package structures 1518, 1618 emit white light. The light emitting diode chip 302 can be a blue light emitting diode wafer. The wavelength conversion layer 724 comprises a red all-inorganic perovskite quantum dot CsPb(Br 1-b I b ) 3 and a yellow phosphor YAG:Ce, wherein 0.5 b 1; and/or, the red all inorganic perovskite quantum dots have a particle size ranging from 10 nm to 14 nm.

實施例中,發光二極體封裝結構1518、1618發出白光。發光二極體晶片302可為藍色發光二極體晶片。波長轉換層724包含綠色全無機鈣鈦礦量子點CsPb(Br1-bIb)3與紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3,其中綠色全無機鈣鈦礦量子點的b參數範圍是0b<0.5,紅色全無機鈣鈦礦量子點的b參數範圍 0.5b1;及/或,綠色全無機鈣鈦礦量子點的粒徑範圍為8nm至12nm,紅色全無機鈣鈦礦量子點的粒徑範圍為10nm至14nm。 In an embodiment, the LED package structures 1518, 1618 emit white light. The light emitting diode chip 302 can be a blue light emitting diode wafer. The wavelength conversion layer 724 comprises a green all-inorganic perovskite quantum dot CsPb(Br 1-b I b ) 3 and a red all-inorganic perovskite quantum dot CsPb(Br 1-b I b ) 3 , wherein the green all-inorganic perovskite The b parameter range of a quantum dot is 0. b<0.5, b parameter range of red all inorganic perovskite quantum dots 0.5 b 1; and/or, the green all-inorganic perovskite quantum dots have a particle size ranging from 8 nm to 12 nm, and the red all-inorganic perovskite quantum dots have a particle size ranging from 10 nm to 14 nm.

實施例中,發光二極體封裝結構1518、1618發出白光,發光二極體晶片302可為紫外光發光二極體晶片。波長轉換層724包含藍色全無機鈣鈦礦量子點CsPb(ClaBr1-a)3、綠色全無機鈣鈦礦量子點CsPb(Br1-bIb)3、紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3,其中藍色全無機鈣鈦礦量子點的a參數範圍是0<a1,綠色全無機鈣鈦礦量子點的b參數範圍是0b<0.5,紅色全無機鈣鈦礦量子點的b參數範圍0.5b1;及/或,藍色全無機鈣鈦礦量子點的粒徑範圍為7nm至10nm,綠色全無機鈣鈦礦量子點的粒徑範圍為8nm至12nm,紅色全無機鈣鈦礦量子點的粒徑範圍為10nm至14nm。 In an embodiment, the LED package structures 1518, 1618 emit white light, and the LED chip 302 can be an ultraviolet light emitting diode chip. The wavelength conversion layer 724 comprises a blue all-inorganic perovskite quantum dot CsPb (Cl a Br 1-a ) 3 , a green all-inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 , and a red all-inorganic perovskite The quantum dot CsPb(Br 1-b I b ) 3 , wherein the a parameter range of the blue all-inorganic perovskite quantum dot is 0<a 1, the b parameter range of the green all-inorganic perovskite quantum dot is 0 b<0.5, b parameter range of red all inorganic perovskite quantum dots 0.5 b 1; and/or, the blue all-inorganic perovskite quantum dots have a particle size ranging from 7 nm to 10 nm, and the green all-inorganic perovskite quantum dots have a particle size ranging from 8 nm to 12 nm, and the red all-inorganic perovskite quantum dots The particle size ranges from 10 nm to 14 nm.

第17圖繪示根據一實施例之發光二極體封裝結構1718,其包括基座320、發光二極體晶片302、波長轉換層324與透明膠體1737。發光二極體晶片302以覆晶的方式電性連接基座320。波長轉換層324配置在發光二極體晶片302的上表面與側表面上,並可延伸至基座320的上表面上。一實施例中,舉例來說,第一波長轉換層324A含有紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3,出光波長的波峰位置為570nm至700nm之間,第二波長轉換層324B含有綠色全無機鈣鈦礦量子點CsPb(Br1-bIb)3,出光波長的波峰位置為500nm至570nm之間,其中綠色全無機鈣鈦礦量子點的b參數範圍是0b<0.5,紅色全無機鈣鈦礦量子點 的b參數範圍0.5b1;及/或,綠色全無機鈣鈦礦量子點為粒徑範圍8nm至12nm,紅色全無機鈣鈦礦量子點的粒徑範圍為10nm至14nm,但本揭露並不限於此。透明膠體1737可用作封裝膠體,覆蓋波長轉換層324與基座320。 FIG. 17 illustrates a light emitting diode package structure 1718 including a pedestal 320, a light emitting diode chip 302, a wavelength conversion layer 324, and a transparent colloid 1737, in accordance with an embodiment. The LED chip 302 is electrically connected to the susceptor 320 in a flip chip manner. The wavelength conversion layer 324 is disposed on the upper surface and the side surface of the light emitting diode wafer 302 and may extend onto the upper surface of the susceptor 320. In one embodiment, for example, the first wavelength conversion layer 324A contains a red all-inorganic perovskite quantum dot CsPb(Br 1-b I b ) 3 , and the peak position of the light-emitting wavelength is between 570 nm and 700 nm, and the second wavelength The conversion layer 324B contains a green all-inorganic perovskite quantum dot CsPb(Br 1-b I b ) 3 , and the peak position of the light-emitting wavelength is between 500 nm and 570 nm, wherein the b-parameter range of the green all-inorganic perovskite quantum dot is 0. b<0.5, b parameter range of red all inorganic perovskite quantum dots 0.5 b 1; and/or, the green all-inorganic perovskite quantum dots have a particle size ranging from 8 nm to 12 nm, and the red all-inorganic perovskite quantum dots have a particle diameter ranging from 10 nm to 14 nm, but the disclosure is not limited thereto. The transparent colloid 1737 can be used as an encapsulant covering the wavelength conversion layer 324 and the pedestal 320.

第18圖繪示根據一實施例之應用在側光式背光模組1838。側光式背光模組1838包括框架1820、光源1822、導光板1842。光源1822包括一電路板1855位於框架1820上以及如第13圖所述之複數發光二極體封裝結構1318位在電路板1855上,其中發光二極體封裝結構1318之出光方向是面向導光板1842之一入光面1842a。框架1820具有反射片1840可助於發光二極體封裝結構1318射出的光線能集中往導光板1842,光線再經由導光板1842的出光面1842b往上方的光學層1830(或顯示面板)射出。光學層1830可例如包括光學層1830A、1830B、1830C、1830D。舉例來說,光學層1830A與1830D可為擴散片,光學層1830B、1830C可為增亮片。導光板1842的下方可配置反射片1844,以進一步將光線向上導往光學層1830A、1830B、1830C、1830D(或顯示面板,未顯示)。實施例之側光式背光模組並不限於使用如第13圖所述之發光二極體封裝結構1318,也可使用於此所揭露的其他發光二極體封裝結構。 FIG. 18 illustrates an application to the edge-lit backlight module 1838 according to an embodiment. The edge-lit backlight module 1838 includes a frame 1820, a light source 1822, and a light guide plate 1842. The light source 1822 includes a circuit board 1855 on the frame 1820 and a plurality of LED package structures 1318 as shown in FIG. 13 on the circuit board 1855. The light-emitting diode package structure 1318 has a light-emitting direction of the light guide plate 1842. One of the light entrances 1842a. The frame 1820 has a reflective sheet 1840. The light emitted from the LED package structure 1318 can be concentrated on the light guide plate 1842. The light is then emitted through the light-emitting surface 1842b of the light guide plate 1842 to the upper optical layer 1830 (or display panel). Optical layer 1830 can include, for example, optical layers 1830A, 1830B, 1830C, 1830D. For example, optical layers 1830A and 1830D can be diffusion sheets, and optical layers 1830B, 1830C can be brightness enhancing sheets. A reflective sheet 1844 can be disposed beneath the light guide plate 1842 to further direct light up to the optical layers 1830A, 1830B, 1830C, 1830D (or display panel, not shown). The edge-lit backlight module of the embodiment is not limited to the use of the light-emitting diode package structure 1318 as described in FIG. 13, and other light-emitting diode package structures disclosed herein may be used.

第19圖繪示根據一實施例之應用在直下式背光模組1938,其包括二次光學1946設置在發光二極體封裝結構1318上。發光二極體封裝結構1318的出光方向是面向光學層1830。 反射片1840可助於發光二極體封裝結構1318射出的光線能集中射往光學層1830(或顯示面板)。實施例之直下式背光模組並不限於使用如第13圖所述之發光二極體封裝結構1318,也可使用於此所揭露的其他發光二極體封裝結構。 FIG. 19 illustrates a direct-lit backlight module 1938 that includes a secondary optics 1946 disposed on the LED package structure 1318, in accordance with an embodiment. The light exiting direction of the light emitting diode package structure 1318 is toward the optical layer 1830. The reflective sheet 1840 can facilitate the concentrated emission of light from the LED package structure 1318 to the optical layer 1830 (or display panel). The direct type backlight module of the embodiment is not limited to the use of the light emitting diode package structure 1318 as described in FIG. 13, and other light emitting diode package structures disclosed herein may be used.

第20圖與第21圖分別繪示根據一實施例之發光二極體封裝結構2018的立體圖與透視圖。發光二極體封裝結構2018包括第一電極2048與第二電極2050用於與外部作電性連接,如連接在電路板2155的接墊2157上。如圖所示,第一電極2048與第二電極2050係具有L形狀,其直立部分2051係在基座320底部並裸露出基座320,連接直立部分2051的橫腳部分2053係嵌在杯壁322中並裸露出杯壁322。發光二極體晶片302的正、負電極可以打線的方式電性連接第一電極2048與第二電極2050的直立部分2051。波長轉換層724填充在由基座320、杯壁322所定義之容置空間323中。 20 and 21 are respectively a perspective view and a perspective view of a light emitting diode package structure 2018 according to an embodiment. The LED package structure 2018 includes a first electrode 2048 and a second electrode 2050 for electrically connecting to the outside, such as the pads 2157 of the circuit board 2155. As shown, the first electrode 2048 and the second electrode 2050 have an L shape, the upright portion 2051 is attached to the bottom of the base 320 and the base 320 is exposed, and the leg portion 2053 connecting the upright portion 2051 is embedded in the cup wall. The cup wall 322 is exposed in 322. The positive and negative electrodes of the LED chip 302 can be electrically connected to the first electrode 2048 and the upright portion 2051 of the second electrode 2050. The wavelength conversion layer 724 is filled in the accommodating space 323 defined by the susceptor 320 and the cup wall 322.

