TWI608227B - 光學表面掃描系統及方法 - Google Patents

光學表面掃描系統及方法 Download PDF

Info

Publication number
TWI608227B
TWI608227B TW102120941A TW102120941A TWI608227B TW I608227 B TWI608227 B TW I608227B TW 102120941 A TW102120941 A TW 102120941A TW 102120941 A TW102120941 A TW 102120941A TW I608227 B TWI608227 B TW I608227B
Authority
TW
Taiwan
Prior art keywords
sample
light
during
optical measurement
beam spot
Prior art date
Application number
TW102120941A
Other languages
English (en)
Other versions
TW201403054A (zh
Inventor
伊凡 馬立夫
Original Assignee
克萊譚克公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 克萊譚克公司 filed Critical 克萊譚克公司
Publication of TW201403054A publication Critical patent/TW201403054A/zh
Application granted granted Critical
Publication of TWI608227B publication Critical patent/TWI608227B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4788Diffraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70625Dimensions, e.g. line width, critical dimension [CD], profile, sidewall angle or edge roughness

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

光學表面掃描系統及方法 優先權主張
本專利主張2012年6月13日提出申請之美國臨時專利申請案第61/659,050號之優先權,該美國臨時專利申請案之全文以引用方式併入本文中。
本發明係關於表面掃描系統。更特定而言,本發明係關於使用散射計之半導體表面掃描之系統及方法。
當前橢圓偏光計及反射計主要使用點對點載物台及所謂之移動-獲取-量測(MAM)程序以執行對半導體晶圓或其他經掃描表面之計量。「移動」部分涉及一晶圓承載載物台之點對點運動且包含後跟減速之載物台之加速。由於施加於加速速率上之實際機械限制,因此自點移動至點之典型時間不能少於數十毫秒。一旦晶圓(樣本)經定位以供光學系統開始下一獲取,程序之「獲取」部分(其中光學系統獲取樣本資料)即開始。在偏振量測之情形中,彼通常花費至少多個毫秒,若期望較高敏感性則花費更多毫秒,且若系統具有諸如一旋轉偏振器及/或一分析器之移動零件則花費甚至更多毫秒。「量測」部分涉及資料分析且可與一後續MAM循環之開始同時開始。總之,實際限制及敏感性要求可將MAM時間限制至數百毫秒。舉例而言,假定200ms之MAM及每晶圓300次量測之樣本計劃,一單個晶圓之處理將需要 60秒,此等於每小時60個晶圓(wph)之總處理量。因此,可估計對每晶圓之樣本數目之實際限制不超過~1000次量測以允許優於20wph之總處理量。
點對點方法之一優點係在一規定盒子(其可具有大約10μm或更小之尺寸)內量測之能力。橢圓偏光計及反射計亦具有執行薄膜厚度、分散係數(n及k)及光柵臨界尺寸(OCD)之非破壞性量測之獨特能力。儘管此等點對點系統提供較佳敏感性及量測特定位置之能力,但此等系統亦固有地受每單個量測之移動-獲取-量測(MAM)時間限制。典型量測樣本計劃可不超過每晶圓數十個位置以保持在合理晶圓每小時(WPH)總處理量範圍內。由於與對樣本進行實際量測之時間(例如,用於點對點資料獲取之時間)組合之一樣本移動系統之受限制加速及速度(樣本量測之間的額外負擔),因此量測位置(樣本上之掃描區域)之限制出現。因此,對於一半導體製造商而言,在不犧牲總處理量之情況下具有一晶圓之一完全圖譜可係有益的。
