TWI605240B - 相控陣列毫米波成像技術 - Google Patents

相控陣列毫米波成像技術 Download PDF

Info

Publication number
TWI605240B
TWI605240B TW100113126A TW100113126A TWI605240B TW I605240 B TWI605240 B TW I605240B TW 100113126 A TW100113126 A TW 100113126A TW 100113126 A TW100113126 A TW 100113126A TW I605240 B TWI605240 B TW I605240B
Authority
TW
Taiwan
Prior art keywords
imager
signal
array
antennas
radio frequency
Prior art date
Application number
TW100113126A
Other languages
English (en)
Other versions
TW201217760A (en
Inventor
肯多G
度艾恩 劉
艾瑞S 那塔拉娟
史考特K 雷納德
艾伯多 凡德斯 葛西亞
Original Assignee
萬國商業機器公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 萬國商業機器公司 filed Critical 萬國商業機器公司
Publication of TW201217760A publication Critical patent/TW201217760A/zh
Application granted granted Critical
Publication of TWI605240B publication Critical patent/TWI605240B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/28Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the amplitude
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S2013/0236Special technical features
    • G01S2013/0245Radar with phased array antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6661High-frequency adaptations for passive devices
    • H01L2223/6677High-frequency adaptations for passive devices for antenna, e.g. antenna included within housing of semiconductor device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • H01L2924/15321Connection portion the connection portion being formed on the die mounting surface of the substrate being a ball array, e.g. BGA

