TWI601850B - Magnesium oxide thin film hydrogen sensor - Google Patents

Magnesium oxide thin film hydrogen sensor Download PDF

Info

Publication number
TWI601850B
TWI601850B TW105124316A TW105124316A TWI601850B TW I601850 B TWI601850 B TW I601850B TW 105124316 A TW105124316 A TW 105124316A TW 105124316 A TW105124316 A TW 105124316A TW I601850 B TWI601850 B TW I601850B
Authority
TW
Taiwan
Prior art keywords
target
magnesium
sputtering
magnesium oxide
hydrogen
Prior art date
Application number
TW105124316A
Other languages
Chinese (zh)
Other versions
TW201805481A (en
Inventor
Tian-Cai Lin
Wen-Chang Huang
Jun-Yan Wu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to TW105124316A priority Critical patent/TWI601850B/en
Application granted granted Critical
Publication of TWI601850B publication Critical patent/TWI601850B/en
Publication of TW201805481A publication Critical patent/TW201805481A/en

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

氧化鎂鋅薄膜氫氣感測器Magnesium oxide zinc film hydrogen sensor

本發明係有關於一種氧化鎂鋅薄膜氫氣感測器,特別係矽基板經清洗後固定置入真空腔體;氧化鎂鋅(MgZnO)薄膜,係利用射頻(RF)磁控濺鍍沉積第一濺鍍靶材於該矽基板,該第一濺鍍靶材為氧化鎂(MgO)靶材與氧化鋅(ZnO)靶材,濺鍍氣體為氬氣(Ar);白金(Pt)電極,係利用射頻(RF)磁控濺鍍沉積第二濺鍍靶材於該氧化鎂鋅(MgZnO)薄膜,該第二濺鍍靶材為白金(Pt)靶材,濺鍍氣體為氬氣(Ar);如此,在對氫氣(H2)感測時,溫度300℃,氫氣(H2)濃度1000ppm,沉積時間40分鐘,氧化鎂鋅(MgZnO)薄膜厚度423nm,具有最佳之感測靈敏性。 The invention relates to a magnesium oxide zinc film hydrogen sensor, in particular, the ruthenium substrate is fixed and placed in a vacuum chamber after being cleaned; the magnesium zinc oxide (MgZnO) film is deposited by radio frequency (RF) magnetron sputtering. Sputtering a target on the germanium substrate, the first sputtering target is a magnesium oxide (MgO) target and a zinc oxide (ZnO) target, and the sputtering gas is argon (Ar); a platinum (Pt) electrode Depositing a second sputtering target on the magnesium zinc oxide (MgZnO) film by radio frequency (RF) magnetron sputtering, the second sputtering target is a platinum (Pt) target, and the sputtering gas is argon (Ar) Thus, when sensing hydrogen (H 2 ), the temperature is 300 ° C, the hydrogen (H 2 ) concentration is 1000 ppm, the deposition time is 40 minutes, and the magnesium zinc oxide (MgZnO) film thickness is 423 nm, which has the best sensing sensitivity.

按,目前金屬氧化物半導體(MOS)之氣體感測器,常使用在生活、工業環境中偵測有危險性之氣體,一般分為電阻式與電容式的氣體感測器,電阻式感測器主要是利用氧化物薄膜作為感測層,當接觸到氣體分子後,感測層與氣體中離子化的分子短暫結合,使得具有金屬電極的氧化物薄膜的電阻值可以產生變化,就感測的靈敏度而言,是利用氧化物對氣體產生吸附作用而改變其電阻值,因此若能提高反應表面積,對靈敏度及響應速率的提升將有極大的效益,而電容式感測器氣體感測原理與電阻式感測原理相似,差別在於該感測層對於吸附氣體分子以後,會改變其介電係數,進而改變電容量;而氫氣在常溫常壓下是一種無色、無味、無臭、無毒的可燃性氣體,不容易察覺它的存在,卻因為其閃火點低,使其極容易燃燒,而燃燒之火焰肉眼難見,燃燒時會跟氧產生劇烈的化學作用,可能會導致爆炸,所以氫氣感測器不可或缺,另常見有固態電解質氣體感測器、電化學氣體感測器、觸媒燃燒式氣體感測器等 ,但尚未見有氧化鎂鋅(MgZnO)薄膜氫氣感測器對氫氣(H2)氣體之感測,更未見其如何具備最佳感測靈敏性;緣此,本發明人有鑑於習知存在有如上述之缺失,乃潛心研究、改良,遂得以首先發明本發明。 According to the current metal oxide semiconductor (MOS) gas sensors, commonly used in living and industrial environments to detect dangerous gases, generally divided into resistive and capacitive gas sensors, resistive sensing The oxide film is mainly used as a sensing layer. When the gas molecules are contacted, the sensing layer is temporarily combined with the ionized molecules in the gas, so that the resistance value of the oxide film having the metal electrode can be changed, and the sensing is performed. In terms of sensitivity, the oxide is used to adsorb the gas to change its resistance value. Therefore, if the reaction surface area can be increased, the sensitivity and response rate can be greatly improved, and the capacitive sensing gas sensing principle is adopted. Similar to the principle of resistive sensing, the difference is that the sensing layer changes its dielectric constant and then changes the capacitance after adsorbing gas molecules; and hydrogen is a colorless, odorless, odorless, non-toxic flammable under normal temperature and pressure. Sexual gas, it is not easy to detect its existence, but because of its low flash point, it is very easy to burn, and the burning flame is hard to see, burning will Oxygen produces a strong chemical action, which may cause an explosion, so hydrogen sensors are indispensable. Solid electrolyte gas sensors, electrochemical gas sensors, catalytic combustion gas sensors, etc. are common, but not yet. See the sensing of hydrogen (H 2 ) gas by a magnesium oxide (MgZnO) thin film hydrogen sensor, and how to have the best sensing sensitivity. Therefore, the inventors have the above-mentioned The lack of it is the result of intensive research and improvement, and the invention can be first invented.