點對點系統之替代方案係同時記錄所有必需之信號之系統,其中信號之品質受曝光時間限制。以引用方式併入本文中如同在本文中完全陳述一般之頒予Meeks之美國專利第7,121,357號揭示此一系統之一實例。此等系統將主要地在一晶圓上之一既定位置中進行量測,其中(在量測期間)該晶圓移位類似或小於光學斑點大小。然而,晶圓移位類似或小於光學斑點大小限制用於資料獲取之晶圓上之圖譜大小。另外,同時記錄所有信號可對可用工程解決方案施加嚴格限制。舉例而言,由於旋轉偏振器/分析器/補償器橢圓偏振器(RPE/RAE/RCE)係非同時量測系統,因此可排除將其及其組合用於同時記錄所有必需之信號之一系統中。然而,RPE/RAE/RCE橢圓偏振器提供同類最佳敏感性。對較高敏感性之未來需求可需要使用額外繆勒(Mueller)矩陣元素,此將進一步增加對使用非同時量測系統同時提供較高掃描系統總 處理量之期望。
亦可期望一掃描系統提供經由多個通道自一樣本收集鏡面反射次序資訊之能力。經由多個通道收集鏡面反射次序資訊可提供改良之敏感性、改良之總處理量且可能提供解析晶圓上之小特徵之能力。另外,可偵測諸如劃痕之小表面缺陷。
以引用方式併入本文中如同在本文中完全陳述一般之頒予Perry之美國專利申請公開案第2008/0014748號闡述依賴於一束纖維之一多通道反射率分析系統。所揭示之多通道反射率分析系統之一問題係其依賴於一束混雜照明及收集纖維。其可以兩種方式實施。一第一實施方式係將樣本表面成像於纖維入口上。然而,由於收集纖維構成該束之僅一部分,因此系統將僅提供一子組表面資訊且將不適合於表面缺陷之偵測。彼行為可適合於申請案中所闡述之應用,但對於一晶圓檢測系統而言將係不可接受的。一第二實施方式係散焦系統。然而,當散焦系統時,光學總處理量受損害且系統可不提供期望之表面解析度(例如,系統可對表面缺陷不敏感)。
在特定實施例中,一種光學掃描系統包含:一光源,其朝向一樣本提供光;一光譜計,其收集自該樣本反射之光;及一移動樣本定位載物台,其在使用該光源及該光譜計對該樣本之一光學量測期間支撐該樣本。該移動樣本定位載物台可在該樣本之該光學量測期間沿至少一個方向移動該樣本。在某些實施例中,該移動樣本定位載物台在該樣本之該光學量測期間旋轉該樣本。在某些實施例中,一連續自動聚焦系統在該樣本之該光學量測期間維持該光在該樣本上之聚焦。在特定實施例中,在該光學量測期間將該樣本移動大於該光在該樣本上之一光束斑點大小之一距離。
在特定實施例中,一種用於自一樣本提供一光學量測之方法包 含:自一光源朝向一樣本提供光;使用一光譜計收集自該樣本反射之光;使用該光源及該光譜計獲得該樣本之一光學量測;及在該光學量測期間藉由移動支撐該樣本之一樣本定位載物台而沿至少一個方向移動該樣本。
在特定實施例中,一散射計系統包含:一光源,其提供入射於一樣本上之光;一樣本定位載物台,其在該樣本之一光學量測期間支撐該樣本;及一收集成像光學器件,其用於將經反射光成像至收集及分析該經反射光之一多像素感測器上。在某些實施例中,該收集成像光學器件包含復原一成像平面與以一傾斜角度自該樣本反射之光中之一光學軸之一垂直度之一稜鏡或影像平面間可變光學延遲組件。在某些實施例中,該收集成像光學器件將自該樣本之一表面法向(或接近於法向)反射之光成像至該多像素感測器上。在某些實施例中,該收集成像光學器件包含用於將該經反射光成像至該多像素感測器上之一透鏡或一組光學表面。在某些實施例中,該多像素感測器能夠收集及提供關於一偏振矩陣之某些或所有元素之資訊。
100‧‧‧移動晶圓定位系統
100’‧‧‧移動晶圓定位系統
102‧‧‧載物台
102’‧‧‧載物台
104‧‧‧樣本
106‧‧‧光束斑點
106’‧‧‧光束斑點
108‧‧‧有效量測斑點
108’‧‧‧感測器有效獲取區域/區域/有效獲取區域
150‧‧‧光學掃描系統
152‧‧‧光源
154‧‧‧入射光
156‧‧‧透鏡
158‧‧‧偏振器
160‧‧‧經反射光
162‧‧‧光譜計
164‧‧‧資料處理單元
170‧‧‧散射計
172‧‧‧收集成像光學器件
174‧‧‧稜鏡
176‧‧‧透鏡
178‧‧‧感測器
當結合附圖閱讀時,藉由參考根據本發明之目前較佳但說明性實施例之以下詳細說明將更完全地瞭解本發明之方法及設備之特徵及優點,在該等附圖中:
圖1繪示用於一光學掃描系統之一移動晶圓定位系統中之一載物台之一實施例之一俯視表示圖。
圖2繪示用於一光學掃描系統之一移動晶圓定位系統中之一載物台之另一實施例之一俯視表示圖。
圖3繪示使用一偏振光源之一光學掃描系統之一實施例之一表示圖。
圖4繪示使用傾斜照明之一散射計之一實施例之一表示圖。
圖5繪示使用法向照明之一散射計之另一實施例之一表示圖。