第22圖繪示根據一實施例之發光二極體封裝結構2218的立體圖,其與第20圖、第21圖所示之發光二極體封裝結構2018的差異為L形的第一電極2048與第二電極2050,其直立部分2051係延伸超出基座320與杯壁322,且其橫腳部分2053係連接直立部分2051並且往背向杯壁322的方向延伸而電性連接電路板2155的接墊2157。 FIG. 22 is a perspective view of a light emitting diode package structure 2218 according to an embodiment, which is different from the light emitting diode package structure 2018 shown in FIG. 20 and FIG. 21 by an L-shaped first electrode 2048 and The second electrode 2050 has an upright portion 2051 extending beyond the base 320 and the cup wall 322, and the leg portion 2053 is connected to the upright portion 2051 and extends in a direction away from the cup wall 322 to electrically connect the circuit board 2155. Pad 2157.

一些實施例中,第20圖及第21圖的發光二極體封裝結構2018、第22圖的發光二極體封裝結構2218,其基座320 與杯壁322為透明材質所構成,因此發光二極體晶片302發出的光線能從發光面直接(未被不透光材質阻擋或經反射材質反射)射出發光二極體封裝結構2018、2218,例如光線能以垂直於基座320的方向往上、下兩面射出,而廣角(例如大於180度)出光。 In some embodiments, the LED package structure 2018 of FIGS. 20 and 21, and the LED package structure 2218 of FIG. 22 have a pedestal 320 The cup wall 322 is made of a transparent material. Therefore, the light emitted by the LED chip 302 can be directly emitted from the light emitting surface (not blocked by the opaque material or reflected by the reflective material) to emit the LED package structures 2018 and 2218. For example, light can be emitted upward and downward in a direction perpendicular to the pedestal 320, and light can be emitted at a wide angle (for example, greater than 180 degrees).

第23圖至第26圖繪示根據一實施例之發光裝置的製造方法。 23 to 26 illustrate a method of fabricating a light emitting device according to an embodiment.

請參照第23圖,圖案化導電板2352,以在導電板2352形成互相分開的數個導電條2354。可以蝕刻的方式對導電板2352進行圖案化步驟。然後,配置發光二極體封裝結構2318在導電板2352上,其中發光二極體封裝結構2318的第一電極與第二電極(未繪示)對應導電條2354,使得發光二極體封裝結構2318電性連接導電板2352。一實施例中,可進行回焊(reflow)製程將第一電極與第二電極接合至不同的導電條2354。然後,對導電板2352進行切割步驟,以得到如第24圖所示之插件式發光單元2456。一實施例中,可以沖壓(punch)的方式進行切割。 Referring to FIG. 23, the conductive plate 2352 is patterned to form a plurality of conductive strips 2354 separated from each other at the conductive plate 2352. The conductive plate 2352 can be patterned in a etched manner. Then, the light emitting diode package structure 2318 is disposed on the conductive plate 2352, wherein the first electrode and the second electrode (not shown) of the light emitting diode package structure 2318 correspond to the conductive strip 2354, so that the light emitting diode package structure 2318 The conductive plate 2352 is electrically connected. In one embodiment, a reflow process can be performed to bond the first electrode and the second electrode to different conductive strips 2354. Then, the conductive plate 2352 is subjected to a cutting step to obtain a plug-in type light-emitting unit 2456 as shown in Fig. 24. In one embodiment, the cutting can be performed in a punch manner.

請參照第25圖,然後,將插件式發光單元2456插設於電路板2555上,以得到具發光燈條型態的發光裝置2538。插件式發光單元2456可藉由作為第一電極與第二電極的導電條2354電性連接至電路板2555。一實施例中,電路板2555具有驅動電路,能用以提供插件式發光單元2456作用所需的電力。 Referring to FIG. 25, the plug-in type light-emitting unit 2456 is then inserted on the circuit board 2555 to obtain a light-emitting device 2538 having a light-emitting strip type. The plug-in type light emitting unit 2456 can be electrically connected to the circuit board 2555 by the conductive strips 2354 as the first electrodes and the second electrodes. In one embodiment, the circuit board 2555 has a drive circuit that can be used to provide the power required for the plug-in illumination unit 2456 to function.

請參照第26圖,將具發光燈條型態的發光裝置2538配置在散熱器2660上,並設置燈殼2658罩住發光裝置2538,而 得到具燈管結構的發光裝置2638。 Referring to FIG. 26, the light-emitting device 2538 having the light-emitting strip type is disposed on the heat sink 2660, and the lamp housing 2658 is disposed to cover the light-emitting device 2538. A light-emitting device 2638 having a lamp structure is obtained.

實施例中,發光二極體封裝結構2318可例如應用第3圖至第17圖所述的發光二極體封裝結構318、418、518、618、718、818、918、1018、1118、1218、1318、1418、1518、1618、1718。一些實施例中,發光二極體封裝結構2318係應用第3圖至第8圖的發光二極體封裝結構318、418、518、618、718、818,其中基座320與杯壁322為透明材質所構成,因此發光二極體晶片302發出的光線能從發光面直接(未被不透光材質阻擋或經反射材質反射)射出發光二極體封裝結構318、418、518、618、718、818、2318,例如光線能以垂直於基座320的方向往上、下兩面射出,而廣角(例如大於180度)出光。 In an embodiment, the LED package structure 2318 can apply, for example, the LED package structures 318, 418, 518, 618, 718, 818, 918, 1018, 1118, 1218, as described in FIGS. 3 to 17 . 1318, 1418, 1518, 1618, 1718. In some embodiments, the LED package structure 2318 applies the LED package structures 318, 418, 518, 618, 718, 818 of FIGS. 3 to 8 in which the pedestal 320 and the cup wall 322 are transparent. The light is formed by the material, so that the light emitted by the LED chip 302 can be directly emitted from the light emitting surface (not blocked by the opaque material or reflected by the reflective material) to emit the LED package structure 318, 418, 518, 618, 718, 818, 2318, for example, light can be emitted upward and downward in a direction perpendicular to the pedestal 320, and a wide angle (for example, greater than 180 degrees) is emitted.

一些實施例中,發光二極體封裝結構2318/插件式發光單元2456發出白光。發光二極體晶片302可為藍色發光二極體晶片,波長轉換材料包含紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3與黃色螢光粉YAG:Ce,其中0.5b1。及/或,紅色全無機鈣鈦礦量子點的粒徑範圍為10nm至14nm。 In some embodiments, the LED package 2318/plug-in lighting unit 2456 emits white light. The light emitting diode chip 302 can be a blue light emitting diode wafer, and the wavelength converting material comprises red all inorganic perovskite quantum dots CsPb(Br 1-b I b ) 3 and yellow fluorescent powder YAG:Ce, wherein 0.5 b 1. And/or, the red all inorganic perovskite quantum dots have a particle size ranging from 10 nm to 14 nm.

實施例中,發光二極體封裝結構2318/插件式發光單元2456發出白光。發光二極體晶片302可為藍色發光二極體晶片,波長轉換材料包含綠色全無機鈣鈦礦量子點CsPb(Br1-bIb)3與紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3,其中綠色全無機鈣鈦礦量子點的b參數範圍是0b<0.5,紅色全無機鈣鈦礦量子點的b參數範圍0.5b1。及/或,綠色全無機鈣鈦礦量子點的粒徑範圍 為8nm至12nm,紅色全無機鈣鈦礦量子點的粒徑範圍為10nm至14nm。 In an embodiment, the light emitting diode package structure 2318/plug-in light emitting unit 2456 emits white light. The light-emitting diode chip 302 can be a blue light-emitting diode wafer, and the wavelength conversion material comprises a green all-inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 and a red all-inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 , wherein the b parameter range of the green all-inorganic perovskite quantum dot is 0 b<0.5, b parameter range of red all inorganic perovskite quantum dots 0.5 b 1. And/or, the green all-inorganic perovskite quantum dots have a particle size ranging from 8 nm to 12 nm, and the red all-inorganic perovskite quantum dots have a particle size ranging from 10 nm to 14 nm.

實施例中,發光二極體封裝結構2318/插件式發光單元2456發出白光。發光二極體晶片302可為紫外光發光二極體晶片,波長轉換材料包含藍色全無機鈣鈦礦量子點CsPb(ClaBr1-a)3、綠色全無機鈣鈦礦量子點CsPb(Br1-bIb)3、紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3。其中藍色全無機鈣鈦礦量子點的a參數範圍是0<a1、綠色全無機鈣鈦礦量子點的b參數範圍是0b<0.5,紅色全無機鈣鈦礦量子點的b參數範圍0.5b1。及/或,藍色全無機鈣鈦礦量子點的粒徑範圍為7nm至10nm,綠色全無機鈣鈦礦量子點的粒徑範圍為8nm至12nm,紅色全無機鈣鈦礦量子點的粒徑範圍為10nm至14nm。 In an embodiment, the light emitting diode package structure 2318/plug-in light emitting unit 2456 emits white light. The light emitting diode chip 302 can be an ultraviolet light emitting diode chip, and the wavelength converting material comprises a blue all-inorganic perovskite quantum dot CsPb (Cl a Br 1-a ) 3 , and a green all-inorganic perovskite quantum dot CsPb ( Br 1-b I b ) 3 , red all inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 . The a parameter range of the blue all-inorganic perovskite quantum dot is 0<a 1. The b parameter range of the green all-inorganic perovskite quantum dot is 0. b<0.5, b parameter range of red all inorganic perovskite quantum dots 0.5 b 1. And/or, the blue all-inorganic perovskite quantum dots have a particle size ranging from 7 nm to 10 nm, and the green all-inorganic perovskite quantum dots have a particle size ranging from 8 nm to 12 nm, and the particle size of the red all-inorganic perovskite quantum dots The range is from 10 nm to 14 nm.