本發明之主要目的係在:對氫氣(H2)感測時,可提供最佳感測靈敏性之氧化鎂鋅薄膜氫氣感測器。 The primary object of the present invention is to provide a magnesium oxide zinc thin film hydrogen sensor that provides optimum sensing sensitivity when sensing hydrogen (H 2 ).

本發明之主要特徵係在:矽基板,係經清洗後固定置入真空腔體;氧化鎂鋅(MgZnO)薄膜,係利用射頻(RF)磁控濺鍍沉積第一濺鍍靶材於該矽基板,其中,該第一濺鍍靶材為氧化鎂(MgO)靶材與氧化鋅(ZnO)靶材,濺鍍氣體為氬氣(Ar);白金(Pt)電極,係利用射頻(RF)磁控濺鍍沉積第二濺鍍靶材於該氧化鎂鋅(MgZnO)薄膜,其中,該第二濺鍍靶材為白金(Pt)靶材,濺鍍氣體為氬氣(Ar);如此,在對氫氣(H2)感測時,溫度為常溫(RT)25℃加熱至溫度300℃,並用氮氣(N2)稀釋氫氣(H2),以控制不同濃度之氫氣(H2),可得知:當濺鍍氧化鎂(MgO)靶材之功率固定為100W,濺鍍氧化鋅(ZnO)靶材之功率固定為125W,改變沉積時間至40分鐘,氧化鎂鋅(MgZnO)薄膜厚度為423nm,在溫度300℃,氫氣(H2)濃度1000ppm,氧化鎂(MgO)摻雜濃度為1.12wt%,具有靈敏之感測能力,其響應值為2.46;另當固定沉積時間為40分鐘,濺鍍氧化鋅(ZnO)靶材之功率固定為125W,控制濺鍍氧化鎂(MgO)靶材之功率至125W,氧化鎂鋅(MgZnO)薄膜厚度為423nm,在溫度300℃,氫氣(H2)濃度1000ppm,氧化鎂(MgO)摻雜濃度1.91wt%,具有靈敏之感測能力,其響應值為3.96;故,可提供最佳之感測靈敏性。 The main feature of the present invention is that the germanium substrate is fixed and placed in the vacuum chamber after being cleaned; the magnesium zinc oxide (MgZnO) film is deposited on the crucible by radio frequency (RF) magnetron sputtering. a substrate, wherein the first sputtering target is a magnesium oxide (MgO) target and a zinc oxide (ZnO) target, the sputtering gas is argon (Ar); and the platinum (Pt) electrode is a radio frequency (RF) Magnetron sputtering depositing a second sputtering target on the magnesium zinc oxide (MgZnO) film, wherein the second sputtering target is a platinum (Pt) target, and the sputtering gas is argon (Ar); When sensing hydrogen (H 2 ), the temperature is heated to a temperature of 300 ° C at a normal temperature (RT) of 25 ° C, and hydrogen (H 2 ) is diluted with nitrogen (N 2 ) to control different concentrations of hydrogen (H 2 ). It is known that when the power of the sputtered magnesium oxide (MgO) target is fixed at 100 W, the power of the sputtered zinc oxide (ZnO) target is fixed at 125 W, and the deposition time is changed to 40 minutes, and the thickness of the magnesium zinc oxide (MgZnO) film is 423nm, at a temperature of 300 ° C, hydrogen (H 2 ) concentration of 1000ppm, magnesium oxide (MgO) doping concentration of 1.12wt%, with sensitive sensing ability, the response value is 2.46; another fixed deposition time For 40 minutes, the power of the sputtered zinc oxide (ZnO) target is fixed at 125 W, the power of the sputtered magnesium oxide (MgO) target is controlled to 125 W, and the thickness of the magnesium zinc oxide (MgZnO) film is 423 nm at a temperature of 300 ° C. The hydrogen (H 2 ) concentration is 1000 ppm, the magnesium oxide (MgO) doping concentration is 1.91% by weight, and has a sensitive sensing capability with a response value of 3.96; therefore, it provides the best sensing sensitivity.

本發明氧化鎂鋅薄膜氫氣感測器,其中,該矽基板係為P型矽基板,該矽基板之大小為15mm x15mm,該矽基板係以超音波清洗5分鐘。 In the magnesium oxide thin film hydrogen sensor of the present invention, the germanium substrate is a P-type germanium substrate having a size of 15 mm x 15 mm, and the germanium substrate is ultrasonically cleaned for 5 minutes.