儘管易於對本發明做出各種修改及替代形式,但其特定實施例已在圖式中以實例方式展示且將在本文中得以詳細闡述。該等圖式可不按照比例。應理解,圖式及其詳細說明不意欲將本發明限制於所揭示之特定形式,而是相反,本發明將涵蓋歸屬於如由隨附申請專利範圍所定義之本發明之精神及範疇內之所有修改、等效內容及替代形式。
在本專利之上下文中,術語「耦合」意指一或多個物件或組件之間的一直接連接或一間接連接(例如,一或多個中介連接)。短語「直接連接」意指物件或組件之間的一直接連接以使得物件或組件直接彼此連接以使得物件或組件以一「使用點」方式操作。
在特定實施例中,在一樣本或目標(例如,一半導體晶圓)之光學掃描期間移動該目標以提供在該樣本表面上方之增加之掃描覆蓋範圍(例如,在該樣本(晶圓)之實質上整個表面上方掃描)。當移動該樣本時可自該樣本進行散射或反射量測。在某些實施例中,當進行光學(散射或反射)量測時連續地移動樣本。在特定實施例中,在資料獲取期間(例如,在藉由光學掃描系統對樣本之量測之一時間期間)將樣本移動大於(例如,實質上大於)光學掃描系統之一光束斑點大小之一距離。在資料獲取期間將樣本移動此等距離提供在於樣本上之一距離上平均化之資料(資訊),其中在樣本上之實質上不同位置上方收集信號之不同部分。當進行光學掃描量測時移動樣本可增加樣本覆蓋範圍(例如,增加掃描區域),同時維持實質上類似於當前點對點掃描系統之總處理量的總處理量。
在特定實施例中,使用一光學掃描系統(例如,一掃描載物台散射計)中之一移動晶圓定位系統(例如,一連續移動晶圓定位系統)來移 動樣本。具有移動晶圓定位系統之光學掃描系統可基於此項技術中習知之任何橢圓偏光計或反射計。舉例而言,光學掃描系統可使用在此項技術中習知之任何橢圓偏光計或反射計中發現之光學系統及資料獲取系統。光學掃描系統可基於之系統之實例包含但不限於:光譜橢圓偏光計及反射計、單波長橢圓偏光計、角解析反射計及橢圓偏光計以及在單個或多個波長、入射角及反射/散射角下量測一樣本之多個偏振內容及反射率之系統之任何組合。光學掃描系統可能夠同時記錄所有量測資訊(資料獲取)或光學掃描系統可係諸如一旋轉偏振橢圓偏光計之一非同時量測系統。在特定實施例中,光學掃描系統使用與移動晶圓定位系統組合之一連續自動聚焦系統。該連續自動聚焦系統可在樣本之光學掃描期間維持光在樣本上之聚焦。
移動晶圓定位系統可在掃描樣本時(例如,當進行量測時或在資料獲取期間)沿不同相對方向移動樣本。在特定實施例中,移動晶圓定位系統藉由旋轉支撐樣本之一載物台(例如,該載物台係一掃描RT(旋轉及θ)載物台)來移動樣本。在某些實施例中,移動晶圓定位系統藉由沿X及Y方向(例如,使用一掃描XY載物台來支撐樣本)平移樣本來移動樣本。使用一掃描RT載物台與使用一掃描XY載物台相比可提供增加之總處理量。
圖1繪示用於一光學掃描系統之一移動晶圓定位系統中之一載物台之一實施例之一俯視表示圖。移動晶圓定位系統100包含載物台102。樣本104放置於載物台102上。樣本104可係(舉例而言)一半導體晶圓。在特定實施例中,載物台102在使用光束斑點106之光學掃描期間旋轉樣本104(例如,載物台102係一掃描RT載物台)。光束斑點106可由光學掃描系統使用以用於樣本104之散射計量測。
在特定實施例中,如圖1中所展示,當樣本104在藉由光學掃描系統之量測獲取期間移動(旋轉)時,光束斑點106保持固定。由於樣 本104在獲取期間移動,因此來自光束斑點106之一經量測信號係樣本上之多個位置上之一平均值以產生有效量測斑點108。作為一實例,光束斑點106在大小上可係約50μm×20μm(沿徑向方向伸長)。若載物台102以約600rpm旋轉,則載物台在一300mm直徑樣本104(一300mm晶圓)之邊緣處提供等於約10m/s之一線性速度。若假定光學掃描系統具有1ms(毫秒)之一獲取時間,則樣本104在獲取期間將移動約1cm,此產生具有約50μm×1cm之一大小之有效量測斑點108。對於一100ms獲取時間(類似於一旋轉偏振橢圓偏光計之獲取時間)而言,樣本104將移動1m(例如,樣本將進行一次完整旋轉)。相反地,沒有移動零件且具有以一多kHz取樣速率操作之一高速感測器之一專用散射計可提供1mm或更小之一切向解析度。
由於在獲取時間期間樣本104之移動,因此可沿徑向方向收集關於樣本表面改變之資訊,此可受掃描間距限制。沿徑向方向之資料收集對於量測樣本104上之彎曲效應(bow effect)而言可係有用的。在某些實施例中,若樣本旋轉速度足夠緩慢且獲取時間足夠迅速,則沿切線方向收集關於樣本表面改變之資訊。使用移動晶圓定位系統100獲取資訊具有極少或不具有與載物台102在量測點之間的運動有關之額外負擔,此與點對點掃描系統不同。移動晶圓定位系統100提供一高效系統以用於跨越樣本104之一大區域(例如,實質上整個樣本)獲取掃描資訊。
