TWI604638B - Thyristor,thyristor manufacation method and print head - Google Patents

Thyristor,thyristor manufacation method and print head Download PDF

Info

Publication number
TWI604638B
TWI604638B TW105122953A TW105122953A TWI604638B TW I604638 B TWI604638 B TW I604638B TW 105122953 A TW105122953 A TW 105122953A TW 105122953 A TW105122953 A TW 105122953A TW I604638 B TWI604638 B TW I604638B
Authority
TW
Taiwan
Prior art keywords
layer
transparent conductive
conductive layer
semiconductor layer
thyristor
Prior art date
Application number
TW105122953A
Other languages
Chinese (zh)
Other versions
TW201804633A (en
Inventor
王建智
洪瑞華
陳宇傑
Original Assignee
日昌電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日昌電子股份有限公司 filed Critical 日昌電子股份有限公司
Priority to TW105122953A priority Critical patent/TWI604638B/en
Application granted granted Critical
Publication of TWI604638B publication Critical patent/TWI604638B/en
Publication of TW201804633A publication Critical patent/TW201804633A/en

Links

Landscapes

  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
  • Led Devices (AREA)

Description

閘流體、閘流體的製造方法以及其列印頭Brake fluid, thyristor manufacturing method and print head thereof

本發明係關於一種閘流體,特別是一種可發光的閘流體、閘流體的製造方法以及包括該閘流體的列印頭與列印裝置。The present invention relates to a thyristor, and more particularly to an illuminable thyristor, a method of manufacturing a thyristor, and a printhead and printing apparatus including the same.

一般而言,影印機的設計原理是先在感光鼓的表面加上電荷。接著,將處理器處理好的欲列印之文件的圖像資料照射到感光鼓上,未曝光的區域會維持原有電位,但曝光的區域的電荷則因曝光而產生差異。而後,當轉動的感光鼓經過碳粉匣時,由於碳粉帶有同感光鼓相同性質的電荷,曝光的區域便會吸附帶電的碳粉,從而能產生圖像。In general, the principle of the photocopier is to first add a charge to the surface of the drum. Then, the image data of the file to be printed processed by the processor is irradiated onto the photosensitive drum, and the unexposed area maintains the original potential, but the charge of the exposed area is different due to the exposure. Then, when the rotating photosensitive drum passes through the toner cartridge, since the toner has the same electric charge as that of the photosensitive drum, the exposed area absorbs the charged toner, thereby producing an image.

目前常見的影印機的列印頭具有多個閘流體。一般而言,是透過這些閘流體發出的光照射到感光鼓上,以使感光鼓產生曝光區域及未曝光區域。一般來說,習知的閘流體的結構具有四層半導體層,且其發光波長約為780nm。不過,當習知閘流體發出的光由內部進入外界(例如是空氣)時,往往會因為III-V 族半導體的高折射率而產生較大的界面反射,導致只有部分閘流體所發出的光能進入空氣,而使得發光效率較低。The print head of the current common photocopier has a plurality of thyristors. Generally, light emitted from these thyristors is irradiated onto the photosensitive drum to cause the photosensitive drum to produce an exposed area and an unexposed area. In general, the structure of a conventional thyristor has four layers of semiconductor layers and has an emission wavelength of about 780 nm. However, when the light emitted by the conventional thyristor enters the outside world (for example, air), it tends to have a large interfacial reflection due to the high refractive index of the III-V semiconductor, resulting in only a part of the thyristor. Can enter the air, making the luminous efficiency low.

本發明一實施例提出一種閘流體,包含基材、透明導電層以及導光層。基材包括第一半導體層、第二半導體層、第三半導體層以及第四半導體層,其中,第四半導體層的頂面包括出光面。透明導電層設置於第四半導體層的頂面上,且透明導電層覆蓋出光面。導光層位於透明導電層上。其中,透明導電層的折射率小於第四半導體層的折射率,且導光層的折射率小於或等於透明導電層的折射率。An embodiment of the invention provides a thyristor comprising a substrate, a transparent conductive layer, and a light guiding layer. The substrate includes a first semiconductor layer, a second semiconductor layer, a third semiconductor layer, and a fourth semiconductor layer, wherein a top surface of the fourth semiconductor layer includes a light exit surface. The transparent conductive layer is disposed on the top surface of the fourth semiconductor layer, and the transparent conductive layer covers the light surface. The light guiding layer is on the transparent conductive layer. Wherein, the refractive index of the transparent conductive layer is smaller than the refractive index of the fourth semiconductor layer, and the refractive index of the light guiding layer is less than or equal to the refractive index of the transparent conductive layer.

本發明提出一種閘流體的製造方法,包含於基材上形成透明導電層;於透明導電層上沉積導光層;其中透明導電層的折射率小於第四半導體層,且導光層的折射率小於或等於透明導電層的折射率。The invention provides a method for manufacturing a thyristor, comprising: forming a transparent conductive layer on a substrate; depositing a light guiding layer on the transparent conductive layer; wherein a refractive index of the transparent conductive layer is smaller than a fourth semiconductor layer, and a refractive index of the light guiding layer Less than or equal to the refractive index of the transparent conductive layer.

綜上所述, 本發明實施例提供閘流體,包括基材、透明導電層以及導光層,其中透明導電層設置於基材之第四半導體層上,而導光層位於透明導電層的上方。由於透明導電層的折射率小於基材之第四半導體層,且導光層的折射率小於等於透明導電層的折射率。因此,相較於習知閘流體來說,第四半導體層、透明導電層及導光層依照折射率的大小而呈現依序堆疊,所以降低了界面反射的情形,利於使閘流體所產生的光能夠有效地進入外界,從而提高閘流體的光萃取率。In summary, the embodiment of the present invention provides a thyristor, including a substrate, a transparent conductive layer, and a light guiding layer, wherein the transparent conductive layer is disposed on the fourth semiconductor layer of the substrate, and the light guiding layer is located above the transparent conductive layer. . The refractive index of the transparent conductive layer is smaller than the fourth semiconductor layer of the substrate, and the refractive index of the light guiding layer is less than or equal to the refractive index of the transparent conductive layer. Therefore, compared with the conventional sluice fluid, the fourth semiconductor layer, the transparent conductive layer and the light guiding layer are sequentially stacked according to the refractive index, so that the interface reflection is reduced, which is beneficial to the thyristor. Light can effectively enter the outside world, thereby increasing the light extraction rate of the thyristor.

此外,由於閘流體的發光波長約為780nm,因此較佳地,導光層可以為氧化鋅奈米桿或奈米錐,且直徑介於100微米(μm)至200微米(μm)之間,而高度介於400微米(μm)至1000微米(μm)之間,以使發出的光能量不會損失。In addition, since the illuminating wavelength of the thyristor is about 780 nm, preferably, the light guiding layer may be a zinc oxide nanorod or a nanometer cone, and the diameter is between 100 micrometers (μm) and 200 micrometers (μm). The height is between 400 micrometers (μm) and 1000 micrometers (μm) so that the emitted light energy is not lost.

本發明第一實施例的閘流體的製造方法包括於基材上形成前置透明導電層。沉積二氧化矽層以至少覆蓋部分的基材。在二氧化矽層的上表面形成開口,開口的位置對應於前置透明導電層的位置以裸露出部分前置透明導電層。而後,形成後置透明導電層透過開口與前置透明導電層接觸,以形成透明導電層。於透明導電層上沉積導光層,不過,為使得導光層能較佳地設置於透明導電體上,可以在沉積導光層之前形成種子層於透明導電層上。A method of manufacturing a thyristor according to a first embodiment of the present invention includes forming a front transparent conductive layer on a substrate. A layer of ruthenium dioxide is deposited to cover at least a portion of the substrate. An opening is formed on the upper surface of the ceria layer, and the position of the opening corresponds to the position of the pre-transparent conductive layer to expose a portion of the pre-transparent transparent conductive layer. Then, a rear transparent conductive layer is formed through the opening to contact the front transparent conductive layer to form a transparent conductive layer. The light guiding layer is deposited on the transparent conductive layer. However, in order to enable the light guiding layer to be preferably disposed on the transparent conductive body, a seed layer may be formed on the transparent conductive layer before depositing the light guiding layer.