本發明氧化鎂鋅薄膜氫氣感測器,其中,射頻(RF)磁控濺鍍沉積第一濺鍍靶材於該矽基板時,設定真空腔體基本壓力7×10-5Torr、工作壓力3mTorr。 The magnesium oxide thin film hydrogen gas sensor of the present invention, wherein, when the first sputtering target is deposited on the germanium substrate by radio frequency (RF) magnetron sputtering, the basic pressure of the vacuum chamber is set to be 7×10 -5 Torr and the working pressure is 3 mTorr. .

本發明氧化鎂鋅薄膜氫氣感測器,其中,射頻(RF)磁控濺鍍沉積第二濺鍍靶材於該氧化鎂鋅(MgZnO)薄膜時,設定真空腔體基本壓力7×10-5Torr、工作壓力3mTorr。 The magnesium oxide thin film hydrogen sensor of the present invention, wherein a radio frequency (RF) magnetron sputtering deposits a second sputtering target on the magnesium zinc oxide (MgZnO) film, and sets a basic pressure of the vacuum chamber 7×10 -5 Torr, working pressure 3mTorr.

本發明氧化鎂鋅薄膜氫氣感測器,其中,該白金(Pt)電極係為矩形陣列,該白金(Pt)電極之大小為1mm x2mm、左右間距為3.5mm、上下間距為1mm。 The magnesium oxide thin film hydrogen gas sensor of the present invention, wherein the platinum (Pt) electrode is a rectangular array having a size of 1 mm x 2 mm, a left-right pitch of 3.5 mm, and a pitch of 1 mm.

本發明氧化鎂鋅薄膜氫氣感測器,其中,射頻(RF)磁控濺鍍沉積第二濺鍍靶材於該氧化鎂鋅(MgZnO)薄膜後,係透過高溫爐以溫度400℃退火1小時。 The magnesium oxide thin film hydrogen sensor of the present invention, wherein a second sputtering target is deposited on the magnesium zinc oxide (MgZnO) film by radio frequency (RF) magnetron sputtering, and is annealed at a temperature of 400 ° C for 1 hour through a high temperature furnace. .

1‧‧‧氧化鎂鋅薄膜氫氣感測器 1‧‧‧Magnesium Oxide Thin Film Hydrogen Sensor

10‧‧‧矽基板 10‧‧‧矽 substrate

11‧‧‧氧化鎂鋅(MgZnO)薄膜 11‧‧‧Magnesium zinc oxide (MgZnO) film

12‧‧‧白金(Pt)電極 12‧‧‧Platinum (Pt) electrode

2‧‧‧氣體檢測設備 2‧‧‧Gas testing equipment

20‧‧‧流動氣氛腔體 20‧‧‧Flow atmosphere chamber

21‧‧‧支架 21‧‧‧ bracket

22‧‧‧加熱器 22‧‧‧heater

23‧‧‧流量控制器(MFC) 23‧‧‧Flow Controller (MFC)

24‧‧‧氣體混合器(Gas Mixer) 24‧‧‧Gas Mixer

25‧‧‧機械幫浦(M.P.) 25‧‧‧Mechanical Pump (M.P.)

26‧‧‧導電探針 26‧‧‧ Conductive probe

27‧‧‧白金線 27‧‧‧Platinum line

28‧‧‧多功能電表 28‧‧‧Multi-function electric meter

29‧‧‧電腦 29‧‧‧ computer

第一圖所示係為本發明實施例之組合局部剖視圖。 The first figure shows a partial cross-sectional view of a combination of embodiments of the present invention.

第二圖所示係為本發明實施例之組合俯視圖。 The second figure shows a combined top view of an embodiment of the invention.

第三圖所示係為本發明實施例之流程圖。 The third figure is a flow chart of an embodiment of the present invention.

第四圖所示係為本發明實施例之氣體檢測示意圖。 The fourth figure is a schematic diagram of gas detection according to an embodiment of the present invention.

第五圖所示係為本發明實施例之響應值與薄膜厚度檢測參考圖。 The fifth figure shows the response value and film thickness detection reference diagram of the embodiment of the present invention.

第六圖所示係為本發明實施例之響應值與氧化鎂摻雜濃度檢測參考圖。 The sixth figure is a reference diagram for detecting the response value and the magnesium oxide doping concentration in the embodiment of the present invention.

第七圖所示係為本發明實施例之響應值與溫度檢測參考圖。 The seventh figure shows a response value and temperature detection reference diagram of an embodiment of the present invention.