圖2繪示用於一光學掃描系統之一移動晶圓定位系統中之一載物台之另一實施例之一俯視表示圖。移動晶圓定位系統100’包含載物台102’,載物台102’具有由光學掃描系統提供之光束斑點106’。在特定實施例中,在量測獲取期間光束斑點106’與載物台102’同步移動。因此,甚至在樣本在載物台102’上移動之情況下,光束斑點106’照明樣本104上之同一位置。
在某些實施例中,光學掃描系統使用時間延遲積分(TDI)能力以允許當樣本移動時光束斑點106’「凍結」(例如,暫時地凍結)於樣本104上之一特定位置上。此一光學掃描系統可使用具有一大的總面積之一TDI感測器。藉由使TDI與載物台102’之運動同步化,光束斑點106’之目標可有效地「凍結」樣本104上之感測器有效獲取區域108’。區域108’可連同樣本104一起移動且允許光學掃描系統在一時間延遲積分週期內(例如,一目標位置在總感測器區域上方移動之時間)自同一晶圓位置收集資料(資訊)。
在某些實施例中,光束斑點106’之大小相對地類似於感測器有效獲取區域108’且光束斑點隨著樣本104移動而沿循樣本目標位置與感測器有效獲取區域同步地移動。此等實施例允許在一子組(實際經照明)樣本位置處以高的總信號位準及對應較高的敏感性對樣本104上之一特定位置之一致照明。然而,此等實施例可不對一整個樣本表面取樣。
在某些實施例中,光束斑點具有實質上匹配光學掃描系統中之感測器之總面積之一大小(例如,樣本104被光「淹沒」且目標樣本位置總是被照明而不管樣本之運動如何)。「淹沒」可慮及以某些敏感性為代價而掃描樣本104之整個表面。
在某些實施例中,替代TDI感測器使用一大面積固態感測器(諸如光電二極體或PMT)。固態感測器可與一移動光束斑點(諸如圖2中所展示之光束斑點106’)一起使用。在此等實施例中,目標樣本位置相對於感測器移動,但目標樣本位置仍由同一感測器胞元/像素暫存。使用固態感測器可比使用TDI感測器及相關聯光學器件成本少。然而,固態感測器可不允許控制有效獲取區域(例如,圖2中所展示之有效獲取區域108’)之大小之能力,此乃因有效獲取區域將由光束斑點之大小判定,光束斑點之大小由於使用固態感測器將受嚴格控制。 在某些實施例中,移動光學掃描系統中之收集光學器件且與同步地移動光束斑點與載物台或用照明「淹沒」樣本組合使用一小面積感測器。
在使用TDI感測器及/或移動光束斑點之系統中,在量測獲取期間樣本運行之距離可小於TDI感測器尺寸及/或小於光束斑點移動系統之範圍。限制樣本運行之距離可限制每樣本之總獲取時間,且因此此等系統可用於沒有移動零件之散射計中。然而,此等系統對於查看一特定樣本位置而言可係有用的,此允許沿徑向及切向方向兩者以高解析度掃描樣本。
圖3繪示使用一偏振光源之一光學掃描系統之一實施例之一表示圖。光學掃描系統150包含移動晶圓定位系統100。樣本104可放置於移動晶圓定位系統100上。光源152可係(舉例而言)一寬頻光源。來自光源152之入射光154可穿過透鏡156及偏振器158。
入射光154可作為經反射光160反射離開樣本104。經反射光160可在該經反射光經收集於光譜計162中之前穿過偏振器158及透鏡156。資料處理單元164可耦合至光譜計162以收集及分析來自經反射光160之資訊以評估樣本104之表面資訊。
在光學掃描系統150中使用移動晶圓定位系統100(圖1中所展示)或移動晶圓定位系統100’(圖2中所展示)允許使用傳統散射量測技術(例如,光譜橢圓偏振量測術及反射量測術、單波長橢圓偏振量測術或角解析反射量測術及橢圓偏振量測術)在實際總處理量(例如,約20wph至約100wph)下進行完整晶圓(樣本)量測。與點對點掃描系統相比,使用移動晶圓定位系統之光學掃描系統具有極少或不具有與掃描載物台在量測點之間的運動有關之額外負擔(例如,由於在量測之間點對點地移動晶圓(樣本)而不存在額外負擔)。另外,使用移動晶圓定位系統之光學掃描系統允許包含具有較高敏感性之光學設計(諸如旋 轉偏振橢圓偏光計)。
在特定實施例中,光學掃描系統150包含能夠同時收集及同時分析來自多個毗鄰點之資料之一散射計。該散射計可在不跳過一樣本上之任何區域之情況下收集及分析來自該樣本之資料。在特定實施例中,散射計包含成像收集光學器件及一多通道偵測器或感測器。圖4繪示使用傾斜照明之散射計170之一實施例之一表示圖。圖5繪示使用法向照明之散射計170之另一實施例之一表示圖。散射計170可(舉例而言)用於一光學掃描系統(例如,圖3中所展示之光學掃描系統150)中及/或與一移動晶圓定位系統(例如,圖1及圖2中所展示之移動晶圓定位系統100或移動晶圓定位系統100’)一起使用。在某些實施例中,散射計170用於一點對點光學掃描系統中。