Description

相控陣列毫米波成像技術 【相關申請案參照】
本申請案在35 U.S.C. §120的規範下主張2010年4月20日提申的美國臨時專利申請案第61/325,894號的優先權,本文以引用的方式將其完整內文併入。
本發明關於將相控陣列技術應用至毫米波成像。明確地說,本發明關於利用可重新配置的相控天線陣列的焦點平面以及光瞳平面陣列成像技術。
毫米波成像涉及被動偵測毫米波(30至300GHz)頻帶中自然發生的輻射。另外還有主動式毫米波成像系統,其會利用毫米波輻射來照射目標物。此處所述的技術亦可應用至主動式成像器的接收器部分。被動式成像器雖然具有沒有任何毫米波發射的優點,卻使其難以偵測並且會忽視毫米波無線電發射的知覺健康議題(perceived health issues)。
毫米波輻射的大氣傳播窗(其中,該輻射會有最小的大氣吸收)出現在35、94、140、220GHz,因此,許多毫米波成像器都被設計成操作在此等頻率處。不過,成像器亦可被設計成操作在其它頻率處,尤其是僅需要在很短的距離(舉例來說,10m)中進行輻射偵測的情況。毫米波成像器能夠在低可視性條件中進行成像(不同於視覺/紅外光成像器),而且毫米波成像器特別適合穿透煙霧或粉塵來成像物體。它們亦可使用在安全應用中,因為它們能夠穿透衣服來偵測物體。
毫米波成像器通常係利用一由多個毫米波透鏡所組成的系統將毫米波輻射聚焦在一或多個偵測器之上建構而成。該等偵測器通常係由多個毫米波無線電接收器以及多個天線元件所組成。藉由在單一偵測器元件上依序從畫面中不同的部分以機械方式掃描輻射便會創造出由多個像素所組成的影像。或者,多個偵測器可能會被排列成一線性陣列或是一焦點平面陣列。使用多個偵測器會提高一特殊偵測器在該畫面中單一像素上的停留時間。積分時間增加會降低偵測器的有效雜訊底並改善成像器的熱解析度。
本發明的一範例具體實施例係一種偵測射頻影像的設備。該設備包含一由一或多個封裝積體電路所攜載的射頻天線陣列。該設備還包含一控制器,其會被配置成用以選擇性地相位偏移來自該等天線的射頻信號,俾使得該射頻影像的至少一部分會被聚焦。
本發明的另一範例係一成像器陣列中的成像器元件,用以偵測來自一射頻透鏡的已聚焦射頻信號。該成像器元件包含一射頻天線,其會被配置成用以接收該已聚焦射頻信號。該成像器元件還包含一相位偏移器,其會被配置成用以相位偏移該射頻信號,俾使得當該射頻信號組合該成像器陣列中其它成像器元件所偵測到的其它射頻信號時,該成像器陣列的至少一部分會受到電子操縱。該成像器元件進一步包含一像素偵測器電路,其會被配置成用以讓該射頻信號通往一成像器,而不會組合該射頻信號和其它無線電信號。該成像器元件還包含一射頻切換器,其可配置成用以將射頻信號轉向至該相位偏移器及該像素偵測器中的其中一者。
本發明的又一範例具體實施例係一成像器陣列中的成像器元件。該成像器元件包含一射頻天線,其會被定位在一光瞳平面處並且被配置成用以接收一射頻信號。該成像器元件還包含一相位偏移器,其會被配置成用以相位偏移該射頻信號,俾使得當該射頻信號組合該成像器陣列中其它成像器元件所偵測到的其它射頻信號時,該成像器陣列會受到電子操縱。再者,該等其它成像器元件會與位於該光瞳平面處的成像器元件實體隔離。該成像器元件進一步包含一共同本地振盪器信號,用以讓該成像器元件以及該成像器陣列中的其它成像器元件保持相位同調。
本發明的再一範例具體實施例係一種用以成像射頻信號的方法。該方法包含從一屬於一天線陣列的射頻天線處接收一已聚焦射頻信號。該方法進一步包含將該射頻信號從一像素偵測器電路處切換至一相位偏移器電路。該像素偵測器電路會被配置成用以讓該射頻信號通往一成像器,而不會組合該射頻信號和其它無線電信號。該相位偏移器電路會被配置成用以相位偏移該射頻信號,俾使得該天線陣列的至少一部分會受到電子操縱。此操縱會發生在該射頻信號組合該天線陣列中其它天線所偵測到的其它射頻信號時。
本文會參考本發明的具體實施例來說明本發明。在本發明的全部說明中會參考圖1至圖12。
如下文的詳細討論,本發明的具體實施例包含一可動態重新配置的天線陣列組,其允許使用相位陣列技術來進行電子操縱,用以偵測無線電波影像。具體實施例可能會被配置成用以在一透鏡的焦點平面處或是在沒有透鏡的光瞳平面處偵測射頻。
圖1所示的係本發明所設計之用於偵測一射頻影像的範例設備102。該設備包含:一由多個射頻天線106所組成的陣列104,該等天線係被製作在一或多個封裝積體電路108之上;以及一控制器110,其會被配置成用以選擇性地相位偏移來自該等天線的射頻信號,俾使得該RF影像的一部分會被聚焦。
圖2A與圖2B所示的係以不同的方式將該範例設備中的天線106聚集以形成選定的天線陣列配置。圖2A顯示的係陣列104中的所有天線106被排列成個別的像素。因此,來自此排列中之天線106的已偵測射頻信號並不會成群地被相位偏移或是組合該陣列104中其它天線所偵測到的其它射頻信號。
圖2B顯示的則係被配置成多個相控陣列202群的天線106的範例。於此具體實施例中,每一個相控陣列202皆係由一或多個封裝積體電路108之上的多根天線106所組成。再者,每一個相控陣列202皆對應於已偵測影像中的一個別像素。依此方式,如下面詳述,來自該等天線106的射頻信號會被選擇性地相位偏移,俾使得該射頻影像的至少一部分會被聚焦。該等天線106亦可跨越多個封裝積體電路108被聚集及/或跨越單一封裝積體電路108中的一天線106的子集被聚集。
如上面所提,該等天線106中的每一者可被配置成個別的像素或是一相控陣列202的一部分。當每一根天線106被配置成單一像素時,在該畫面中便會達到最大數量的同步像素(也就是,最大的空間解析度)。當該等天線106被配置成相控陣列202時則會降低雜訊並且因而改善熱解析度,因為該陣列增益會改善信噪比:SNR陣列增益=10 log10(N)。畫面中不同的部分可能有不同數量的像素、視訊速率、以及熱解析度。再者,該等相控陣列202還可用於電子聚焦。熟習本技術的人士便會瞭解,有各式各樣的方式可將該等天線聚集成相控陣列。
圖3所示的係本發明所設計之封裝積體電路108的範例具體實施例的剖面側視圖。一封裝積體電路108可能包含多根天線106以及一積體電路晶粒302。於其中一具體實施例中,該等天線106可能會被製作在封裝層304裡面;而在其它具體實施例中,該等天線106則可能係一積體電路晶粒302的一部分。於被設計成用以偵測頻率為60GHz的波的其中一具體實施例中,該封裝積體電路108可利用低溫共燒陶瓷技術被製作成具有一天線腔306以及一4x4天線陣列。此等十六根貼片天線106的增益範圍可能各為5-7dBi。天線腔306可提供一種相對介電常數接近一的天線環境,其可產生成像器應用所需的廣(~10%)頻寬。該天線陣列的尺寸可擴大為6x6、8x8、或更大的陣列。在圖3中,淺色線描繪封裝裡面的層疊,而暗色線則表示內部的封裝繞線。該封裝積體電路108裡面可併入的陣列的尺寸可能會受限於從該等天線106至積體電路晶粒302的路徑長度,並且還受限於積體電路晶粒302上的輸入和輸出的數量。