有關本發明為達上述之使用目的與功效,所採用之技術手段,茲舉出較佳可行之實施例,並配合圖式所示,詳述如下: 本發明之實施例,請配合參閱第一、二圖所示,主要係設有氧化鎂鋅薄膜氫氣感測器1,該氧化鎂鋅薄膜氫氣感測器1設有矽基板10、氧化鎂鋅(MgZnO)薄膜11及白金(Pt)電極12所組成,其中,該矽基板10係為P型矽基板,該矽基板10之大小為15mm x15mm,該矽基板10係以超音波清洗5分鐘後固定置入射頻(RF)磁控濺鍍設備之真空腔體,該射頻(RF)磁控濺鍍設備可控制通入濺鍍氣體及設定濺鍍參數;氧化鎂鋅(MgZnO)薄膜11,係利用射頻(RF)磁控濺鍍沉積第一濺鍍靶材於該矽基板10,其中,該第一濺鍍靶材為氧化鎂(MgO)靶材與氧化鋅(ZnO)靶材,濺鍍氣體為氬氣(Ar),設定真空腔體基本壓力7×10-5Torr、工作壓力3mTorr;白金(Pt)電極12,係利用射頻(RF)磁控濺鍍沉積第二濺鍍靶材於該氧化鎂鋅(MgZnO)薄膜11,其中,該第二濺鍍靶材為白金(Pt)靶材,濺鍍氣體為氬氣(Ar),設定真空腔體基本壓力7×10-5Torr、工作壓力3mTorr,該白金(Pt)電極12係為矩形陣列,該白金(Pt)電極12之大小為1mm x2rmm、左右間距為3.5mm、上下間距為1mm。 For the purpose of the present invention, the preferred embodiments of the present invention are set forth below, and the following detailed description is given as follows: For the embodiment of the present invention, please refer to the first As shown in the second figure, a magnesium oxide thin film hydrogen sensor 1 is mainly provided, and the magnesium oxide thin film hydrogen sensor 1 is provided with a tantalum substrate 10, a magnesium zinc oxide (MgZnO) thin film 11 and a platinum (Pt) electrode. 12, wherein the crucible substrate 10 is a P-type crucible substrate having a size of 15 mm x 15 mm, and the crucible substrate 10 is ultrasonically cleaned for 5 minutes and then fixed by radio frequency (RF) magnetron sputtering. The vacuum chamber of the device, the radio frequency (RF) magnetron sputtering device can control the flow of the sputtering gas and set the sputtering parameters; the magnesium oxide zinc (MgZnO) film 11 is deposited by radio frequency (RF) magnetron sputtering. A sputtering target is disposed on the germanium substrate 10, wherein the first sputtering target is a magnesium oxide (MgO) target and a zinc oxide (ZnO) target, and the sputtering gas is argon (Ar), and the vacuum chamber is set. a pressure member substantially 7 × 10 -5 Torr, working pressure of 3 mTorr; platinum (Pt) electrode 12, system using radio frequency (RF) magnetron sputter deposition of The sputtering target is on the magnesium zinc oxide (MgZnO) film 11, wherein the second sputtering target is a platinum (Pt) target, and the sputtering gas is argon (Ar), and the basic pressure of the vacuum chamber is set to 7×. The platinum (Pt) electrode 12 is a rectangular array having a size of 10 -5 Torr and a working pressure of 3 mTorr. The platinum (Pt) electrode 12 has a size of 1 mm x 2 rmm, a left-right pitch of 3.5 mm, and a pitch of 1 mm.