在特定實施例中,散射計包含入射於樣本104上之入射光154。入射光154可包含實質上照明將由散射計170成像之所有像素之照明。入射光154可由與圖4中所展示之一傾斜照明系統或圖5中所展示之一法向(或接近於法向)照明系統組合之(舉例而言)一模式鎖定雷射或寬頻光源提供。在特定實施例中,入射光154具有沿一長尺寸(例如,x方向)之一平坦頂部強度量變曲線及沿一短尺寸(例如,y方向)之一高斯(Gaussian)量變曲線。
來自樣本104之反射產生經反射光160。可使用收集成像光學器件172收集經反射光160。在特定實施例中,如圖4中所展示,當與傾斜照明一起使用時,收集成像光學器件172包含稜鏡174及透鏡176。稜鏡174或諸如一影像平面間可變光學延遲子系統之一類似光學元件可在自樣本104以一傾斜角度(傾斜地)反射經反射光160之情況下用以復原成像平面與該光中之光學軸之垂直度。
在特定實施例中,如圖5中所展示,當與法向(或接近於法向)照明一起使用時,收集成像光學器件172包含透鏡176。當使用法向(或 接近於法向)照明時,不需要復原成像平面與光學軸之垂直度且因此可不需要稜鏡174或另一類似光學元件(假定收集成像光學器件172之景深足以使樣本104上之所有點保持聚焦)。
透鏡176可包含將樣本104之表面成像於感測器178上之一或多個透鏡或光學表面。樣本104上之可解析(像素)大小可由收集成像光學器件172之解析度、放大率及感測器178中之像素大小來定義。
感測器178可係一維(1D)或二維(2D)多像素感測器。對於一2D感測器而言,該感測器之一x方向可對應於照明線之一長尺寸以解析樣本104上之多個點。該感測器之一y方向可藉由具有覆蓋該感測器之部分之期望之定向之偏振器來提供關於經反射光160之偏振之資訊。在某些實施例中,感測器178具有包含繞射光柵之一內部光學路徑。繞射光柵可用以將傳入光之光譜映圖至感測器之y方向中,此對於螢光量測而言可係有用的。
感測器178可能夠收集及提供關於一偏振矩陣(例如,一繆勒偏振矩陣)之某些或所有元素之資訊。可經提供之元素包含但不限於偏振及非偏振反射率及光譜橢圓偏振量測術資料。在特定實施例中,感測器178包含一強度偵測器。強度偵測器可用於在一單個長度下之反射率之量測。反射率之量測可包含沿單個(1D)或兩個(2D)方向之多個像素。在特定實施例中,感測器178包含一單個或多個成像光譜計。成像光譜計可包含針對每一成像之一入口點,即一狹縫(例如,一入口狹縫)。在特定實施例中,該狹縫平行於照明線之長尺寸定向。狹縫之每一點可沿一正交於狹縫方向轉化成一系列波長特定點。可使用(舉例而言)一平面繞射光柵、一稜鏡或一類似繞射元件來執行轉化。
在特定實施例中,散射計170包含具有軟體之一電腦系統。該電腦系統可用以處理及分析收集於感測器178中之資料。散射計170提供平行處理來自樣本104上之多個毗鄰位置之鏡面反射率資訊之能力。 能夠平行處理來自多個毗鄰位置之鏡面反射率資訊降低對光學掃描系統中之照明之要求,此乃因不需要一小照明斑點。處理來自多個毗鄰位置之鏡面反射率資訊亦提供在較高總處理量(例如,在約20wph與約100wph之間)下之改良之解析度及敏感性。散射計170可用以偵測諸如劃痕之表面缺陷。在某些實施例中,使用額外分析以確定所偵測之表面缺陷之類型。在特定實施例中,散射計170用以量測在較高總處理量下之薄膜厚度及分散係數(n及k)。在某些實施例中,使用額外分析以提供自動聚焦資訊。
應理解,本發明不限於所闡述之特定實施例,本發明當然可變化。亦應理解,本文中所使用之術語僅係出於闡述特定實施例之目的,且不意欲係限制性的。除非本發明內容明確另外指示,否則如本說明書中所使用,單數形式「一」、「一個」及「該」包括複數個指示物。因此,舉例而言,對「一透鏡」之提及包含兩個或兩個以上透鏡之一組合且對「一光」之提及包含光之混合物。
熟習此項技術者根據本說明將明瞭本發明之各種態樣之其他修改及替代實施例。因此,應將本說明視為僅係說明性且出於教示熟習此項技術者實施本發明之一般方式之目的。應理解,將本文中所展示及所闡述之本發明之形式視為目前較佳實施例。元件及材料可替代本文中所圖解說明及所闡述之彼等元件及材料,零件及程序可顛倒,且本發明之特定特徵可獨立利用,所有正如熟習此項技術者在受益於本發明之本說明之後將明瞭。可在不背離如以下申請專利範圍中所闡述之本發明之精神及範疇之情況下對本文中所闡述之元件進行改變。
100‧‧‧移動晶圓定位系統
102‧‧‧載物台
104‧‧‧樣本
106‧‧‧光束斑點
108‧‧‧有效量測斑點