第27圖繪示根據一實施例之插件式發光單元2756。插件式發光單元2756包括發光二極體晶片302、基座2761、第一電極插腳2766及第二電極插腳2768。基座2761包括第一基板2762、第二基板2764與絕緣層2774。絕緣層2774配置在第一基板2762與第二基板2764之間,以電性隔離第一基板2762與第二基板2764。發光二極體晶片302配置在用作固晶板之基座2761內的固晶區上,其中,發光二極體晶片302係跨過絕緣層2774並且以覆晶方式配置在第一基板2762與第二基板2764上,且發光二極體晶片302的正、負電極電性連接第一基板2762與第二基板2764上的第一接觸墊2770與第二接觸墊2772,藉此電性連 接分別從第一基板2762與第二基板2764延伸的第一電極插腳2766及第二電極插腳2768。發光二極體晶片302可藉由焊料(未顯示)電性連接第一接觸墊2770與第二接觸墊2772。 FIG. 27 illustrates a plug-in lighting unit 2756 in accordance with an embodiment. The plug-in type light emitting unit 2756 includes a light emitting diode chip 302, a base 2761, a first electrode pin 2766, and a second electrode pin 2768. The susceptor 2761 includes a first substrate 2762, a second substrate 2764, and an insulating layer 2774. The insulating layer 2774 is disposed between the first substrate 2762 and the second substrate 2764 to electrically isolate the first substrate 2762 and the second substrate 2764. The LED chip 302 is disposed on a die attach region in the susceptor 2761 serving as a die plate, wherein the LED chip 302 is disposed across the insulating layer 2774 and is flip-chip disposed on the first substrate 2762 and On the second substrate 2764, the positive and negative electrodes of the LED substrate 302 are electrically connected to the first contact pad 2770 and the second contact pad 2772 on the first substrate 2762 and the second substrate 2764, thereby electrically connecting First electrode pins 2766 and second electrode pins 2768 extending from the first substrate 2762 and the second substrate 2764, respectively. The LED chip 302 can be electrically connected to the first contact pad 2770 and the second contact pad 2772 by solder (not shown).

第28圖繪示根據另一實施例之插件式發光單元2856。插件式發光單元2856包括透明膠體2837與如第27圖所述的插件式發光單元2756。透明膠體2837包覆整個發光二極體晶片302與基座2761,並包覆部分第一電極插腳2766及第二電極插腳2768。 FIG. 28 illustrates a plug-in lighting unit 2856 in accordance with another embodiment. The plug-in lighting unit 2856 includes a transparent colloid 2837 and a plug-in lighting unit 2756 as described in FIG. The transparent colloid 2837 covers the entire LED chip 302 and the pedestal 2761 and covers a portion of the first electrode pin 2766 and the second electrode pin 2768.

第29圖繪示根據又另一實施例之插件式發光單元2956,其與第28圖所示之插件式發光單元2856的主要差異在於,透明膠體2837包覆整個發光二極體晶片302,並包覆基座2761之與發光二極體晶片302相同側的部分表面,而未包覆第一電極插腳2766及第二電極插腳2768。 FIG. 29 illustrates a plug-in type light-emitting unit 2956 according to still another embodiment, which differs from the plug-in type light-emitting unit 2856 shown in FIG. 28 in that a transparent colloid 2837 covers the entire LED chip 302, and A portion of the surface of the pedestal 2761 on the same side as the illuminating diode chip 302 is covered, and the first electrode pin 2766 and the second electrode pin 2768 are not covered.

實施例中,插件式發光單元2856或2956可包括波長轉換材料摻雜於透明膠體2837中,或含有波長轉換材料的波長轉換層設置於發光二極體晶片302的表面。實施例中,透明膠體2837可為任何具透光性的高分子膠材,例如,PMMA、PET、PEN、PS、PP、PA、PC、PI、PDMS、Epoxy、silicone或其他合適的材料,或上述之組合。透明膠體2837可視實際需求摻雜其他物質以調整出光性質。例如可摻雜擴散粒子以改變出光路徑。擴散粒子可包括TiO2、SiO2、Al2O3、BN、ZnO等,可具有相同或不同的粒徑。 In an embodiment, the plug-in lighting unit 2856 or 2956 may include a wavelength converting material doped in the transparent colloid 2837, or a wavelength converting layer containing a wavelength converting material disposed on the surface of the LED wafer 302. In an embodiment, the transparent colloid 2837 can be any translucent polymer glue, such as PMMA, PET, PEN, PS, PP, PA, PC, PI, PDMS, Epoxy, silicone or other suitable materials, or Combination of the above. The transparent colloid 2837 can be doped with other substances according to actual needs to adjust the light properties. For example, diffusion particles can be doped to change the light path. The diffusion particles may include TiO 2 , SiO 2 , Al 2 O 3 , BN, ZnO, etc., and may have the same or different particle diameters.

第30圖繪示根據一實施例之發光裝置3038。球燈泡型的態發光裝置3038包括如第29圖所示之插件式發光單元2956、殼體3076、透明燈罩3078與電路板3080。插件式發光單元2956插設於電路板3080,並電性連接電路板3080,藉此電性連接至電路板3080的驅動電路3082。插件式發光單元2956連同電路板3080設置在由相連之殼體3076與透明燈罩3078所定義出的容置空間中。 FIG. 30 illustrates a light emitting device 3038 in accordance with an embodiment. The bulb type illumination device 3038 includes a plug-in type illumination unit 2956, a housing 3076, a transparent cover 3078, and a circuit board 3080 as shown in FIG. The plug-in type light-emitting unit 2956 is inserted into the circuit board 3080 and electrically connected to the circuit board 3080, thereby being electrically connected to the driving circuit 3082 of the circuit board 3080. The plug-in lighting unit 2956, along with the circuit board 3080, is disposed in an accommodation space defined by the associated housing 3076 and the transparent shade 3078.

此揭露所述的透明膠體可為任何具透光性的高分子膠材,例如,PMMA、PET、PEN、PS、PP、PA、PC、PI、PDMS、Epoxy、silicone或其他合適的材料,或上述之組合。 The transparent colloid disclosed in the disclosure may be any translucent polymer glue, for example, PMMA, PET, PEN, PS, PP, PA, PC, PI, PDMS, Epoxy, silicone or other suitable materials, or Combination of the above.

透明膠體可視實際需求摻雜其他物質以調整出光性質。例如可摻雜擴散粒子以改變出光路徑。擴散粒子可包括TiO2、SiO2、Al2O3、BN、ZnO等,可具有相同或不同的粒徑。 The transparent colloid can be doped with other substances according to actual needs to adjust the light properties. For example, diffusion particles can be doped to change the light path. The diffusion particles may include TiO 2 , SiO 2 , Al 2 O 3 , BN, ZnO, etc., and may have the same or different particle diameters.

實施例之發光裝置並不限於以上所述的範例,也可包括其他種設計的發光二極體封裝結構、應用於顯示裝置的發光模組例如背光模組或前光模組、或照明裝置例如燈管、燈泡,或可具有其他型態結構。 The illuminating device of the embodiment is not limited to the above examples, and may also include other types of illuminating diode package structures, illuminating modules applied to display devices such as backlight modules or front light modules, or lighting devices. The lamp, bulb, or other type of structure.

單一個發光二極體封裝結構單元並不限於使用單一個發光二極體晶片,也可使用二或更多個相同或不同發光顏色/波長的發光二極體晶片。 A single light-emitting diode package structure unit is not limited to the use of a single light-emitting diode wafer, and two or more light-emitting diode chips of the same or different light-emitting colors/wavelengths may be used.

實施例中,發光二極體封裝結構2018、2218以及插件式發光單元2856、2956發出白光。發光二極體晶片302可為 藍色發光二極體晶片,波長轉換材料包含紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3與黃色螢光粉YAG:Ce,其中0.5b1。及/或,紅色全無機鈣鈦礦量子點的粒徑範圍為10nm至14nm。 In an embodiment, the LED package structures 2018, 2218 and the plug-in lighting units 2856, 2956 emit white light. The light emitting diode chip 302 can be a blue light emitting diode wafer, and the wavelength converting material comprises red all inorganic perovskite quantum dots CsPb(Br 1-b I b ) 3 and yellow fluorescent powder YAG:Ce, wherein 0.5 b 1. And/or, the red all inorganic perovskite quantum dots have a particle size ranging from 10 nm to 14 nm.

實施例中,發光二極體封裝結構2018、2218以及插件式發光單元2856、2956發出白光。發光二極體晶片302可為藍色發光二極體晶片,波長轉換材料包含綠色全無機鈣鈦礦量子點CsPb(Br1-bIb)3與紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3,其中綠色全無機鈣鈦礦量子點的b參數範圍是0b<0.5,紅色全無機鈣鈦礦量子點的b參數範圍0.5b1。及/或,綠色全無機鈣鈦礦量子點的粒徑範圍為8nm至12nm,紅色全無機鈣鈦礦量子點的粒徑範圍為10nm至14nm。 In an embodiment, the LED package structures 2018, 2218 and the plug-in lighting units 2856, 2956 emit white light. The light-emitting diode chip 302 can be a blue light-emitting diode wafer, and the wavelength conversion material comprises a green all-inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 and a red all-inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 , wherein the b parameter range of the green all-inorganic perovskite quantum dot is 0 b<0.5, b parameter range of red all inorganic perovskite quantum dots 0.5 b 1. And/or, the green all-inorganic perovskite quantum dots have a particle size ranging from 8 nm to 12 nm, and the red all-inorganic perovskite quantum dots have a particle size ranging from 10 nm to 14 nm.

實施例中,發光二極體封裝結構2018、2218以及插件式發光單元2856、2956發出白光。發光二極體晶片302可為紫外光發光二極體晶片,波長轉換材料包含藍色全無機鈣鈦礦量子點CsPb(ClaBr1-a)3、綠色全無機鈣鈦礦量子點CsPb(Br1-bIb)3、紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3。其中藍色全無機鈣鈦礦量子點的a參數範圍是0<a1、綠色全無機鈣鈦礦量子點的b參數範圍是0b<0.5,紅色全無機鈣鈦礦量子點的b參數範圍0.5b1。及/或,藍色全無機鈣鈦礦量子點的粒徑範圍為7nm至10nm,綠色全無機鈣鈦礦量子點的粒徑範圍為8nm至12nm,紅色全無機鈣鈦礦量子點的粒徑範圍為10nm至14nm。 In an embodiment, the LED package structures 2018, 2218 and the plug-in lighting units 2856, 2956 emit white light. The light emitting diode chip 302 can be an ultraviolet light emitting diode chip, and the wavelength converting material comprises a blue all-inorganic perovskite quantum dot CsPb (Cl a Br 1-a ) 3 , and a green all-inorganic perovskite quantum dot CsPb ( Br 1-b I b ) 3 , red all inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 . The a parameter range of the blue all-inorganic perovskite quantum dot is 0<a 1. The b parameter range of the green all-inorganic perovskite quantum dot is 0. b<0.5, b parameter range of red all inorganic perovskite quantum dots 0.5 b 1. And/or, the blue all-inorganic perovskite quantum dots have a particle size ranging from 7 nm to 10 nm, and the green all-inorganic perovskite quantum dots have a particle size ranging from 8 nm to 12 nm, and the particle size of the red all-inorganic perovskite quantum dots The range is from 10 nm to 14 nm.

實施例中,包括全無機鈣鈦礦量子點的波長轉換材 料亦可應用至尺寸微縮化的發光裝置,例如微型發光二極體(Micro LED)比一般發光二極體尺寸更小。 In an embodiment, a wavelength conversion material comprising all inorganic perovskite quantum dots The material can also be applied to a light-emitting device that is miniaturized in size, for example, a miniature light-emitting diode (Micro LED) is smaller in size than a general light-emitting diode.

舉例來說,請同時參閱第31圖與第32圖,其分別繪示根據一實施例之發光裝置的立體圖與剖面圖。實施例中,發光裝置3184可為一微型化發光二極體裝置,包括一發光二極體晶片3102、數個波長轉換層3124以及數個間隔層S。發光二極體晶片3102包括互為相反側的表面3102S1與表面3102S2,其中表面3102S1是發光二極體晶片3102的出光面。這些波長轉換層3124位在發光二極體晶片3102的出光側,更詳細地說,此等波長轉換層3124間隔配置在發光二極體晶片3102之表面3102S1。這些間隔層S位於發光二極體晶片3102的表面3102S1上且間隔配置在這些波長轉換層3124之間。 For example, please refer to FIG. 31 and FIG. 32 simultaneously, which respectively show a perspective view and a cross-sectional view of a light emitting device according to an embodiment. In an embodiment, the light-emitting device 3184 can be a miniaturized light-emitting diode device, including a light-emitting diode chip 3102, a plurality of wavelength conversion layers 3124, and a plurality of spacer layers S. The light-emitting diode wafer 3102 includes surfaces 3102S1 and 3102S2 on opposite sides of each other, wherein the surface 3102S1 is a light-emitting surface of the light-emitting diode wafer 3102. These wavelength conversion layers 3124 are located on the light-emitting side of the light-emitting diode wafer 3102. More specifically, the wavelength conversion layers 3124 are spaced apart from the surface 3102S1 of the light-emitting diode wafer 3102. These spacer layers S are located on the surface 3102S1 of the light-emitting diode wafer 3102 and are disposed between the wavelength conversion layers 3124 at intervals.

一實施例中,發光二極體晶片3102為垂直式發光二極體晶片,包括第一電極3214與第二電極3216,分別位在表面3102S1與表面3102S2上。發光二極體晶片3102的出光側與第一電極3214位在相同側。 In one embodiment, the LED chip 3102 is a vertical LED chip, including a first electrode 3214 and a second electrode 3216, which are respectively disposed on the surface 3102S1 and the surface 3102S2. The light-emitting side of the light-emitting diode wafer 3102 is located on the same side as the first electrode 3214.

一實施例中,波長轉換層3124至少包括波長轉換層3124R、3124G、3124B,其可被發光二極體晶片3102激發分別分出紅光、綠光、藍光。於此組態可做為一畫素配置應用於顯示器中,其中不同波長轉換層3124可分為不同次畫素,即對應紅色次畫素的波長轉換層3124R、對應綠色次畫素的波長轉換層3124G及對應藍色次畫素的波長轉換層3124B。 In one embodiment, the wavelength conversion layer 3124 includes at least a wavelength conversion layer 3124R, 3124G, 3124B that can be excited by the LED chip 3102 to separate red, green, and blue light, respectively. The configuration can be applied to the display as a pixel configuration, wherein the different wavelength conversion layers 3124 can be divided into different sub-pixels, that is, the wavelength conversion layer 3124R corresponding to the red sub-pixel, and the wavelength conversion corresponding to the green sub-pixel. Layer 3124G and wavelength conversion layer 3124B corresponding to blue sub-pixels.

實施例中,波長轉換層3124更包括一對應白色次畫素的波長轉換層3124W,也透過間隔層S與波長轉換層3124R、3124G、3124B隔開配置在發光二極體晶片3102的表面3102S1上。 In an embodiment, the wavelength conversion layer 3124 further includes a wavelength conversion layer 3124W corresponding to the white sub-pixel, and is also disposed on the surface 3102S1 of the LED substrate 3102 through the spacer layer S and the wavelength conversion layers 3124R, 3124G, and 3124B. .

畫素至少包括紅色次畫素、綠色次畫素及藍色次畫素,也能根據設計配置白色次畫素。畫素或次畫素能以陣列的方式排列。 The pixels include at least a red sub-pixel, a green sub-pixel, and a blue sub-pixel, and the white sub-pixel can also be configured according to the design. The pixels or sub-pixels can be arranged in an array.

實施例中,間隔層S的材質可包括吸收光物質或反射光物質,能避免對應不同顏色之次畫素的光線彼此影響,以提高顯示器的顯示效果。吸收光物質可包括例如黑膠等。反射光物質可包括例如白膠等。 In the embodiment, the material of the spacer layer S may include an absorbing or reflecting light material, which can prevent the light corresponding to the sub-pixels of different colors from affecting each other to improve the display effect of the display. The light absorbing material may include, for example, black glue or the like. The light-reflecting substance may include, for example, white glue or the like.

此外,第一電極3214可包括分別對應紅色次畫素、綠色次畫素、藍色次畫素及白色次畫素的第一電極3214R、3214G、3214B、3214W。第二電極3216可為紅色次畫素、綠色次畫素、藍色次畫素及白色次畫素的共用電極,其他實施例中也可類似第一電極3214配置為對應不同色之次畫素的分開電極。透過分開控制的電極,不同色之次畫素可定址、單獨驅動點亮。 In addition, the first electrode 3214 may include first electrodes 3214R, 3214G, 3214B, and 3214W corresponding to the red sub-pixel, the green sub-pixel, the blue sub-pixel, and the white sub-pixel, respectively. The second electrode 3216 may be a common electrode of a red sub-pixel, a green sub-pixel, a blue sub-pixel, and a white sub-pixel. In other embodiments, the first electrode 3214 may be configured to correspond to a sub-pixel of different colors. Separate electrodes. Through the separately controlled electrodes, the sub-pixels of different colors can be addressed and individually driven to illuminate.

實施例中,舉例來說,發光二極體晶片3102可為紫外光發光二極體晶片,發射出第一光線的波長為200nm至400nm。或發光二極體晶片3102可為藍光發光二極體晶片,發射出第一光線的波長為430nm至480nm。 In an embodiment, for example, the LED chip 3102 can be an ultraviolet light emitting diode chip, and the first light is emitted at a wavelength of 200 nm to 400 nm. Or the light emitting diode chip 3102 can be a blue light emitting diode chip, and emit a first light having a wavelength of 430 nm to 480 nm.

實施例中,對應紅色次畫素的波長轉換層3124R的 波長轉換材料可包括紅色全無機鈣鈦礦量子點CsPb(Br1-bIb)3,0.5b1,及/或粒徑範圍為10nm至14nm。對應綠色次畫素的波長轉換層3124G的波長轉換材料可包括綠色全無機鈣鈦礦量子點CsPb(Br1-bIb)3,0b<0.5,及/或粒徑範圍為8nm至12nm。對應藍色次畫素的波長轉換層3124B的波長轉換材料可包括藍色全無機鈣鈦礦量子點CsPb(ClaBr1-a)3,其中0<a1及/或粒徑範圍為7nm至10nm,及/或藍色螢光粉。波長轉換材料可摻雜在透光基材中。 In an embodiment, the wavelength converting material corresponding to the wavelength conversion layer 3124R of the red sub-pixel may include a red all-inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 , 0.5 b 1, and / or particle size ranging from 10 nm to 14 nm. The wavelength converting material corresponding to the wavelength conversion layer 3124G of the green sub-pixel may include a green all-inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 ,0 b < 0.5, and / or particle size ranging from 8 nm to 12 nm. The wavelength converting material corresponding to the wavelength conversion layer 3124B of the blue sub-pixel may include a blue all-inorganic perovskite quantum dot CsPb(Cl a Br 1-a ) 3 , where 0<a 1 and/or particle size ranges from 7 nm to 10 nm, and/or blue phosphor powder. The wavelength converting material can be doped in the light transmissive substrate.

此外,在發光二極體晶片3102為藍色發光二極體晶片的例子中,對應藍色次畫素的波長轉換層3124B可為透明的基材,直接由發光二極體晶片3102提供對應藍色次畫素的藍色光線。對應白色次畫素的波長轉換層3124W可包括黃色螢光粉,例如YAG:Ce,其可受發光二極體晶片3102發出之部分第一光線(藍光,波長可為430nm至480nm)激發出黃光,黃光與剩餘藍光混合而發出白光。 In addition, in the example in which the LED device 3102 is a blue light-emitting diode wafer, the wavelength conversion layer 3124B corresponding to the blue sub-pixel can be a transparent substrate, and the corresponding blue light is directly provided by the LED chip 3102. The blue light of the color sub-pixel. The wavelength conversion layer 3124W corresponding to the white sub-pixel may include a yellow phosphor, such as YAG:Ce, which may be excited by a portion of the first light (blue light, wavelength 430 nm to 480 nm) emitted by the LED chip 3102. Light, yellow light mixed with the remaining blue light to emit white light.

實施例中,如第31圖及第32圖所示的微型發光二極體可應用至微型發光二極體顯示器(Micro LED display)。與一般的發光二極體技術相比,微型發光二極體尺寸小,且畫素間距係從毫米級降至微米級,因此能在一個積體電路晶片上形成高密度且尺寸微小的發光二極體陣列,且色彩更容易準確的調試,有更長的發光壽命和更高的亮度以及具有較佳的材料穩定性、壽命長、無影像烙印等優點。此技術之優點尚能利用發光二極體高效率、高亮度、高可靠度及反應時間快等特點,並且具自發光無需 背光源的特性,更具節能、機構簡易、體積小、薄型等優勢。此外,微型發光二極體技術能達高解析度。 In the embodiment, the micro LEDs as shown in FIGS. 31 and 32 can be applied to a micro LED display. Compared with the general light-emitting diode technology, the miniature light-emitting diode has a small size and the pixel pitch is reduced from millimeter to micrometer, so that a high-density and small-sized light-emitting light can be formed on one integrated circuit wafer. The polar body array, and the color is easier to accurately debug, has a longer luminous life and higher brightness, and has better material stability, long life, no image imprinting and the like. The advantages of this technology can still utilize the characteristics of high efficiency, high brightness, high reliability and fast response time of the light-emitting diode, and it has no need for self-illumination. The characteristics of the backlight are more energy-saving, simple in mechanism, small in size, and thin. In addition, the miniature light-emitting diode technology achieves high resolution.

為讓本揭露能更明顯易懂,下文特舉實施例作詳細說明如下: In order to make the disclosure more obvious and easy to understand, the following specific embodiments are described in detail below:

【製備全無機鈣鈦礦量子點】[Preparation of all inorganic perovskite quantum dots]

首先,合成Cs前驅物:將0.814g之Cs2CO3、40mL之十八烯(octadecene;ODE)及2.5mL之油酸(oleic acid;OA)加入100mL三頸瓶中,於真空且溫度120℃之環境下進行除水一小時後,再於氮氣系統下加熱至150℃,直到Cs2CO3與油酸反應完全而得Cs前驅物(油酸銫(Cs-Oleate)前驅物)。 First, the synthesis of Cs precursor: 0.814g of Cs 2 CO 3 , 40mL of octadecene (ODE) and 2.5mL of oleic acid (OA) into a 100mL three-necked flask, under vacuum and temperature 120 After removing water for one hour in an environment of ° C, it was heated to 150 ° C under a nitrogen system until Cs 2 CO 3 was completely reacted with oleic acid to obtain a Cs precursor (Cs-Oleate precursor).

然後,將5mL之ODE與0.188mmol之PbX2(X=Cl、Br、或I,其決定全無機鈣鈦礦量子點的鹵素成分)加入25mL三頸瓶,於真空且溫度120℃的環境下進行除水一小時後,將0.5mL之油胺(oleylamine)及0.5mL之OA於氮氣系統下注射進三頸瓶中,待溶液澄清後提高溫度至140-200℃(加熱溫度可調節全無機鈣鈦礦量子點的顆粒大小),接著將0.4mL之Cs-Oleate前驅物快速注射進三頸瓶中並等待5秒後,以冰水浴冷卻反應系統後,離心純化出全無機鈣鈦礦量子點CsPb(ClaBr1-a-bIb)3Then, 5 mL of ODE and 0.188 mmol of PbX 2 (X=Cl, Br, or I, which determines the halogen component of the total inorganic perovskite quantum dot) are added to a 25 mL three-necked flask under vacuum at a temperature of 120 ° C. After one hour of water removal, 0.5 mL of oleylamine and 0.5 mL of OA were injected into a three-necked flask under a nitrogen system. After the solution was clarified, the temperature was raised to 140-200 ° C (heating temperature can be adjusted to full inorganic The particle size of the perovskite quantum dot), then 0.4 mL of the Cs-Oleate precursor was quickly injected into the three-necked flask and waited for 5 seconds. After cooling the reaction system in an ice water bath, the whole inorganic perovskite quantum was purified by centrifugation. Point CsPb(Cl a Br 1-ab I b ) 3 .

【紅色/綠色全無機鈣鈦礦量子點CsPb(Br[Red/Green Fully Inorganic Perovskite Quantum Dots CsPb (Br 1-b1-b II bb )) 33

第33圖為全無機鈣鈦礦量子點CsPb(Br1-bIb)3之X光繞射圖譜。第33圖之由下方往上依序為CsPbI3、CsPb(Br0.2I0.8)3、 CsPb(Br0.3I0.7)3、CsPb(Br0.4I0.6)3、CsPb(Br0.5I0.5)3、CsPb(Br0.6I0.4)3,成核溫度皆為180℃時之XRD圖譜,將上述不同比例Br與I之鈣鈦礦量子點XRD圖譜與已知之立方體相(cubic phase)CsPbI3、CsPbBr3標準圖譜相比對,可發現所有合成之全無機鈣鈦礦量子點CsPb(Br1-bIb)3的XRD波峰位置皆與立方體相標準圖譜一致,表示合成之全無機鈣鈦礦量子點CsPb(Br1-bIb)3皆為立方體相。 Figure 33 is an X-ray diffraction pattern of the all inorganic perovskite quantum dot CsPb(Br 1-b I b ) 3 . From the bottom to the top of Figure 33, CsPbI 3 , CsPb (Br 0.2 I 0.8 ) 3 , CsPb (Br 0.3 I 0.7 ) 3 , CsPb (Br 0.4 I 0.6 ) 3 , CsPb (Br 0.5 I 0.5 ) 3 , CsPb(Br 0.6 I 0.4 ) 3 , XRD pattern at nucleation temperature of 180 ° C, the above-mentioned different ratios of Br and I perovskite quantum dot XRD patterns and the known cubic phase CsPbI 3 , CsPbBr 3 Compared with the standard map, it can be found that the XRD peak positions of all synthetic all-inorganic perovskite quantum dots CsPb(Br 1-b I b ) 3 are consistent with the cubic phase standard map, indicating the synthesis of all inorganic perovskite quantum dots. CsPb(Br 1-b I b ) 3 is a cubic phase.

第34圖為全無機鈣鈦礦量子點CsPb(Br1-bIb)3之歸一化(Normalized)光激發螢光(PL)光譜圖,其中使用460nm激發光。其顯示之波峰位置(最強放光位置)與半高寬(FWHM)之數據列示於表1。第35圖顯示全無機鈣鈦礦量子點CsPb(Br1-bIb)3之CIE圖譜位置。 Figure 34 is a normalized photoexcited fluorescence (PL) spectrum of an all inorganic perovskite quantum dot CsPb (Br 1-b I b ) 3 using 460 nm excitation light. The peak position (strongest light release position) and the full width at half maximum (FWHM) of the data are shown in Table 1. Figure 35 shows the CIE map position of the fully inorganic perovskite quantum dot CsPb(Br 1-b I b ) 3 .

從第34圖、第35圖及表1發現,全無機鈣鈦礦量子點CsPb(Br1-bIb)3隨著I元素含量增加且Br元素含量減少,即b 值從0.4提升至1,發光波峰產生紅位移現象,即從557nm逐漸轉移至687nm。此現象可由量子侷限效應解釋之。亦即,由於I離子粒徑大於Br離子粒徑,當全無機鈣鈦礦量子點CsPb(Br1-bIb)3中I元素含量增加時,材料尺寸將會變大而造成放光光譜發生紅位移現象。 From Fig. 34, Fig. 35 and Table 1, it is found that the total inorganic perovskite quantum dot CsPb(Br 1-b I b ) 3 increases with the content of I element and the content of Br decreases, that is, the b value increases from 0.4 to 1. The luminescence peak produces a red shift phenomenon, that is, gradually shifts from 557 nm to 687 nm. This phenomenon can be explained by the quantum confinement effect. That is, since the I ion particle size is larger than the Br ion particle size, when the content of the I element in the all-inorganic perovskite quantum dot CsPb(Br 1-b I b ) 3 increases, the material size will become large and cause the emission spectrum. A red shift occurs.

在全無機鈣鈦礦量子點CsPb(Br1-bIb)3中,b=0.5-1的全無機鈣鈦礦量子點為紅色量子點。其中,紅色全無機鈣鈦礦量子點CsPb(Br0.4I0.6)3的最強放光位置為625nm,符合市面上常用之紅色放光波段。而其光波半高寬為35nm,相對於目前常見商用紅色螢光粉更窄,亦即具有較佳的純色性,當應用在發光裝置時能提高產品的放光效率,或當與其他種類螢光物質混合製得發光裝置時能增加產品之演色性。 In the all-inorganic perovskite quantum dot CsPb(Br 1-b I b ) 3 , the all-inorganic perovskite quantum dots with b=0.5-1 are red quantum dots. Among them, the red strong inorganic perovskite quantum dot CsPb (Br 0.4 I 0.6 ) 3 has the strongest light-emitting position of 625 nm, which is in line with the red light-emitting band commonly used in the market. The half-height of the light wave is 35nm, which is narrower than the current common commercial red fluorescent powder, that is, it has better solid color. When applied to the light-emitting device, it can improve the light-emitting efficiency of the product, or when it is combined with other kinds of firefly. When the light substance is mixed to obtain a light-emitting device, the color rendering property of the product can be increased.

在全無機鈣鈦礦量子點CsPb(Br1-bIb)3中,b=0.4(CsPb(Br0.6I0.4)3)的全無機鈣鈦礦量子點為綠色量子點,其最強放光位置為557nm,符合市面上常用之綠色放光波段。而其光波半高寬為27nm,相對於目前常見商用綠色螢光粉更窄,亦即具有較佳的純色性,當應用在發光裝置時能提高產品的放光效率,或當與其他種類螢光物質混合製得發光裝置時能增加產品之演色性。 In the all-inorganic perovskite quantum dot CsPb(Br 1-b I b ) 3 , the all-inorganic perovskite quantum dot with b = 0.4 (CsPb(Br 0.6 I 0.4 ) 3 ) is a green quantum dot with the strongest light emission. The position is 557nm, which is in line with the green emission band commonly used in the market. The half-height of the light wave is 27nm, which is narrower than the current common commercial green fluorescent powder, that is, it has better solid color, which can improve the light-emitting efficiency of the product when applied to the light-emitting device, or when it is combined with other kinds of firefly. When the light substance is mixed to obtain a light-emitting device, the color rendering property of the product can be increased.

【全無機鈣鈦礦量子點CsPb(Cl[All inorganic perovskite quantum dots CsPb (Cl aa BrBr 1-a1-a )) 33

第36圖為全無機鈣鈦礦量子點CsPb(ClaBr1-a)3之X 光繞射圖譜。a=0、0.5、1。與已知之立方體相(cubic phase)CsPBr3、CsPbCl3標準圖譜相比對,可發現所有合成之全無機鈣鈦礦CsPb(ClaBr1-a)3量子點的XRD波峰位置皆與立方體相標準圖譜一致,表示合成之全無機鈣鈦礦量子點CsPb(ClaBr1-a)3皆符合立方體相。全無機鈣鈦礦量子點CsPb(ClaBr1-a)3之成核溫度皆為180℃。 Figure 36 is an X-ray diffraction pattern of the all inorganic perovskite quantum dot CsPb (Cl a Br 1-a ) 3 . a = 0, 0.5, 1. Compared with the known cubic phase CsPBr 3 and CsPbCl 3 standard spectra, it can be found that the XRD peak positions of all synthetic all-inorganic perovskite CsPb (Cl a Br 1-a ) 3 quantum dots are in the same phase as the cubic phase. The standard map is consistent, indicating that the synthetic all-inorganic perovskite quantum dot CsPb (Cl a Br 1-a ) 3 conforms to the cubic phase. The nucleation temperature of the all inorganic perovskite quantum dot CsPb (Cl a Br 1-a ) 3 was 180 °C.

第37圖為全無機鈣鈦礦量子點CsPb(ClaBr1-a)3之歸一化光激發螢光光譜圖(a=0、0.5、1)。激發光波長為380nm。其顯示之波峰位置(最強放光位置)與半高寬(FWHM)之數據列示於表2。第38圖顯示全無機鈣鈦礦量子點CsPb(ClaBr1-a)3之CIE圖譜位置。 Figure 37 is a normalized photoexcited fluorescence spectrum of the all-inorganic perovskite quantum dot CsPb (Cl a Br 1-a ) 3 (a = 0, 0.5, 1). The excitation light has a wavelength of 380 nm. The peak position (strongest light release position) and the full width at half maximum (FWHM) of the displayed data are shown in Table 2. Figure 38 shows the CIE map position of the all inorganic perovskite quantum dot CsPb(Cl a Br 1-a ) 3 .

從第37圖、第38圖及表2發現,全無機鈣鈦礦量子點CsPb(ClaBr1-a)3隨著Cl元素含量減少且Br元素含量增加,即a值從1降低提升至0,發光波峰產生紅位移現象,即從406nm逐漸轉移至514nm。此現象可由量子侷限效應解釋之。亦即,由 於Cl離子粒徑小於Br離子粒徑,當全無機鈣鈦礦量子點CsPb(ClaBr1-a)3中Cl元素含量減少時,材料尺寸將會變大而造成放光光譜發生紅位移現象。在全無機鈣鈦礦量子點CsPb(ClaBr1-a)3中,a=0(CsPbBr3,亦即化學式CsPb(Br1-bIb)3中b=1)的全無機鈣鈦礦量子點為綠色量子點,a=0.5、1(CsPb(Cl0.5Br0.5)3、CsPbCl3)的全無機鈣鈦礦量子點為藍色量子點。 From Fig. 37, Fig. 38 and Table 2, it is found that the total inorganic perovskite quantum dot CsPb(Cl a Br 1-a ) 3 increases with the content of Cl and the content of Br increases, that is, the value of a increases from 1 to 1. 0, the luminescence peak produces a red shift phenomenon, that is, gradually shifts from 406 nm to 514 nm. This phenomenon can be explained by the quantum confinement effect. That is, since the Cl ion particle size is smaller than the Br ion particle size, when the Cl element content in the all-inorganic perovskite quantum dot CsPb(Cl a Br 1-a ) 3 is decreased, the material size will become large and the emission spectrum is caused. A red shift occurs. In the all-inorganic perovskite quantum dot CsPb(Cl a Br 1-a ) 3 , a = 0 (CsPbBr 3 , that is, the chemical formula CsPb (Br 1-b I b ) 3 b = 1) of all inorganic calcium titanium The ore quantum dots are green quantum dots, and the all-inorganic perovskite quantum dots of a=0.5, 1 (CsPb(Cl 0.5 Br 0.5 ) 3 , CsPbCl 3 ) are blue quantum dots.

第39圖為合併第34圖及第37圖之歸一化光激發螢光光譜圖,顯示出全無機鈣鈦礦量子點CsPb(ClaBr1-a-bIb)3其隨Cl、Br、I元素含量改變的發光特性。發光涵蓋紅色、綠色、藍色範圍,且各光波半高寬窄。因此,能據以調整全無機鈣鈦礦量子點之成分得到各種期望發光波峰位置,且當應用在發光裝置時能藉此材料展現優異的光電性質。 Figure 39 is a normalized photoexcited fluorescence spectrum of the combined 34th and 37th images, showing the total inorganic perovskite quantum dot CsPb (Cl a Br 1-ab I b ) 3 with Cl, Br, The luminescent properties of the I element content change. The light covers the red, green, and blue ranges, and each light wave has a half width and a narrow width. Therefore, various desired luminescence peak positions can be obtained by adjusting the composition of the all-inorganic perovskite quantum dots, and the materials can exhibit excellent photoelectric properties when applied to a light-emitting device.

【發光二極體封裝結構】[Light Emitting Diode Package Structure]

第40圖為藍色發光二極體晶片搭配紅色全無機鈣鈦礦量子點CsPb(Br0.4I0.6)3與一般商用黃色螢光粉YAG:Ce之發光二極體封裝結構的歸一化光激發螢光光譜圖。紅色全無機鈣鈦礦量子點CsPb(Br0.4I0.6)3之放光波長為625nm。黃色螢光粉YAG:Ce之放光波長為560nm。第41圖顯示此發光二極體封裝結構之發光色點的CIE圖譜位置分佈,接近於黑體輻射線,於商業存有應用價值。表3列示此發光二極體封裝結構之相關色溫(Correlated Color Temperature;CCT)4010K為暖白色系,發光效 率為56流明/瓦(lm/W),平均演色性指數(Color Rendering Index Ra;CRI Ra)達83.9,現色性R9為40,能有效提高封裝產品之演色性。 Figure 40 is a normalized light of a blue LED array with red all-inorganic perovskite quantum dot CsPb (Br 0.4 I 0.6 ) 3 and a general commercial yellow phosphor YAG:Ce LED package structure. Excitation of the fluorescence spectrum. The red all-inorganic perovskite quantum dot CsPb (Br 0.4 I 0.6 ) 3 has a light-emitting wavelength of 625 nm. The yellow fluorescent powder YAG:Ce has a light-emitting wavelength of 560 nm. Figure 41 shows the CIE map position distribution of the illuminating color point of the LED package structure, which is close to the black body radiant line and has application value in commercial applications. Table 3 shows that the correlated color temperature (CCT) 4010K of the LED package structure is warm white, the luminous efficiency is 56 lumens per watt (lm/W), and the average color rendering index (Color Rendering Index Ra; CRI Ra) is 83.9, and the color rendering R9 is 40, which can effectively improve the color rendering of packaged products.

【使用多種全無機鈣鈦礦量子點】[Use a variety of all inorganic perovskite quantum dots]

表4列示實施例1至5之條件與發光結果。各實施例使用發光二極體晶片激發不同種類全無機鈣鈦礦量子點CsPb(Br1-bIb)3之組合。如表4所示,實施例1使用兩種全無機鈣鈦礦量子點CsPb(Br1-bIb)3,分別為b=0.3~0.4及b=0.7~0.8,其展現出的光譜平均演色性指數(Ra)為40。實施例2使用三種全無機鈣鈦礦量子點CsPb(Br1-bIb)3,分別為b=0.1~0.2、0.5~0.6與0.6~0.7,其展現出的光譜平均演色性指數為60。實施例3使用四種全無機鈣鈦礦量子點CsPb(Br1-bIb)3,分別為b=0~0.1、0.2~0.3、0.4~0.5與0.6~0.7,其展現出的光譜平均演色性指數為75。實施例4使用五種全無機鈣鈦礦量子點CsPb(Br1-bIb)3,分別為b=0~0.1、0.3~0.4、0.5~0.6、0.7~0.8與0.8~0.9,其展現出的光譜平均演色性指數為90。實施例5使用六種全無機鈣鈦礦量子點CsPb(Br1-bIb)3,分別為b=0~0.1、0.2~0.3、0.5~0.6、0.6~0.7、0.7~0.8 與0.9~1,其展現出的光譜平均演色性指數為95。 Table 4 lists the conditions and luminescence results of Examples 1 to 5. Each example uses a light emitting diode wafer to excite combinations of different types of all inorganic perovskite quantum dots CsPb(Br 1-b I b ) 3 . As shown in Table 4, Example 1 uses two wholly inorganic perovskite quantum dots CsPb(Br 1-b I b ) 3 , which are b = 0.3 to 0.4 and b = 0.7 to 0.8, respectively, which exhibit a spectral average. The color rendering index (Ra) is 40. Example 2 uses three all-inorganic perovskite quantum dots CsPb(Br 1-b I b ) 3 , which are b = 0.1 to 0.2, 0.5 to 0.6, and 0.6 to 0.7, respectively, and exhibit a spectral average color rendering index of 60. . Example 3 uses four all-inorganic perovskite quantum dots CsPb(Br 1-b I b ) 3 , which are b=0~0.1, 0.2-0.3, 0.4-0.5 and 0.6-0.7, respectively, and exhibit a spectral average. The color rendering index is 75. Example 4 uses five all-inorganic perovskite quantum dots CsPb(Br 1-b I b ) 3 , which are b=0~0.1, 0.3-0.4, 0.5-0.6, 0.7-0.8 and 0.8-0.9, respectively. The spectral average color rendering index is 90. Example 5 uses six all-inorganic perovskite quantum dots CsPb(Br 1-b I b ) 3 , which are b=0~0.1, 0.2-0.3, 0.5-0.6, 0.6-0.7, 0.7-0.8 and 0.9~, respectively. 1, which exhibits a spectral average color rendering index of 95.

其他實施例中,如圖42與圖43所示,其分別為根據實施例之顯示發光二極體晶片激發全無機鈣鈦礦量子點CsPbBr3與CsPbI3時的光激發螢光光譜圖與CIE圖譜位置分佈,以發光二極體晶片激發至少兩種不同組成全無機鈣鈦礦量子點CsPb(Br1-bIb)3可使NTSC達到90%以上。舉例來說,當使用兩種之組合,其中b分別為0與1時,即發光二極體晶片激發全無機鈣鈦礦量子點CsPbBr3與CsPbI3,NTSC達到119%。 In other embodiments, as shown in FIG. 42 and FIG. 43, respectively, the photoexcited fluorescence spectrum and the CIE when the phosphorescent diode wafers are excited by the inorganic-inorganic perovskite quantum dots CsPbBr 3 and CsPbI 3 according to the embodiment are shown. The position distribution of the map, the excitation of at least two different compositions of the all-inorganic perovskite quantum dot CsPb(Br 1-b I b ) 3 with the luminescent diode wafer can achieve NTSC of more than 90%. For example, when a combination of two is used, where b is 0 and 1, respectively, the light-emitting diode wafer excites the all inorganic perovskite quantum dots CsPbBr 3 and CsPbI 3 , and the NTSC reaches 119%.

根據上述實施例,具有化學通式CsPb(ClaBr1-a-bIb)3,其中0a1,0b1的全無機鈣鈦礦量子點能展現出半高寬窄的放光光譜及優異的純色性,因此應用在發光裝置時能提升發光效果。 According to the above embodiment, there is a chemical formula of CsPb(Cl a Br 1-ab I b ) 3 , wherein 0 a 1,0 b The all-inorganic perovskite quantum dots of 1 can exhibit a half-height width and a wide luminescence spectrum and excellent solid color, so that the illuminating effect can be improved when applied to a light-emitting device.

綜上所述,雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In conclusion, the present invention has been disclosed in the above preferred embodiments, and is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

302‧‧‧發光二極體晶片 302‧‧‧Light Emitter Wafer

302s‧‧‧出光面 302s‧‧‧Glossy

318‧‧‧發光二極體封裝結構 318‧‧‧Light emitting diode package structure

320‧‧‧基座 320‧‧‧Base

321‧‧‧固晶區 321‧‧‧ Gujing District

322‧‧‧杯壁 322‧‧‧ cup wall

323‧‧‧容置空間 323‧‧‧ accommodating space

324‧‧‧波長轉換層 324‧‧‧wavelength conversion layer

326‧‧‧反射牆 326‧‧‧Reflection wall

Claims (34)

一種發光裝置,包括:一發光二極體晶片;以及一波長轉換材料,可被該發光二極體晶片射出之第一光線激發而發出不同於該第一光線之波長的第二光線,該波長轉換材料包括全無機鈣鈦礦量子點,該全無機鈣鈦礦量子點具有化學通式CsPb(ClaBr1-a-bIb)3,其中0a1,0b1。 A light emitting device comprising: a light emitting diode wafer; and a wavelength converting material excited by the first light emitted from the light emitting diode chip to emit a second light different from the wavelength of the first light, the wavelength The conversion material comprises an all-inorganic perovskite quantum dot having a chemical formula of CsPb(Cl a Br 1-ab I b ) 3 , wherein a 1,0 b 1. 如申請專利範圍第1項所述之發光裝置,其中該全無機鈣鈦礦量子點具有化學通式CsPb(ClaBr1-a)3或CsPb(Br1-bIb)3The illuminating device of claim 1, wherein the all-inorganic perovskite quantum dot has a chemical formula of CsPb(Cl a Br 1-a ) 3 or CsPb(Br 1-b I b ) 3 . 如申請專利範圍第1項所述之發光裝置,其中該全無機鈣鈦礦量子點具有化學通式CsPb(Br1-bIb)3,其中0.5b1,該全無機鈣鈦礦量子點為紅色量子點。 The illuminating device of claim 1, wherein the all-inorganic perovskite quantum dot has a chemical formula of CsPb(Br 1-b I b ) 3 , wherein 0.5 b 1. The all-inorganic perovskite quantum dot is a red quantum dot. 如申請專利範圍第3項所述之發光裝置,其中從該紅色量子點激發出的該第二光線的波峰位置為570nm至700nm,半高寬為20nm至60nm。 The light-emitting device of claim 3, wherein the second light emitted from the red quantum dot has a peak position of 570 nm to 700 nm and a full width at half maximum of 20 nm to 60 nm. 如申請專利範圍第1項所述之發光裝置,其中該全無機鈣鈦礦量子點具有化學通式CsPb(Br1-bIb)3,其中0b<0.5,該全無機鈣鈦礦量子點為綠色量子點。 The illuminating device of claim 1, wherein the all-inorganic perovskite quantum dot has a chemical formula of CsPb(Br 1-b I b ) 3 , wherein b < 0.5, the all inorganic perovskite quantum dots are green quantum dots. 如申請專利範圍第5項所述之發光裝置,其中從該綠色量子點激發出的該第二光線的波峰位置為500~570nm,半高寬為15至40nm。 The illuminating device of claim 5, wherein the second ray excited from the green quantum dot has a peak position of 500 to 570 nm and a full width at half maximum of 15 to 40 nm. 如申請專利範圍第1項所述之發光裝置,其中該全無機鈣 鈦礦量子點具有化學通式CsPb(ClaBr1-a)3,其中0<a1,該全無機鈣鈦礦量子點為藍色量子點。 The illuminating device of claim 1, wherein the all-inorganic perovskite quantum dot has a chemical formula of CsPb(Cl a Br 1-a ) 3 , wherein 0<a 1. The all-inorganic perovskite quantum dot is a blue quantum dot. 如申請專利範圍第7項所述之發光裝置,其中從該藍色量子點激發出的該第二光線的波峰位置為400nm至500nm,半高寬為10nm至30nm。 The light-emitting device of claim 7, wherein the second light emitted from the blue quantum dot has a peak position of 400 nm to 500 nm and a full width at half maximum of 10 nm to 30 nm. 如申請專利範圍第1項所述之發光裝置,其中該全無機鈣鈦礦量子點的粒徑範圍為1nm至100nm。 The illuminating device of claim 1, wherein the all-inorganic perovskite quantum dots have a particle size ranging from 1 nm to 100 nm. 如申請專利範圍第9項所述之發光裝置,其中該全無機鈣鈦礦量子點為粒徑範圍10nm至14nm的紅色量子點,或該全無機鈣鈦礦量子點為粒徑範圍8nm至12nm的綠色量子點,或該全無機鈣鈦礦量子點為粒徑範圍7nm至10nm的藍色量子點。 The illuminating device of claim 9, wherein the all-inorganic perovskite quantum dot is a red quantum dot having a particle diameter ranging from 10 nm to 14 nm, or the total inorganic perovskite quantum dot is in a particle size ranging from 8 nm to 12 nm. The green quantum dots, or the all-inorganic perovskite quantum dots, are blue quantum dots having a particle size ranging from 7 nm to 10 nm. 如申請專利範圍第1項所述之發光裝置,其中該全無機鈣鈦礦量子點包括一第一全無機鈣鈦礦量子點與一第二全無機鈣鈦礦量子點,該第一全無機鈣鈦礦量子點與該第二全無機鈣鈦礦量子點具有化學通式CsPb(ClaBr1-a-bIb)3,其中0a1,0b1,該第一全無機鈣鈦礦量子點與該第二全無機鈣鈦礦量子點具有不同性質。 The illuminating device of claim 1, wherein the all-inorganic perovskite quantum dot comprises a first all-inorganic perovskite quantum dot and a second all-inorganic perovskite quantum dot, the first all-inorganic The perovskite quantum dot and the second all-inorganic perovskite quantum dot have a chemical formula of CsPb(Cl a Br 1-ab I b ) 3 , wherein a 1,0 b 1. The first all-inorganic perovskite quantum dot has different properties from the second all-inorganic perovskite quantum dot. 如申請專利範圍第11項所述之發光裝置,其中該第一全無機鈣鈦礦量子點與該第二全無機鈣鈦礦量子點具有不同的a或不同的b,及/或具有不同的粒徑。 The illuminating device of claim 11, wherein the first all-inorganic perovskite quantum dot and the second all-inorganic perovskite quantum dot have different a or different b, and/or have different Particle size. 如申請專利範圍第12項所述之發光裝置,其中不同的該第一全無機鈣鈦礦量子點與該第二全無機鈣鈦礦量子點選自具有 化學通式CsPb(Br1-bIb)3且0.5b1的紅色量子點、具有化學通式CsPb(Br1-bIb)3且0b<0.5的綠色量子點及具有化學通式CsPb(ClaBr1-a)3且0<a1的藍色量子點所組成的群組。 The illuminating device of claim 12, wherein the different first inorganic-inorganic perovskite quantum dots and the second all-inorganic perovskite quantum dots are selected from the group consisting of chemical formula CsPb (Br 1-b I b ) 3 and 0.5 b a red quantum dot of 1 having a chemical formula of CsPb(Br 1-b I b ) 3 and 0 Green quantum dots with b<0.5 and having the chemical formula CsPb(Cl a Br 1-a ) 3 and 0<a A group of 1 blue quantum dots. 如申請專利範圍第12項所述之發光裝置,其中不同的該第一全無機鈣鈦礦量子點與該第二全無機鈣鈦礦量子點選自粒徑範圍為10nm至14nm的紅色全無機鈣鈦礦量子點、粒徑範圍為8nm至12nm的綠色全無機鈣鈦礦量子點及粒徑範圍為7nm至10nm的藍色全無機鈣鈦礦量子點所組成的群組。 The illuminating device of claim 12, wherein the first all-inorganic perovskite quantum dot and the second all-inorganic perovskite quantum dot are selected from red total inorganic having a particle size ranging from 10 nm to 14 nm. A group consisting of perovskite quantum dots, green all-inorganic perovskite quantum dots having a particle size ranging from 8 nm to 12 nm, and blue all-inorganic perovskite quantum dots having a particle size ranging from 7 nm to 10 nm. 如申請專利範圍第11項所述之發光裝置,其中不同的該第一全無機鈣鈦礦量子點與該第二全無機鈣鈦礦量子點具有化學通式CsPb(Br1-bIb)3,該第一全無機鈣鈦礦量子點的b為0,該第二全無機鈣鈦礦量子點的b為1。 The illuminating device of claim 11, wherein the first all-inorganic perovskite quantum dot and the second all-inorganic perovskite quantum dot have a chemical formula CsPb(Br 1-b I b ) 3 , b of the first all-inorganic perovskite quantum dot is 0, and b of the second all-inorganic perovskite quantum dot is 1. 如申請專利範圍第1項所述之發光裝置,包括一波長轉換層,位在該發光二極體晶片的出光側,其中該波長轉換層包括該波長轉換材料。 The light-emitting device of claim 1, comprising a wavelength conversion layer disposed on a light-emitting side of the light-emitting diode wafer, wherein the wavelength conversion layer comprises the wavelength conversion material. 如申請專利範圍第16項所述之發光裝置,包括:數個該波長轉換層,間隔配置在該發光二極體晶片的該出光側;及數個間隔層,配置在該些波長轉換層之間,該些間隔層包括吸收光物質或反射光物質。 The light-emitting device of claim 16, comprising: a plurality of the wavelength conversion layers disposed at intervals on the light-emitting side of the light-emitting diode wafer; and a plurality of spacer layers disposed in the wavelength conversion layers The spacer layers include light absorbing materials or light reflecting materials. 如申請專利範圍第17項所述之發光裝置,其係為微型發光二極體。 The light-emitting device of claim 17, which is a miniature light-emitting diode. 如申請專利範圍第17項所述之發光裝置,其中該發光二極體晶片具有位在相反側的一第一電極與一第二電極,該發光二極體晶片的該出光側係與該第一電極位在相同側。 The illuminating device of claim 17, wherein the illuminating diode chip has a first electrode and a second electrode on opposite sides, and the light emitting side of the illuminating diode chip is One electrode is on the same side. 如申請專利範圍第17項所述之發光裝置,其係應用在顯示器,並包括數個畫素,各至少包括一紅色次畫素、一綠色次畫素及一藍色次畫素,該紅色次畫素、該綠色次畫素及該藍色次畫素各包括該些波長轉換層其中之一個,其中,對應該紅色次畫素的該波長轉換層的該全無機鈣鈦礦量子點具有化學通式CsPb(Br1-bIb)3,其中0.5b1,及/或粒徑範圍為10nm至14nm,及/或對應該綠色次畫素的該波長轉換層的該全無機鈣鈦礦量子點具有化學通式CsPb(Br1-bIb)3,其中0b<0.5,及/或粒徑範圍為8nm至12nm,及/或對應該藍色次畫素的該波長轉換層的該全無機鈣鈦礦量子點具有化學通式CsPb(ClaBr1-a)3,其中0<a1,及/或粒徑範圍為7nm至10nm。 The illuminating device of claim 17, which is applied to the display and includes a plurality of pixels each including at least one red sub-pixel, one green sub-pixel and one blue sub-pixel, the red The sub-pixel, the green sub-pixel, and the blue sub-pixel each include one of the wavelength conversion layers, wherein the all-inorganic perovskite quantum dot corresponding to the wavelength conversion layer of the red sub-pixel has Chemical formula CsPb(Br 1-b I b ) 3 , of which 0.5 b 1, and / or the particle size range of 10 nm to 14 nm, and / or the total inorganic perovskite quantum dot corresponding to the wavelength conversion layer of the green sub-pixel has a chemical formula CsPb (Br 1-b I b ) 3 , where 0 b<0.5, and/or the particle size range of 8 nm to 12 nm, and/or the all-inorganic perovskite quantum dot corresponding to the wavelength conversion layer of the blue sub-pixel has a chemical formula CsPb (Cl a Br 1- a ) 3 , where 0<a 1, and / or particle size ranges from 7 nm to 10 nm. 如申請專利範圍第20項所述之發光裝置,其中該些畫素各更包括一白色次畫素,其包括該些波長轉換層之另一個,並藉由該些間隔層區隔該紅色次畫素、該綠色次畫素及該藍色次畫素。 The illuminating device of claim 20, wherein the pixels further comprise a white sub-pixel, the other one of the wavelength conversion layers, and the red layer is separated by the spacer layer The pixel, the green sub-pixel, and the blue sub-pixel. 如申請專利範圍第16項所述之發光裝置,其中該波長轉 換層與該發光二極體晶片互相接觸,或互相分開。 The illuminating device of claim 16, wherein the wavelength is changed The change layer and the light emitting diode chip are in contact with each other or are separated from each other. 如申請專利範圍第16項所述之發光裝置,其中該波長轉換層更包括一透光基材,該波長轉換材料摻雜於該透光基材中。 The light-emitting device of claim 16, wherein the wavelength conversion layer further comprises a light-transmitting substrate, and the wavelength conversion material is doped in the light-transmitting substrate. 如申請專利範圍第16項所述之發光裝置,包括數個疊置的該波長轉換層,各具有不同的發光波段。 The illuminating device of claim 16, comprising a plurality of stacked wavelength conversion layers each having a different luminescent band. 如申請專利範圍第16項所述之發光裝置,更包括一透明膠體,封裝該波長轉換層及該發光二極體晶片。 The illuminating device of claim 16, further comprising a transparent colloid encapsulating the wavelength conversion layer and the illuminating diode chip. 如申請專利範圍第16項所述之發光裝置,更包括一結構元件,擇自以下之配置方式:該結構元件具有一容置區用以容置該波長轉換層,使該波長轉換層之上、下表面被該結構元件覆蓋,以支撐、封裝、保護該波長轉換層;該結構元件係為在該波長轉換層的下表面,並具有一容置區用以容置且支撐該波長轉換層;及該結構元件係為在該波長轉換層的上表面,用以保護該波長轉換層。 The illuminating device of claim 16, further comprising a structural component, wherein the structural component has an accommodating region for accommodating the wavelength conversion layer to be above the wavelength conversion layer The lower surface is covered by the structural component to support, encapsulate, and protect the wavelength conversion layer; the structural component is on a lower surface of the wavelength conversion layer, and has an accommodating area for accommodating and supporting the wavelength conversion layer And the structural element is on the upper surface of the wavelength conversion layer for protecting the wavelength conversion layer. 如申請專利範圍第1項所述之發光裝置,更包括一基座,該基座內具有一固晶區,其中該發光二極體晶片在該固晶區上。 The illuminating device of claim 1, further comprising a pedestal having a solid crystal region therein, wherein the illuminating diode wafer is on the die bonding region. 如申請專利範圍第1項所述之發光裝置,更包括一反射牆在該波長轉換層的外側。 The illuminating device of claim 1, further comprising a reflective wall outside the wavelength conversion layer. 如申請專利範圍第1項所述之發光裝置,其應用在一背光模組、顯示器之畫素或次畫素、或照明裝置中。 The illuminating device according to claim 1, which is applied to a backlight module, a pixel of a display or a sub-pixel, or a lighting device. 如申請專利範圍第1項所述之發光裝置,包括至少兩種具有化學通式CsPb(Br1-bIb)3且b不同的該全無機鈣鈦礦量子點,使得該發光裝置的NTSC達到90%以上。 The illuminating device according to claim 1, comprising at least two of the all-inorganic perovskite quantum dots having a chemical formula of CsPb(Br 1-b I b ) 3 and different b, such that the illuminating device NTSC More than 90%. 如申請專利範圍第1項所述之發光裝置,包括至少四種具有化學通式CsPb(Br1-bIb)3且b不同的該全無機鈣鈦礦量子點,其中該發光裝置所發出的光具有平均演色性指數(Ra)至少75以上。 The illuminating device according to claim 1, comprising at least four of the all-inorganic perovskite quantum dots having a chemical formula of CsPb(Br 1-b I b ) 3 and different b, wherein the illuminating device emits The light has an average color rendering index (Ra) of at least 75 or more. 一種波長轉換材料,包括兩種以上不同性質的全無機鈣鈦礦量子點,該些全無機鈣鈦礦量子點具有化學通式CsPb(ClaBr1-a-bIb)3,其中0a1,0b1。 A wavelength conversion material comprising two or more different inorganic perovskite quantum dots having a chemical formula of CsPb(Cl a Br 1-ab I b ) 3 , wherein a 1,0 b 1. 如申請專利範圍第32項所述之波長轉換材料,其中該兩種以上不同性質的全無機鈣鈦礦量子點具有不同的a或不同的b。 The wavelength conversion material of claim 32, wherein the two or more different properties of the all inorganic perovskite quantum dots have different a or different b. 如申請專利範圍第32項所述之波長轉換材料,其中該兩種以上不同性質的全無機鈣鈦礦量子點具有不同的粒徑。 The wavelength conversion material of claim 32, wherein the two or more different properties of the all inorganic perovskite quantum dots have different particle sizes.
TW105131057A 2015-11-30 2016-09-26 Wavelength-converting material and application thereof TWI598429B (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201610909380.XA CN106816520A (en) 2015-11-30 2016-10-19 Wavelength conversion material and application thereof
US15/358,339 US20170155020A1 (en) 2015-11-30 2016-11-22 Wavelength-converting material and application thereof
JP2016231083A JP6478964B2 (en) 2015-11-30 2016-11-29 Wavelength conversion material and use thereof
DE102016223645.8A DE102016223645A1 (en) 2015-11-30 2016-11-29 Wavelength transforming material and its application
KR1020160162205A KR20170066257A (en) 2015-11-30 2016-11-30 Wavelength-converting material and application thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562260657P 2015-11-30 2015-11-30
US201662291552P 2016-02-05 2016-02-05
US201662334502P 2016-05-11 2016-05-11

Publications (2)

Publication Number Publication Date
TW201720909A true TW201720909A (en) 2017-06-16
TWI598429B TWI598429B (en) 2017-09-11

Family

ID=59687613

Family Applications (2)

Application Number Title Priority Date Filing Date
TW105131057A TWI598429B (en) 2015-11-30 2016-09-26 Wavelength-converting material and application thereof
TW105132612A TWI613275B (en) 2015-11-30 2016-10-07 Quantum dot composite material and manufacturing method and application thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW105132612A TWI613275B (en) 2015-11-30 2016-10-07 Quantum dot composite material and manufacturing method and application thereof

Country Status (1)

Country Link
TW (2) TWI598429B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI671916B (en) * 2018-04-24 2019-09-11 National Tsing Hua University Nancrystal with large absorption/emission difference and method for making the same
TWI769064B (en) * 2021-08-24 2022-06-21 隆達電子股份有限公司 Light emitting device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018220162A1 (en) * 2017-06-02 2018-12-06 Nexdot Illumination source and display apparatus having the same
TWI658610B (en) * 2017-09-08 2019-05-01 Maven Optronics Co., Ltd. Quantum-dot-based color-converted light emitting device and method for manufacturing the same
US10879434B2 (en) 2017-09-08 2020-12-29 Maven Optronics Co., Ltd. Quantum dot-based color-converted light emitting device and method for manufacturing the same
TWI663746B (en) * 2018-05-30 2019-06-21 國立清華大學 Luminance and color temperature tunable light source and use thereof
TWI808178B (en) 2019-05-21 2023-07-11 隆達電子股份有限公司 Wavelength converting material and light emitting device
TWI739259B (en) * 2019-12-30 2021-09-11 財團法人工業技術研究院 Encapsulation structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103254896B (en) * 2006-03-21 2015-01-21 超点公司 Luminescent materials that emit light in the visible range or the near infrared range
CN101785114A (en) * 2007-06-22 2010-07-21 超点公司 Solar modules with enhanced efficiencies via use of spectral concentrators
CN105062193B (en) * 2015-08-14 2020-01-31 广州华睿光电材料有限公司 Printing ink composition and electronic device
CN105086993A (en) * 2015-09-11 2015-11-25 天津市中环量子科技有限公司 Fluorescent quantum dot micro-nano encapsulated composite material structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI671916B (en) * 2018-04-24 2019-09-11 National Tsing Hua University Nancrystal with large absorption/emission difference and method for making the same
TWI769064B (en) * 2021-08-24 2022-06-21 隆達電子股份有限公司 Light emitting device

Also Published As

Publication number Publication date
TW201718825A (en) 2017-06-01
TWI613275B (en) 2018-02-01
TWI598429B (en) 2017-09-11

Similar Documents

Publication Publication Date Title
US10816716B2 (en) Application of quantum dot composite material
JP6478964B2 (en) Wavelength conversion material and use thereof
TWI598429B (en) Wavelength-converting material and application thereof
US11631791B2 (en) Semiconductor light-emitting device
TWI472056B (en) Light source including a wavelength-converted semiconductor light emitting device and a filter
TWI414585B (en) A phosphor, method for preparing and using the same, light emitting device package, surface light source apparatus and lighting apparatus using red phosphor
US10000695B2 (en) Method of manufacturing fluoride phosphor, white light emitting apparatus, display apparatus, and lighting device
JP2009010013A (en) White light source
US10023794B2 (en) Fluoride phosphor including sheet-like crystal and manufacturing method and application thereof
US9559271B2 (en) Oxynitride-based phosphor and white light emitting device including the same
TW201023403A (en) LED package and backlight unit having the same
TWI615458B (en) Wavelength-converting film and light emitting device and display device using the same
US20220352416A1 (en) High color gamut photoluminescence wavelength converted white light emitting devices
Kim Optical design optimization for LED chip bonding and quantum dot based wide color gamut displays
KR20160060398A (en) Light emitting device
KR20060064434A (en) White light emitted device
KR20150087029A (en) A Light emitting device and A Fabrication method thereof
TW201101532A (en) Light source package