本發明製作、設定及感測之流程,請配合參閱第三圖所示,主要步驟為:(a)清洗矽基板10:係對該矽基板10進行超音波清洗5分鐘;(b)置入真空腔體:係將該矽基板10固定置入射頻(RF)磁控濺鍍設備之真空腔體;(c)濺鍍氧化鎂鋅(MgZnO)薄膜11:係利用射頻(RF)磁控濺鍍沉積第一濺鍍靶材於該矽基板10,其中,該第一濺鍍靶材為氧化鎂(MgO)靶材(純度:99.99%)與氧化鋅(ZnO)靶材(純度:99.99%),濺鍍氣體為氬氣(Ar,純度:99.99%),首先預濺鍍時間為5分鐘,即為清除第一濺鍍靶材表面雜質與不純物,再設定濺鍍參數,即設定真空腔體壓力、功率、時間及氣體,例如:基本壓力7×10-5Torr、工作壓力3mTorr、功率20W~125W、時間10分鐘~80分鐘、氣體氬氣(Ar);(d)濺鍍白金(Pt)電極12:係利用射頻(RF)磁控濺鍍沉積第二濺鍍靶材於該氧化鎂鋅(MgZnO)薄膜11,其中,該第二濺鍍靶材為白金(Pt)靶材(純度:99.99%), 濺鍍氣體為氬氣(Ar,純度:99.99%),首先設定濺鍍參數,即設定真空腔體壓力、功率、時間及氣體,例如:基本壓力7×10-5Torr、工作壓力3mTorr、功率60W、時間2分鐘、氣體氬氣(Ar);(e)退火:係透過高溫爐以溫度400℃退火1小時;(f)氫氣感測:係利用氣體檢測設備2作為檢測,請參閱第四圖所示,檢測時,先將氧化鎂鋅薄膜氫氣感測器1放置於流動氣氛腔體20之支架21,再設定檢測參數,以加熱器22控制溫度為常溫(RT)25℃加熱至溫度300℃,並通入氮氣(N2)及氫氣(H2)經由流量控制器(MFC)23及氣體混合器(Gas Mixer)24,使氮氣(N2)稀釋氫氣(H2),以控制不同濃度之氫氣(H2),而機械幫浦(M.P.)25則作粗抽動作,再以導電探針26下在白金(Pt)電極12的位置,接著以白金線27連接至多功能電表28,再以電腦29即時自動記錄電阻之變化;故,檢測時,靈敏度S(Sensitivity)之定義係為通入感測氣氛前後的電阻值改變率,即S=Ro/Rg,該靈敏度S(Sensitivity)即為響應值Response(Ro/Rg),Ro為空氣中氧化鎂鋅薄膜氫氣感測器1之電阻值,Rg為氫氣(H2)下氧化鎂鋅薄膜氫氣感測器1之電阻值。 The process of fabrication, setting and sensing of the present invention, as shown in the third figure, is mainly as follows: (a) cleaning the substrate 10: ultrasonic cleaning the substrate 10 for 5 minutes; (b) placing Vacuum chamber: the 矽 substrate 10 is fixed into a vacuum chamber of a radio frequency (RF) magnetron sputtering device; (c) a sputtered magnesium zinc oxide (MgZnO) film 11: a radio frequency (RF) magnetron splash Depositing a first sputtering target on the germanium substrate 10, wherein the first sputtering target is a magnesium oxide (MgO) target (purity: 99.99%) and a zinc oxide (ZnO) target (purity: 99.99%) The sputtering gas is argon (Ar, purity: 99.99%). First, the pre-sputtering time is 5 minutes, that is, the impurities and impurities on the surface of the first sputtering target are removed, and the sputtering parameters are set, that is, the vacuum chamber is set. Body pressure, power, time and gas, for example: basic pressure 7 × 10 -5 Torr, working pressure 3mTorr, power 20W ~ 125W, time 10 minutes ~ 80 minutes, gas argon (Ar); (d) splashing platinum ( Pt) electrode 12: depositing a second sputtering target on the magnesium zinc oxide (MgZnO) film 11 by radio frequency (RF) magnetron sputtering, wherein the second sputtering target is platinum (Pt Target (purity: 99.99%), the sputtering gas is argon (Ar, purity: 99.99%), first set the sputtering parameters, that is, set the vacuum chamber pressure, power, time and gas, for example: basic pressure 7 × 10 -5 Torr, working pressure 3 mTorr, power 60 W, time 2 minutes, gas argon (Ar); (e) annealing: annealing through a high temperature furnace at a temperature of 400 ° C for 1 hour; (f) hydrogen sensing: using gas As the detection device 2, as shown in the fourth figure, in the detection, the magnesium oxide zinc film hydrogen sensor 1 is first placed in the holder 21 of the flowing atmosphere chamber 20, and the detection parameters are set, and the temperature is controlled by the heater 22. Heating to a temperature of 300 ° C at room temperature (RT) 25 ° C, and introducing nitrogen (N 2 ) and hydrogen (H 2 ) via a flow controller (MFC) 23 and a gas mixer (Gas Mixer) 24 to make nitrogen (N 2 ) Diluting hydrogen (H 2 ) to control different concentrations of hydrogen (H 2 ), while mechanical pump (MP) 25 is used for rough pumping, and then with conductive probe 26 at platinum (Pt) electrode 12, Then, the platinum wire 27 is connected to the multi-function electric meter 28, and then the change of the resistance is automatically recorded by the computer 29; therefore, the sensitivity S (Se) is detected. Nsitivity) is defined as the resistance change rate before and after the sensing atmosphere, that is, S=Ro/Rg, the sensitivity S (Sensitivity) is the response value Response (Ro/Rg), and Ro is the zinc oxide film in the air. The resistance value of the hydrogen sensor 1 and Rg is the resistance value of the magnesium oxide thin film hydrogen sensor 1 under hydrogen (H 2 ).