Claims (8)

  1. 一種光學掃描系統,其包括:一光源,其經組態以朝向一樣本提供光,其中該光源以一移動光束斑點提供該光至該樣本;一光譜計,其經組態以收集自該樣本反射之光;及一移動樣本定位載物台,其在使用該光源及該光譜計對該樣本之一光學量測期間支撐該樣本,其中在該樣本之該光學量測期間當經反射光被收集時,該移動樣本定位載物台沿至少一個方向旋轉該樣本;其中在該光學量測期間當經反射光被收集時,該移動光束斑點與該樣本同步旋轉,使得在該光學量測期間該移動光束斑點與該樣本一同旋轉,及該移動光束斑點照明該樣本上之一特定位置;及其中在該光學量測期間該光譜計自該樣本收集經反射光資料。
  2. 如請求項1之系統,其進一步包括一連續自動聚焦系統,其用於在該樣本之該光學量測期間維持該光在該樣本上之聚焦。
  3. 如請求項1之系統,其中在該光學量測期間將該樣本移動大於該光在該樣本上之一光束斑點大小之一距離。
  4. 如請求項1之系統,其進一步包括一時間延遲積分感測器,其中當在該光學量測期間該樣本移動時,該時間延遲積分感測器暫時地將該光束斑點凍結在該樣本上之一或多個位置處。
  5. 如請求項1之系統,其中該樣本包括一半導體晶圓。
  6. 一種用於自一樣本提供一光學量測之方法,其包括:自一光源朝向一樣本提供光,其中該光源以一移動光束斑點 提供該光至該樣本;使用一光譜計收集自該樣本反射之光;使用該光源及該光譜計獲得該樣本之一光學量測;在該光學量測期間當經反射光被收集時,藉由移動支撐該樣本之一樣本定位載物台而沿至少一個方向旋轉該樣本;在該光學量測期間當經反射光被收集時,同步旋轉該移動光束斑點與該樣本,使得在該光學量測期間該移動光束斑點與該樣本一同旋轉,及該移動光束斑點照明該樣本上之一特定位置;及在該光學量測期間自該樣本上之該特定位置收集經反射光資料。
  7. 如請求項6之方法,其進一步包括在該樣本之該光學量測期間維持該光在該樣本上之聚焦。
  8. 如請求項6之方法,其進一步包括在該光學量測期間將該樣本移動大於該光在該樣本上之一光束斑點大小之一距離。
TW102120941A 2012-06-13 2013-06-13 光學表面掃描系統及方法 TWI608227B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261659050P 2012-06-13 2012-06-13
US13/916,334 US9182341B2 (en) 2012-06-13 2013-06-12 Optical surface scanning systems and methods

Publications (2)

Publication Number Publication Date
TW201403054A TW201403054A (zh) 2014-01-16
TWI608227B true TWI608227B (zh) 2017-12-11

Family

ID=49755613

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102120941A TWI608227B (zh) 2012-06-13 2013-06-13 光學表面掃描系統及方法

Country Status (3)

Country Link
US (1) US9182341B2 (zh)
TW (1) TWI608227B (zh)
WO (1) WO2013188602A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020096794A1 (en) * 2018-11-07 2020-05-14 Applied Materials, Inc. Methods and apparatus for waveguide metrology

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020179867A1 (en) * 2000-09-20 2002-12-05 John Fielden Methods and systems for determining flatness, a presence of defects, and a thin film characteristic of a specimen
US6671044B2 (en) * 1999-01-25 2003-12-30 Amnis Corporation Imaging and analyzing parameters of small moving objects such as cells in broad flat flow
US7487049B2 (en) * 2006-07-12 2009-02-03 Hitachi High-Technologies Corporation Surface inspection method and surface inspection apparatus
US20090279090A1 (en) * 2006-07-27 2009-11-12 Robert Gregory Wolf Multiple measurement techniques including focused beam scatterometry for characterization of samples
US7656542B2 (en) * 2006-03-10 2010-02-02 Nanometrics Incorporated Method for evaluating microstructures on a workpiece based on the orientation of a grating on the workpiece
TW201107735A (en) * 2009-05-15 2011-03-01 Asml Netherlands Bv Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device manufacturing method

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4844617A (en) 1988-01-20 1989-07-04 Tencor Instruments Confocal measuring microscope with automatic focusing
GB9014263D0 (en) * 1990-06-27 1990-08-15 Dixon Arthur E Apparatus and method for spatially- and spectrally- resolvedmeasurements
US5844727A (en) 1997-09-02 1998-12-01 Cymer, Inc. Illumination design for scanning microlithography systems
US6483580B1 (en) * 1998-03-06 2002-11-19 Kla-Tencor Technologies Corporation Spectroscopic scatterometer system
US6496256B1 (en) * 1999-10-01 2002-12-17 Applied Materials, Inc. Inspection systems using sensor array and double threshold arrangement
US6429943B1 (en) * 2000-03-29 2002-08-06 Therma-Wave, Inc. Critical dimension analysis with simultaneous multiple angle of incidence measurements
US6606173B2 (en) 2000-08-01 2003-08-12 Riake Corporation Illumination device and method for laser projector
US7317531B2 (en) 2002-12-05 2008-01-08 Kla-Tencor Technologies Corporation Apparatus and methods for detecting overlay errors using scatterometry
US6721052B2 (en) * 2000-12-20 2004-04-13 Kla-Technologies Corporation Systems for measuring periodic structures
US6567584B2 (en) 2001-02-12 2003-05-20 Silicon Light Machines Illumination system for one-dimensional spatial light modulators employing multiple light sources
WO2003014400A1 (en) * 2001-08-08 2003-02-20 Applied Precision, Llc Time-delay integration imaging of biological specimens
DE10151216A1 (de) * 2001-10-16 2003-04-24 Zeiss Carl Jena Gmbh Verfahren zur optischen Erfassung von charakteristischen Größen einer beleuchteten Probe
US6999180B1 (en) * 2003-04-02 2006-02-14 Kla-Tencor Technologies Corporation Optical film topography and thickness measurement
US20050020073A1 (en) 2003-07-22 2005-01-27 Lam Research Corporation Method and system for electronic spatial filtering of spectral reflectometer optical signals
JP2005266083A (ja) * 2004-03-17 2005-09-29 Olympus Corp 観察装置及び観察方法
US7121357B1 (en) 2004-08-30 2006-10-17 Richard Raimondi Method of inserting a grounding rod
US7038776B1 (en) 2005-03-25 2006-05-02 Raytheon Company Polarimeter to simultaneously measure the stokes vector components of light
US7528944B2 (en) * 2006-05-22 2009-05-05 Kla-Tencor Technologies Corporation Methods and systems for detecting pinholes in a film formed on a wafer or for monitoring a thermal process tool
JP5279992B2 (ja) * 2006-07-13 2013-09-04 株式会社日立ハイテクノロジーズ 表面検査方法及び装置
US7714997B2 (en) * 2006-11-07 2010-05-11 Hitachi High-Technologies Corporation Apparatus for inspecting defects
US20090219491A1 (en) 2007-10-18 2009-09-03 Evans & Sutherland Computer Corporation Method of combining multiple Gaussian beams for efficient uniform illumination of one-dimensional light modulators
US8277060B2 (en) 2009-01-26 2012-10-02 Raytheon Company Apparatus and method of shaping a laser beam profile
US8451524B2 (en) 2009-09-29 2013-05-28 Amnis Corporation Modifying the output of a laser to achieve a flat top in the laser's Gaussian beam intensity profile
US8212995B2 (en) 2010-03-16 2012-07-03 Raytheon Company Laser imaging system with uniform line illumination and method for generating images
NL2009359A (en) 2011-09-23 2013-03-26 Asml Netherlands Bv Radiation source.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6671044B2 (en) * 1999-01-25 2003-12-30 Amnis Corporation Imaging and analyzing parameters of small moving objects such as cells in broad flat flow
US20020179867A1 (en) * 2000-09-20 2002-12-05 John Fielden Methods and systems for determining flatness, a presence of defects, and a thin film characteristic of a specimen
US7656542B2 (en) * 2006-03-10 2010-02-02 Nanometrics Incorporated Method for evaluating microstructures on a workpiece based on the orientation of a grating on the workpiece
US7487049B2 (en) * 2006-07-12 2009-02-03 Hitachi High-Technologies Corporation Surface inspection method and surface inspection apparatus
US20090279090A1 (en) * 2006-07-27 2009-11-12 Robert Gregory Wolf Multiple measurement techniques including focused beam scatterometry for characterization of samples
TW201107735A (en) * 2009-05-15 2011-03-01 Asml Netherlands Bv Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device manufacturing method

Also Published As

Publication number Publication date
WO2013188602A1 (en) 2013-12-19
US20130335736A1 (en) 2013-12-19
US9182341B2 (en) 2015-11-10
TW201403054A (zh) 2014-01-16

Similar Documents

Publication Publication Date Title
US7433034B1 (en) Darkfield defect inspection with spectral contents
EP1636572B1 (en) Systems for inspection of patterned or unpatterned wafers and other specimen
US6813034B2 (en) Analysis of isolated and aperiodic structures with simultaneous multiple angle of incidence measurements
US8009292B2 (en) Single polarizer focused-beam ellipsometer
US7161667B2 (en) Wafer edge inspection
US7440094B2 (en) Optical sample characterization system
US8885037B2 (en) Defect inspection method and apparatus therefor
US7259869B2 (en) System and method for performing bright field and dark field optical inspection
US20020054704A1 (en) Pixel based machine for patterned wafers
CN110687051B (zh) 一种检测设备及方法
US7724362B1 (en) Oblique incidence macro wafer inspection
WO2007100615A2 (en) High-sensitivity surface detection system and method
US11933717B2 (en) Sensitive optical metrology in scanning and static modes
JP2008249386A (ja) 欠陥検査装置および欠陥検査方法
US20240183655A1 (en) Measuring apparatus and method for roughness and/or defect measurement on a surface
KR20200071563A (ko) Hsi 기반 검사 장치
US8934091B2 (en) Monitoring incident beam position in a wafer inspection system
US11536648B2 (en) Optical inspection device and method
TWI608227B (zh) 光學表面掃描系統及方法
JP2000002514A (ja) 膜厚測定装置及びアライメントセンサ並びにアライメント装置
US6236056B1 (en) Defect evaluation apparatus for evaluating defects and shape information thereof in an object or on the surface of an object
TWI428575B (zh) 頻譜式橢偏儀
JP2006242673A (ja) 膜の分析装置及び膜の分析方法