本發明實施例提供列印裝置,其中列印裝置包括列印頭。所述列印頭包含多個含有前述閘流體的晶片所組成的陣列結構。Embodiments of the present invention provide a printing apparatus, wherein the printing apparatus includes a printing head. The print head includes an array structure of a plurality of wafers containing the aforementioned thyristor.

圖1為本發明一實施例的閘流體的結構示意圖。請參閱圖1,閘流體100包括基材110、透明導電層120以及導光層130。透明導電層120位於基材110上,而導光層130位於透明導電層120上。在導光層130上設置有陰極電極C1、在基材110的頂面設有閘極G1,在基材110的背面則設置有陽極電極A1。1 is a schematic view showing the structure of a thyristor according to an embodiment of the present invention. Referring to FIG. 1 , the thyristor 100 includes a substrate 110 , a transparent conductive layer 120 , and a light guiding layer 130 . The transparent conductive layer 120 is on the substrate 110, and the light guiding layer 130 is on the transparent conductive layer 120. The light guide layer 130 is provided with a cathode electrode C1, a gate G1 is provided on the top surface of the substrate 110, and an anode electrode A1 is provided on the back surface of the substrate 110.

基材110包括第一半導體層111、第二半導體層112、第三半導體層113以及第四半導體層114。於本實施例中,第一半導體層111用以作為基板,而在其上依序堆疊第二半導體層112、第三半導體層113以及第四半導體層114,其中第四半導體層114的頂面114S包括出光面。The substrate 110 includes a first semiconductor layer 111, a second semiconductor layer 112, a third semiconductor layer 113, and a fourth semiconductor layer 114. In the present embodiment, the first semiconductor layer 111 is used as a substrate, and the second semiconductor layer 112, the third semiconductor layer 113, and the fourth semiconductor layer 114 are sequentially stacked thereon, wherein the top surface of the fourth semiconductor layer 114 The 114S includes a glazing surface.

值得說明的是,第一半導體層111及第三半導體層113的導電型(conductivity type)相同,皆為第一導電型。第二半導體層112以及第四半導體層114的導電型相同,皆為第二導電型,而第一導電型與該第二導電型導電性相反。值得說明的是,第一導電型主要為摻雜有第二族元素的p型半導體,第二導電型主要為摻雜有第四族元素的n型半導體。不過,於其他實施例中,第一導電型也可以為n型半導體,第二導電型也可以為p型半導體。因此,各層半導體層(第一至第四半導體層111、112、113、114)之間可以形成P-N接面。It should be noted that the first semiconductor layer 111 and the third semiconductor layer 113 have the same conductivity type, and are all of the first conductivity type. The second semiconductor layer 112 and the fourth semiconductor layer 114 have the same conductivity type, and both are of the second conductivity type, and the first conductivity type and the second conductivity type have opposite conductivity. It should be noted that the first conductivity type is mainly a p-type semiconductor doped with a second group element, and the second conductivity type is mainly an n-type semiconductor doped with a fourth group element. However, in other embodiments, the first conductivity type may also be an n-type semiconductor, and the second conductivity type may also be a p-type semiconductor. Therefore, a P-N junction can be formed between each of the semiconductor layers (the first to fourth semiconductor layers 111, 112, 113, 114).

舉例而言,第一半導體層111為p型的GaAs基板,第二半導體層112為n型AlGaAs層、第三半導體層113為p型AlGaAs層,以及第四半導體層114 為n型GaAs層。不過,本發明並不對各層半導體層(第一至第四半導體層111、112、113、114)的導電型以及材料加以限定。For example, the first semiconductor layer 111 is a p-type GaAs substrate, the second semiconductor layer 112 is an n-type AlGaAs layer, the third semiconductor layer 113 is a p-type AlGaAs layer, and the fourth semiconductor layer 114 is an n-type GaAs layer. However, the present invention does not limit the conductivity type and material of each of the semiconductor layers (first to fourth semiconductor layers 111, 112, 113, 114).

透明導電層120設置於第四半導體層114的頂面114S上且覆蓋出光面。導光層130位於透明導電層120上。值得說明的是,透明導電層120的折射率(refractive index)小於第四半導體層114的折射率,且導光層130的折射率小於或等於透明導電層120的折射率。實務上,透明導電層120的材料選自於氧化銦錫(ITO)、氧化鋅(ZnO)、氧化鎵(GaO) 、氧化鋅鎵(GZO) 、氧化銦鋅鎵(IGZO) 、氧化錫(SnO 2)、氧化銦(In 2O 3) 所組成的群組之中的其中一種。進一步地,導光層130可以是由選自於氧化鋅(ZnO)、氧化鋅鎵(GZO) 、氧化銦鋅鎵(IGZO) 所組成的群組之中的其中一種材料所製成的奈米桿或奈米錐。值得說明的是,透明導電層120的材料可以與導光層130的材料相同或是不同。本發明並不對此加以限制。 The transparent conductive layer 120 is disposed on the top surface 114S of the fourth semiconductor layer 114 and covers the light surface. The light guiding layer 130 is located on the transparent conductive layer 120. It should be noted that the refractive index of the transparent conductive layer 120 is smaller than the refractive index of the fourth semiconductor layer 114, and the refractive index of the light guiding layer 130 is less than or equal to the refractive index of the transparent conductive layer 120. In practice, the material of the transparent conductive layer 120 is selected from the group consisting of indium tin oxide (ITO), zinc oxide (ZnO), gallium oxide (GaO), zinc gallium oxide (GZO), indium zinc gallium oxide (IGZO), and tin oxide (SnO). 2 ) One of a group consisting of indium oxide (In 2 O 3 ). Further, the light guiding layer 130 may be a nanometer made of one selected from the group consisting of zinc oxide (ZnO), zinc gallium oxide (GZO), and indium zinc gallium oxide (IGZO). Rod or nano cone. It should be noted that the material of the transparent conductive layer 120 may be the same as or different from the material of the light guiding layer 130. The invention is not limited thereto.

若是透明導電層120的材料與導光層的材料不同時,為使得導光層130能較佳地設置於透明導電體120上,閘流體100可以更包括種子層140。種子層140位於透明導電層120以及導光層130之間,用以作為緩衝層,以降低透明導電層120與導光層130間介面因晶格不匹配所導致的錯位等晶格缺陷。If the material of the transparent conductive layer 120 is different from the material of the light guiding layer, the thyristor 100 may further include the seed layer 140 so that the light guiding layer 130 can be preferably disposed on the transparent conductive body 120. The seed layer 140 is disposed between the transparent conductive layer 120 and the light guiding layer 130 to serve as a buffer layer to reduce lattice defects such as misalignment caused by lattice mismatch between the transparent conductive layer 120 and the light guiding layer 130.

具體來說,透明導電層120包括前置透明導電層121以及後置透明導電層122,其中前置透明導電層121以及後置透明導電層122透過不同製程工序而製作。前置透明導電層121以及後置透明導電層122的厚度介於100微米(μm)至400微米(μm)之間。由於閘流體100的發光波長約為780nm,因此較佳地,導光層130可以為氧化鋅奈米桿,且直徑介於100微米(μm)至200微米(μm)之間,而高度介於400微米(μm)至1000微米(μm)之間,以使發出的光能量不會損失。此外,種子層140的材料包括鋅,於本實施例中,種子層140的材料為氧化鋁鋅(AZO),其厚度介於10微米(μm)至100微米(μm)之間。Specifically, the transparent conductive layer 120 includes a front transparent conductive layer 121 and a rear transparent conductive layer 122. The front transparent conductive layer 121 and the rear transparent conductive layer 122 are formed through different process steps. The thickness of the front transparent conductive layer 121 and the rear transparent conductive layer 122 is between 100 micrometers (μm) and 400 micrometers (μm). Since the illuminating wavelength of the thyristor 100 is about 780 nm, the light guiding layer 130 may preferably be a zinc oxide nanorod and have a diameter between 100 micrometers (μm) and 200 micrometers (μm), and the height is between Between 400 micrometers (μm) and 1000 micrometers (μm) so that the emitted light energy is not lost. In addition, the material of the seed layer 140 includes zinc. In the present embodiment, the material of the seed layer 140 is aluminum zinc oxide (AZO), and the thickness thereof is between 10 micrometers (μm) and 100 micrometers (μm).

於本實施例中,第四半導體層114的材料為n型GaAs層,其折射率約為3.5。透明導電層120的材料為氧化銦錫,其折射率約為2.06。而第二透明導電體130的材料為氧化鋅,其折射率約為1.9。因此,相較於習知閘流體來說,由於第四半導體層114、透明導電層120及導光層130依照折射率的大小而呈現依序堆疊,所以降低了界面反射的情形,利於使閘流體100所產生的光能夠有效地進入外界(例如是,空氣),從而提高閘流體的光萃取率(light extraction efficiency)。In the present embodiment, the material of the fourth semiconductor layer 114 is an n-type GaAs layer having a refractive index of about 3.5. The material of the transparent conductive layer 120 is indium tin oxide having a refractive index of about 2.06. The material of the second transparent conductor 130 is zinc oxide, and its refractive index is about 1.9. Therefore, compared with the conventional sluice fluid, since the fourth semiconductor layer 114, the transparent conductive layer 120, and the light guiding layer 130 are sequentially stacked according to the refractive index, the interface reflection is reduced, which facilitates the gate. The light generated by the fluid 100 can effectively enter the outside (for example, air), thereby increasing the light extraction efficiency of the thyristor.

圖2A至2H分別是本發明一實施例的閘流體的製造方法於各步驟所形成的示意圖。請依序配合參照圖2A至2H。2A to 2H are respectively schematic views of a method of manufacturing a thyristor according to an embodiment of the present invention. Please refer to FIG. 2A to 2H in order.

首先,請參閱圖2A,於基材110上形成前置透明導電層121。於實務上,透過電子束蒸鍍法(Electron Beam Evaporation, EBE)將氧化銦錫層全面形成於第四半導體層114的頂面114S。接著,利用一光罩(未圖示)定義出透明導電層120的位置,並利用蝕刻的方式,於氧化銦錫層先製作出前置透明導電層121。 值得說明的是,基材110包括第一半導體層111、第二半導體層112、第三半導體層113以及第四半導體層114,其中第四半導體層114的頂面114S包括出光面。於本實施例中,第一半導體層111為p型的GaAs基板,第二半導體層112為n型AlGaAs層、第三半導體層113為p型AlGaAs層,以及第四半導體層114 為n型GaAs層。不過,本發明並不對各層半導體層(第一至第四半導體層111、112、113、114)的導電型以及材料加以限定。First, referring to FIG. 2A, a front transparent conductive layer 121 is formed on the substrate 110. In practice, the indium tin oxide layer is formed entirely on the top surface 114S of the fourth semiconductor layer 114 by Electron Beam Evaporation (EBE). Next, the position of the transparent conductive layer 120 is defined by a photomask (not shown), and the pre-transparent conductive layer 121 is first formed on the indium tin oxide layer by etching. It should be noted that the substrate 110 includes a first semiconductor layer 111, a second semiconductor layer 112, a third semiconductor layer 113, and a fourth semiconductor layer 114, wherein the top surface 114S of the fourth semiconductor layer 114 includes a light exit surface. In the present embodiment, the first semiconductor layer 111 is a p-type GaAs substrate, the second semiconductor layer 112 is an n-type AlGaAs layer, the third semiconductor layer 113 is a p-type AlGaAs layer, and the fourth semiconductor layer 114 is an n-type GaAs. Floor. However, the present invention does not limit the conductivity type and material of each of the semiconductor layers (first to fourth semiconductor layers 111, 112, 113, 114).

請參閱圖2B,利用一光罩(未圖示)預先定義出閘極G1的位置,並利用蝕刻的方式,對應地去除部分的第四半導體層114。Referring to FIG. 2B, the position of the gate G1 is defined in advance by a mask (not shown), and a portion of the fourth semiconductor layer 114 is correspondingly removed by etching.

請參閱圖2C,為了使得金屬與半導體之間介面能有更佳的歐姆接觸,可於所預先定義出的閘極G1位置先製作一歐姆接觸層F1。因此閘流體100的製造方法可以更包括形成歐姆接觸層F1。於本實施例中,歐姆接觸層F1的材料為金鈹(AuBe),且可以透過掀離製程(lift off process)來製作,不過本發明並不對歐姆接觸層F1的材料以及製程加以限定。詳細來說,先塗佈光阻,並透過電子束蒸鍍法將金鈹(AuBe)材料全面形成於光阻上。接著,利用光罩(未圖示)並進行曝光顯影。而後,去除剩餘的光阻以形成金鈹(AuBe)層。在進行退火(annealling)後,即形成歐姆接觸層F1。Referring to FIG. 2C, in order to make a better ohmic contact between the metal and the semiconductor interface, an ohmic contact layer F1 can be formed at the pre-defined gate G1 position. Therefore, the method of manufacturing the thyristor 100 may further include forming the ohmic contact layer F1. In the present embodiment, the material of the ohmic contact layer F1 is AuBe, and can be fabricated by a lift off process. However, the present invention does not limit the material and process of the ohmic contact layer F1. In detail, the photoresist is coated first, and the AuBe material is formed on the photoresist by electron beam evaporation. Next, exposure and development are performed using a photomask (not shown). Thereafter, the remaining photoresist is removed to form an AuBe layer. After annealing (annealing), the ohmic contact layer F1 is formed.

請參閱圖2D,沉積一二氧化矽層S1。二氧化矽層S1至少覆蓋第二至第四半導體層(112、113、114)、部分的第一半導體層111、歐姆接觸層F1以及前置透明導電層121。Referring to FIG. 2D, a layer of germanium dioxide S1 is deposited. The ruthenium dioxide layer S1 covers at least the second to fourth semiconductor layers (112, 113, 114), a portion of the first semiconductor layer 111, the ohmic contact layer F1, and the pre-transparent conductive layer 121.

請參閱圖2E,在二氧化矽層S1的上表面形成開口H1以及開孔H2。開口H1的位置對應於前置透明導電層121的位置以裸露出部分前置透明導電層121,在開孔H2的位置對應於歐姆接觸層F1的位置以裸露出部分歐姆接觸層F1。Referring to FIG. 2E, an opening H1 and an opening H2 are formed on the upper surface of the ceria layer S1. The position of the opening H1 corresponds to the position of the pre-transparent conductive layer 121 to expose a portion of the pre-transparent transparent conductive layer 121, and the position of the opening H2 corresponds to the position of the ohmic contact layer F1 to expose a portion of the ohmic contact layer F1.

請參閱圖2F,形成後置透明導電層122。詳細而言,透過電子束蒸鍍法將氧化銦錫層全面形成於二氧化矽層S1上,並且透過開口H1覆蓋於前置透明導電層121。接著,利用光罩(未圖示)定義出後置透明導電層122的位置,並利用蝕刻的方式,於氧化銦錫層製作出後置透明導電層122。後置透明導電層122透過開口H1與前置透明導電層121接觸,以形成透明導電層120。Referring to FIG. 2F, a rear transparent conductive layer 122 is formed. Specifically, the indium tin oxide layer is entirely formed on the ceria layer S1 by electron beam evaporation, and the pre-transparent conductive layer 121 is covered through the opening H1. Next, the position of the rear transparent conductive layer 122 is defined by a photomask (not shown), and the rear transparent conductive layer 122 is formed on the indium tin oxide layer by etching. The rear transparent conductive layer 122 is in contact with the front transparent conductive layer 121 through the opening H1 to form the transparent conductive layer 120.

請參閱圖2G,為使得導光層130能較佳地設置於透明導電層120上,可以在沉積導光層130之前形成種子層140於透明導電層120上,以降低透明導電層120與導光層130間介面因晶格不匹配所導致的錯位等晶格缺陷。具體來說,種子層140可以透過原子層沉積製程(Atomic Layer Deposition, ALD) 在透明導電層120上沉積含鋅的材料。於本實施例中,種子層140的材料為氧化鋁鋅(AZO),其厚度介於10微米(μm)至100微米(μm)之間。Referring to FIG. 2G, in order to enable the light guiding layer 130 to be disposed on the transparent conductive layer 120, the seed layer 140 may be formed on the transparent conductive layer 120 before depositing the light guiding layer 130 to reduce the transparent conductive layer 120 and the conductive layer. Lattice defects such as misalignment caused by lattice mismatch between the layers of the optical layer 130. Specifically, the seed layer 140 may deposit a zinc-containing material on the transparent conductive layer 120 through an Atomic Layer Deposition (ALD) process. In the present embodiment, the material of the seed layer 140 is aluminum silicate (AZO) having a thickness of between 10 micrometers (μm) and 100 micrometers (μm).

接著,請參閱圖2H,於透明導電層120上沉積導光層130。詳細來說,可藉由化學氣相沉積(chemical vapor deposition)或水熱法(hydrothermal method)而將導光層130形成種子層140上。於本實施例中,導光層130為氧化鋅奈米桿或奈米錐,且透過水熱法來製作。詳細來說,以0.08莫爾濃度(M)的醋酸鋅(Zinc acetate)混合六亞甲基四胺(hexamethylenetetramine,HMTA)來製作前驅物溶液。接下來,透過滴管擷取出部分前驅物溶液滴在種子層140的表面,或者是透過倒置,從而使種子層140接觸到所述前驅物溶液。處理溫度介於大於攝氏70度且小於攝氏100度之間,處理時間介於30分鐘至90分鐘之間。不過,本發明並不對水熱法處理以的條件加以限制。據此,於種子層140上形成氧化鋅奈米桿或奈米錐,氧化鋅奈米桿或奈米錐的直徑介於100微米(μm)至200微米(μm)之間,而高度介於400微米(μm)至1000微米(μm)之間。Next, referring to FIG. 2H, a light guiding layer 130 is deposited on the transparent conductive layer 120. In detail, the light guiding layer 130 may be formed on the seed layer 140 by chemical vapor deposition or hydrothermal method. In the present embodiment, the light guiding layer 130 is a zinc oxide nano rod or a nano cone, and is produced by a hydrothermal method. Specifically, a precursor solution was prepared by mixing hexamethylenetetramine (HMTA) with Zinc acetate (0.08 mol). Next, a portion of the precursor solution is dropped through the dropper to the surface of the seed layer 140, or is inverted, so that the seed layer 140 contacts the precursor solution. The processing temperature is between greater than 70 degrees Celsius and less than 100 degrees Celsius, and the processing time is between 30 minutes and 90 minutes. However, the present invention does not limit the conditions under hydrothermal treatment. Accordingly, a zinc oxide nanorod or a nanometer cone is formed on the seed layer 140, and the diameter of the zinc oxide nanorod or the nanometer cone is between 100 micrometers (μm) and 200 micrometers (μm), and the height is between Between 400 micrometers (μm) and 1000 micrometers (μm).

值得說明的是,透明導電層120的折射率小於第四半導體層114,且導光層130的折射率小於或等於透明導電層120的折射率。因此,相較於習知閘流體來說,由於第四半導體層114、透明導電層120及導光層130依照折射率的大小而呈現依序堆疊,所以降低了界面反射的情形,利於使閘流體100所產生的光能夠有效地進入外界,從而提高閘流體的光萃取率。It should be noted that the refractive index of the transparent conductive layer 120 is smaller than that of the fourth semiconductor layer 114, and the refractive index of the light guiding layer 130 is less than or equal to the refractive index of the transparent conductive layer 120. Therefore, compared with the conventional sluice fluid, since the fourth semiconductor layer 114, the transparent conductive layer 120, and the light guiding layer 130 are sequentially stacked according to the refractive index, the interface reflection is reduced, which facilitates the gate. The light generated by the fluid 100 can effectively enter the outside, thereby increasing the light extraction rate of the thyristor.

請再次參閱圖1,在導光層130上設置陰極電極C1,在基材110的頂面設置閘極G1,在基材110的背面則設置陽極電極A1。 具體來說,陰極電極C1以及閘極G1的材料為鋁,且可以透過掀離製程來製作。詳細來說,先塗佈光阻,並透過電子束蒸鍍法將鋁材料全面形成於光阻上。接著,利用光罩(未圖示)並進行曝光顯影。而後,去除剩餘的光阻以形成陰極電極C1以及閘極G1。陰極電極C1可以與透明導電層120接觸,或是可以進一步地覆蓋部分的導光層130。閘極G1可以透過開孔H2而與歐姆接觸層F1接觸且電性連接。陽極電極的材料為鉻金(CrAu),透過電子束蒸鍍法將鉻金材料形成於基材110的背面以製作陽極電極A1。不過本發明並不對陰極電極C1、陽極電極A1以及閘極G1的材料以及製程加以限定。Referring again to FIG. 1, a cathode electrode C1 is disposed on the light guiding layer 130, a gate G1 is provided on the top surface of the substrate 110, and an anode electrode A1 is disposed on the back surface of the substrate 110. Specifically, the material of the cathode electrode C1 and the gate electrode G1 is aluminum, and can be fabricated by a lift-off process. In detail, the photoresist is coated first, and the aluminum material is formed on the photoresist by electron beam evaporation. Next, exposure and development are performed using a photomask (not shown). Then, the remaining photoresist is removed to form the cathode electrode C1 and the gate G1. The cathode electrode C1 may be in contact with the transparent conductive layer 120 or may further cover a portion of the light guiding layer 130. The gate G1 can be in contact with and electrically connected to the ohmic contact layer F1 through the opening H2. The material of the anode electrode is chromium gold (CrAu), and a chromium gold material is formed on the back surface of the substrate 110 by electron beam evaporation to form an anode electrode A1. However, the present invention does not limit the materials and processes of the cathode electrode C1, the anode electrode A1, and the gate G1.

須特別說明的是,於實務上,可以根據後端產品需求而留存或去除部分的二氧化矽層S1。因此,為便於說明以及示意,於圖1並未繪示二氧化矽層S1。不過,於實務上,閘流體100也可以包括有二氧化矽層S1。本發明並不對二氧化矽層S1加以限定。It should be specially stated that, in practice, part of the ceria layer S1 may be retained or removed according to the requirements of the back end product. Therefore, for convenience of explanation and illustration, the ceria layer S1 is not shown in FIG. However, in practice, the thyristor 100 may also include a layer of cerium oxide S1. The present invention does not limit the ruthenium dioxide layer S1.

圖3A為根據本發明一實施例之列印頭的結構示意圖。圖3B為根據本發明一實施例之晶片的俯視示意圖。列印頭1包括多個含有閘流體100的晶片10所組成的陣列結構,其中這些晶片10可以沿軸線L1排列。具體而言,每一晶片10包含數百個直線排列的閘流體100。這些多個閘流體100的第一半導體層111可以是同一個。也就是說,可以一較大的第一半導體層111作為基板,並在其上依序堆疊第二半導體層112、第三半導體層113以及第四半導體層114,而形成PNPN的構造。3A is a schematic view showing the structure of a print head according to an embodiment of the present invention. 3B is a top plan view of a wafer in accordance with an embodiment of the present invention. The print head 1 includes an array structure of a plurality of wafers 10 containing a thyristor 100, wherein the wafers 10 can be aligned along an axis L1. Specifically, each wafer 10 includes hundreds of linearly arranged thyristors 100. The first semiconductor layers 111 of the plurality of thyristors 100 may be the same. That is, a larger first semiconductor layer 111 can be used as a substrate, and the second semiconductor layer 112, the third semiconductor layer 113, and the fourth semiconductor layer 114 are sequentially stacked thereon to form a PNPN structure.

圖3C為本發明一實施例之晶片的電路圖。如圖3C所示,晶片10包含移位電路CT1及發光電路CT2。移位電路CT1包含多個移位閘流體TS( TS1、TS2、TS3及TS4等,總稱TS)、複數二極體D(D1、D2、D3及D4等,總稱D)及多個移位訊號線(於此以二個移位訊號線φ1、φ2為例)。發光電路CT2包含多個閘流體100及一發光控制線φI1。3C is a circuit diagram of a wafer in accordance with an embodiment of the present invention. As shown in FIG. 3C, the wafer 10 includes a shift circuit CT1 and a light-emitting circuit CT2. The shift circuit CT1 includes a plurality of shift thyristors TS (TS1, TS2, TS3, and TS4, etc., collectively referred to as TS), a plurality of diodes D (D1, D2, D3, and D4, etc., collectively referred to as D) and a plurality of shifts Signal line (here, two shift signal lines φ1, φ2 are taken as an example). The light-emitting circuit CT2 includes a plurality of thyristors 100 and a light-emission control line φI1.

值得說明的是,多個移位閘流體TS可以間隔地區分為複數群組。於本實施例中,以奇數的移位閘流體(TS1、TS3等)為一組(後稱「奇數組」),偶數的移位閘流體TS(TS2、TS4等)為一組(後稱「偶數組」)。各二極體D分別電連接於兩相鄰的移位閘流體TS之間。每一移位訊號線分別電性連接屬於群組中之一的移位閘流體TS。例如是,移位訊號線φ1電連接至奇數組的每一移位閘流體(TS1、TS3等);移位訊號線φ2電連接至偶數組的每一移位閘流體(TS1、TS3等)。It is worth noting that the plurality of shift thyristors TS can be divided into a plurality of groups by interval regions. In the present embodiment, an odd number of shift thyristors (TS1, TS3, etc.) are grouped (hereinafter referred to as "odd array"), and an even number of shift thyristors TS (TS2, TS4, etc.) are grouped (hereinafter referred to as a group). "even array"). Each of the diodes D is electrically connected between two adjacent displacement thyristors TS, respectively. Each of the shift signal lines is electrically connected to the shift thyristor TS belonging to one of the groups. For example, the shift signal line φ1 is electrically connected to each of the shift gate fluids (TS1, TS3, etc.) of the odd array; the shift signal line φ2 is electrically connected to each of the shift gate fluids of the even array (TS1, TS3, etc.) .

每一移位閘流體TS包含第一陽極端31、第一陰極端32及第一閘極端33;每一閘流體100包含第二陽極端34、第二陰極端35及第二閘極端36。彼此電性連接的移位閘流體TS與閘流體100係分別以第一閘極端33與第二閘極端36電性連接。各二極體D之二端分別電性連接於兩相鄰的移位閘流體TS的第一閘極端33。Each of the shifting thyristors TS includes a first anode end 31, a first cathode end 32, and a first gate end 33; each thyristor 100 includes a second anode end 34, a second cathode end 35, and a second gate end 36. The shift thyristor TS and the thyristor 100 electrically connected to each other are electrically connected to the first gate terminal 33 and the second gate terminal 36, respectively. The two ends of each of the diodes D are electrically connected to the first gate terminals 33 of the two adjacent displacement thyristors TS, respectively.

具體來說,二極體D1的陽極端電性連接移位閘流體TS1的第一閘極端33,其陰極端電性連接另一移位閘流體TS2的第一閘極端33。各移位閘流體TS係以其第一陰極端32電性連接至對應的移位訊號線,且每一移位閘流體TS的第一陽極端31接地。相似地,每一閘流體100的第二陰極端35電性連接至發光控制線φI1,且各閘流體100的第二陽極端34接地。Specifically, the anode end of the diode D1 is electrically connected to the first gate terminal 33 of the displacement thyristor TS1, and the cathode end thereof is electrically connected to the first gate terminal 33 of the other thyristor TS2. Each of the shifting thyristors TS is electrically connected to the corresponding shift signal line with its first cathode end 32, and the first anode end 31 of each of the shift thyristors TS is grounded. Similarly, the second cathode end 35 of each thyristor 100 is electrically coupled to the illuminating control line φI1 and the second anode end 34 of each thyristor 100 is grounded.

移位電路CT1更包含下拉訊號線V GA、起始訊號線φS及多個負載電阻(R1、R2、R3及R4等,總稱R)。各移位閘流體TS的第一閘極端33電性連接負載電阻R(例如:移位閘流體T1的第一閘極端33電性連接負載電阻R1)。負載電阻R之一端與第一閘極端33電性連接,另一端電性連接一下拉訊號線V GA。下拉訊號線V GA對負載電阻R提供下拉低電壓位準(於此為負電位),而可供正在做動的移位閘流體TS的第一閘極端33與第一陽極端31之間具有順向偏壓。起始訊號線φS係電性連接至第一個移位閘流體TS1的第一閘極端33,以饋送一觸發移位電路CT1循序移位做動的單一脈衝。 The shift circuit CT1 further includes a pull-down signal line V GA , a start signal line φS, and a plurality of load resistors (R1, R2, R3, and R4, etc., collectively referred to as R). The first gate terminal 33 of each of the shift thyristors TS is electrically connected to the load resistor R (for example, the first gate terminal 33 of the shift thyristor T1 is electrically connected to the load resistor R1). One end of the load resistor R is electrically connected to the first gate terminal 33, and the other end is electrically connected to the pull signal line V GA . The pull-down signal line V GA provides a pull-down low voltage level (here, a negative potential) to the load resistor R, and is provided between the first gate terminal 33 and the first anode terminal 31 of the shifting thyristor TS that is being actuated. Forward bias. The start signal line φS is electrically connected to the first gate terminal 33 of the first shift thyristor TS1 to feed a single pulse that triggers the shift circuit CT1 to sequentially shift.

圖3D為本發明一實施例之晶片之訊號示意圖,係示意上述訊號線或控制線所饋送之訊號時序關係。請參閱圖3D。當起始訊號線φS饋送單一脈衝之後,二移位訊號線φ1、φ2係分別饋送脈寬實質相同而相位相差約為90度至180度之間的脈波訊號。藉此,配合移位電路CT1,可使移位閘流體TS的第一陰極端32沿著二極體D的順向導通方向依序變為低電壓位準。由於閘流體100的第二閘極端36與移位閘流體TS的第一閘極端33相連接,故閘流體100的第二閘極端36也可跟隨移位閘流體TS依序作動。而當下一個移位閘流體TS的第一陰極端32(或發光閘流體L的第二陰極端35)變為低電壓位準後一段時間,其前一個移位閘流體TS的第一陰極端32(或閘流體100的第二陰極端35)恢復為高電壓位準。在此,文中所述之高電壓位準係為接地準位(即0伏特),低電壓位準係為負電壓準位(如-5伏特)。FIG. 3D is a schematic diagram of a signal of a wafer according to an embodiment of the present invention, showing a signal timing relationship fed by the signal line or the control line. Please refer to Figure 3D. After the start signal line φS feeds a single pulse, the two shift signal lines φ1, φ2 respectively feed pulse signals having substantially the same pulse width and phase differences of about 90 to 180 degrees. Thereby, with the shift circuit CT1, the first cathode end 32 of the shift thyristor TS can be sequentially changed to a low voltage level along the forward conduction direction of the diode D. Since the second gate terminal 36 of the thyristor 100 is connected to the first gate terminal 33 of the sluice gate fluid TS, the second gate terminal 36 of the thyristor 100 can also follow the sluice gate fluid TS in sequence. And when the first cathode end 32 of the next shift thyristor TS (or the second cathode end 35 of the luminescent thyristor L) becomes a low voltage level for a period of time, the first cathode end of the previous shift thyristor TS 32 (or the second cathode end 35 of the thyristor 100) returns to a high voltage level. Here, the high voltage level described herein is the ground level (ie, 0 volts), and the low voltage level is the negative voltage level (eg, -5 volts).

各閘流體100對應地電連接各移位閘流體TS。閘流體100用以發光,並且與發光控制線φI1電性連接,以受發光控制線φI1上的訊號控制是否發光。Each thyristor 100 is electrically connected to each of the sluice gate fluids TS. The thyristor 100 is configured to emit light and is electrically connected to the illuminating control line φI1 to be controlled by the signal on the illuminating control line φI1.

圖4A為根據本發明一實施例之列印裝置的結構示意圖。圖4B為根據本發明一實施例之列印裝置的感光示意圖。請參閱圖4A以及圖4B。列印裝置M1包含列印頭1、感光鼓2及透鏡3。透鏡3位於列印頭1與感光鼓2之間,用以將列印頭1發出的光聚焦在感光鼓2上,以進行曝光程序。值得說明的是,列印頭1、感光鼓2及透鏡3的數量可以各為一個,以進行黑白列印。不過,列印頭1、感光鼓2及透鏡3的數量亦可以分別為四個,以分別對應黑色、洋紅色、青色及黃色之彩色列印用途。列印裝置可為印表機、影印機、多功能事務機等。不過,本發明並不對此加以限定。4A is a schematic structural view of a printing apparatus according to an embodiment of the invention. 4B is a schematic view showing the photosensitive device of the printing apparatus according to an embodiment of the present invention. Please refer to FIG. 4A and FIG. 4B. The printing device M1 includes a printing head 1, a photosensitive drum 2, and a lens 3. The lens 3 is located between the printing head 1 and the photosensitive drum 2 for focusing the light emitted from the printing head 1 on the photosensitive drum 2 for performing an exposure process. It should be noted that the number of the print head 1, the photosensitive drum 2, and the lens 3 may each be one for black and white printing. However, the number of the print head 1, the photosensitive drum 2, and the lens 3 may be four, respectively, for color printing applications corresponding to black, magenta, cyan, and yellow, respectively. The printing device can be a printer, a photocopier, a multifunction printer, or the like. However, the invention is not limited thereto.

綜上所述,本發明實施例提供閘流體,其包括基材、透明導電層以及導光層。其中,透明導電層設置於基材之第四半導體層上,而導光層位於透明導電層的上方。由於透明導電層的折射率小於基材之第四半導體層,且導光層的折射率小於或等於透明導電層的折射率。因此,相較於習知閘流體來說,第四半導體層、透明導電層及第二透明導電體依照折射率的大小而呈現依序堆疊,所以降低了界面反射的情形,利於使閘流體所產生的光能夠有效地進入外界,從而提高閘流體的光萃取率。In summary, the embodiments of the present invention provide a thyristor including a substrate, a transparent conductive layer, and a light guiding layer. Wherein, the transparent conductive layer is disposed on the fourth semiconductor layer of the substrate, and the light guiding layer is located above the transparent conductive layer. The refractive index of the transparent conductive layer is smaller than the fourth semiconductor layer of the substrate, and the refractive index of the light guiding layer is less than or equal to the refractive index of the transparent conductive layer. Therefore, compared with the conventional sluice fluid, the fourth semiconductor layer, the transparent conductive layer and the second transparent conductor are sequentially stacked according to the magnitude of the refractive index, so that the interface reflection is reduced, which facilitates the thyristor. The generated light can effectively enter the outside world, thereby increasing the light extraction rate of the thyristor.

此外,由於閘流體的發光波長約為780nm,因此較佳地,導光層可以為氧化鋅奈米桿或奈米錐,且直徑介於100微米(μm)至200微米(μm)之間,而高度介於400微米(μm)至1000微米(μm)之間,以使發出的光能量不會損失。In addition, since the illuminating wavelength of the thyristor is about 780 nm, preferably, the light guiding layer may be a zinc oxide nanorod or a nanometer cone, and the diameter is between 100 micrometers (μm) and 200 micrometers (μm). The height is between 400 micrometers (μm) and 1000 micrometers (μm) so that the emitted light energy is not lost.

本發明第一實施例的閘流體的製造方法包括於基材上形成前置透明導電層。沉積二氧化矽層S1以至少覆蓋部分的基材。在二氧化矽層S1的上表面形成開口,開口的位置對應於前置透明導電層的位置以裸露出部分前置透明導電層。而後,形成後置透明導電層透過開口與前置透明導電層接觸,以形成透明導電層。於透明導電層上沉積導光層,不過,為使得導光層能較佳地設置於透明導電體上,可以在沉積導光層之前形成種子層於透明導電層上。A method of manufacturing a thyristor according to a first embodiment of the present invention includes forming a front transparent conductive layer on a substrate. The ruthenium dioxide layer S1 is deposited to cover at least a portion of the substrate. An opening is formed on the upper surface of the ceria layer S1, and the position of the opening corresponds to the position of the pre-transparent conductive layer to expose a portion of the pre-transparent transparent conductive layer. Then, a rear transparent conductive layer is formed through the opening to contact the front transparent conductive layer to form a transparent conductive layer. The light guiding layer is deposited on the transparent conductive layer. However, in order to enable the light guiding layer to be preferably disposed on the transparent conductive body, a seed layer may be formed on the transparent conductive layer before depositing the light guiding layer.

本發明實施例提供列印裝置,其中列印裝置包括列印頭。所述列印頭包含多個含有前述閘流體的晶片所組成的陣列結構。Embodiments of the present invention provide a printing apparatus, wherein the printing apparatus includes a printing head. The print head includes an array structure of a plurality of wafers containing the aforementioned thyristor.

雖然本發明的技術內容已經以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神所作些許之更動與潤飾,皆應涵蓋於本發明的範疇內,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the technical content of the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the present invention, and any modifications and refinements made by those skilled in the art without departing from the spirit of the present invention are encompassed by the present invention. The scope of protection of the present invention is therefore defined by the scope of the appended claims.

1‧‧‧列印頭1‧‧‧Print head

2‧‧‧感光鼓2‧‧‧Photosensitive drum

3‧‧‧透鏡3‧‧‧ lens

10‧‧‧晶片10‧‧‧ wafer

31‧‧‧第一陽極端31‧‧‧First anode end

32‧‧‧第一陰極端32‧‧‧First cathode end

33‧‧‧第一閘極端33‧‧‧The first gate extreme

34‧‧‧第二陽極端34‧‧‧Second anode end

35‧‧‧第二陰極端35‧‧‧second cathode end

36‧‧‧第二閘極端36‧‧‧second gate extreme

100‧‧‧閘流體100‧‧‧ thyristor

110‧‧‧基材110‧‧‧Substrate

111‧‧‧第一半導體層111‧‧‧First semiconductor layer

112‧‧‧第二半導體層112‧‧‧Second semiconductor layer

113‧‧‧第三半導體層113‧‧‧ third semiconductor layer

114‧‧‧第四半導體層114‧‧‧fourth semiconductor layer

114S‧‧‧頂面114S‧‧‧ top surface

120‧‧‧ 透明導電層120‧‧‧ Transparent conductive layer

121‧‧‧前置透明導電層121‧‧‧front transparent conductive layer

122‧‧‧後置透明導電層122‧‧‧After transparent conductive layer

130‧‧‧導光層130‧‧‧Light guide layer

140‧‧‧種子層140‧‧‧ seed layer

A1‧‧‧陽極電極A1‧‧‧Anode electrode

C1‧‧‧陰極電極C1‧‧‧Cathode electrode

CT1‧‧‧移位電路CT1‧‧‧ Shift circuit

CT2‧‧‧發光電路CT2‧‧‧Lighting circuit

D、D1、D2、D3、D4‧‧‧二極體D, D1, D2, D3, D4‧‧‧ diodes

F1‧‧‧歐姆接觸層F1‧‧‧ Ohmic contact layer

G1‧‧‧閘極G1‧‧‧ gate

H1‧‧‧開口H1‧‧‧ openings

H2‧‧‧開孔H2‧‧‧ opening

M1‧‧‧列印裝置M1‧‧‧Printing device

TS1、TS2、TS3、TS4、TS‧‧‧移位閘流體TS1, TS2, TS3, TS4, TS‧‧‧ Displacement brake fluid

R、R1、R2、R3、R4‧‧‧負載電阻R, R1, R2, R3, R4‧‧‧ load resistors

S1‧‧‧二氧化矽層S1‧‧‧ cerium oxide layer

φI1‧‧‧發光控制線φI1‧‧‧Lighting control line

φ1、φ2 移位訊號線Φ1, φ2 shift signal line

φs‧‧‧起始訊號線Φs‧‧‧ starting signal line

V GA‧‧‧下拉訊號線 V GA ‧‧‧ pulldown signal line

圖1為本發明一實施例的閘流體的結構示意圖。 圖2A至2H分別是本發明一實施例的閘流體的製造方法於各步驟所形成的示意圖。 圖3A為根據本發明一實施例之列印頭的結構示意圖。 圖3B為根據本發明一實施例之晶片的俯視示意圖。 圖3C為本發明一實施例之晶片的電路圖。 圖3D為本發明一實施例之晶片之訊號示意圖。 圖4A為根據本發明一實施例之列印裝置的結構示意圖。 圖4B為根據本發明一實施例之列印裝置的感光示意圖。1 is a schematic view showing the structure of a thyristor according to an embodiment of the present invention. 2A to 2H are respectively schematic views of a method of manufacturing a thyristor according to an embodiment of the present invention. 3A is a schematic view showing the structure of a print head according to an embodiment of the present invention. 3B is a top plan view of a wafer in accordance with an embodiment of the present invention. 3C is a circuit diagram of a wafer in accordance with an embodiment of the present invention. FIG. 3D is a schematic diagram of signals of a wafer according to an embodiment of the invention. 4A is a schematic structural view of a printing apparatus according to an embodiment of the invention. 4B is a schematic view showing the photosensitive device of the printing apparatus according to an embodiment of the present invention.

100‧‧‧閘流體 100‧‧‧ thyristor

110‧‧‧基材 110‧‧‧Substrate

111‧‧‧第一半導體層 111‧‧‧First semiconductor layer

112‧‧‧第二半導體層 112‧‧‧Second semiconductor layer

113‧‧‧第三半導體層 113‧‧‧ third semiconductor layer

114‧‧‧第四半導體層 114‧‧‧fourth semiconductor layer

120‧‧‧透明導電層 120‧‧‧Transparent conductive layer

121‧‧‧前置透明導電層 121‧‧‧front transparent conductive layer

122‧‧‧後置透明導電層 122‧‧‧After transparent conductive layer

130‧‧‧導光層 130‧‧‧Light guide layer

140‧‧‧種子層 140‧‧‧ seed layer

A1‧‧‧陽極電極 A1‧‧‧Anode electrode

C1‧‧‧陰極電極 C1‧‧‧Cathode electrode

F1‧‧‧歐姆接觸層 F1‧‧‧ Ohmic contact layer

G1‧‧‧閘極 G1‧‧‧ gate

Claims (12)

一種閘流體,包括:一基材,包括一第一半導體層、一第二半導體層、一第三半導體層以及一第四半導體層,其中,該第四半導體層的一頂面包括一出光面;一透明導電層,設置於該第四半導體層的該頂面上,且該透明導電層覆蓋該出光面,其中該透明導電層的折射率小於該第四半導體層的折射率;一導光層,位於該透明導電層上,該導光層的折射率小於或等於該透明導電層的折射率;以及一種子層,位於該透明導電層以及該導光層之間。 A thyristor comprising: a substrate comprising a first semiconductor layer, a second semiconductor layer, a third semiconductor layer and a fourth semiconductor layer, wherein a top surface of the fourth semiconductor layer comprises a light emitting surface a transparent conductive layer disposed on the top surface of the fourth semiconductor layer, wherein the transparent conductive layer covers the light exiting surface, wherein the transparent conductive layer has a refractive index smaller than a refractive index of the fourth semiconductor layer; a layer on the transparent conductive layer, the light guide layer having a refractive index less than or equal to a refractive index of the transparent conductive layer; and a sub-layer between the transparent conductive layer and the light guiding layer. 如請求項1所述之閘流體,其中該導光層的材料選自於氧化鋅(ZnO)、氧化鋅鎵(GZO)、氧化銦鋅鎵(IGZO)所組成的群組之中的其中一種材料。 The thyristor according to claim 1, wherein the material of the light guiding layer is selected from the group consisting of zinc oxide (ZnO), zinc gallium oxide (GZO), and indium zinc gallium oxide (IGZO). material. 如請求項2所述之閘流體,其中該導光層為奈米桿或奈米錐。 The thyristor of claim 2, wherein the light guiding layer is a nanorod or a nanometer cone. 如請求項1所述之閘流體,其中該種子層的材料包括為含鋅之氧化物。 The thyristor of claim 1, wherein the material of the seed layer comprises an oxide containing zinc. 如請求項1所述之閘流體,其中該第一半導體層及該第三半導體層為第一導電型,該第二半導體層以及該第四半導體層為第二導電型,而第一導電型與該第二導電型導電性相反。 The thyristor of claim 1, wherein the first semiconductor layer and the third semiconductor layer are of a first conductivity type, the second semiconductor layer and the fourth semiconductor layer are of a second conductivity type, and the first conductivity type It is opposite to the conductivity of the second conductivity type. 如請求項1所述之閘流體,其中該透明導電層的材料選自於氧化銦錫(ITO)、氧化鋅(ZnO)、氧化鎵(GaO)、氧化鋅鎵(GZO)、氧化銦鋅鎵(IGZO)、氧化錫(SnO2)、氧化銦(In2O3)所組成的群組之中 的其中一種材料。 The thyristor according to claim 1, wherein the material of the transparent conductive layer is selected from the group consisting of indium tin oxide (ITO), zinc oxide (ZnO), gallium oxide (GaO), zinc gallium oxide (GZO), indium zinc gallium oxide. One of a group consisting of (IGZO), tin oxide (SnO 2 ), and indium oxide (In 2 O 3 ). 一種閘流體的製造方法,包括:提供一基材,其中該基材包括一第一半導體層、一第二半導體層、一第三半導體層以及一第四半導體層;於一基材上形成一透明導電層,其中,該第四半導體層的一頂面包括一出光面,且該透明導電層位於該第四半導體上並覆蓋該出光面;於該透明導電層上沉積一導光層,其中該透明導電層的折射率小於該第四半導體層,且該導光層的折射率小於或等於該透明導電層的折射率;以及在沉積該導光層之前,形成一種子層於該透明導電層上,而該種子層位於該透明導電層以及該導光層之間。。 A method of manufacturing a thyristor, comprising: providing a substrate, wherein the substrate comprises a first semiconductor layer, a second semiconductor layer, a third semiconductor layer, and a fourth semiconductor layer; forming a substrate a transparent conductive layer, wherein a top surface of the fourth semiconductor layer includes a light emitting surface, and the transparent conductive layer is located on the fourth semiconductor and covers the light emitting surface; and a light guiding layer is deposited on the transparent conductive layer, wherein The transparent conductive layer has a refractive index smaller than the fourth semiconductor layer, and the refractive index of the light guiding layer is less than or equal to a refractive index of the transparent conductive layer; and a sub-layer is formed on the transparent conductive layer before depositing the light guiding layer On the layer, the seed layer is between the transparent conductive layer and the light guiding layer. . 如請求項7所述之閘流體的製造方法,其中該種子層藉由原子層沉積製程(ALD)而形成。 The method of manufacturing a thyristor according to claim 7, wherein the seed layer is formed by an atomic layer deposition process (ALD). 如請求項7所述之閘流體的製造方法,其中該導光層可藉由化學氣相沉積或水熱法而形成。 The method of manufacturing a thyristor according to claim 7, wherein the light guiding layer is formed by chemical vapor deposition or hydrothermal method. 如請求項7所述之閘流體的製造方法,其中該透明導電層的步驟包括:於該基材上形成一前置透明導電層;沉積一二氧化矽層,至少覆蓋部分該基材以及該前置透明導電層;在該二氧化矽層之對應於該前置透明導電層的位置形成一開口,該開口裸露出部分該前置透明導電層;以及 形成一後置透明導電層,至少透過開口覆蓋於該前置透明導電層,以形成該透明導電層。 The method for manufacturing a thyristor according to claim 7, wherein the step of forming the transparent conductive layer comprises: forming a pre-transparent transparent conductive layer on the substrate; depositing a cerium oxide layer covering at least a portion of the substrate and the a pre-transparent conductive layer; forming an opening at a position corresponding to the pre-transparent conductive layer of the ceria layer, the opening exposing a portion of the pre-transparent conductive layer; Forming a rear transparent conductive layer, at least covering the front transparent conductive layer through the opening to form the transparent conductive layer. 一種列印頭,包括:多個含有複數個閘流體的晶片所組成的陣列結構,其中該些閘流體包括:一基材,包括一第一半導體層、一第二半導體層、一第三半導體層以及一第四半導體層,其中,該第四半導體層的一頂面包括一出光面;一透明導電層,設置於該第四半導體層的該頂面上,且該透明導電層覆蓋該出光面,其中該透明導電層的折射率小於該第四半導體層的折射率;一導光層,位於該透明導電層上,該導光層的折射率小於或等於該透明導電層的折射率;以及一種子層,位於該透明導電層以及該導光層之間。 A print head comprising: an array structure comprising a plurality of wafers comprising a plurality of thyristors, wherein the thyristors comprise: a substrate comprising a first semiconductor layer, a second semiconductor layer, and a third semiconductor And a fourth semiconductor layer, wherein a top surface of the fourth semiconductor layer includes a light emitting surface; a transparent conductive layer disposed on the top surface of the fourth semiconductor layer, and the transparent conductive layer covers the light emitting layer a refractive index of the transparent conductive layer is smaller than a refractive index of the fourth semiconductor layer; a light guiding layer is disposed on the transparent conductive layer, and a refractive index of the light guiding layer is less than or equal to a refractive index of the transparent conductive layer; And a sublayer between the transparent conductive layer and the light guiding layer. 如請求項11所述之列印頭,其中該閘流體更包括一導光層,其中該導光層位於該透明導電層上,該導光層的折射率小於或等於該透明導電層的折射率。 The print head of claim 11, wherein the thyristor further comprises a light guiding layer, wherein the light guiding layer is located on the transparent conductive layer, and the refractive index of the light guiding layer is less than or equal to the refractive index of the transparent conductive layer rate.
TW105122953A 2016-07-20 2016-07-20 Thyristor,thyristor manufacation method and print head TWI604638B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105122953A TWI604638B (en) 2016-07-20 2016-07-20 Thyristor,thyristor manufacation method and print head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105122953A TWI604638B (en) 2016-07-20 2016-07-20 Thyristor,thyristor manufacation method and print head

Publications (2)

Publication Number Publication Date
TWI604638B true TWI604638B (en) 2017-11-01
TW201804633A TW201804633A (en) 2018-02-01

Family

ID=61023091

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105122953A TWI604638B (en) 2016-07-20 2016-07-20 Thyristor,thyristor manufacation method and print head

Country Status (1)

Country Link
TW (1) TWI604638B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI688841B (en) * 2018-11-30 2020-03-21 虹光精密工業股份有限公司 Shift circuit operating by using a capacitor, a printing head and printing device thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201006003A (en) * 2008-07-30 2010-02-01 Epileds Technologies Inc A LED that can increase light extraction yield
TW201330313A (en) * 2012-01-12 2013-07-16 Univ Nat Formosa Method of enhancing light emitting efficiency for LED
TW201401548A (en) * 2012-06-21 2014-01-01 Lextar Electronics Corp Light emitting diode structure and manufacturing method thereof
TW201417334A (en) * 2012-10-31 2014-05-01 Nisho Image Tech Inc Structure of light emitting diode array and printing head and printing device for the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201006003A (en) * 2008-07-30 2010-02-01 Epileds Technologies Inc A LED that can increase light extraction yield
TW201330313A (en) * 2012-01-12 2013-07-16 Univ Nat Formosa Method of enhancing light emitting efficiency for LED
TW201401548A (en) * 2012-06-21 2014-01-01 Lextar Electronics Corp Light emitting diode structure and manufacturing method thereof
TW201417334A (en) * 2012-10-31 2014-05-01 Nisho Image Tech Inc Structure of light emitting diode array and printing head and printing device for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI688841B (en) * 2018-11-30 2020-03-21 虹光精密工業股份有限公司 Shift circuit operating by using a capacitor, a printing head and printing device thereof

Also Published As

Publication number Publication date
TW201804633A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
KR102601950B1 (en) Light emitting diode, manufacturing method of light emitting diode and display device including light emitting diode
US7786495B2 (en) Light-emitting element array and image forming apparatus
US7935554B2 (en) Semiconductor light emitting device and method of manufacturing the same
US8405103B2 (en) Photonic crystal light emitting device and manufacturing method of the same
WO2012070784A2 (en) Light emitting device and method of fabricating the same
JP4908837B2 (en) Light emitting element array and image forming apparatus
US10331057B2 (en) Light emitting element device including light emitting thyristor and optical print head including the light emitting element device
US7491976B2 (en) Light-emitting element array and image forming apparatus
JP6435700B2 (en) Light emitting thyristor, light source head, and image forming apparatus
JPH01238962A (en) Light emitting device array and its driving method
TWI420698B (en) Method for manufacturing semiconductor light emitting device
JP5713856B2 (en) Light transmissive metal electrode, electronic device and optical element
JP2007180460A (en) Light-emitting thyristor, and light-emitting device and image forming device using light-emitting thyristor
US20180350782A1 (en) Display device and method for forming the same
JPH045871A (en) Light-emitting diode array
JP5310960B1 (en) Light emitting thyristor, self-scanning light emitting element array, optical writing head, and image forming apparatus
JP2011054754A (en) Semiconductor element and method for manufacturing the same
JP4967538B2 (en) Surface light emitting device, image reading device and image writing device using surface light emitting device, and method for manufacturing surface light emitting device
US9299882B2 (en) Optimised method for producing electroluminescent nanowires
TWI604638B (en) Thyristor,thyristor manufacation method and print head
JP2023536362A (en) LED device and method for manufacturing LED device
US20210384253A1 (en) Method for producing an optoelectronic device comprising light-emitting diodes which are homogeneous in dimensions
US5105236A (en) Heterojunction light-emitting diode array
CN213519957U (en) Micro-LED chip structure and Micro-LED light-emitting component
US20220278081A1 (en) Optoelectronic device in which the pixels contain light-emitting diodes that emit several colors and manufacturing method