本發明在對氫氣(H2)感測時,溫度為常溫(RT)25℃加熱至溫度300℃,並用氮氣(N2)稀釋氫氣(H2),以控制不同濃度之氫氣(H2),可得知:當濺鍍氧化鎂(MgO)靶材之功率固定為100W,濺鍍氧化鋅(ZnO)靶材之功率固定為125W,改變沉積時間至40分鐘,氧化鎂鋅(MgZnO)薄膜厚度為423nm,在溫度300℃,氫氣(H2)濃度1000ppm,氧化鎂(MgO)摻雜濃度為1.12wt%,具有靈敏之感測能力,其響應值為2.46,如第五~七圖所示,第五圖係為響應值Response(Ro/Rg)與薄膜厚度Film thickness(nm)檢測參考圖,由圖中可知,氧化鎂鋅(MgZnO)薄膜厚度為423nm,響應值為2.46,第六圖係為響應值Response(Ro/Rg)與氧化鎂(MgO)摻雜濃度Doping concentration(wt%)檢測參考圖,由圖中可知,當摻雜氧化鎂(MgO)摻雜濃度為1.12wt%,響應值為2.46,第七圖係為響應值Response(Ro/Rg)與溫度Temperature(℃)檢測參考圖, 由圖中可知,溫度為300℃,響應值為2.46;另當固定沉積時間為40分鐘,濺鍍氧化鋅(ZnO)靶材之功率固定為125W,控制濺鍍氧化鎂(MgO)靶材之功率至125W,氧化鎂鋅(MgZnO)薄膜厚度為423nm,在溫度300℃,氫氣(H2)濃度1000ppm,氧化鎂(MgO)摻雜濃度1.91wt%,具有靈敏之感測能力,其響應值為3.96,如第六圖所示,由圖中可知,當摻雜氧化鎂(MgO)摻雜濃度為1.91wt%,響應值為3.96,另當摻雜氧化鎂(MgO)摻雜濃度為1.12wt%,響應值為2.46;故,本發明係藉由改變沉積時間、氧化鎂鋅(MgZnO)薄膜厚度、溫度、氫氣(H2)濃度及氧化鎂(MgO)摻雜濃度,來提供最佳之感測靈敏性。 The invention senses hydrogen (H 2 ), the temperature is normal temperature (RT) 25 ° C heated to a temperature of 300 ° C, and nitrogen (N 2 ) dilution of hydrogen (H 2 ) to control different concentrations of hydrogen (H 2 ) It can be known that when the power of the sputtered magnesium oxide (MgO) target is fixed at 100W, the power of the sputtered zinc oxide (ZnO) target is fixed at 125W, and the deposition time is changed to 40 minutes, and the magnesium zinc oxide (MgZnO) film is fixed. The thickness is 423nm, the temperature is 300 ° C, the hydrogen (H 2 ) concentration is 1000ppm, the magnesium oxide (MgO) doping concentration is 1.12wt%, and has a sensitive sensing capability, and the response value is 2.46, as shown in the fifth to seventh figures. The fifth graph is a response value of Response (Ro/Rg) and film thickness (nm) detection. As can be seen from the figure, the thickness of the magnesium zinc oxide (MgZnO) film is 423 nm, and the response value is 2.46. The graph is the response value of Response (Ro/Rg) and Magnesium (MgO) doping concentration (wt%) detection reference chart. It can be seen from the figure that when the doping magnesium oxide (MgO) doping concentration is 1.12wt% The response value is 2.46. The seventh picture is the response value Response (Ro/Rg) and the temperature Temperature (°C) detection reference picture. As can be seen from the figure, the temperature is 300 °C. The response value is 2.46; when the fixed deposition time is 40 minutes, the power of the sputtered zinc oxide (ZnO) target is fixed at 125W, and the power of the sputtered magnesium oxide (MgO) target is controlled to 125W, magnesium zinc oxide (MgZnO). The film thickness is 423 nm, the hydrogen (H 2 ) concentration is 1000 ppm, the magnesium oxide (MgO) doping concentration is 1.91 wt% at a temperature of 300 ° C, and has a sensitive sensing capability, and the response value is 3.96, as shown in the sixth figure. As can be seen from the figure, when the doping magnesium oxide (MgO) doping concentration is 1.91 wt%, the response value is 3.96, and when the doped magnesium oxide (MgO) doping concentration is 1.12 wt%, the response value is 2.46; The present invention provides optimum sensing sensitivity by varying deposition time, magnesium zinc oxide (MgZnO) film thickness, temperature, hydrogen (H 2 ) concentration, and magnesium oxide (MgO) doping concentration.

本發明所採用之氧化鋅為N型半導體,其結構為纖鋅礦結構,具有高熔點和熱穩定性,溶於酸鹼,但不溶於水、酒精,是一種金屬氧化物半導體膜,它在室溫下,具有寬能隙,大於可見光的能量,使得氧化鋅膜在可見光區域具有高透光度,相較於其他寬能隙半導體,氧化鋅具有較高的量子效率及激子束縛能,同時具有高的化學穩定性、低價電常數、高機電耦合係數等特性,可應用於氣體感測器、壓電元件、發光材料、太陽能電池等,而未摻雜的氧化鋅薄膜在使用上特性較不穩定,這是因為氧原子的化學吸附及脫附能力相關,並且與導電性質與製備方法有關,而氧化鎂的能隙高,將氧化鎂摻入氧化鋅後,以調變氧化鎂鋅中之鎂含量,來提高氧化鎂鋅的能隙,當摻鎂含量變提高時,能隙增加,晶格不匹配問題較小,其晶體結構會保持與氧化鋅相同,不會出現相分離,進而得到晶格結構不變及較高能隙的氧化鎂鋅薄膜,因此氧化鋅摻雜氧化鎂,擁有高熱穩定性、良好光學特性、能隙調變等優點。 The zinc oxide used in the invention is an N-type semiconductor, the structure is a wurtzite structure, has a high melting point and thermal stability, is soluble in acid and alkali, but is insoluble in water and alcohol, and is a metal oxide semiconductor film, which is At room temperature, with a wide energy gap, greater than the energy of visible light, the zinc oxide film has high transmittance in the visible region, and zinc oxide has higher quantum efficiency and exciton binding energy than other wide-gap semiconductors. At the same time, it has high chemical stability, low electrical constant, high electromechanical coupling coefficient, etc. It can be applied to gas sensors, piezoelectric elements, luminescent materials, solar cells, etc., while undoped zinc oxide film is used. The characteristics are relatively unstable, which is related to the chemical adsorption and desorption ability of oxygen atoms, and is related to the conductivity and preparation method, and the magnesium oxide has a high energy gap. After the magnesium oxide is incorporated into the zinc oxide, the magnesium oxide is modulated. The magnesium content in zinc increases the energy gap of magnesium oxide zinc. When the magnesium content increases, the energy gap increases, the lattice mismatch problem is small, and the crystal structure remains the same as that of zinc oxide. The phase separation occurs, and a magnesium zinc oxide film having a constant lattice structure and a high energy gap is obtained. Therefore, the zinc oxide doped magnesium oxide has the advantages of high thermal stability, good optical characteristics, and energy gap modulation.