圖4所示的係一被配置成焦點平面陣列成像器402用以偵測射頻影像之設備的範例具體實施例的側視圖。該範例焦點平面陣列成像器包含一具有至少一固定射頻透鏡406的透鏡裝配件404以及一要被成像的物體412。於此具體實施例中,由多根天線106組成的陣列104可能會被定位在透鏡裝配件404的焦點平面408處。該透鏡裝配件404可以機械方式調整射頻透鏡406,用以將該等無線電波聚焦至由多根天線106組成的一特殊陣列104。於其它具體實施例中,該透鏡裝配件404可能會藉由移動一面鏡來聚焦該等無線電波。因此,熟悉本技術的人士便會理解,本發明的具體實施例可使用各種方法來調整與聚焦該等無線電波。
該透鏡裝配件404可能需要有取決於瑞雷準則(Raleigh Criterion)的透鏡直徑。任何成像器(在任何頻率處)的空間解析度皆會受限於該瑞雷準則。瑞雷準則係成像器解析度和被偵測輻射之波長及孔徑直徑(也就是,圖中透鏡的直徑)的關係。舉例來說,為在94GHz處達到四毫弧 的角解析度約需要一米的孔徑。光學透鏡的該等限制條件亦使其難以利用小於透鏡直徑的支座來產生不失真的影像。因此,倘若利用習知光學元件來施行的話,具有四毫弧角解析度的94GHz成像器在以透鏡為基礎的成像系統中會需要一立方米的近似最小體積。
使用相控陣列技術來創造可重新配置的焦點平面陣列能夠在該成像器的熱靈敏度、視訊速率、以及空間解析度之間快速進行取捨,如同能夠被電子操縱的相控陣列,並且快過以機械方式來掃描或再聚焦的習知透鏡系統。該具體實施例雖然可能包含一龐大的透鏡系統;不過,熟習本技術的人士便會瞭解,其可能係特定應用中的較佳具體實施例。該些應用包含尺寸、重量、以及體積並非重大缺點的具體實施例。其中一種此類具體實施例為固定式入口保全成像器。
圖5所示的係一被配置成焦點平面陣列成像器402之設備102的範例具體實施例的更詳細圖式。該具體實施例包含一功率組合器502,其會被配置成用以組合來自該等天線106的射頻信號。該具體實施例還包含複數個射頻切換器504。每一個射頻切換器504皆會被耦合至該等射頻天線106中的一個別射頻天線106。依此方式,來自每一根天線106的信號會各自被成像,或者,藉由該功率組合器502組合來自該等天線106的其它射頻信號。該具體實施例進一步包含一相位偏移器506,其會被耦合至每一根天線106的功率組合器502。一個別天線106、射頻切換器504、以及相位偏移器506皆可能係成像器元件508的一部分。
該功率組合器502可能包含一四級二元RF功率組合樹,如S.Reynolds等人在2010 RFIC Symposium Digest of Papers中所發表之「SiGe BiCMOS中用於60GHz通信的16元件相控陣列接收器IC(A 16-Element Phased-Array Receiver IC for 60-GHz Communications in SiGe BiCMOS)」,本文以引用的方式將其完整併入。熟習本技術的人士便會瞭解,各種功率組合方法皆可套用至本發明。在功率組合器502之後,信號可能會通過一變動增益放大器510,其後為波封偵測器512。該波封偵測器的輸出可通過一積分器514並接著在進行數位信號處理之前先被一類比至數位轉換器516數位化。此等四個元件以及雷同的具體實施例可稱為像素偵測器電路518與519。於其中一具體實施例中,該像素偵測器電路518與519可能為由一ADC以及數位域中其它功能(VGA、積分)所組成的混合式信號/數位施行方式。
圖5的範例具體實施例可被配置成讓一射頻天線106陣列選擇性地被配置成由該控制器110來電子操縱。電子操縱可能係經由相位偏移並將天線聚集成相控陣列來聚焦已偵測無線電波之方向以提高影像中多個部分之熱解析度,但是,本發明並不受限於此。圖5的一範例具體實施例亦可利用被配置成用以偵測毫米波頻帶(約30至300GHz)中之電磁波的天線106。此等天線106可以和上面所述相同或雷同的方式被製作在矽之上。如下面的進一步說明,圖5的範例具體實施例可能還包含一低雜訊放大器520、變動增益放大器510、以及數位射束查找表522。
圖6所示的係一成像器陣列104(參見圖1)中的一成像器元件508的範例具體實施例,用以偵測來自一射頻透鏡406的已聚焦射頻信號。成像器元件508可能包含一射頻天線106,其會被配置成用以接收該已聚焦射頻信號。一具體實施例可能包含一相位偏移器506,其會被配置成用以相位偏移該射頻信號。相位可能會被偏移俾使得該成像器陣列104的至少一部分會在該射頻信號組合該成像器陣列104中其它成像器元件508所偵測到的其它射頻信號時被電子操縱。
圖6的具體實施例進一步包含一第一像素偵測器電路519,其會被配置成用以讓該射頻信號通往一成像器而不讓該無線電信號組合其它無線電信號。一具體實施例可能還包含一射頻切換器504,其可被配置成用以將該射頻信號轉向至該相位偏移器506或該第一像素偵測器電路519。在不同的具體實施例中,該切換器施行方式可能為被動式或主動式,並且舉例來說,可能包含一具有多個可切換級聯負載的放大器。此處雖然並未顯示;不過,熟習本技術的人士便會瞭解,本技術中已知的Dicke切換或雷同的方法皆可併入該成像器元件的具體實施例之中,用以降低偵測器增益變化的效應。
在成像器元件508的一具體實施例中,被天線106偵測到的信號可能會通過一低雜訊放大器520並且接著通過一射頻切換器(或功率分割器)504,該射頻切換器會讓該信號通往該相位偏移器506或該第一像素偵測器電路519。於另一具體實施例中,一功率分割器504可能會讓該信號的一部分通往每一條路徑。倘若通往相位偏移器506的話,該信號便會通過該相位偏移器506。於其中一具體實施例中,該相位偏移器506可能包含一反射類型相位偏移器或是一主動式相位偏移器,如M.D. Tsai以及A.Natarajan(IBM)在RFIC 2009,第223至226頁中所發表之「矽中60GHz被動式和主動式RF相位偏移器(60-GHz Passive and Active RF Phase Shifters in Silicon)」,本文以引用的方式將其併入。在通過相位偏移器506之後,該信號接著可能會通往一變動增益放大器510。從多根RF天線處被偵測到的信號會在該變動增益放大器510後面根據上述的方法進行功率組合。
成像器元件508的一具體實施例可能還進一步包含一數位射束查找表522,其會被配置成用以決定該相位偏移器506必要的偏移度,俾使得該成像器陣列104會被電子操縱至所希望的角度。一旦已組合的射頻信號從該功率組合器502處被輸出,其便會通往第二像素偵測器電路518。該第二像素偵測器電路518會被耦合至該功率組合器並且被配置成用以讓該已功率組合的射頻信號通往該成像器。
圖7所示的係一用以偵測射頻影像之設備的範例具體實施例,其中,該等天線106係被定位在要被偵測之影像的光瞳平面410處。該設備可能包含:一由多個射頻天線106所組成的陣列104,該等天線係被製作在一或多個封裝積體電路108之上;以及一控制器110,其會被配置成用以選擇性地相位偏移來自該等天線106的射頻信號,俾使得該RF影像的一部分會被聚焦。該範例具體實施例可能還包含一用於每一根天線106的相位偏移器以及用於組合已相位偏移之射頻的一或多個功率組合器,稍後會在圖8中說明與顯示。
該設備可能還包含一或多個封裝積體電路108以及功能如下面所述的至少一組合器電路704。於其中一具體實施例中,每一個封裝積體電路陣列皆會連同一對應的組合器電路704被製作。於一具體實施例中,該設備可能還包含一本地振盪器706,用以讓被該等射頻天線106所偵測到的射頻信號保持相位同調。此本地振盪器706可產生一本地振盪器信號708,其會從該組合器電路704散佈至每一個該等封裝積體電路108。於多個組合器電路的情況中,單一本地振盪器信號可能會被散佈至所有封裝積體電路108。圖7中雖然僅顯示指向四個封裝積體電路108以及從四個封裝積體電路108處指出的箭頭;不過,應該注意的係,每一個封裝積體電路108中皆可能存在該等箭頭以及它們代表的對應電路系統。
一被配置在光瞳平面410處的具體實施例可能會使用相控陣列技術來產生一光瞳平面陣列,而不需要光學透鏡。該封裝積體電路108的陣列係被放置在該成像器的光瞳平面410處而非光學透鏡的焦點平面處,該陣列的整個外部維度會構成該成像器的孔徑(而不是由光學透鏡尺寸來決定該孔徑)。信號處理會從在光瞳平面410處收集到的資訊來重建影像。
所有該等天線106可一起作為一相控陣列104或是由例如多行組織而成的多個相控陣列104。雖然該等天線106被施行在不同的封裝積體電路108之上;不過,於任一情況中皆必須保持個別元件之間的相位同調。於其中一具體實施例中,來自多根天線106的信號會經過相位偏移、功率組合、以及降頻轉換成中頻(Intermediate Frequency,IF)信號,以便在印刷電路板層級進行散佈。降頻轉換會用到一本地振盪器信號708,其係所有封裝積體電路108共用並且會在電路板層級散佈。每一個封裝積體電路108皆可以逐行處理來自該等天線106的信號,每一行皆係由一或多個天線106行所組成。接著,每一行可能產生一IF輸出信號。組合器電路704會在每一條IF信號路徑中讓該等IF信號逐行組合一相位偏移器506,用以補償每一條IF信號路徑的繞線之中不同的相位偏移。
圖7的光瞳平面陣列104可能係由一KxL的封裝積體電路108的陣列104所組成,在x方向中有K個封裝積體電路108而在y方向中有L個封裝積體電路108(K1且L1)。接著,每一個封裝積體電路108可能係由NxM個天線106的陣列104所組成。該封裝積體電路108含有總共NxM根射頻天線106(N1且M1)。倘若逐行處理信號的話,那麼,該封裝積體電路108便可能會有M個IF輸出。該封裝積體電路108含有被連接至該封裝積體電路108之該等RF輸入的NxM根天線106。組合器電路704會組合該等封裝積體電路108的該等IF輸出。於此範例具體實施例中,組合器電路704有KxLxM個IF輸出。倘若輸入的數量變得太大的話,組合器電路704可能會被施行在多個封裝IC上。組合器電路704可能還會產生本地振盪器信號708,其會被散佈至每一個封裝積體電路108。
圖8詳細顯示一封裝積體電路108的範例具體實施例的電路圖。被配置成使用在光瞳平面410處的封裝積體電路108的範例具體實施例可能包含一用於每一根天線106的相位偏移器506以及用於組合多個經相位偏移射頻的一或多個功率組合器502。該等天線106可能雷同於上述,它們會被製作在一封裝積體電路108裡面。於其中一具體實施例中,該等天線106可能會被製作在封裝層304裡面;但是於其它具體實施例中,該等天線106可能係一積體電路晶粒302的一部分。該等天線106亦可能會被配置成用以偵測30至300GHz射頻頻帶中的電磁波。
被配置成使用在光瞳平面處的封裝積體電路108的範例具體實施例可能包含N根射頻天線106以及一輸出;但是,不同的具體實施例則可能會有NxM根RF天線106以及M個IF輸出。每一根天線106皆會耦合一相位偏移器506。藉由調整被該等天線106偵測到的每一個信號的相位與增益便會達成射束成形的目的。一個別天線106與相位偏移器506可被描述為一成像器元件508的一部分,並且可能還包含一低雜訊放大器520、數位射束查找表522、以及變動增益放大器510。
在成像器元件508後面可能係一功率組合器(亦稱為功率組合樹)502,其中,該等N條信號路徑會被組合。在該功率組合器502後面,該信號可能會經由一頻率混合器802被頻率轉換(混合)成一IF頻率,接著,其可能會通過一變動衰減器804以及放大器806,以便調整該IF信號的振幅。於一具體實施例中,本地振盪器信號708可能會在電路板層級處被散佈並且可能係封裝積體電路108的一輸入,其中,其可能會進行頻率相乘(在圖8中會乘以九倍)並且作為該混合器的振盪器輸入。該本地振盪器信號708可以較低的頻率散佈,以便防止因在該電路板上繞送全速率本地振盪器信號708所發生的相關問題(例如,衰減和耦合);但是,於其它具體實施例中,這可能沒有好處。
圖9所示的係一成像器陣列104之中的一成像器元件508的具體實施例。一具體實施例可能包含一射頻天線106,其會被定位在一光瞳平面處並且被配置成用以接收一射頻信號。此具體實施例可能還包含一相位偏移器506,其會被配置成用以相位偏移該射頻信號。相位可能會被偏移俾使得該成像器陣列104會在該射頻信號組合該成像器陣列104中其它成像器元件所偵測到的其它射頻信號時被電子操縱。其它的成像器元件508可能會與該光瞳平面處的成像器元件508實體隔離。一具體實施例可能還進一步包含一共同本地振盪器信號,用以讓該成像器元件508和該成像器陣列104中的其它成像器元件508保持相位同調。
一光瞳平面陣列的成像器元件508的一具體實施例可能還包含一低雜訊放大器520以及一變動增益放大器510。該成像器元件508的一具體實施例可能還包含一數位射束查找表522,其會被配置成用以決定該相位偏移器506必要的偏移度,俾使得該成像器陣列會被電子操縱至所希望的角度。該成像器元件508可能還會被製作成一封裝積體電路108的一部分,其會被配置成用以將該射頻信號以及其它射頻信號功率組合成一經功率組合的射頻信號。於另一具體實施例中,該成像器元件508可能會與該封裝積體電路108被分開製作。圖中雖然並未顯示;不過,熟習本技術的人士便會瞭解,可以將Dicke切換或雷同的方法併入成像器元件508的具體實施例之中,用以降低偵 測器增益變化的效應。
圖10所示的係一組合器電路704的範例具體實施例。舉例來說,該組合器電路704可逐行組合來自該等封裝積體電路108的IF信號以及每一條IF信號路徑中的相位偏移器506,用以補償每一條IF信號路徑的繞線之中不同的相位偏移。該(等)組合器電路704的輸入總數量等於封裝積體電路108之數量的M倍。該組合器電路704可能有多個輸出,至少等於要被處理的行數。
在該組合器電路704的一範例具體實施例中,該等IF輸入信號中的每一者皆可通過多個變動增益放大器510以及一具有一伴隨數位射束查找表522的相位偏移器506的組合。接著,該等多個信號便可經由一功率組合器502進行功率組合。熟習本技術的人士便會瞭解,此處使用的功率組合器502以及相位偏移器506可能不同於封裝積體電路108中所使用者,端視該信號的頻率而定。經過功率組合之後,該信號在進行波封偵測之前會先通過另一變動增益放大器510。如上面所述,波封偵測器的輸出可能會在進行數位信號處理之前先經由一像素偵測器電路518進行積分與數位化。
圖中所示的封裝積體電路108和組合器電路704為會在電路板或封裝層級相連的離散裝置;但是在特定的應用中,它們的功能可能會被組合成單一IC。再者,該等RF、IF、以及本地振盪器信號708的給定頻率係以典型94GHz成像系統為基礎;不過,該等頻率可能會取決於應用而不同。該光瞳平面陣列成像器雖然仍受限於瑞雷準則;不過,沒有光學透鏡系統便不需要有等於透鏡直徑的支座。
圖11所示的係一設備的範例具體實施例,其中,光瞳平面配置可被施行為一稀疏填充陣列1102。一稀疏填充陣列1102係一元件少於其全部填充元件的陣列。於其中一具體實施例中,該射頻天線106的陣列可能包含被放置在一均勻格柵中二或多個點處的多根天線106,俾使得該陣列104會被施行為一稀疏填充陣列。於一具體實施例中,該射頻天線106的陣列104可能包含一第一天線陣列104以及一第二天線陣列104。該第一天線陣列以及該第二天線陣列可能實質上被分隔放置在該光瞳平面的相反端處。於另一具體實施例中,該稀疏填充陣列1102可藉由將具有天線106的封裝積體電路108排列在該稀疏填充陣列1102的相反邊緣處的兩行之中並且將數行放置在該稀疏填充陣列1102的內部來施行。因此,1公尺乘1公尺的稀疏填充陣列1102可能係由數行封裝積體電路108所組成,每一行皆為1公尺高及數公分寬,最外面的兩行分隔1公尺,但是該陣列的內部多數未被佔用。利用上述光瞳平面具體實施例的架構便可保持該等天線106之間的相位同調。
圖12所示的係一用於成像射頻信號的方法的範例具體實施例。該方法可能包含接收操作1202,其會從屬於一天線106的陣列104的射頻天線106處接收一已聚焦射頻信號。該方法可能還包含一切換操作1204,用以將該射頻信號從一像素偵測器電路518處切換至一相位偏移器506。該像素偵測器電路518可能會被配置成用以讓該射頻信號通往一成像器,而不會組合該射頻信號和其它無線電信號。該相位偏移器506可能會被配置成用以相位偏移該射頻信號,俾使得該天線106的陣列104的至少一部分會受到電子操縱。此電子操縱可能發生在該射頻信號組合該天線106的陣列104中其它天線106所偵測到的其它射頻信號時。該方法可能進一步包含一改變操作1206,用以調整該影像中至少一部分的熱解析度與空間解析度。
本文雖然已經說明本發明較佳的具體實施例;不過,要瞭解的係,熟習本技術的人士目前或是未來便可能進行落在後面申請專利範圍之範疇裡面的各種改善與增強。該些申請專利範圍應該被視為對本文率先說明的發明提供適當的保護。
102...範例設備
104...陣列
106...射頻天線
108...封裝積體電路
110...控制器
202...相控陣列
302...積體電路晶粒
304...封裝層
306...天線腔
402...焦點平面陣列成像器
404...透鏡裝配件
406...射頻透鏡
408...焦點平面
410...光瞳平面
412...物體
502...功率組合器
504...射頻切換器
506...相位偏移器
508...成像器元件
510...變動增益放大器
512...波封偵測器
514...積分器
516...類比至數位轉換器
518...像素偵測器電路
519...像素偵測器電路
520...低雜訊放大器
522...數位射束查找表
704...組合器電路
706...本地振盪器
708...本地振盪器信號
802...頻率混合器
804...變動衰減器
806...放大器
1102...稀疏填充陣列
本文會在說明書的結論處於申請專利範圍中特別提出並明確主張本發明的主旨。配合附圖便可從上面的詳細說明中明白本發明的前述和其它目的、特徵、以及優點,其中:
圖1所示的係本發明所設計之用於偵測一射頻影像的範例設備。
圖2A所示的係未被聚集成相控陣列的射頻天線。
圖2B所示的係將天線聚集成相控陣列的範例。
圖3所示的係一封裝積體電路的範例具體實施例的剖面側視圖。
圖4所示的係一被配置成焦點平面陣列成像器之設備的範例具體實施例的側視圖。
圖5所示的係一被配置成焦點平面陣列成像器之設備的範例具體實施例的更詳細圖式。
圖6所示的係一成像器陣列中的一成像器元件的範例具體實施例,用以偵測來自一射頻透鏡的已聚焦射頻信號。
圖7所示的係一被配置成光瞳平面陣列成像器之設備的範例具體實施例。
圖8詳細顯示一可作為一光瞳平面陣列成像器之一部分的封裝積體電路的範例具體實施例的電路圖。
圖9所示的係一可作為一光瞳平面陣列成像器之一部分的成像器元件的範例具體實施例。
圖10所示的係一可作為一光瞳平面陣列成像器之一部分的組合器電路的範例具體實施例。
圖11所示的係一設備的範例具體實施例,其中,光瞳平面配置可被施行為一稀疏填充陣列。
圖12所示的係一用於成像射頻信號的方法的範例具體實施例。

Claims (14)

  1. 一種偵測射頻影像的設備,該設備包括:一由一或多個封裝積體電路所攜載的射頻天線陣列,該射頻天線陣列會被定位在一透鏡裝配件的一焦點平面處;一控制器,其會被配置成用以選擇性地相位偏移來自該等天線的射頻信號,俾使得該射頻影像的至少一部分會被聚焦,其中該射頻天線陣列中至少一部分會被選擇性配置成受到該控制器電子操縱;以及一透鏡裝配件,其包含至少一固定透鏡。
  2. 如申請專利範圍第1項的設備,其進一步包括:一功率組合器,其會被配置成用以組合來自該等天線的射頻信號;複數個射頻切換器,每一個射頻切換器皆會被耦合至該等射頻天線中的一個別射頻天線,俾使得來自每一根天線的信號能夠各自被成像或是藉由該功率組合器組合來自該等天線的其它射頻信號;以及一用於每一根天線的相位偏移器。
  3. 如申請專利範圍第1項的設備,其中該等天線會被配置成用以偵測毫米波頻帶中的電磁波。
  4. 如申請專利範圍第1項的設備,其中該等天線會被定位在要被偵測影像的光瞳平面處;或者其中該等天線會由一矽基板攜載。
  5. 如申請專利範圍第1項的設備,其進一步包括:一用於每一根天線的相位偏移器;以及一或多個功率組合器,用以組合多個經相位偏移的射頻信號。
  6. 如申請專利範圍第1項的設備,其進一步包括一本地振盪器,其係用來保持被該等射頻天線偵測到的射頻信號之間的相位同調。
  7. 如申請專利範圍第1項的設備,其中該射頻天線陣列包含被放置在一均勻格柵中二或更多個點處的多根天線,俾使得該陣列會被施行為一稀疏填充陣列。
  8. 如申請專利範圍第1項的設備,其中該等天線會被配置成用以偵測30至300GHz頻帶範圍中的電磁波。
  9. 一種成像器陣列中的成像器元件,用以偵測來自一射頻透鏡的已聚焦射頻信號,該成像器元件包括:一射頻天線,其會被配置成用以接收一已聚焦射頻信號;一相位偏移器,其會被配置成用以相位偏移該射頻信號,俾使得當該射頻信號組合該成像器陣列中其它成像器元件所偵測到的其它射頻信號時,該成像器陣列的至少一部分會受到電子操縱;一第一像素偵測器電路,其會被配置成用以讓該射頻信號通往一成像器,而不會組合該射頻信號和其它無線電信號;以及 一射頻切換器,該切換器可配置成用以將射頻信號轉向至該相位偏移器及該像素偵測器中的其中一者。
  10. 如申請專利範圍第9項的成像器元件,其進一步包括一數位射束查找表,其會被配置成用以決定該相位偏移器必要的偏移度,俾使得該成像器陣列會被電子操縱至所希望的角度;或者進一步包括一被耦合至該相位偏移器的功率組合器,該功率組合器會被配置成用以將該射頻信號以及其它射頻信號功率組合成一經功率組合的射頻信號;或者進一步包括一被耦合至該功率組合器的第二像素偵測器電路,該第二像素偵測器電路會被配置成用以讓該經功率組合的射頻信號通往該成像器。
  11. 一種成像器陣列中的成像器元件,該成像器元件包括:一射頻天線,其會被定位在一光瞳平面處並且被配置成用以接收一射頻信號;一相位偏移器,其會被配置成用以相位偏移該射頻信號,俾使得當該射頻信號組合該成像器陣列中其它成像器元件所偵測到的其它射頻信號時,該成像器陣列會受到電子操縱,該等其它成像器元件會與位於該光瞳平面處的成像器元件實體隔離;以及一共同本地振盪器信號,用以讓該成像器元件以及該成像器陣列中的其它成像器元件保持相位同調。
  12. 如申請專利範圍第11項的成像器元件,其進一步包括一數位射束查找表,用以決定該相位偏移器必要的偏移度,俾使得該成像器陣列會被電子操縱至所希望的角度;或者其中該成 像器元件會被製作成一封裝積體電路的一部分,其會被配置成用以將該射頻信號以及其它射頻信號功率組合成一經功率組合的射頻信號。
  13. 一種成像射頻信號的方法,其包括:從一射頻天線處接收一已聚焦射頻信號,該射頻天線屬於一天線陣列;以及將該射頻信號從一像素偵測器電路處切換至一相位偏移器電路,該像素偵測器電路會被配置成用以讓該射頻信號通往一成像器,而不會組合該射頻信號和其它無線電信號,該相位偏移器電路會被配置成用以相位偏移該射頻信號,俾使得該天線陣列的至少一部分會在該射頻信號組合該天線陣列中其它天線所偵測到的其它射頻信號時受到電子操縱。
  14. 如申請專利範圍第13項的方法,其進一步包括改變該影像中至少一部分的熱解析度與空間解析度。
TW100113126A 2010-04-20 2011-04-15 相控陣列毫米波成像技術 TWI605240B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US32589410P 2010-04-20 2010-04-20
US12/897,964 US8456351B2 (en) 2010-04-20 2010-10-05 Phased array millimeter wave imaging techniques

Publications (2)

Publication Number Publication Date
TW201217760A TW201217760A (en) 2012-05-01
TWI605240B true TWI605240B (zh) 2017-11-11

Family

ID=44787840

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100113126A TWI605240B (zh) 2010-04-20 2011-04-15 相控陣列毫米波成像技術

Country Status (7)

Country Link
US (1) US8456351B2 (zh)
JP (2) JP5717842B2 (zh)
CN (1) CN102844673B (zh)
DE (1) DE112011101420B4 (zh)
GB (1) GB2492523B (zh)
TW (1) TWI605240B (zh)
WO (1) WO2011133232A1 (zh)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8456351B2 (en) * 2010-04-20 2013-06-04 International Business Machines Corporation Phased array millimeter wave imaging techniques
US20120075477A1 (en) * 2010-09-29 2012-03-29 Robert Patrick Daly Handheld terahertz wave imaging system
DE102011075552A1 (de) * 2011-05-10 2012-11-15 Robert Bosch Gmbh Schaltungsanordnung für Radaranwendungen
US9614590B2 (en) * 2011-05-12 2017-04-04 Keyssa, Inc. Scalable high-bandwidth connectivity
WO2013082622A2 (en) * 2011-12-01 2013-06-06 California Institute Of Technology Integrated teraherts imaging systems
FR2988539B1 (fr) * 2012-03-23 2014-04-11 Commissariat Energie Atomique Systeme d'emission-reception en bande millimetrique
US8981794B2 (en) * 2013-06-25 2015-03-17 Raytheon Company Loss-less frequency dependent dicke-switched radiometer
US9322911B1 (en) * 2013-08-27 2016-04-26 Exelis, Inc. Passive phased array imager using sub-phase sampling CMOS detectors and a smart ROIC
KR101538221B1 (ko) * 2013-09-23 2015-07-22 고려대학교 산학협력단 전파를 이용한 이미지 센싱 장치
KR101527330B1 (ko) * 2014-09-30 2015-06-09 고려대학교 산학협력단 전파를 이용한 이미지 센싱 장치
US9921307B2 (en) * 2015-01-30 2018-03-20 Toyota Motor Engineering & Manufacturing North America, Inc. Combined RADAR sensor and LIDAR sensor processing
US9667290B2 (en) * 2015-04-17 2017-05-30 Apple Inc. Electronic device with millimeter wave antennas
KR102193324B1 (ko) * 2016-03-08 2020-12-23 한국전자통신연구원 광 수신기 및 이를 포함한 레이저 레이더
WO2017159521A1 (ja) 2016-03-15 2017-09-21 日本電気株式会社 物体検知装置および物体検知方法
US10959110B2 (en) 2016-03-31 2021-03-23 Commscope Technologies Llc Lensed antennas for use in wireless communications systems
EP3469395B1 (en) * 2016-06-14 2021-04-21 Herring, Rodney Software-defined radio earth atmosphere imager
WO2017216745A1 (en) * 2016-06-14 2017-12-21 Georgios Trichopoulos Methods, apparatuses, and systems for radio-frequency imaging sensors for advanced fingerprint biometrics and medical imaging
CN106338528A (zh) * 2016-08-24 2017-01-18 刘学 无线电波显示系统
US10161975B2 (en) * 2016-12-05 2018-12-25 Harris Corporation Method and system for radio frequency (RF) spectral imager on an integrated circuit
JP7001069B2 (ja) 2017-02-10 2022-01-19 日本電気株式会社 推論用知識生成装置、推論用知識生成方法、及びプログラム
US11009585B2 (en) * 2017-10-27 2021-05-18 The Curators Of The University Of Missouri Microwave and millimeter wave imaging
JP6939981B2 (ja) 2018-03-19 2021-09-22 日本電気株式会社 物体検知装置、及び物体検知方法
CN109061638B (zh) * 2018-06-02 2022-06-10 苏州威陌电子信息科技有限公司 相控阵近距离数字成像方法
JPWO2020017290A1 (ja) * 2018-07-20 2020-07-27 京セラ株式会社 電子機器、電子機器の制御方法、及び電子機器の制御プログラム
KR102005681B1 (ko) 2018-08-01 2019-07-30 고려대학교 산학협력단 다중 칩 검출기 장치
CN108923120A (zh) * 2018-08-06 2018-11-30 西安恒帆电子科技有限公司 一种用于主动式毫米波成像系统的收发开关天线阵模块
RU2688949C1 (ru) 2018-08-24 2019-05-23 Самсунг Электроникс Ко., Лтд. Антенна миллиметрового диапазона и способ управления антенной
CN109490979B (zh) * 2018-11-12 2020-05-29 北京航空航天大学 一种适用于近场快速成像的毫米波辐射计阵列结构及设计方法
CN112558064B (zh) * 2020-09-30 2022-04-12 北京理工大学 一种基于可重构电磁表面阵列的三维成像系统
WO2023129273A2 (en) * 2021-11-03 2023-07-06 Rutgers, The State University Of New Jersey Time-varying metamaterial-enabled directional modulation for physical layer security in wireless communication links

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021015A (ja) 1983-07-14 1985-02-02 Canon Inc 固体撮像装置
US4901084A (en) * 1988-04-19 1990-02-13 Millitech Corporation Object detection and location system
US4910523A (en) * 1987-11-06 1990-03-20 Millitech Corporation Micrometer wave imaging device
US5202692A (en) 1986-06-16 1993-04-13 Millitech Corporation Millimeter wave imaging sensors, sources and systems
FR2638573B1 (fr) 1988-11-03 1991-06-14 Alcatel Espace Antenne a balayage electronique
US5237334A (en) 1989-06-29 1993-08-17 Waters William M Focal plane antenna array for millimeter waves
US5455590A (en) * 1991-08-30 1995-10-03 Battelle Memorial Institute Real-time holographic surveillance system
JP2789891B2 (ja) * 1991-11-07 1998-08-27 松下電器産業株式会社 ミリ波情報読み取りシステム
JP2702343B2 (ja) * 1991-11-27 1998-01-21 三菱電機株式会社 電子ビーム走査アンテナ装置
JPH06331725A (ja) * 1993-05-21 1994-12-02 Toshiba Corp ミリ波画像撮像装置
US5438336A (en) * 1993-11-12 1995-08-01 Trw Inc. Focal plane imaging array with internal calibration source
US5457557A (en) 1994-01-21 1995-10-10 Ortel Corporation Low cost optical fiber RF signal distribution system
JPH09197042A (ja) * 1996-01-17 1997-07-31 Eikichi Yamashita ミリ波カメラ装置
US7800758B1 (en) * 1999-07-23 2010-09-21 Faro Laser Trackers, Llc Laser-based coordinate measuring device and laser-based method for measuring coordinates
GB2362050A (en) 2000-05-05 2001-11-07 Audiotel Internat Ltd A surveillance receiver with a first stage of fixed frequency harmonic mixing and a second stage of swept frequency mixing
US6323804B1 (en) 2000-06-06 2001-11-27 Motorola, Inc. Method and apparatus for GPS time determination
US20020085206A1 (en) * 2000-12-27 2002-07-04 Hait John N. Phase-compensated, coherence-detection interferometer
US20020080361A1 (en) * 2000-12-27 2002-06-27 Bablumyan Arkady S. Multi-domain, waveform-locked loop
JP2002257932A (ja) * 2001-03-06 2002-09-11 Nippon Telegr & Teleph Corp <Ntt> 反射電磁波検出型イメージング装置
EP1296381A1 (en) 2001-09-25 2003-03-26 Spinelix Limited A pixel detector comprising radiation sensitive pixel elements
US7170442B2 (en) 2001-09-28 2007-01-30 Trex Enterprises Corp. Video rate passive millimeter wave imaging system
US6828556B2 (en) 2001-09-28 2004-12-07 Hrl Laboratories, Llc Millimeter wave imaging array
RU2237267C2 (ru) * 2001-11-26 2004-09-27 Волков Леонид Викторович Способ формирования изображений в миллиметровом и субмиллиметровом диапазоне волн (варианты) и система формирования изображений в миллиметровом и субмиллиметровом диапазоне волн
US7415244B2 (en) 2003-08-12 2008-08-19 Trey Enterprises Corp. Multi-channel millimeter wave imaging system
US7432855B2 (en) 2004-06-03 2008-10-07 Farrokh Mohamadi RFID reader and active tag
US8289199B2 (en) * 2005-03-24 2012-10-16 Agilent Technologies, Inc. System and method for pattern design in microwave programmable arrays
EP1783517A1 (en) * 2005-11-04 2007-05-09 AGELLIS Group AB Multi-dimensional imaging method and apparatus
JP2009519436A (ja) 2005-11-09 2009-05-14 キネティック リミテッド 受動的検出装置
US7423607B2 (en) 2006-09-28 2008-09-09 Farrokh Mohamadi Switching power amplifier and DAC for an electronically-scanned array
US7570221B2 (en) 2007-09-26 2009-08-04 Northrop Grumman Corporation Reduced beamwidth antenna
IL186884A (en) * 2007-10-24 2014-04-30 Elta Systems Ltd Object simulation system and method
US7561090B1 (en) 2008-01-03 2009-07-14 The Boeing Company Focal plane array with serial, variable bit width analog to digital converter
JP2010008272A (ja) * 2008-06-27 2010-01-14 Maspro Denkoh Corp ミリ波撮像装置
WO2010053608A2 (en) * 2008-08-01 2010-05-14 Raytheon Company Ir conformal imaging using phased scanning array
CN101354438B (zh) * 2008-08-28 2011-12-28 阮树成 毫米波时分线性调频多目标检测汽车防撞雷达
EP2244102A1 (en) * 2009-04-21 2010-10-27 Astrium Limited Radar system
EP2425506A2 (en) * 2009-04-29 2012-03-07 Montana State University Precise broadband frequency modulated laser
US8456351B2 (en) * 2010-04-20 2013-06-04 International Business Machines Corporation Phased array millimeter wave imaging techniques
US8811511B2 (en) * 2010-09-28 2014-08-19 Wisconsin Alumni Research Foundation Hybrid analog-digital phased MIMO transceiver system

Also Published As

Publication number Publication date
GB2492523B (en) 2014-12-03
JP2013528788A (ja) 2013-07-11
GB2492523A (en) 2013-01-02
GB201220028D0 (en) 2012-12-19
JP2015014611A (ja) 2015-01-22
WO2011133232A1 (en) 2011-10-27
US8456351B2 (en) 2013-06-04
DE112011101420B4 (de) 2016-03-24
CN102844673A (zh) 2012-12-26
JP5717842B2 (ja) 2015-05-13
US20110254727A1 (en) 2011-10-20
CN102844673B (zh) 2014-07-16
TW201217760A (en) 2012-05-01
DE112011101420T5 (de) 2013-02-28

Similar Documents

Publication Publication Date Title
TWI605240B (zh) 相控陣列毫米波成像技術
US10001517B2 (en) Antenna system
Hashemi et al. Integrated true-time-delay-based ultra-wideband array processing
US20170324162A1 (en) Modular Optical Phased Array
Chu et al. True-time-delay-based multi-beam arrays
US10340602B2 (en) Retro-directive quasi-optical system
WO2018165633A1 (en) Co-prime optical transceiver array
US20130113657A1 (en) Systems and methods to increase the number of simultaneous pixels in a wireless imaging system
JP2012222725A (ja) アクティブアレイアンテナ装置
Chu et al. A true time-delay-based bandpass multi-beam array at mm-waves supporting instantaneously wide bandwidths
US11838050B2 (en) Distributed array for direction and frequency finding
CN104038706A (zh) 一种太赫兹被动式彩色焦平面照相机
US9077412B2 (en) Regenerative receiver architectures for millimeter-wave and sub-millimeter-wave imaging and communication
US20120288033A1 (en) Receiving apparatus for high frequency imaging system
Notel et al. A compact mmW imaging radiometer for concealed weapon detection
KR102005681B1 (ko) 다중 칩 검출기 장치
Chauhan et al. A 10-GHz code-modulated interferometric imager using commercial-off-the-shelf phased arrays
Radzikhovsky et al. 16-channel millimeter-wave radiometric imaging system
Chauhan et al. An X-Band Code-Modulated Interferometric Imager
Li et al. Development of a compact total power passive millimeter-wave imaging system
Chauhan PhD Thesis on Code Modulated Interferometric Imaging System using Phased Arrays
Caster II Design, Analysis and Implementation of an Area-Efficient Beam-Steerable Sub-Terahertz Imaging Receiver Array Architecture
Hoogelander et al. Demonstration of Near Diffraction-Limited Terahertz Images using a CMOS-Integrated Chessboard Array
Dou et al. Improve the Working Stability of the X-band Microwave Module
Tobias et al. Dual array ECE imaging on the DIII-D tokamak