綜上所述,本發明確實已達到所預期之使用目的與功效,且更較習知者為之理想、實用,惟,上述實施例僅係針對本發明之較佳實施例進行具體說明而已,該實施例並非用以限定本發明之申請專利範圍,舉凡其它未脫離 本發明所揭示之技術手段下所完成之均等變化與修飾,均應包含於本發明所涵蓋之申請專利範圍中。 In view of the above, the present invention has achieved the intended use and efficacy, and is more desirable and practical than the prior art, but the above embodiments are only specifically described for the preferred embodiment of the present invention. This embodiment is not intended to limit the scope of the patent application of the present invention. The equivalent changes and modifications made by the technical means disclosed in the present invention should be included in the scope of the patent application covered by the present invention.

1‧‧‧氧化鎂鋅薄膜氫氣感測器 1‧‧‧Magnesium Oxide Thin Film Hydrogen Sensor

10‧‧‧矽基板 10‧‧‧矽 substrate

11‧‧‧氧化鎂鋅(MgZnO)薄膜 11‧‧‧Magnesium zinc oxide (MgZnO) film

12‧‧‧白金(Pt)電極 12‧‧‧Platinum (Pt) electrode

Claims (6)

一種氧化鎂鋅薄膜氫氣感測器,包括有:                            矽基板,係經清洗後固定置入真空腔體; 氧化鎂鋅(MgZnO)薄膜,係利用射頻(RF)磁控濺鍍沉積第一濺鍍靶材於該矽基板,其中,該第一濺鍍靶材為氧化鎂(MgO)靶材與氧化鋅(ZnO)靶材,濺鍍氣體為氬氣(Ar); 白金(Pt)電極,係利用射頻(RF)磁控濺鍍沉積第二濺鍍靶材於該氧化鎂鋅(MgZnO)薄膜,其中,該第二濺鍍靶材為白金(Pt)靶材,濺鍍氣體為氬氣(Ar); 如此,在對氫氣(H 2)感測時,溫度為常溫(RT)25℃加熱至溫度300℃,並用氮氣(N 2)稀釋氫氣(H 2),以控制不同濃度之氫氣(H 2),可得知:當濺鍍氧化鎂(MgO)靶材之功率固定為100W,濺鍍氧化鋅(ZnO)靶材之功率固定為125W,改變沉積時間至40分鐘,氧化鎂鋅(MgZnO)薄膜厚度為423nm,在溫度300℃,氫氣(H 2)濃度1000ppm,氧化鎂(MgO)摻雜濃度為1.12 wt%,具有靈敏之感測能力,其響應值為2.46;另當固定沉積時間為40分鐘,濺鍍氧化鋅(ZnO)靶材之功率固定為125W,控制濺鍍氧化鎂(MgO)靶材之功率至125W,氧化鎂鋅(MgZnO)薄膜厚度為423nm,在溫度300℃,氫氣(H 2)濃度1000ppm,氧化鎂(MgO)摻雜濃度1.91 wt%,具有靈敏之感測能力,其響應值為3.96;故,可提供最佳之感測靈敏性。 A magnesium-magnesium-zinc thin film hydrogen sensor comprises: a germanium substrate which is fixed and placed in a vacuum chamber after being cleaned; a magnesium zinc oxide (MgZnO) film deposited by a radio frequency (RF) magnetron sputtering first sputtering The target is on the germanium substrate, wherein the first sputtering target is a magnesium oxide (MgO) target and a zinc oxide (ZnO) target, and the sputtering gas is argon (Ar); a platinum (Pt) electrode Depositing a second sputtering target on the magnesium zinc oxide (MgZnO) film by radio frequency (RF) magnetron sputtering, wherein the second sputtering target is a platinum (Pt) target, and the sputtering gas is argon ( Ar); Thus, when sensing hydrogen (H 2 ), the temperature is raised to a temperature of 300 ° C at a normal temperature (RT) of 25 ° C, and hydrogen (H 2 ) is diluted with nitrogen (N 2 ) to control different concentrations of hydrogen ( H 2 ), it can be known that when the power of the sputtered magnesium oxide (MgO) target is fixed at 100 W, the power of the sputtered zinc oxide (ZnO) target is fixed at 125 W, and the deposition time is changed to 40 minutes, and magnesium zinc oxide ( the MgZnO) film having a thickness of 423nm, at a temperature of 300 ℃, hydrogen (H 2) conc. 1000ppm, magnesium oxide (MgO) doping concentration is 1.12 wt%, with sensitive sensing ability, the response value is 2.46; another fixed deposition time is 40 minutes, the power of sputtering zinc oxide (ZnO) target is fixed 125W, control the power of sputtering magnesium oxide (MgO) target to 125W, magnesium oxide zinc (MgZnO) film thickness is 423nm, temperature 300 ° C, hydrogen (H 2 ) concentration 1000ppm, magnesium oxide (MgO) doping concentration 1.91 Wt%, with sensitive sensing capability, has a response value of 3.96; therefore, it provides the best sensing sensitivity. 如申請專利範圍第1項所述之氧化鎂鋅薄膜氫氣感測器,其中,該矽基板係為P型矽基板,該矽基板之大小為15 mm x15mm,該矽基板係以超音波清洗5分鐘。The magnesium oxide thin film hydrogen gas sensor according to claim 1, wherein the germanium substrate is a P-type germanium substrate, and the germanium substrate has a size of 15 mm x 15 mm, and the germanium substrate is ultrasonically cleaned. minute. 如申請專利範圍第1項所述之氧化鎂鋅薄膜氫氣感測器,其中,射頻(RF)磁控濺鍍沉積第一濺鍍靶材於該矽基板時,設定真空腔體基本壓力7×10 -5Torr、工作壓力3mTorr。 The magnesium oxide thin film hydrogen gas sensor according to claim 1, wherein the radio frequency (RF) magnetron sputtering deposits the first sputtering target on the crucible substrate, and sets a basic pressure of the vacuum chamber 7× 10 -5 Torr, working pressure 3mTorr. 如申請專利範圍第1項所述之氧化鎂鋅薄膜氫氣感測器,其中,射頻(RF)磁控濺鍍沉積第二濺鍍靶材於該氧化鎂鋅(MgZnO)薄膜時,設定真空腔體基本壓力7×10 -5Torr、工作壓力3mTorr。 The magnesium oxide thin film hydrogen gas sensor according to claim 1, wherein the radio frequency (RF) magnetron sputtering deposits the second sputtering target on the magnesium zinc oxide (MgZnO) film, and sets the vacuum chamber. The basic pressure of the body is 7 × 10 -5 Torr and the working pressure is 3 mTorr. 如申請專利範圍第1項所述之氧化鎂鋅薄膜氫氣感測器,其中,該白金(Pt)電極係為矩形陣列,該白金(Pt)電極之大小為1 mm x2mm、左右間距為3.5 mm、上下間距為1 mm。The magnesium oxide thin film hydrogen sensor according to claim 1, wherein the platinum (Pt) electrode is a rectangular array, and the platinum (Pt) electrode has a size of 1 mm x 2 mm and a left-right spacing of 3.5 mm. The upper and lower spacing is 1 mm. 如申請專利範圍第1項所述之氧化鎂鋅薄膜氫氣感測器,其中,射頻(RF)磁控濺鍍沉積第二濺鍍靶材於該氧化鎂鋅(MgZnO)薄膜後,係透過高溫爐以溫度400℃退火1小時。The magnesium oxide thin film hydrogen gas sensor according to claim 1, wherein the radio frequency (RF) magnetron sputtering deposits the second sputtering target on the magnesium zinc oxide (MgZnO) film and passes through the high temperature. The furnace was annealed at a temperature of 400 ° C for 1 hour.
TW105124316A 2016-08-01 2016-08-01 Magnesium oxide thin film hydrogen sensor TWI601850B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105124316A TWI601850B (en) 2016-08-01 2016-08-01 Magnesium oxide thin film hydrogen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105124316A TWI601850B (en) 2016-08-01 2016-08-01 Magnesium oxide thin film hydrogen sensor

Publications (2)

Publication Number Publication Date
TWI601850B true TWI601850B (en) 2017-10-11
TW201805481A TW201805481A (en) 2018-02-16

Family

ID=61011058

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105124316A TWI601850B (en) 2016-08-01 2016-08-01 Magnesium oxide thin film hydrogen sensor

Country Status (1)

Country Link
TW (1) TWI601850B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109666913A (en) * 2019-02-26 2019-04-23 吉林大学 A kind of nitridation magnesium film and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200415349A (en) * 2003-02-13 2004-08-16 Univ Nat Cheng Kung Hydrogen sensor and fabrication method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200415349A (en) * 2003-02-13 2004-08-16 Univ Nat Cheng Kung Hydrogen sensor and fabrication method thereof

Also Published As

Publication number Publication date
TW201805481A (en) 2018-02-16

Similar Documents

Publication Publication Date Title
CN204694669U (en) Mems gas sensor
JP2011169634A (en) Thin film gas sensor
Hazra et al. Hydrogen sensitivity of ZnO p–n homojunctions
CN105987935A (en) Mems gas sensor and manufacturing method thereof
KR101734329B1 (en) Method for detecting chemical substances using impedance analysis
CN103267784A (en) Preparation method of gas sensitive sensor with porous silicon and tungsten oxide nano-rod composite structure
CN205139072U (en) Quick component of molybdena nanofiber paper hydrogen
TWI601850B (en) Magnesium oxide thin film hydrogen sensor
JP2019167629A (en) Conductive transparent aluminum-doped zinc oxide sputtering film
Enukova et al. Amorphous silicon and germanium films for uncooled microbolometers
JP2007155501A (en) Gas alarm
CN209992108U (en) Device for measuring vacuum degree
JPWO2010032542A1 (en) Zinc oxide-based transparent conductive film and method for producing the same
TWI443332B (en) Hydrogen sensor and fabrication method thereof
TWI601851B (en) Tungsten oxide film hydrogen sensor
JP2007057254A (en) Thin-film gas sensor and its manufacturing method
JP3542012B2 (en) Thin film gas sensor
CN110026325B (en) Preparation method of single crystal particle film and gas sensor thereof
CN110926604A (en) Photo-thermal detection unit based on chromium-niobium co-doped vanadium dioxide epitaxial film
JP2007101459A (en) Thin film gas sensor and its manufacturing method
JP6758061B2 (en) Flammable gas sensor
CN113109402B (en) Capacitive hydrogen sensor core, preparation method thereof and capacitive hydrogen sensor
Lei et al. Development of aluminum-doped ZnO films for a-Si: H/μc-Si: H solar cell applications
JP4851610B2 (en) Thin film gas sensor
Filipovic et al. Processing of integrated gas sensor devices

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees