TWI600997B - A solar power system maximum power tracking device - Google Patents

A solar power system maximum power tracking device Download PDF

Info

Publication number
TWI600997B
TWI600997B TW105133554A TW105133554A TWI600997B TW I600997 B TWI600997 B TW I600997B TW 105133554 A TW105133554 A TW 105133554A TW 105133554 A TW105133554 A TW 105133554A TW I600997 B TWI600997 B TW I600997B
Authority
TW
Taiwan
Prior art keywords
voltage
power
memory unit
output
tracking
Prior art date
Application number
TW105133554A
Other languages
Chinese (zh)
Other versions
TW201816537A (en
Inventor
Shun-Zhong Wang
Yi-Hua Liu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to TW105133554A priority Critical patent/TWI600997B/en
Application granted granted Critical
Publication of TWI600997B publication Critical patent/TWI600997B/en
Publication of TW201816537A publication Critical patent/TW201816537A/en

Links

Landscapes

  • Control Of Electrical Variables (AREA)

Description

一種太陽能發電系統之最大功率追蹤裝置Maximum power tracking device for solar power generation system

本發明係有關於一種太陽能發電系統之最大功率追蹤裝置,特別是關於一種利用一決定型杜鵑鳥搜尋法以使一太陽能電池之一輸出電壓逐步收斂至一功率最大化電壓之最大功率追蹤裝置。The present invention relates to a maximum power tracking device for a solar power generation system, and more particularly to a maximum power tracking device that utilizes a deterministic cuckoo bird search method to gradually converge one of the output voltages of a solar cell to a power maximizing voltage.

由於工業發展大量消耗了煤、石油及化石燃料,能源短缺問題乃浮現;另一方面逐漸增加的二氧化碳排放量也造成全球氣候變遷,動、植物棲息地遭受破壞及全球暖化等問題。這些現象均說明了人類對地球的破壞會影響人類的生活環境,情況嚴重的話則可能會威脅到人類的生存。因此,為降低對地球環境之破壞,須找尋新且乾淨之能源,也就是各界所說的綠色能源,包括地熱能、潮汐能、風力能、生物能及太陽能等。其中太陽能為目前最受重視之綠色能源之一,原因在於太陽能為低汙染、不需燃料成本且是取之不盡、用之不竭的能源。As industrial development consumes a large amount of coal, oil and fossil fuels, energy shortages are emerging; on the other hand, increasing carbon dioxide emissions also cause global climate change, damage to animal and plant habitats and global warming. These phenomena all indicate that human damage to the earth will affect the living environment of human beings. If the situation is serious, it may threaten the survival of human beings. Therefore, in order to reduce the damage to the global environment, we must find new and clean energy, which is the green energy, including geothermal energy, tidal energy, wind energy, bio-energy and solar energy. Among them, solar energy is one of the most important green energy sources at present, because solar energy is low-pollution, does not require fuel costs, and is an inexhaustible source of energy.

太陽能於2014年營收成長率為12%,高達1兆610億美元,主要原因在於現今太陽能電池的發電效率已較以往提高許多,加上製作成本低廉,因此如何有效應用太陽能能源已成為重要之課題。於綠色能源中,太陽能是最方便取得且乾淨的能源,但由於目前商用太陽能電池的發電效率仍不盡理想,加上太陽光並非全時皆處於全照度狀態且周遭環境之綠樹或建築物都可能影響太陽光照射的強度而導致太陽能的電池功率-電壓特性曲線產生變化,為維持太陽能電池於最佳輸出狀態,便須尋找太陽能電池的最大功率輸出點的位置,此技術稱為最大功率追蹤(Maximum Power Point Tracking, MPPT)技術。Solar energy revenue growth rate of 12% in 2014, up to 1 trillion US$ 61 billion, is mainly due to the fact that today's solar cell power generation efficiency has been much higher than before, coupled with low production costs, so how to effectively apply solar energy has become an important Question. Among green energy sources, solar energy is the most convenient and clean energy source, but the current power generation efficiency of commercial solar cells is still not ideal, and the sunlight is not a full-illumination state and the surrounding green trees or buildings. Both may affect the intensity of sunlight and cause changes in the battery power-voltage characteristic curve of solar energy. In order to maintain the optimal output state of the solar cell, it is necessary to find the position of the maximum power output point of the solar cell. This technique is called maximum power. Tracking (Maximum Power Point Tracking, MPPT) technology.

常見的最大功率追蹤控制技術包含開路電壓法、短路電流法、直接量測法、擾動觀察法及增量電導法等。由於各種最大功率追蹤控制技術皆有其優、缺點,使用者須進行評估方能尋找出適合系統的最佳控制技術。太陽能電池最大功率追蹤演算法相關研究方向可分為兩部分說明:Common maximum power tracking control technologies include open circuit voltage method, short circuit current method, direct measurement method, disturbance observation method and incremental conductance method. Since all kinds of maximum power tracking control technologies have their advantages and disadvantages, users must evaluate them to find the best control technology for the system. The research direction of solar cell maximum power tracking algorithm can be divided into two parts:

1.由於最大功率追蹤演算法於暫態追蹤時會產生功率損失,為減少追蹤功率損失並提升應變外在環境變化之能力,如何擁有理想的暫態響應便成為重要課題。1. Since the maximum power tracking algorithm generates power loss during transient tracking, how to have an ideal transient response becomes an important issue in order to reduce the ability to track power loss and improve external environmental changes.

2.太陽能發電系統在操作於穩態時,須避免演算法於最大功率點附近振盪,並準確地將操作點置於最大功率點位置以提升整體輸出效率,從而降低追蹤損失。因此如何準確地找尋太陽能電池之最大功率點亦為太陽能發電系統中不可或缺的一環。2. When operating in steady state, the solar power system must avoid the algorithm oscillating near the maximum power point and accurately place the operating point at the maximum power point position to improve the overall output efficiency, thereby reducing the tracking loss. Therefore, how to accurately find the maximum power point of the solar cell is also an indispensable part of the solar power generation system.

由以上兩部分說明可清楚得知最大功率追蹤技術講求追蹤快速及高穩態追蹤精確度,由於傳統固定步階式擾動觀察法會有暫態及穩態響應之權衡問題,故眾多學者提出各式各樣之變動步階式控制法則,期望克服固定步階式擾動觀察法之問題,進而提升整體系統效率。有文獻利用太陽能電池功率-電壓特性曲線之斜率作為步階變化的依據,將傳統增量電導法改進成變動步階式控制,進而提升系統之穩態響應。然而,太陽能電池功率-電壓曲線斜率並非對稱曲線,因此,此作法將造成左半平面追蹤速度較慢的情況。另外有文獻提出自動調整步階的最大功率追蹤法,其係利用增量電導法關係式獲得步階變化曲線以改善變動步階式增量電導法之斜率不足而導致暫態響應過慢之問題。有學者考慮到照度改變可能造成演算法錯追的問題,當照度改變時,利用短路電流使操作點直接放置於最大功率點附近,以降低照度改變時的追蹤功率損失,從而提升暫態響應表現。此外,亦有文獻提出於太陽能發電系統到達穩態時使用二次趨近以改善穩態響應。也有文獻僅使用一感測元件感測電流,利用關係式計算獲得責任週期及電流相互關係以進行演算法判斷,從而降低電路成本。該文獻除了變動步階亦加入變動頻率來加快追蹤速度及提升穩態追蹤精確度,但須加入較多的判斷方能達到成效,故其演算法較複雜且較不易實現。也有文獻使用二進位趨近法以免除於每段區間須執行追蹤重置之情況,並提出自適應二進位及逐步遞減方法,以結合兩者的優勢進行最大功率追蹤以達到降低追蹤功率損失以及提升整體系統效率之目的。也有文獻以增量電導法為基礎應用模糊控制於太陽能發電系統中,以降低程式運算時間及複雜度,從而提升追蹤速度。It can be clearly seen from the above two parts that the maximum power tracking technology emphasizes tracking fast and high steady-state tracking accuracy. Since the traditional fixed step disturbance observation method has the trade-off between transient and steady-state response, many scholars have proposed Various variable step control laws are expected to overcome the problem of the fixed step disturbance observation method, thereby improving the overall system efficiency. In the literature, the slope of the power-voltage characteristic curve of the solar cell is used as the basis for the step change, and the traditional incremental conductance method is improved into the variable step control, thereby improving the steady state response of the system. However, the slope of the solar cell power-voltage curve is not a symmetrical curve, so this approach will result in a slower tracking of the left half plane. In addition, some literatures propose the maximum power tracking method for automatically adjusting the step, which uses the incremental conductance relationship to obtain the step change curve to improve the slope of the incremental step incremental conductance method and cause the transient response to be too slow. . Some scholars have considered that the illuminance change may cause the algorithm to chase the problem. When the illuminance changes, the short-circuit current is used to directly place the operating point near the maximum power point to reduce the tracking power loss when the illuminance changes, thereby improving the transient response performance. . In addition, there are also literatures suggesting that a secondary approach is used to improve the steady state response when the solar power system reaches steady state. There are also literatures that use only one sensing element to sense current, and use relational calculations to obtain the relationship between duty cycle and current for algorithmic judgment, thereby reducing circuit cost. In addition to changing the steps, the literature also adds variable frequencies to speed up the tracking and improve the accuracy of steady-state tracking. However, more judgments must be added to achieve results, so the algorithm is more complicated and less feasible. There is also a literature using the binary approach method to avoid the need to perform tracking reset in each interval, and propose adaptive binary and step-down methods to combine the advantages of both to maximize power tracking to reduce tracking power loss and Improve the efficiency of the overall system. There are also literatures based on the incremental conductivity method applied to the solar power system to reduce the computation time and complexity of the program, thereby improving the tracking speed.

雖然習知已有如上述之多種追蹤方法,但其效能仍有改進的空間。Although there are various tracking methods as described above, there is still room for improvement in their performance.

本發明之主要目的在於提供一種可使太陽能電池工作在最大功率輸出狀態之最大功率追蹤裝置,其採用一種決定型杜鵑鳥搜尋法。相較於傳統的杜鵑鳥搜尋法,本發明所採用的決定型杜鵑鳥搜尋法可免除傳統杜鵑鳥搜尋法所牽涉的複雜的列維飛行(Levy Flight)模式運算,從而降低程式的計算量及複雜度。SUMMARY OF THE INVENTION A primary object of the present invention is to provide a maximum power tracking device that allows a solar cell to operate at a maximum power output state using a deterministic cuckoo search method. Compared with the traditional cuckoo search method, the decisive cuckoo bird search method adopted by the present invention can eliminate the complicated Levy Flight mode operation involved in the traditional cuckoo search method, thereby reducing the calculation amount of the program and the complexity.

為達到上述目的,一種太陽能發電系統之最大功率追蹤裝置乃被提出,其具有:To achieve the above object, a maximum power tracking device for a solar power generation system is proposed which has:

一升壓轉換器,具有一輸入端、一控制端及一輸出端,該輸入端係用以與一太陽能電池耦接,該控制端係用以接收一脈衝寬度調變信號,且該輸出端係用以與一負載耦接;以及a boost converter having an input end, a control end and an output end, the input end being coupled to a solar cell, the control end being configured to receive a pulse width modulation signal, and the output end Used to couple with a load;

一數位控制器,用以依一韌體程式執行一決定型杜鵑鳥搜尋法以調整該脈衝寬度調變信號之一責任週期,以使該太陽能電池之一輸出電壓逐步收斂至一功率最大化電壓,其中該決定型杜鵑鳥搜尋法包括:a digital controller for performing a deterministic cuckoo search method according to a firmware program to adjust a duty cycle of the pulse width modulation signal to gradually converge one output voltage of the solar cell to a maximum power voltage , wherein the deterministic cuckoo bird search method includes:

第一步驟:依序使該輸出電壓停留在三個不同電壓值並對應地測得該太陽能電池之三個功率輸出值,並將所述三個不同電壓值中與所述三個功率輸出值中的最大者相對應的一電壓值儲存在一第一記憶單元中,將所述三個不同電壓值中與所述三個功率輸出值中的第二大者相對應的一電壓值儲存在一第二記憶單元中,將所述三個不同電壓值中與所述三個功率輸出值中的最小者相對應的一電壓值儲存在一第三記憶單元中;a first step: sequentially stopping the output voltage at three different voltage values and correspondingly measuring three power output values of the solar cell, and comparing the three different voltage values with the three power output values a voltage value corresponding to the largest one of the three stored in a first memory unit, storing a voltage value corresponding to a second largest of the three power output values among the three different voltage values a second memory unit, storing a voltage value corresponding to a minimum of the three power output values among the three different voltage values in a third memory unit;

第二步驟:依所述第二記憶單元的儲存值及所述第一記憶單元的儲存值進行一第一電壓變動量計算程序以產生一第一電壓變動量命令,且依該第一電壓變動量命令調整所述的責任週期以使該太陽能電池輸出一暫定第二大功率電壓,並測得該太陽能電池在輸出該暫定第二大功率電壓時之一功率輸出值;及依所述第三記憶單元的儲存值、所述第二記憶單元的儲存值及所述第一記憶單元的儲存值進行一第二電壓變動量計算程序以產生一第二電壓變動量命令,且依該第二電壓變動量命令調整所述的責任週期以使該太陽能電池輸出一暫定最小功率電壓,並測得該太陽能電池在輸出該暫定最小功率電壓時之一功率輸出值,其中所述第一電壓變動量計算程序及所述第二電壓變動量計算程序均包含乘以一變動比例因子α之一乘法運算,0<α<1;a second step: performing a first voltage variation calculation program according to the stored value of the second memory unit and the stored value of the first memory unit to generate a first voltage variation command, and according to the first voltage variation The quantity command adjusts the duty cycle to cause the solar cell to output a tentative second high power voltage, and measure a power output value of the solar cell when outputting the tentative second high power voltage; and according to the third Performing a second voltage fluctuation amount calculation program to generate a second voltage variation amount command according to the stored value of the memory unit, the stored value of the second memory unit, and the stored value of the first memory unit, and according to the second voltage The variable amount command adjusts the duty cycle to cause the solar cell to output a tentative minimum power voltage, and measures a power output value of the solar cell when the tentative minimum power voltage is output, wherein the first voltage variation is calculated The program and the second voltage variation calculation program each include a multiplication by a variation ratio factor α, 0<α<1;

第三步驟:針對與所述第一記憶單元對應的功率輸出值、與該暫定第二大功率電壓對應的功率輸出值及與該暫定最小功率電壓對應的功率輸出值進行比較,以在所述第一記憶單元的儲存值、該暫定第二大功率電壓及該暫定最小功率電壓中找出產生最大功率輸出值之一新的最大功率電壓,產生第二大功率輸出值之一新的第二大功率電壓,及產生最小功率輸出值之一新的最小功率電壓,並將所述新的最大功率電壓存入所述第一記憶單元中,將所述新的第二大功率電壓存入所述第二記憶單元中以及將所述新的最小功率電壓存入所述第三記憶單元中;以及a third step: comparing, for the power output value corresponding to the first memory unit, a power output value corresponding to the tentative second high power voltage, and a power output value corresponding to the tentative minimum power voltage, Finding a new maximum power voltage that is one of the maximum power output values of the stored value of the first memory unit, the tentative second power voltage, and the tentative minimum power voltage, generating a second new second power output value a high power voltage, and a new minimum power voltage that produces one of the minimum power output values, and stores the new maximum power voltage in the first memory unit, and stores the new second high power voltage into the And storing the new minimum power voltage in the second memory unit;

第四步驟:返回第二步驟。Fourth step: return to the second step.

在一實施例中,該第二步驟之所述第二電壓變動量計算程序包含一換邊計算程序。In an embodiment, the second voltage variation calculation program of the second step includes a changeover calculation program.

在一實施例中,該第二步驟之所述第二電壓變動量計算程序進一步包含一數值限制程序以限制該暫定最小功率電壓的上限及下限。In an embodiment, the second voltage variation calculation program of the second step further includes a value limiting program to limit the upper and lower limits of the tentative minimum power voltage.

在一實施例中,該決定型杜鵑鳥搜尋法進一步包含一照度改變判斷步驟以決定是否回到所述第一步驟。In one embodiment, the deterministic cuckoo search method further includes an illumination change determination step to determine whether to return to the first step.

為使 貴審查委員能進一步瞭解本發明之結構、特徵及其目的,茲附以圖式及較佳具體實施例之詳細說明如後。The detailed description of the drawings and the preferred embodiments are set forth in the accompanying drawings.

請參照圖1,其繪示本發明太陽能發電系統之最大功率追蹤裝置之一實施例方塊圖。如圖1所示,該太陽能發電系統之最大功率追蹤裝置包含一升壓轉換器100及一數位控制器110。Please refer to FIG. 1, which is a block diagram showing an embodiment of a maximum power tracking device for a solar power generation system of the present invention. As shown in FIG. 1, the maximum power tracking device of the solar power generation system includes a boost converter 100 and a digital controller 110.

升壓轉換器100具有一輸入端、一控制端及一輸出端,該輸入端係用以與一太陽能電池200耦接,該控制端係用以接收一脈衝寬度調變信號V PWM,且該輸出端係用以與一負載300耦接。 The boost converter 100 has an input end, a control end and an output end. The input end is coupled to a solar cell 200, and the control end is configured to receive a pulse width modulation signal V PWM . The output is coupled to a load 300.

數位控制器110,可由一DSP(digital signal processing;數位信號處理)晶片實現,用以依一韌體程式執行一決定型杜鵑鳥搜尋法以產生該脈衝寬度調變信號V PWM,以使該太陽能電池之一輸出電壓V PV逐步收斂至一功率最大化電壓,其中該決定型杜鵑鳥搜尋法包括: The digital controller 110 can be implemented by a DSP (digital signal processing) chip for performing a deterministic cuckoo search method according to a firmware program to generate the pulse width modulation signal V PWM to make the solar energy One of the battery output voltages V PV gradually converges to a power maximization voltage, wherein the deterministic cuckoo search method includes:

第一步驟:依序使該輸出電壓V PV停留在三個不同電壓值並對應地測得該太陽能電池200之三個功率輸出值,並將所述三個不同電壓值中與所述三個功率輸出值中的最大者相對應的一電壓值儲存在一第一記憶單元中,將所述三個不同電壓值中與所述三個功率輸出值中的第二大者相對應的一電壓值儲存在一第二記憶單元中,將所述三個不同電壓值中與所述三個功率輸出值中的最小者相對應的一電壓值儲存在一第三記憶單元中; The first step: sequentially stopping the output voltage V PV at three different voltage values and correspondingly measuring three power output values of the solar cell 200, and comparing the three different voltage values with the three a voltage value corresponding to a largest one of the power output values is stored in a first memory unit, and a voltage corresponding to a second largest of the three power output values among the three different voltage values The value is stored in a second memory unit, and a voltage value corresponding to the smallest one of the three power output values among the three different voltage values is stored in a third memory unit;

第二步驟:依所述第二記憶單元的儲存值及所述第一記憶單元的儲存值進行一第一電壓變動量計算程序以產生一第一電壓變動量命令,且依該第一電壓變動量命令調整該脈衝寬度調變信號V PWM以使該太陽能電池200輸出一暫定第二大功率電壓,並測得該太陽能電池200在輸出該暫定第二大功率電壓時之一功率輸出值(V PV*I PV);及依所述第三記憶單元的儲存值、所述第二記憶單元的儲存值及所述第一記憶單元的儲存值進行一第二電壓變動量計算程序以產生一第二電壓變動量命令,且依該第二電壓變動量命令調整該脈衝寬度調變信號V PWM以使該太陽能電池200輸出一暫定最小功率電壓,並測得該太陽能電池200在輸出該暫定最小功率電壓時之一功率輸出值(V PV*I PV); a second step: performing a first voltage variation calculation program according to the stored value of the second memory unit and the stored value of the first memory unit to generate a first voltage variation command, and according to the first voltage variation The quantity command adjusts the pulse width modulation signal V PWM to cause the solar cell 200 to output a tentative second high power voltage, and measures a power output value of the solar battery 200 when outputting the tentative second high power voltage (V). PV *I PV ); and performing a second voltage fluctuation amount calculation program according to the stored value of the third memory unit, the stored value of the second memory unit, and the stored value of the first memory unit to generate a first And a second voltage fluctuation amount command, and adjusting the pulse width modulation signal V PWM according to the second voltage fluctuation amount command to cause the solar cell 200 to output a tentative minimum power voltage, and measuring that the solar cell 200 is outputting the tentative minimum power One of the power output values at voltage (V PV *I PV );

第三步驟:針對與所述第一記憶單元對應的功率輸出值、與該暫定第二大功率電壓對應的功率輸出值及與該暫定最小功率電壓對應的功率輸出值進行比較,以在所述第一記憶單元的儲存值、該暫定第二大功率電壓及該暫定最小功率電壓中找出產生最大功率輸出值之一新的最大功率電壓,產生第二大功率輸出值之一新的第二大功率電壓,及產生最小功率輸出值之一新的最小功率電壓,並將所述新的最大功率電壓存入所述第一記憶單元中,將所述新的第二大功率電壓存入所述第二記憶單元中以及將所述新的最小功率電壓存入所述第三記憶單元中;以及a third step: comparing, for the power output value corresponding to the first memory unit, a power output value corresponding to the tentative second high power voltage, and a power output value corresponding to the tentative minimum power voltage, Finding a new maximum power voltage that is one of the maximum power output values of the stored value of the first memory unit, the tentative second power voltage, and the tentative minimum power voltage, generating a second new second power output value a high power voltage, and a new minimum power voltage that produces one of the minimum power output values, and stores the new maximum power voltage in the first memory unit, and stores the new second high power voltage into the And storing the new minimum power voltage in the second memory unit;

第四步驟:返回第二步驟。Fourth step: return to the second step.

在該第二步驟中,所述第二電壓變動量計算程序可包含一換邊計算程序(其內容將在後面段落中說明),且該換邊計算程序可包含一數值限制程序以限制該暫定最小功率電壓的上限及下限。In the second step, the second voltage variation calculation program may include a face change calculation program (the content of which will be described in the following paragraph), and the edge calculation program may include a numerical limit program to limit the tentative The upper and lower limits of the minimum power voltage.

以下將針對本發明的原理進行說明:The principle of the invention will be explained below:

太陽能電池電氣特性:Solar cell electrical characteristics:

太陽能電池之電氣特性為一非線性電源,其電壓與電流之間係一指數曲線的關係,因此當太陽能電池輸出電壓變動時,其輸出電流也會隨之變動。圖2為太陽能電池單二極體等效電路,由圖2可得知太陽能電池輸出電壓與電流之關係式可表示為The electrical characteristics of a solar cell are a non-linear power source, and the voltage and current are in an exponential curve relationship. Therefore, when the output voltage of the solar cell changes, the output current also changes. 2 is a solar cell single diode equivalent circuit. It can be seen from FIG. 2 that the relationship between the output voltage and current of the solar cell can be expressed as

(1) (1)

其中 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td><img wi="37" he="23" file="02_image003.jpg" img-format="jpg"></img></td><td> 太陽能電池輸出電流 </td><td><img wi="20" he="27" file="02_image005.jpg" img-format="jpg"></img></td><td> 光電轉換電流 </td></tr><tr><td><img wi="22" he="23" file="02_image007.jpg" img-format="jpg"></img></td><td> 二極體等效電流 </td><td><img wi="39" he="23" file="02_image009.jpg" img-format="jpg"></img></td><td> 太陽能電池輸出電壓 </td></tr><tr><td><img wi="24" he="23" file="02_image011.jpg" img-format="jpg"></img></td><td> 並聯等效電阻 </td><td><img wi="23" he="23" file="02_image013.jpg" img-format="jpg"></img></td><td> 串聯等效電阻 </td></tr><tr><td><img wi="13" he="20" file="02_image015.jpg" img-format="jpg"></img></td><td> 載子電荷量(<img wi="93" he="22" file="02_image017.jpg" img-format="jpg"></img>) </td><td><img wi="13" he="15" file="02_image019.jpg" img-format="jpg"></img></td><td> 理想因子 (1至2之間) </td></tr><tr><td><img wi="20" he="17" file="02_image021.jpg" img-format="jpg"></img></td><td> 波茲曼常數(<img wi="130" he="22" file="02_image023.jpg" img-format="jpg"></img>) </td><td><img wi="15" he="17" file="02_image025.jpg" img-format="jpg"></img></td><td> 絕對溫度 </td></tr></TBODY></TABLE>among them         <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td><img wi="37" he="23" file="02_image003.jpg" img- Format="jpg"></img></td><td> Solar cell output current</td><td><img wi="20" he="27" file="02_image005.jpg" img-format ="jpg"></img></td><td> Photoelectric conversion current</td></tr><tr><td><img wi="22" he="23" file="02_image007. Jpg" img-format="jpg"></img></td><td> Diode equivalent current</td><td><img wi="39" he="23" file="02_image009 .jpg" img-format="jpg"></img></td><td> Solar cell output voltage</td></tr><tr><td><img wi="24" he=" 23" file="02_image011.jpg" img-format="jpg"></img></td><td> Parallel equivalent resistance</td><td><img wi="23" he="23 " file="02_image013.jpg" img-format="jpg"></img></td><td> Series equivalent resistance</td></tr><tr><td><img wi=" 13" he="20" file="02_image015.jpg" img-format="jpg"></img></td><td> Charge of the carrier (<img wi="93" he="22" File="02_image017.jpg" img-format="jpg"></img>) </td><td><img wi="13" he="15" file="02_image019.jpg" img-format= "jpg"></img></td><td> Ideal Sub (between 1 and 2) </td></tr><tr><td><img wi="20" he="17" file="02_image021.jpg" img-format="jpg">< /img></td><td> Bozeman constant (<img wi="130" he="22" file="02_image023.jpg" img-format="jpg"></img>) </td ><td><img wi="15" he="17" file="02_image025.jpg" img-format="jpg"></img></td><td> Absolute Temperature</td></ Tr></TBODY></TABLE>

由於太陽能電池的並聯電阻之阻值遠大於串聯電阻之阻值,故(1)式可化簡成Since the resistance of the parallel resistance of the solar cell is much larger than the resistance of the series resistor, the equation (1) can be simplified.

(2) (2)

為了方便觀察環境溫度與照度改變時對太陽能電池輸出特性曲線之影響,可將式(2)整理成為In order to facilitate the observation of the influence of the ambient temperature and illuminance on the solar cell output characteristic curve, the formula (2) can be organized into

(3) (3)

當太陽光照度上升時,半導體因照射光能量增加使轉出的電能量增加,故太陽能電池之光電轉換電流隨之增加。由式(2)得知,太陽能電池輸出電流與光電轉換電流成正比,因此照度增加時,太陽能電池輸出電流亦會有顯著的增加,又由式(3)可知,因自然對數之存在,故太陽能電池輸出電壓於照度上升時只有些微的變化,因此可畫出不同照度下之太陽能電池特性曲線,如圖3a-3b所示,其中圖3a繪示太陽能電池之一電流-電壓曲線;圖3b繪示太陽能電 池之一功率-電壓曲線。When the illuminance of the sun rises, the semiconductor increases the amount of electric energy that is transferred due to the increase in the energy of the illuminating light, so the photoelectric conversion current of the solar cell increases. It is known from equation (2) that the output current of the solar cell is proportional to the photoelectric conversion current. Therefore, when the illuminance is increased, the output current of the solar cell is also significantly increased, and it is known from the equation (3) that due to the existence of the natural logarithm, The output voltage of the solar cell changes only slightly when the illuminance rises, so the solar cell characteristic curve under different illumination can be drawn, as shown in Fig. 3a-3b, wherein Fig. 3a shows a current-voltage curve of the solar cell; Fig. 3b A power-voltage curve of one of the solar cells is shown.

太陽能最大功率追蹤系統硬體架構:Solar Maximum Power Tracking System Hardware Architecture:

本發明所實現之系統架構包含了太陽能電池模擬機、升壓式轉換器及數位信號處理器控制核心三大部分。一般太陽能電池輸出電壓普遍過低,所以需經過轉換器來提升輸出電壓,故本發明硬體電路架構採用升壓式轉換器。控制器部分則採用數位訊號處理器來實現。將取樣所得之太陽能電池輸出電壓及電流訊號輸入至數位訊號處理器進行最大功率追蹤運算,便可計算出適當之責任週期訊號來控制升壓式轉換器開關動作,以達到最大功率追蹤之目的。The system architecture implemented by the invention comprises three parts: a solar cell simulator, a boost converter and a digital signal processor control core. Generally, the output voltage of the solar cell is generally too low, so the converter needs to be used to increase the output voltage. Therefore, the hardware circuit architecture of the present invention uses a boost converter. The controller part is implemented using a digital signal processor. By inputting the sampled solar cell output voltage and current signal to the digital signal processor for maximum power tracking operation, an appropriate duty cycle signal can be calculated to control the boost converter switching action for maximum power tracking.

升壓型轉換器為直流-直流轉換器的一種,係由電感(L)、電容(C)、二極體(D1)及功率開關(Q)所組成,其架構圖如圖4所示。其中功率開關MOSFET操作於截止區與飽和區,並藉由責任週期的控制來調整升壓轉換器之輸出電壓及電流。假設各元件皆為理想狀態,當開關導通時,輸入電壓 跨接於電感L之兩端,因此對電感L儲能,電感電流呈線性上升,二極體D1因逆向偏壓而截止,此時電容C對負載供電;當開關截止時,因電感電流無法瞬間改變流向,因此二極體D1順向導通,此時電感對輸出負載端釋能。若 D為責任比,則由圖4所示之連續導通模式(Continues Conduction Mode,CCM)操作之升壓型轉換器的輸出入電壓轉換比可推導得到為 The boost converter is a kind of DC-DC converter, which is composed of an inductor (L), a capacitor (C), a diode (D1) and a power switch (Q). The structure diagram is shown in FIG. 4 . The power switching MOSFET operates in the cut-off region and the saturation region, and the output voltage and current of the boost converter are adjusted by the duty cycle control. Assume that each component is in an ideal state, when the switch is turned on, the input voltage It is connected across the inductor L, so the inductor L is stored, the inductor current rises linearly, and the diode D1 is turned off due to the reverse bias. At this time, the capacitor C supplies power to the load; when the switch is turned off, the inductor current cannot be used. The flow direction is changed instantaneously, so the diode D1 is turned on, and the inductor discharges the output load. If D is the duty ratio, the output-to-voltage conversion ratio of the boost converter operated by the Continuous Conduction Mode (CCM) shown in FIG. 4 can be derived as

(4) (4)

太陽能最大功率追蹤系統韌體架構:Solar Maximum Power Tracking System Firmware Architecture:

太陽能電池的輸出特性曲線為一非線性曲線,曲線的頂點被稱為「最大功率點」。為了成功尋找太陽能電池的最大功率點,便需要一個良好的控制法則及精確度高的控制器,故本發明選用dsPIC33FJ16GS502數位訊號處理器作為最大功率追蹤控制之數位控制核心,其控制系統架構如圖5所示。首先由取樣電路取樣太陽能電池輸出電壓及電流並將其送至數位訊號處理器,經過類比/數位(A/D)轉換後再進入數位濾波器濾波,接著由數位訊號處理器中之最大功率追蹤程式運算得到電壓命令,最後利用PID補償器計算出責任週期以控制升壓式轉換器之開關,以達到最大功率追蹤之功效。The output characteristic curve of a solar cell is a non-linear curve, and the apex of the curve is called a "maximum power point." In order to successfully find the maximum power point of the solar cell, a good control law and a highly accurate controller are needed. Therefore, the present invention selects the dsPIC33FJ16GS502 digital signal processor as the digital control core of the maximum power tracking control, and its control system architecture is as shown in the figure. 5 is shown. First, the sampling circuit draws the solar cell output voltage and current and sends it to the digital signal processor. After analog/digital (A/D) conversion, it enters the digital filter and then is tracked by the maximum power in the digital signal processor. The program operation obtains the voltage command, and finally uses the PID compensator to calculate the duty cycle to control the switching of the boost converter to achieve the maximum power tracking effect.

數位濾波器:Digital filter:

由於本發明採用數位控制來實現太陽能最大功率追蹤技術,故選用數位濾波器來協助處理輸入微處理機之電壓、電流訊號。而數位濾波器轉移函數經Z轉換後可表示成Since the present invention uses digital control to implement the solar maximum power tracking technology, a digital filter is selected to assist in processing the voltage and current signals input to the microprocessor. The digital filter transfer function can be expressed as Z after being converted.

(5) (5)

於(5)式中,若分母係數u 1,u 2,u 3…u M皆為零,則表示此轉移函數為有限脈衝響應濾波器之轉移函數。有限脈衝響應濾波器雖然須利用較多濾波階數,但其擁有絕對穩定及設計較簡單之優點,故本發明選用有限脈衝響應濾波器當作最大功率追蹤系統之取樣系統濾波器。將有限脈衝響應濾波器之轉移函數轉換成差分方程式,如(6)式所示,其中m為濾波器之階數,y i為運算係數。 In equation (5), if the denominator coefficients u 1 , u 2 , u 3 ... u M are all zero, it means that the transfer function is a transfer function of the finite impulse response filter. Although the finite impulse response filter has to utilize more filtering orders, it has the advantages of absolute stability and simple design. Therefore, the present invention selects the finite impulse response filter as the sampling system filter of the maximum power tracking system. Converting the transfer function of the finite impulse response filter into a difference equation, as shown in equation (6), where m is the order of the filter and y i is the operation coefficient.

(6) (6)

有限脈衝響應濾波器之工作原理示意如圖6所示,其中 為當前取樣訊號、 為前次取樣訊號、 為前兩次取樣訊號,以此類推至前m次,y 0至y m-1為濾波器各項係數。首先將當前訊號和之前各次訊號與相對應係數進行乘法運算,再將其輸出加總即完成一次濾波,接著等待下次取樣訊號並執行前述相同動作,重複此動作之執行即可達到濾波效果。 The working principle of the finite impulse response filter is shown in Figure 6, where For the current sampling signal, For the previous sampling signal, For the first two sampling signals, and so on to the first m times, y 0 to y m-1 are the filter coefficients. First, the current signal and the previous signals are multiplied by the corresponding coefficients, and then the output is summed to complete the filtering, and then wait for the next sampling signal and perform the same action as described above, and repeat the action to achieve the filtering effect. .

數位PID控制器:Digital PID controller:

圖7所示為PID控制結構方塊圖,PID控制器其原理是將輸出結果與命令的誤差,利用比例、積分及微分運算後所得之結果對受控體進行控制。為使系統輸出與命令值相同,因此將命令值 x(t)與輸出回授量 y(t)相減後可產生一誤差量 e(t),再經過PID控制器運算後得出一輸出控制量 u(t),如式(7)所示。其中K p代表比例增益、K I代表積分增益、K D代表微分增益。 Figure 7 shows the block diagram of the PID control structure. The principle of the PID controller is to control the error between the output and the command, and use the results obtained by proportional, integral and differential operations to control the controlled body. In order to make the system output the same as the command value, the command value x (t) is subtracted from the output feedback amount y (t) to generate an error amount e (t), and then an output is obtained after the PID controller operation. The control quantity u (t) is as shown in equation (7). Where K p represents the proportional gain, K I represents the integral gain, and K D represents the differential gain.

(7) (7)

式(7)為一連續型PID控制器,因為數位控制系統之輸入與輸出訊號都以離散形式存在,故無法直接套用於數位控制系統中,需採用離散化的方法針對數位取樣進行運算,再利用尤拉(Euler)近似積分與微分法,如式(8)、(9)、(10)所示Equation (7) is a continuous PID controller. Because the input and output signals of the digital control system exist in discrete form, it cannot be directly applied to the digital control system. It is necessary to use a discretization method to calculate the digital sampling. Using Euler's approximate integral and differential methods, as shown in equations (8), (9), and (10)

(8) (8)

(9) (9)

(10) (10)

根據式(8)、(9)、(10)可得到離散型PID控制器表示式,如(11)式所示,其中 e(n)為目前系統誤差量、 e(n-1)為系統前一次誤差量、T為取樣週期。 According to equations (8), (9), (10), a discrete PID controller expression can be obtained, as shown in equation (11), where e (n) is the current systematic error amount, and e (n-1) is the system. The previous error amount and T are the sampling period.

(11) (11)

數位訊號處理器內建之暫存器具有固定位元寬度,若以數位訊號處理器實現數位PID控制會因式(11)積分項之存在而可能發生積分飽和之問題,導致數位訊號處理器內建暫存器因持續累加而溢位,間接影響數位PID控制器之控制量。為了預防積分飽和之問題發生,本發明採用增量型PID控制器,其表示式如式(12)所示,其中 為輸出變動量、 e(n)為目前系統誤差量、 e(n-1)為系統前一次誤差量、 e(n-2)為系統前兩次誤差量及T為取樣週期,而增量型PID控制只與現在誤差量、前一次誤差量及前兩次誤差量有關,因此可避免積分飽和之問題。 The built-in register of the digital signal processor has a fixed bit width. If the digital PID processor implements the digital PID control, the integral saturation may occur due to the existence of the integral term of the equation (11), resulting in the digital signal processor. The built-in scratchpad overflows due to continuous accumulation, which indirectly affects the control amount of the digital PID controller. In order to prevent the problem of integral saturation from occurring, the present invention employs an incremental PID controller whose expression is as shown in equation (12), wherein For the output variation, e (n) is the current system error, e (n-1) is the system's previous error, e (n-2) is the system's first two errors and T is the sampling period, and the increment The type PID control is only related to the current error amount, the previous error amount, and the first two error amounts, so the problem of integral saturation can be avoided.

(12) (12)

本發明所提的增量型PID程式實現流程如圖8所示,首先將輸出命令值與當下輸出取樣值相減後得誤差值 e( n),再將前一次誤差量 e( n-1)及前兩次誤差量 e( n-2)分別運算後可得A、B及C值,再將其值代入式(12),即可得到一輸出變動量Δ u,其輸出結果(PID out)等於Δ u與前一次的責任週期量(Duty)相加,再與所設定之責任週期上下限比較,若輸出結果小於Duty min或大於Duty max時,則輸出結果分別等於Duty min或Duty max,最後依據PID out來產生所要的責任週期,以達到穩定輸出電壓或電流之目的。 The implementation process of the incremental PID program proposed by the present invention is as shown in FIG. 8. First, the output command value is subtracted from the current output sample value to obtain an error value e ( n ), and then the previous error amount e ( n -1 ) ) and the first two error quantities e ( n -2) are respectively calculated to obtain A, B and C values, and then the values are substituted into equation (12) to obtain an output variation Δ u , and the output result (PID) Out ) is equal to Δ u and is added to the previous duty cycle (Duty), and then compared with the set upper and lower limits of the duty cycle. If the output is less than Duty min or greater than Duty max , the output is equal to Duty min or Duty respectively. Max , finally based on PID out to generate the required duty cycle to achieve the purpose of stabilizing the output voltage or current.

本發明所提的最大功率追蹤演算法:The maximum power tracking algorithm proposed by the present invention:

杜鵑鳥搜尋法則:Rhododendron search rule:

杜鵑鳥搜尋法其靈感來自於杜鵑鳥的寄生與繁殖策略,其寄生與繁殖策略可分為以下三種:The cuckoo bird search method is inspired by the parasitic and breeding strategies of the cuckoo bird. Its parasitic and breeding strategies can be divided into the following three types:

1.與同種生物個體進行生存競爭:其行為如同演算法裡各粒子進行性能比較競爭。1. Competing with the same species of organisms for survival: the behavior is as competitive as the performance of each particle in the algorithm.

2.與原巢主合作一起育雛:其行為如同粒子個體與被比較之粒子個體互相平衡,故不取代其粒子個體。2. Cooperate with the original nest master: its behavior is like the particle individual and the compared particle individual balance each other, so it does not replace its particle individual.

3.直接佔領原巢主之鳥巢:其行為如同粒子個體相較於原粒子個體更加強大,故可取而代之,鳩佔鵲巢之意。3. Directly occupy the nest of the original nest: its behavior is more powerful than that of the individual particles, so it can be replaced by the meaning of the nest.

而文獻所提到之列維飛行模式(Levy flight pattern)為由2004年德國物理學家Dirk Brockmann所發現之模式。Dirk Brockmann於鈔票流通規則研究中發現在大部分的時間裡,鈔票只會在小區域範圍流通,僅有小部分時間鈔票會流通至較遠的地方。而列維飛行模式就如同動物覓食模式,於大多時間裡只會於附近尋找食物覓食,只有少數時間裡會跑至遠方尋找食物覓食,其示意圖由圖9所示,而文獻將其理論套用於杜鵑鳥搜尋鳥巢之策略,其速度向量可表示為The Levy flight pattern mentioned in the literature is a model discovered by the German physicist Dirk Brockmann in 2004. Dirk Brockmann found in the study of banknote circulation rules that most of the time, banknotes will only be circulated in a small area, and only a small amount of time will flow to distant places. The Levi flight mode is like an animal foraging mode. In most cases, it will only look for food for food nearby. In a few days, it will go far to find food for food. The schematic diagram is shown in Figure 9, and the literature will The theory sets the strategy for the cuckoo to search the nest, and its velocity vector can be expressed as

(13) (13)

其中 為下一次速度向量、 為系統目前速度向量、a為限制變動量因子、 為左邊項目分別相乘右邊個別項目符號及 為列維飛行函數,而 關係式可表示為 among them For the next speed vector, The current velocity vector of the system, a is the limit variation factor, Multiply the individual bullets on the right side for the left item and For the Levi flight function, and Relationship can be expressed as

(14) (14)

其中l為系統亂數、 為飛行長度,且經由參數設計條件,可觀察出列維飛行參數之範圍可由零至無限大,以利於搜尋全域最大功率點位置。 Where l is the system random number, For the flight length, and through the parameter design conditions, it can be observed that the range of the Levi flight parameters can be from zero to infinity to facilitate searching for the global maximum power point position.

利用杜鵑鳥搜尋法於最大功率追蹤實現之程式流程如圖10所示,首先,先將參數初始化設定,取樣太陽能電池其輸出電壓及電流,計算出太陽能電池之功率,判斷各電壓粒子之距離,若距離小於0.1,表示已追至最大功率點附近,若此時適應值 ,表示其功率有上升或下降之趨勢,則表示照度改變情況發生,程式重新初始化;若判斷無照度改變情況發生,則繼續判斷其功率是否大於零,若其功率小於零,則直接進入程式末端,不紀錄此次之適應值;反之,若功率大於零,則判斷其時間是否到達所設定之時間,若時間還未到達指定時間,而此次之輸出功率大於前次適應值,則將其輸出電壓及功率紀錄下來;若此次輸出功率未大於前次適應值,則不將其輸出電壓及功率紀錄下來;另一方面,若時間計數至指定時間,且Lévy = 0,利用式(13)計算出下次之電壓命令;若Lévy=1,則捨去所儲存最差之適應值,創造一個新的電壓命令,達到列維飛行之效果,最後依據上述流程持續反覆進行。 The program flow using the cuckoo search method for maximum power tracking is shown in Figure 10. First, the parameters are initialized, the output voltage and current of the solar cell are sampled, the power of the solar cell is calculated, and the distance between the voltage particles is determined. If the distance is less than 0.1, it means that it has been chased to the vicinity of the maximum power point. , indicating that its power has a tendency to rise or fall, it means that the illuminance change occurs, the program is re-initialized; if it is judged that no illuminance change occurs, it continues to judge whether its power is greater than zero, and if its power is less than zero, it directly enters the end of the program. If the power is greater than zero, it is judged whether the time has reached the set time. If the time has not reached the specified time, and the output power of this time is greater than the previous adaptation value, then The output voltage and power are recorded; if the output power is not greater than the previous adaptation value, the output voltage and power are not recorded; on the other hand, if the time is counted to the specified time and Lévy = 0, the usage formula (13) Calculate the next voltage command; if Lévy=1, discard the worst-case stored value, create a new voltage command, achieve the effect of Levi flight, and finally continue to repeat according to the above process.

決定型杜鵑鳥搜尋法:Deterministic cuckoo bird search method:

由於杜鵑鳥搜尋法程式過於複雜,須計算隨機亂數以及次方函數,計算相當複雜,於實際低成本數位訊號處理器上實現較為困難,且錯綜複雜的判斷及運算可能會增加數位訊號處理器之誤判機率並增加追蹤時間,導致追蹤性能降低,故本發明提出決定型杜鵑鳥搜尋法,在維持前述演算法之理念及其追蹤表現性能之前提下,改善其錯綜複雜之程式流程,利用簡易之判斷及運算達到優越之追蹤性能。本發明所提之決定型杜鵑鳥搜尋法基本操作原理如圖11所示,系統一開始會先以固定位置的三點電壓命令( )進行取樣,若將三者間具最大功率之電壓點稱之為 、於最大與最小功率間之電壓點稱之為 、最小功率之電壓點稱之為 ,若能使 電壓點各自朝向 電壓點移動,持續前述動作使 電壓點接近 電壓點,便可達到最大功率追蹤之功效,其電壓命令變動關係式如式(15)、式(16)所示,其中D V cmd ,b V b 之電壓命令變動量、D V cmd ,c V c 之電壓命令變動量、a為變動比例因子。 Because the cuckoo search program is too complicated, it is necessary to calculate the random random number and the power function. The calculation is quite complicated. It is difficult to implement on the actual low-cost digital signal processor, and the intricate judgment and calculation may increase the digital signal processor. By misjudge the probability and increase the tracking time, the tracking performance is degraded. Therefore, the present invention proposes a deterministic cuckoo search method, which improves the complicated program flow and maintains the simple process before maintaining the concept of the algorithm and its tracking performance. And the operation achieves superior tracking performance. The basic operation principle of the deterministic cuckoo bird search method proposed by the present invention is as shown in Fig. 11. The system first starts with a fixed position three-point voltage command ( , , Sampling, if the voltage point with the maximum power between the three is called The voltage point between the maximum and minimum power is called The minimum power voltage point is called If it can versus Voltage points are each oriented The voltage point moves, continuing the aforementioned action versus Voltage point is close The voltage point can achieve the maximum power tracking effect, and the voltage command variation relationship is as shown in equations (15) and (16), where D V cmd , b is the voltage command variation of V b , D V cmd , c is the voltage command variation of V c and a is the variation scale factor.

(15) (15)

(16) (16)

然而決定型杜鵑鳥搜尋法在運作時存在一缺點,當初始粒子點 電壓點設置不恰當,將導致系統無法順利追蹤至系統之最大功率點,故本發明提出防止錯追之換邊機制,以避免此情況發生,其防止錯追之換邊機制之動作原理如圖12所示。當程式判斷 V a ,1電壓點位於三點之最左側或最右側時,程式會啟動換邊機制, V a ,1電壓點將維持不動,因此 V a ,1電壓點等於 V a ,2電壓點, V c ,1電壓點移至 V a ,1電壓點的另一側,此時最小 V c ,2電壓點命令可由(17)計算得到,因三點成一斜直線,故 V b ,1電壓點與 V a ,1電壓點距離較短,利用此距離作為換邊機制之變動量,可防止換邊距離過大而導致追蹤速度降低之情形。 However, the decisive type of cuckoo bird search method has a disadvantage in its operation when the initial particle point If the voltage point is not set properly, the system will not be able to track the maximum power point of the system smoothly. Therefore, the present invention proposes a mechanism for preventing mis-chasing to avoid this situation, and the action principle of the edge-changing mechanism for preventing mis-chasing is as shown in the figure. 12 is shown. When the program judges that V a , 1 voltage point is at the leftmost or rightmost side of the three points, the program will start the changing mechanism, V a , 1 voltage point will remain unchanged, so V a , 1 voltage point is equal to V a , 2 voltage point , V c , 1 voltage point shift to the other side of V a , 1 voltage point, at this time the minimum V c , 2 voltage point command can be calculated by (17), because the three points become a diagonal line, so V b , 1 voltage The distance between the point and the voltage point of V a , 1 is short, and the distance is used as the variation of the changing mechanism to prevent the tracking distance from being too large and the tracking speed to be lowered.

(17) (17)

決定型杜鵑鳥搜尋法其操作流程如圖13所示,首先,設置粒子初始擺放位置0< par1, par2, par3<100%及變動比例因子0<a<1,其次取樣太陽能電池之開路電壓,進行初始粒子擺放作業及取樣各粒子點之輸出電壓及電流來計算各輸出功率值,接下來判斷是否有照度改變之情況發生,若發生照度改變,則系統重新開始;反之,尋找各粒子點之最大、中間值及最小功率點,進行換邊機制需求判斷,倘若經判斷不需使用換邊機制,此時下一次 V a , new 電壓點維持於 V a 電壓點,下一次 V b , new 電壓點由前次 V b 電壓點以( V a - V b )之a倍朝向前次 V a 電壓點移動,下一次 V c , new 電壓點由 V c 電壓點以( V a - V c )之a倍朝向前次 V a 電壓點移動;反之若最大功率點為最大電壓點或最小電壓點,則表示需進行換邊機制模式,此時之下一次 V a , new 電壓點則繼續維持於 V a 電壓點,而下一次 V b , new 電壓點由前次 V b 電壓點以( V a - V b )之a倍朝向前次 V a 電壓點移動,而下一次 V c , new 電壓點需進行換邊機制,換至 V a 電壓點之另一側,利用 V a 電壓點為定位點以( V a - V b )之a倍朝向 V b 電壓點的反方向移動,最後再判斷換邊點 V c , new 是否超過程式所設定之邊界,倘若超過邊界值,將其固定所設定之邊界內,以防止系統產生錯誤之電壓命令,將上述流程反覆運作即可追蹤至最大功率點。流程圖中照度改變判斷是依據各粒子點之電壓差及功率差來做判斷,若各粒子點間電壓差小於0.1,表示其已追至最大功率點附近,理論上功率不會有太大之差異,但若此時功率差大於10瓦特以上,則表示有照度改變之情況發生。 The operation process of the decisive cuckoo bird search method is shown in Figure 13. First, set the particle initial placement position 0 < par 1, par 2, par 3 <100% and the variation scale factor 0 < a < 1, and then sample the solar cell. The open circuit voltage, the initial particle placement operation and sampling the output voltage and current of each particle point to calculate each output power value, and then determine whether there is a change in illumination, and if the illumination changes, the system restarts; otherwise, Find the maximum, median and minimum power points of each particle point, and judge the demand of the changing edge mechanism. If it is judged that the edge changing mechanism is not needed, the next V a , new voltage point is maintained at the V a voltage point, the next time V b , new voltage point is moved from the previous V b voltage point by a times of ( V a - V b ) toward the previous V a voltage point, the next V c , new voltage point is from V c voltage point ( V a - V c) of times toward a point is moved the previous V a voltage; contrary, if the maximum power point voltage of the maximum point or the minimum voltage point, it indicates the need for mode change mechanism side, this time under a V a, new new voltage point Then continue to maintain the V a voltage point, and the next time V b , new voltage point is shifted from the previous V b voltage point by a times of ( V a - V b ) toward the previous V a voltage point, and the next V c , new voltage point needs to be changed to another point of the side of the voltage V a, V a voltage using point to the anchor point (V a - V b) of a fold in the opposite direction toward the moving point voltage V b, and then determines the last edge change point V c, new exceeds The boundary set by the program, if it exceeds the boundary value, is fixed within the set boundary to prevent the system from generating an erroneous voltage command, and the above process can be traced to the maximum power point. The illuminance change judgment in the flow chart is based on the voltage difference and power difference of each particle point. If the voltage difference between the particle points is less than 0.1, it means that it has been chased to the vicinity of the maximum power point. In theory, the power will not be too large. Difference, but if the power difference is greater than 10 watts at this time, it means that the illuminance changes.

韌體程式實現:Firmware implementation:

本發明選用數位訊號處理器來實現控制核心,圖14所示為韌體主程式實現架構,其中包括數位訊號處理器內部工作環境設定及初始化、輸入/輸出腳位選擇、中斷需求設計、類比/數位轉換器(ADC)、脈波寬度調變(PWM)及計時器周邊相關設定。首先數位訊號處理器初始化程式中所使用之變數,對內部振盪器進行初始化設定,規劃輸入/輸出埠腳位,設計定時器(TIMER)、類比/數位轉換器(ADC)及脈波寬度調變(PWM)模組並致能類比/數位轉換器(ADC)及脈波寬度調變(PWM)模組中斷向量,接著主程式將進入無限迴圈等待中斷發生。本發明中斷僅使用ADC中斷,其可細分為取樣、濾波、最大功率追蹤副程式三大部分,取樣部分利用類比/數位轉換器將類比量轉換成數位量輸入至數位訊號處理器。為防範高頻雜訊影響程式誤判,本發明使用16階有限脈衝響應濾波器以消除高頻雜訊,還原真實信號。此外,太陽能電池發電系統實際日照變化緩慢,因此本發明設計0.2秒計算一次電壓命令,由於程式設計ADC中斷時間間隔為1 ms,故將timecount 設計於200,當計數未數至200次時,僅對太陽能電池輸入電壓、電流取樣值進行FIR濾波,利用PID運算來追隨太陽能最大功率追蹤副程式所給予之電壓命令以達到準確之電壓追蹤;反之,若計數至200,則表示已經過0.2秒,則判斷升壓轉換器輸入端是否有供電,若有供電則進行最大功率追蹤副程式,將timecount歸零以便下次重新計數;反之,若無供電,則將timecount歸零以便下次重新計數,且進入休息模式。依序將上述之動作反覆運作即可完成最大功率追蹤。The invention selects a digital signal processor to implement the control core, and FIG. 14 shows the firmware main program implementation architecture, including digital signal processor internal working environment setting and initialization, input/output pin selection, interrupt demand design, analogy/ Digital converter (ADC), pulse width modulation (PWM) and timer related settings. First, the digital signal processor initializes the variables used in the program, initializes the internal oscillator, plans the input/output pin, design timer (TIMER), analog/digital converter (ADC), and pulse width modulation. The (PWM) module enables the Analog/Digital Converter (ADC) and Pulse Width Modulation (PWM) module interrupt vectors, and the main program will enter an infinite loop to wait for the interrupt to occur. The interrupt of the present invention uses only ADC interrupts, which can be subdivided into three parts: sampling, filtering, and maximum power tracking subroutine. The sampling portion converts the analog quantity into a digital quantity input to the digital signal processor by using an analog/digital converter. In order to prevent the high frequency noise from affecting the program misjudgment, the present invention uses a 16th order finite impulse response filter to eliminate high frequency noise and restore the real signal. In addition, the actual solar radiation of the solar cell power generation system changes slowly. Therefore, the present invention designs a voltage command for 0.2 seconds. Since the programmed ADC interrupt interval is 1 ms, the time count is designed to be 200, and when the count is not counted to 200 times, only The solar cell input voltage and current sampling values are FIR filtered, and the PID operation is used to follow the voltage command given by the solar maximum power tracking subroutine to achieve accurate voltage tracking; conversely, if the count is 200, it means that 0.2 seconds have passed. Then, it is judged whether there is power supply at the input of the boost converter. If there is power supply, the maximum power tracking subroutine is executed, and the timecount is reset to zero for the next recount; otherwise, if there is no power supply, the timecount is reset to zero for the next recount. And enter the rest mode. The maximum power tracking can be completed by sequentially operating the above actions in sequence.

實驗驗證與結果比較分析:Comparative analysis of experimental verification and results:

實驗環境與設備:Experimental environment and equipment:

為測試本發明所提的決定型杜鵑鳥最大功率追蹤搜尋法之正確性,於實際測試時使用AMETEK公司所推出之TerraSAS ETS 600X8 D-PVE太陽能電池模擬機,模擬HESPV公司所推出型號為 HES-50之太陽能電池(共串5片)做為系統輸入來源,太陽能電池電氣規格如表1所示,經串聯後其對應之太陽能電池模擬曲線之電氣規格如表2所示,所產生太陽能電池模擬曲線則如圖15所示。功率級電路為升壓式轉換電路,其規格如表3所示,控制級電路採用Microchip公司所推出之dsPIC33FJ16GS502數位訊號處理器做為控制核心來控制功率級電路之功率開關以達到系統最大功率追蹤。In order to test the correctness of the deterministic cuckoo bird's maximum power tracking search method of the present invention, the TESTS company's TerraSAS ETS 600X8 D-PVE solar cell simulator was used in the actual test, and the model HESPV was introduced as HES- 50 solar cells (a total of 5 chips) as the system input source, solar cell electrical specifications as shown in Table 1, the electrical specifications of the corresponding solar cell simulation curve after series connection, as shown in Table 2, the resulting solar cell simulation The curve is shown in Figure 15. The power stage circuit is a boost converter circuit, and its specifications are shown in Table 3. The control stage circuit uses the dsPIC33FJ16GS502 digital signal processor introduced by Microchip as the control core to control the power switch of the power stage circuit to achieve the maximum power tracking of the system. .

表1. HES-50太陽能電池模組之電氣規格 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 型號 </td><td> HES-50 </td></tr><tr><td> 最大功率<img wi="33" he="27" file="02_image087.jpg" img-format="jpg"></img></td><td> 50 W </td></tr><tr><td> 開路電壓<img wi="24" he="23" file="02_image089.jpg" img-format="jpg"></img></td><td> 22.1 V </td></tr><tr><td> 短路電流<img wi="23" he="23" file="02_image091.jpg" img-format="jpg"></img></td><td> 3.14 A </td></tr><tr><td> 最大功率點電壓<img wi="33" he="27" file="02_image093.jpg" img-format="jpg"></img></td><td> 17.2 V </td></tr><tr><td> 最大功率點電流<img wi="31" he="27" file="02_image095.jpg" img-format="jpg"></img></td><td> 2.91 A </td></tr></TBODY></TABLE>Table 1. Electrical Specifications for HES-50 Solar Modules         <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Model</td><td> HES-50 </td></tr><tr ><td> Maximum power <img wi="33" he="27" file="02_image087.jpg" img-format="jpg"></img></td><td> 50 W </td> </tr><tr><td> Open circuit voltage <img wi="24" he="23" file="02_image089.jpg" img-format="jpg"></img></td><td> 22.1 V </td></tr><tr><td> Short circuit current <img wi="23" he="23" file="02_image091.jpg" img-format="jpg"></img>< /td><td> 3.14 A </td></tr><tr><td> Maximum power point voltage <img wi="33" he="27" file="02_image093.jpg" img-format=" Jpg"></img></td><td> 17.2 V </td></tr><tr><td> Maximum power point current <img wi="31" he="27" file="02_image095 .jpg" img-format="jpg"></img></td><td> 2.91 A </td></tr></TBODY></TABLE>

表2. 五片一串太陽能電池模組之電氣規格 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 最大功率<img wi="33" he="27" file="02_image087.jpg" img-format="jpg"></img></td><td> 250W </td></tr><tr><td> 開路電壓<img wi="24" he="23" file="02_image089.jpg" img-format="jpg"></img></td><td> 110.5V </td></tr><tr><td> 短路電流<img wi="23" he="23" file="02_image091.jpg" img-format="jpg"></img></td><td> 3.14 A </td></tr><tr><td> 最大功率點電壓<img wi="33" he="27" file="02_image093.jpg" img-format="jpg"></img></td><td> 88.52 V </td></tr><tr><td> 最大功率點電流<img wi="31" he="27" file="02_image095.jpg" img-format="jpg"></img></td><td> 2.84 A </td></tr></TBODY></TABLE>Table 2. Electrical specifications for five-piece solar modules         <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Maximum power <img wi="33" he="27" file="02_image087.jpg" Img-format="jpg"></img></td><td> 250W </td></tr><tr><td> Open circuit voltage <img wi="24" he="23" file= "02_image089.jpg" img-format="jpg"></img></td><td> 110.5V </td></tr><tr><td> Short circuit current <img wi="23" he ="23" file="02_image091.jpg" img-format="jpg"></img></td><td> 3.14 A </td></tr><tr><td> Maximum Power Point Voltage <img wi="33" he="27" file="02_image093.jpg" img-format="jpg"></img></td><td> 88.52 V </td></tr><tr ><td> Maximum power point current <img wi="31" he="27" file="02_image095.jpg" img-format="jpg"></img></td><td> 2.84 A </ Td></tr></TBODY></TABLE>

表3. 升壓式轉換器規格 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 輸入電壓(<img wi="23" he="23" file="02_image097.jpg" img-format="jpg"></img>) </td><td> 70~120V </td></tr><tr><td> 輸出電壓(<img wi="20" he="23" file="02_image098.jpg" img-format="jpg"></img>) </td><td> 180V </td></tr><tr><td> 輸出功率(<img wi="20" he="23" file="02_image100.jpg" img-format="jpg"></img>) </td><td> 250W </td></tr><tr><td> 開關切換頻率(<img wi="20" he="23" file="02_image102.jpg" img-format="jpg"></img>) </td><td> 50kHz </td></tr><tr><td> 輸出電壓漣波(D<i>V<sub>o</sub></i>/<i>V<sub>o</sub></i>) </td><td> 1% </td></tr><tr><td> 輸出電流漣波(D<i>I<sub>o</sub></i>/<i>I<sub>o</sub></i>) </td><td> 20% </td></tr></TBODY></TABLE>Table 3. Boost Converter Specifications         <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Input voltage (<img wi="23" he="23" file="02_image097.jpg " img-format="jpg"></img>) </td><td> 70~120V </td></tr><tr><td> Output voltage (<img wi="20" he= "23" file="02_image098.jpg" img-format="jpg"></img>) </td><td> 180V </td></tr><tr><td> Output Power (<img Wi="20" he="23" file="02_image100.jpg" img-format="jpg"></img>) </td><td> 250W </td></tr><tr>< Td> Switching frequency (<img wi="20" he="23" file="02_image102.jpg" img-format="jpg"></img>) </td><td> 50kHz </td> </tr><tr><td> output voltage chopping (D<i>V<sub>o</sub></i>/<i>V<sub>o</sub></i>) </td><td> 1% </td></tr><tr><td> Output current chopping (D<i>I<sub>o</sub></i>/<i>I <sub>o</sub></i>) </td><td> 20% </td></tr></TBODY></TABLE>

測量項目及性能評估定義:Measurement project and performance evaluation definition:

在進行各太陽能最大功率追蹤方法之比較時,須建立一套標準之量測項目及性能表現評估準則,方可達到比較之公正性。本發明定義下列量測項目準則以進行比較,其示意圖如圖16所示。In the comparison of the maximum solar power tracking methods, a set of standard measurement items and performance evaluation criteria must be established to achieve comparative fairness. The present invention defines the following measurement project criteria for comparison, a schematic of which is shown in FIG.

1.上升時間 :由功率初始值升至95 %最大功率線所需的時間。 Rise time : The time required to increase the power initial value to 95% of the maximum power line.

2.穩定時間 :由功率初始值至振幅小於±1%最大功率線(99%最大功率線)範圍內所需的時間。 2. Stabilization time : Time from the initial value of the power to the amplitude within the range of less than ±1% of the maximum power line (99% of the maximum power line).

3.穩態平均功率:紀錄穩態後1秒之功率總和,並除以紀錄資料數量所得。3. Steady-state average power: The sum of the power of 1 second after the steady state is recorded, and divided by the amount of recorded data.

4.穩態追蹤精確度:將上述穩態平均功率除以最大功率值所得之數據。4. Steady-state tracking accuracy: The data obtained by dividing the above-mentioned steady-state average power by the maximum power value.

5.追蹤電能損失:紀錄追蹤功率值至10秒,再利用最大功率值減去各功率追蹤點數值可得,其中10秒之設定主要是根據模擬結果,各方法之穩定時間最大值為5秒,故將其乘以2以兼顧評估暫態及穩態時之追蹤電能損失。5. Tracking power loss: record the tracking power value to 10 seconds, and then use the maximum power value minus the value of each power tracking point. The setting of 10 seconds is mainly based on the simulation result. The maximum stabilization time of each method is 5 seconds. Therefore, multiply it by 2 to balance the tracking power loss during transient and steady state evaluation.

6.平均追蹤功率損失:利用上述之追蹤電能損失除以10秒可得。6. Average tracking power loss: The tracking energy loss described above is divided by 10 seconds.

太陽能發電系統之能量來自於太陽光,而在正常一天當中,太陽能之照度會隨著地球的自轉而產生變化,但其變化幅度不大且變化時間區間長,代表太陽能發電系統會長時間處於穩定狀態,僅有少部分時間需要重新執行最大功率追蹤,故本發明將穩態追蹤精確度設置為第一優先考量項目,次要為平均追蹤功率損失,最後才為上升時間及穩態時間之考量,因此本發明追蹤性能評估準則定義為The energy of the solar power system comes from the sun, and in normal day, the illuminance of the solar energy changes with the rotation of the earth, but the change is small and the time interval is long, indicating that the solar power system will be in a stable state for a long time. Only a small part of the time needs to re-execute the maximum power tracking, so the present invention sets the steady-state tracking accuracy as the first priority consideration item, the secondary is the average tracking power loss, and finally the rise time and steady-state time considerations. Therefore, the tracking performance evaluation criteria of the present invention are defined as

(18) (18)

由(18)式,穩態追蹤精確度、上升時間表現及穩定時間表現利用前述量測方法即可得知,而平均追蹤功率損失其性質則與前幾項因素不同,其數值越大性能表現就越差,故本發明尋找出各方法之最大平均追蹤功率損失,利用最大平均功率損失與平均功率損失之差值來計算其平均追蹤功率損失表現。From (18), the steady-state tracking accuracy, rise time performance and settling time performance can be known by the above measurement method, while the average tracking power loss is different from the previous factors. The worse, the present invention finds the maximum average tracking power loss for each method, and uses the difference between the maximum average power loss and the average power loss to calculate its average tracking power loss performance.

模擬結果:Simulation results:

為驗證所提的最大功率追蹤法之正確性與性能改善,模擬結果會與先前技術,包含固定步階式擾動觀察法和變動步階式擾動觀察法(含比例因子M法、數位PI控制擾動觀察法、自適應變動步階式增量電導法)做比較。進行各最大功率追蹤演算法之模擬時,皆以步階(step)來表示最大功率追蹤命令變動值,本發明將一步階定義為0.2秒來對各最大功率追蹤演算法進行紀錄。表4所示為固定步階式擾動觀察法模擬結果,其固定步階( )採用1 V、3 V及5 V來進行模擬及分析比較,由表4可清楚看出固定步階式擾動觀察法之權衡問題,當固定步階值為5 V時,雖有較快追蹤速度使得10秒內之追蹤電能損失較少,但因其無法達到本發明定義之穩定狀態,故穩定時間無限長,且其穩態追蹤精確度低,若將追蹤電能損失計算時間拉長,會使得此值無限增加;而當固定步階值為1 V時,穩態追蹤精確度高,但因其追蹤速度慢導致上升時間及穩定時間都較長,因此也影響到追蹤電能損失,大幅降低其性能表現分數;而當固定步階值為3 V時,其各項量測值表現平均,使得其性能表現分數最高,故本發明將選用此設計參數值與所提出之演算法進行比較及分析。 In order to verify the correctness and performance improvement of the proposed maximum power tracking method, the simulation results will be compared with the prior art, including fixed step disturbance observation method and variable step disturbance observation method (including scale factor M method, digital PI control disturbance). Observation method, adaptive variable step incremental conductivity method) for comparison. When performing the simulation of each maximum power tracking algorithm, the maximum power tracking command variation value is represented by a step. The present invention defines a step by step of 0.2 seconds to record each maximum power tracking algorithm. Table 4 shows the simulation results of the fixed step disturbance observation method, which has a fixed step ( Using 1 V, 3 V and 5 V for simulation and analysis and comparison, the trade-offs of the fixed step disturbance observation method can be clearly seen from Table 4. When the fixed step value is 5 V, there is a faster tracking. The speed makes the tracking energy loss less in 10 seconds, but because it can not reach the stable state defined by the present invention, the stabilization time is infinitely long, and the steady-state tracking accuracy is low. If the tracking power loss calculation time is lengthened, This value is increased indefinitely; when the fixed step value is 1 V, the steady-state tracking accuracy is high, but because of its slow tracking speed, the rise time and the settling time are long, which also affects the tracking power loss and greatly reduces The performance score is; and when the fixed step value is 3 V, the measured values are averaged, so that the performance score is the highest, so the present invention will select the design parameter value and compare the proposed algorithm. analysis.

表4. 固定步階式擾動觀察法模擬結果 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td>                   步階值 量測項目 </td><td><img wi="91" he="23" file="02_image112.jpg" img-format="jpg"></img></td><td><img wi="93" he="23" file="02_image114.jpg" img-format="jpg"></img></td><td><img wi="93" he="23" file="02_image116.jpg" img-format="jpg"></img></td></tr><tr><td> 上升時間 </td><td> - 秒 </td><td> 5 秒 </td><td> 3.2 秒 </td></tr><tr><td> 穩定時間 </td><td> - 秒 </td><td> 5.8 秒 </td><td> - 秒 </td></tr><tr><td> 穩態平均功率 </td><td> 180.68 W </td><td> 257.65 W </td><td> 252.78 W </td></tr><tr><td> 穩態追蹤精確度 </td><td> 69.7 % </td><td> 99.4 % </td><td> 97.52 % </td></tr><tr><td> 追蹤電能損失 </td><td> 7523.9 J </td><td> 2933.3 J </td><td> 1956.9 J </td></tr><tr><td> 平均追蹤功率損失 </td><td> 150.48 W </td><td> 58.67 W </td><td> 39.14 W </td></tr><tr><td> 性能表現 </td><td> 46.77 分 </td><td><b>82.973</b> 分 </td><td> 81.398 分 </td></tr></TBODY></TABLE>Table 4. Simulation results for fixed step disturbance observations         <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Step value measurement project</td><td><img wi="91" he ="23" file="02_image112.jpg" img-format="jpg"></img></td><td><img wi="93" he="23" file="02_image114.jpg" img -format="jpg"></img></td><td><img wi="93" he="23" file="02_image116.jpg" img-format="jpg"></img>< /td></tr><tr><td> Rise time</td><td> - seconds</td><td> 5 seconds</td><td> 3.2 seconds</td></tr> <tr><td> Stabilization time</td><td> - Seconds</td><td> 5.8 seconds</td><td> - Seconds</td></tr><tr><td> Steady State average power </td><td> 180.68 W </td><td> 257.65 W </td><td> 252.78 W </td></tr><tr><td> steady state tracking accuracy < /td><td> 69.7 % </td><td> 99.4 % </td><td> 97.52 % </td></tr><tr><td> Tracking Power Loss</td><td> 7523.9 J </td><td> 2933.3 J </td><td> 1956.9 J </td></tr><tr><td> Average tracking power loss</td><td> 150.48 W </td ><td> 58.67 W </td><td> 39.14 W </td></tr><tr><td> Performance</td><td> 46.77 points</td><td><b> 82.973</b> points</td><td> 81.398 points </td></tr></TBODY></TABLE>

接著針對三種變動步階式最大功率追蹤演算法進行模擬,由於各演算法都需調整參數方能得到系統之較佳值,故利用試誤法依所定義之評估法則依序找尋各演算法之較佳性能表現分數。各演算法之最佳性能表現參數值列於表5,可觀察出各演算法穩態追蹤精確度都可達到100 %,此現象可看出變動步階式控制與傳統固定步階式控制之差異,另外也可發現各演算法之上升及穩定時間都相同,表示其受限於電壓變動命令最大值,故變動步階式控制雖解決固定步階式步階大小設計之權衡問題,但衍生出步階最大值之權衡問題。由性能表現分數可得知三種方法中變動步階式擾動觀察法分數最高,故選擇變動步階式擾動觀察法來與所提出之演算法進行實測比較及分析。Then, the three variable step-step maximum power tracking algorithms are simulated. Since each algorithm needs to adjust the parameters to get the better value of the system, the trial and error method is used to find the algorithms according to the defined evaluation rules. Better performance score. The optimal performance parameters of each algorithm are listed in Table 5. It can be observed that the steady-state tracking accuracy of each algorithm can reach 100%. This phenomenon can be seen that the variable step control and the traditional fixed step control Differences, in addition, it can be found that the rise and settling time of each algorithm are the same, indicating that it is limited by the maximum value of the voltage fluctuation command, so the variable step control solves the trade-off problem of the fixed step size design, but derives The trade-off problem of the maximum step size. It can be seen from the performance scores that the three-step variation of the step-by-step perturbation observation method is the highest, so the variable step disturbance observation method is selected to compare and analyze with the proposed algorithm.

表5. 變動步階式各演算法模擬結果 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td>            各方法 量測項目 </td><td> 變動步階式 擾動觀察法 (M=0.17) </td><td> 數位PI控制 擾動觀察法 (K<sub>p</sub>=0.45,K<sub>i</sub>=20) </td><td> 自適應變動步階式增量電導法 <img wi="102" he="26" file="02_image118.jpg" img-format="jpg"></img></td></tr><tr><td> 上升時間 </td><td> 3.2 秒 </td><td> 3.2 秒 </td><td> 3.2 秒 </td></tr><tr><td> 穩定時間 </td><td> 3.8 秒 </td><td> 3.8 秒 </td><td> 3.8 秒 </td></tr><tr><td> 穩態平均功率 </td><td> 259.21 W </td><td> 259.19 W </td><td> 259.21 W </td></tr><tr><td> 穩態追蹤精確度 </td><td> 100 % </td><td> 100 % </td><td> 100 % </td></tr><tr><td> 追蹤電能損失 </td><td> 1787.7 J </td><td> 1789.6 J </td><td> 1811.7 J </td></tr><tr><td> 平均追蹤功率 損失 </td><td> 35.76 W </td><td> 35.79 W </td><td> 36.23 W </td></tr><tr><td> 性能表現 </td><td><b>89.424</b><b>分</b></td><td> 89.415 分 </td><td> 89.377 分 </td></tr></TBODY></TABLE>Table 5. Simulation results for each step of the variable step         <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Method measurement items</td><td> Change step disturbance observation method (M =0.17) </td><td> Digital PI Control Disturbance Observation Method (K<sub>p</sub>=0.45, K<sub>i</sub>=20) </td><td> Adaptive Variable step incremental conductivity method <img wi="102" he="26" file="02_image118.jpg" img-format="jpg"></img></td></tr><tr> <td> Rise time</td><td> 3.2 seconds</td><td> 3.2 seconds</td><td> 3.2 seconds</td></tr><tr><td> settling time</ Td><td> 3.8 seconds</td><td> 3.8 seconds</td><td> 3.8 seconds</td></tr><tr><td> steady state average power</td><td> 259.21 W </td><td> 259.19 W </td><td> 259.21 W </td></tr><tr><td> Steady-state tracking accuracy</td><td> 100 % </ Td><td> 100 % </td><td> 100 % </td></tr><tr><td> Tracking Power Loss</td><td> 1787.7 J </td><td> 1789.6 J </td><td> 1811.7 J </td></tr><tr><td> Average tracking power loss</td><td> 35.76 W </td><td> 35.79 W </td> <td> 36.23 W </td></tr><tr><td> Performance</td><td><b>89.424</b><b>分</b></td><td > 89.415 points </td ><td> 89.377 points </td></tr></TBODY></TABLE>

另外,本發明將變動因子 分成16等分,其原因為於數位化實現中,數值除法會增加運算所需時間及困難度,因此利用2的倍數當作分母,利用二進位之特性,於程式中將資料左移或右移來執行除法以簡化運算,而16/16數值為1,此數值將導致系統誤判最大功率點,故在此不將其列入模擬及實作比較及分析探討。表6列出均勻照度下各種不同變動因子a下之模擬結果,可看出隨著變動因子 愈大,其系統穩定時間愈快,性能表現分數也愈高。 In addition, the present invention will vary the factor Divided into 16 equal parts, the reason is that in the digital implementation, the numerical division increases the time and difficulty required for the operation. Therefore, using the multiple of 2 as the denominator, using the characteristics of the binary, the data is shifted to the left or right in the program. Move to perform division to simplify the operation, and the 16/16 value is 1, this value will cause the system to misjudge the maximum power point, so it is not included in the simulation and implementation comparison and analysis. Table 6 lists the simulation results for various variation factors a under uniform illumination, which can be seen with the variation factor. The larger the system, the faster the system is stable and the higher the performance score.

表6. 決定型杜鵑鳥搜尋法於不同a下之模擬結果 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 變動因子a </td><td> 性能表現 </td><td> 變動因子a </td><td> 性能表現 </td><td> 變動因子a </td><td> 性能表現 </td></tr><tr><td> 1/16 </td><td> 79.79分 </td><td> 6/16 </td><td> 94.02分 </td><td> 11/16 </td><td> 96.50分 </td></tr><tr><td> 2/16 </td><td> 85.85分 </td><td> 7/16 </td><td> 94.02分 </td><td> 12/16 </td><td> 96.50分 </td></tr><tr><td> 3/16 </td><td> 89.85分 </td><td> 8/16 </td><td> 94.02分 </td><td> 13/16 </td><td> 96.50分 </td></tr><tr><td> 4/16 </td><td> 91.92分 </td><td> 9/16 </td><td> 94.02分 </td><td> 14/16 </td><td> 96.50分 </td></tr><tr><td> 5/16 </td><td> 93.12分 </td><td> 10/16 </td><td> 94.02分 </td><td><b>15/16</b></td><td><b>96.50</b><b>分</b></td></tr></TBODY></TABLE>Table 6. Simulation results for the deterministic cuckoo search method under different a         <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> variation factor a </td><td> performance</td><td> variation factor a </td><td> Performance </td><td> Change factor a </td><td> Performance </td></tr><tr><td> 1/16 </td> <td> 79.79 points</td><td> 6/16 </td><td> 94.02 points</td><td> 11/16 </td><td> 96.50 points</td></tr ><tr><td> 2/16 </td><td> 85.85 points</td><td> 7/16 </td><td> 94.02 points</td><td> 12/16 </ Td><td> 96.50 points</td></tr><tr><td> 3/16 </td><td> 89.85 points</td><td> 8/16 </td><td> 94.02 points</td><td> 13/16 </td><td> 96.50 points</td></tr><tr><td> 4/16 </td><td> 91.92 points</td ><td> 9/16 </td><td> 94.02 points</td><td> 14/16 </td><td> 96.50 points</td></tr><tr><td> 5 /16 </td><td> 93.12 points</td><td> 10/16 </td><td> 94.02 points</td><td><b>15/16</b></td ><td><b>96.50</b><b>分</b></td></tr></TBODY></TABLE>

另外,所提出之決定型杜鵑鳥搜尋法亦可使用於部分遮蔽之情況,因其擁有粒子群演算法之精神,利用分散之粒子點逐步搜尋最大功率點之特性,即可增加其命中全區域之最大功率點之機率,故於模擬時,亦把部分遮蔽之情況考慮於比較中。由於是選用5個太陽能電池進行串聯,每個照度最小相差100W/m­­ 2且考慮照度不重複之情況,可計算出共有252( )不同種遮蔽情況。針對252種不同之遮蔽情況進行模擬,整理出252種遮蔽情況模擬結果,如圖17所示。由成功追到最大功率之命中率可得知,於均勻照度下最佳性能表現之變動因子a為15/16,但其在252種遮蔽情況模擬結果不盡理想;反觀變動因子a為9/16時,其命中率高達249次,僅有3種遮蔽情況無法成功命中全區域之最大功率點。由於實際應用環境無法滿足全時均能處於均勻照度,故本發明將部分遮蔽情況加入評估考量,最後選用將變動因子a設為9/16 來實現並與其他方法進行比較及分析。 In addition, the proposed determinant cuckoo bird search method can also be used in partial shading. Because it has the spirit of particle swarm algorithm, it can increase the hit area by using the scattered particle points to gradually search for the characteristics of the maximum power point. The probability of the maximum power point, so in the simulation, the partial shielding is also considered in the comparison. Since five solar cells are used for series connection, each illumination has a minimum difference of 100 W/m 2 and a total of 252 can be calculated considering that the illumination is not repeated. ) Different kinds of shielding situations. Simulations were performed for 252 different occlusion scenarios, and 252 masking simulation results were compiled, as shown in Figure 17. From the hit rate of successful maximum power, it can be known that the variation factor a of the best performance under uniform illumination is 15/16, but the simulation results in 252 kinds of shielding cases are not satisfactory; the variation factor a is 9/. At 16:00, the hit rate was as high as 249 times, and only 3 kinds of masking conditions could not successfully hit the maximum power point of the whole region. Since the actual application environment cannot meet the uniform illumination at all times, the present invention adds part of the masking situation to the evaluation consideration, and finally selects the variation factor a to be 9/16 to be compared and analyzed with other methods.

將各種演算法中所模擬結果之性能表現較優者列於表7。由表中可知擾動觀察法實現容易且結構簡單,但其步階設計須考慮權衡問題,而文獻中提出之三種變動步階式控制演算法皆解決了固定步階式擾動觀察法的權衡問題,也因此獲得良好之穩態響應,但卻會增加程式運算之複雜度,同時無法解決擾動觀察法於部分遮蔽情況下被限制於區域最大功率點,而導致錯追現象發生之問題;而本發明所提出之決定型杜鵑鳥搜尋法不僅解決固定步階式擾動觀察法之設計權衡問題,亦成功達到部分遮蔽之全區域最大功率高命中率,其唯一缺點同時也是所有演算法之缺點,即為無法適用於各種太陽能電池曲線,即變動因子a需依照系統特性進行模擬方能尋找到適用於該系統之最佳值。The performance of the simulation results in the various algorithms is shown in Table 7. It can be seen from the table that the disturbance observation method is easy to implement and simple in structure, but the step design must consider the trade-off problem. The three variable step control algorithms proposed in the literature all solve the trade-off problem of the fixed step disturbance observation method. Therefore, a good steady-state response is obtained, but the complexity of the program operation is increased, and at the same time, the problem that the disturbance observation method is limited to the maximum power point of the region in the partial masking condition and the mis-chasing phenomenon occurs is not solved; The proposed decision-making cuckoo bird search method not only solves the design trade-off problem of the fixed step disturbance observation method, but also successfully achieves the maximum power high hit rate of the partial coverage. The only shortcoming is the shortcoming of all algorithms. Can not be applied to a variety of solar cell curves, that is, the variation factor a needs to be simulated according to system characteristics to find the optimum value for the system.

表7. 各種演算法之模擬結果比較 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td>             追蹤演算法 量測項目 </td><td><img wi="93" he="23" file="02_image114.jpg" img-format="jpg"></img></td><td> 變動步階式擾動觀察法 (M=0.17) </td><td> 決定型杜鵑鳥搜尋法 a=15/16 </td></tr><tr><td> 上升時間 </td><td> 5 秒 </td><td> 3.2 秒 </td><td> 0.6秒 </td></tr><tr><td> 穩定時間 </td><td> 5.8 秒 </td><td> 3.8 秒 </td><td> 1.8秒 </td></tr><tr><td> 穩態平均功率 </td><td> 257.65 W </td><td> 259.21 W </td><td> 259.21 W </td></tr><tr><td> 穩態追蹤精確度 </td><td> 99.4 % </td><td> 100 % </td><td> 100 % </td></tr><tr><td> 追蹤電能損失 </td><td> 2933.3 J </td><td> 1787.7 J </td><td> 412.69 J </td></tr><tr><td> 平均追蹤功率損失 </td><td> 58.67 W </td><td> 35.76 W </td><td> 8.25 W </td></tr><tr><td> 性能表現 </td><td><b>82.973</b> 分 </td><td><b>89.424</b> 分 </td><td><b>96.77</b>分 </td></tr></TBODY></TABLE>Table 7. Comparison of simulation results for various algorithms         <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Tracking algorithm measurement project</td><td><img wi="93" he ="23" file="02_image114.jpg" img-format="jpg"></img></td><td> Change step disturbance observation (M=0.17) </td><td> Rhododendron search method a=15/16 </td></tr><tr><td> rise time</td><td> 5 seconds</td><td> 3.2 seconds</td><td > 0.6 seconds</td></tr><tr><td> Stabilization time</td><td> 5.8 seconds</td><td> 3.8 seconds</td><td> 1.8 seconds</td> </tr><tr><td> steady state average power</td><td> 257.65 W </td><td> 259.21 W </td><td> 259.21 W </td></tr>< Tr><td> Steady-state tracking accuracy</td><td> 99.4 % </td><td> 100 % </td><td> 100 % </td></tr><tr><td > Tracking Power Loss</td><td> 2933.3 J </td><td> 1787.7 J </td><td> 412.69 J </td></tr><tr><td> Average Tracking Power Loss < /td><td> 58.67 W </td><td> 35.76 W </td><td> 8.25 W </td></tr><tr><td> Performance </td><td>< b>82.973</b> points</td><td><b>89.424</b> points</td><td><b>96.77</b> points</td></tr></ TBODY></TABLE>

實測結果:results of testing:

本發明實測與模擬環境條件相同,各演算法皆以0.2秒更新一次最大功率追蹤命令進行實測,其中固定步階式擾動觀察法與變動步階式擾動觀察法僅測試一般均勻照度(Standard Test Condition, STC)情況,而本發明所提出之決定型杜鵑鳥搜尋法將增加部分遮蔽情況測試。由模擬結果得知選用電壓變動命令D V cmd = 3V時固定步階式擾動觀察法性能表現最佳,故將電壓變動命令 設為3 V來進行實測,實測波形如圖18所示並記錄其相關量測項目數據;採用最佳性能表現之變動步階式擾動觀察法,其比例因子M設計值為0.17來進行實際測試,其實測追蹤波形如圖19所示。本發明決定型杜鵑鳥搜尋法實測分為一般均勻照度實測,和部分遮蔽實測。使用最佳變動因子a設計值9/16進行一般均勻照度實測,其實測追蹤波形圖如下圖20所示。 The measured condition of the invention is the same as the simulated environment condition, and each algorithm updates the maximum power tracking command by 0.2 seconds, wherein the fixed step disturbance observation method and the variable step disturbance observation method only test the general uniform illumination (Standard Test Condition). , STC) situation, and the deterministic cuckoo search method proposed by the present invention will increase the partial obscuration test. It is known from the simulation results that the fixed step-order disturbance observation method performs best when the voltage variation command D V cmd = 3V is selected, so the voltage variation command is used. Set to 3 V to perform the actual measurement, the measured waveform is shown in Figure 18 and record the relevant measurement project data; using the best performance of the step-by-step disturbance observation method, the scale factor M design value is 0.17 for the actual test. In fact, the measured tracking waveform is shown in Figure 19. The deterministic type of cuckoo bird search method of the present invention is divided into general uniform illuminance measurement and partial occlusion measurement. Using the best variation factor a design value of 9/16 for general uniform illumination measurement, the actual measurement tracking waveform is shown in Figure 20.

圖21為圖20波形之放大顯示,其中電壓-時間追蹤波形圖之步數標示可與圖22數字點連結,可依此判斷本發明所提方法是否正確。由圖21可得知初始1、2、3點為初始粒子點設定,其為設置於0.85、0.5及0.15倍的開路電壓值,於圖22可看出一開始就形成一斜直線,依據防止錯追換邊機制原則,當發生此情況需進行換邊作業,故可於圖21中第4及第5點之變化看出此時系統將保留第1點位置,並繼續將各操作點往第6點位置移動,於搜尋至第6、7、1點時又可於圖22看出此時各功率點呈現一斜直線,需進行換邊作業,故可於圖21第8及第9點變化看出,此時系統將目前最大功率點由第1點位置換至第6點位置,並繼續將各操作點往第6點位置移動。依照前述之程序持續進行即可完成最大功率追蹤。Figure 21 is an enlarged view of the waveform of Figure 20, wherein the step number indication of the voltage-time tracking waveform diagram can be linked to the digital point of Figure 22, and the method of the present invention can be judged as to whether it is correct. It can be seen from Fig. 21 that the initial points 1, 2, and 3 are initial particle point settings, which are open circuit voltage values set at 0.85, 0.5, and 0.15 times. As shown in Fig. 22, an oblique line is formed at the beginning, according to prevention. The principle of mismatching the edge-changing mechanism, when this happens, the edge-changing operation needs to be performed. Therefore, it can be seen from the changes of the 4th and 5th points in Fig. 21 that the system will retain the first point position and continue to operate the points. At the 6th position, when searching to the 6th, 7th, and 1st points, it can be seen in Figure 22 that each power point presents a diagonal line, and the replacement operation is required, so it can be 8th and 9th in Figure 21. As seen from the point change, the system will change the current maximum power point from the 1st position to the 6th position, and continue to move each operation point to the 6th position. Maximum power tracking can be accomplished by continuing as described above.

部分遮蔽情況發生將造成太陽能電池特性曲線出現多個峰值,而峰值之多寡取決於有多少種不同照度層級。本發明採用5組太陽能電池串聯進行實測,故最極端之情況將會出現五種不同照度層級導致特性曲線形成五個峰值點。當五個太陽能電池照度分別為100W/m 2、200W/m 2、300W/m 2、500W/m 2及900W/m 2時,全域最大功率點將會出現於第二峰位置,全域最大功率點於第二峰位置之實測太陽能電池特性曲線圖如圖23所示,其最大功率 P mpp 為56.18 W,最大功率之電壓點 V mpp 為36.54 V,最大功率之電流點 I mpp 為1.537 A。實測之追蹤波形圖如圖24,其波形放大如圖25所示,其中電壓-時間追蹤波形圖之步數標示可與圖25數字點連結,可得知初始1、2、3點為初始粒子點設定,其為設置於0.85、0.5及0.15倍的開路電壓值,其中第2點為三者中之最大值,故第1、3點朝第2點位置移動形成第4、5點位置,接著將第2、4、5點進行分析,可得知第5點為最大點且為三點之最左側,因此需進行換邊動作,將第5點設定為最大點位置,將三者中最小點第4點位置換至最大點位置之另一側即達成換邊動作,而第2點則繼續朝著最大點第5點位置移動,之後持續上述動作即可追蹤至全域之最大功率點位置,達成全域最大功率追蹤之目的,由圖26中可看到收斂後追蹤精確度為99.83%。 Partial shading will cause multiple peaks in the solar cell characteristic curve, and the number of peaks depends on how many different illumination levels are present. The invention adopts five sets of solar cells in series for actual measurement, so in the most extreme case, five different illumination levels will appear, resulting in five peak points of the characteristic curve. When the five solar cell illuminances are 100W/m 2 , 200W/m 2 , 300W/m 2 , 500W/m 2 and 900W/m 2 respectively, the global maximum power point will appear at the second peak position, and the global maximum power point The measured solar cell characteristic curve at the second peak position is shown in Fig. 23. The maximum power P mpp is 56.18 W, the maximum power voltage point V mpp is 36.54 V, and the maximum power current point I mpp is 1.537 A. The measured tracking waveform is shown in Figure 24. The waveform is enlarged as shown in Figure 25. The step number of the voltage-time tracking waveform can be linked with the digital point of Figure 25. It can be seen that the initial 1, 2, and 3 points are initial particles. Point setting, which is an open circuit voltage value set at 0.85, 0.5, and 0.15 times, wherein the second point is the maximum of the three, so the first and third points move toward the second point to form the fourth and fifth points. Then, the second, fourth, and fifth points are analyzed, and the fifth point is the maximum point and the leftmost point of the three points. Therefore, the edge changing operation is required, and the fifth point is set as the maximum point position, and the three points are The fourth point of the minimum point is changed to the other side of the maximum point position to achieve the edge changing action, while the second point continues to move toward the fifth point of the maximum point, and then the above action can be continued to track the maximum power point of the whole field. Position, to achieve the goal of global maximum power tracking, as shown in Figure 26, the tracking accuracy after convergence is 99.83%.

實驗結果比較及分析:Comparison and analysis of experimental results:

將各演算法模擬與實測結果進行比較並列於表8,由表8中可看出本發明實際測試與模擬結果差距甚小,故可驗證本發明所模擬數據之正確性。於實際測試結果中,可觀察出固定步階式擾動觀察法由於無法隨著時間調整步階大小而無法同時滿足上升時間短與穩態追蹤精確度高之要求,故固定步階式擾動觀察法之上升時間、穩定時間及穩態追蹤精確度等均劣於其他兩者;而變動步階式擾動觀察法雖然成功克服固定步階式擾動觀察法之權衡問題,但也衍生出步階最大值之設計問題,過大之步階最大值會導致系統不穩定,反之,過小之步階最大值也會造成暫態響應速度過慢之情況,故變動步階式擾動觀察法須一一對各種不同之太陽能電池的電氣規格進行設計,增加設計困難度;而本發明所提出之決定型杜鵑鳥搜尋法可解決上述兩種演算法之問題,因此提升各項量測項目之表現。The simulation results of each algorithm are compared with the measured results and are listed in Table 8. It can be seen from Table 8 that the actual test and simulation results of the present invention are very small, so that the correctness of the simulated data of the present invention can be verified. In the actual test results, it can be observed that the fixed step-level disturbance observation method cannot meet the requirement of short rise time and high steady-state tracking accuracy because the step size cannot be adjusted with time, so the fixed step-order disturbance observation method The rise time, settling time and steady-state tracking accuracy are inferior to the other two; while the variable step disturbance observation method successfully overcomes the trade-off problem of the fixed step disturbance observation method, but also derives the step maximum The design problem, the maximum step size will lead to system instability, on the contrary, the maximum step size of too small will also cause the transient response speed is too slow, so the variable step disturbance observation method must be a different pair The electrical specifications of the solar cells are designed to increase the design difficulty; and the deterministic cuckoo search method proposed by the present invention can solve the problems of the above two algorithms, thereby improving the performance of each measurement project.

表8. 各演算法模擬與實測比較表 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 演算法 性能項目 </td><td> 固定步階 擾動觀察法 </td><td> 固定步階 擾動觀察法 </td><td> 決定型杜鵑鳥搜尋法 </td></tr><tr><td> 模擬 結果 </td><td> 實測 結果 </td><td> 模擬 結果 </td><td> 實測 結果 </td><td> 模擬結果 </td><td> 實測結果 </td></tr><tr><td> 上升時間 </td><td> 5 秒 </td><td> 4.6 秒 </td><td> 3.2 秒 </td><td> 2.8 秒 </td><td> 0.6秒 </td><td> 1.8 秒 </td></tr><tr><td> 穩定時間 </td><td> 5.8 秒 </td><td> 5.6 秒 </td><td> 3.8 秒 </td><td> 3.4 秒 </td><td> 2.8秒 </td><td> 3 秒 </td></tr><tr><td> 穩態平均 功率 </td><td> 257.65 W </td><td> 248.61 W </td><td> 259.21 W </td><td> 249.8 W </td><td> 259.21 W </td><td> 251.16 W </td></tr><tr><td> 穩態追蹤 精確度 </td><td> 99.4 % </td><td> 98.92 % </td><td> 100 % </td><td> 99.40 % </td><td> 100 % </td><td> 99.94 % </td></tr><tr><td> 追蹤電能 損失 </td><td> 2933.3 J </td><td> 2082.49 J </td><td> 1787.7 J </td><td> 1092.89 J </td><td> 490.61 J </td><td> 502.62 J </td></tr><tr><td> 平均追蹤 電能損失 </td><td> 58.67 W </td><td> 41.65 W </td><td> 35.76 W </td><td> 21.86 W </td><td> 9.81 W </td><td> 10.05 W </td></tr></TBODY></TABLE>Table 8. Comparison of simulation and actual measurement of each algorithm         <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Algorithm Performance Project</td><td> Fixed Step Disturbance Observation Method</td> <td> Fixed Step Disturbance Observation Method</td><td> Deterministic Rhododendron Search Method</td></tr><tr><td> Simulation Results</td><td> Measured Results</td ><td> Simulation Results</td><td> Measured Results</td><td> Simulation Results</td><td> Measured Results</td></tr><tr><td> Rise Time< /td><td> 5 seconds</td><td> 4.6 seconds</td><td> 3.2 seconds</td><td> 2.8 seconds</td><td> 0.6 seconds</td><td > 1.8 seconds</td></tr><tr><td> Stabilization time</td><td> 5.8 seconds</td><td> 5.6 seconds</td><td> 3.8 seconds</td> <td> 3.4 seconds</td><td> 2.8 seconds</td><td> 3 seconds</td></tr><tr><td> steady state average power</td><td> 257.65 W </td><td> 248.61 W </td><td> 259.21 W </td><td> 249.8 W </td><td> 259.21 W </td><td> 251.16 W </td>< /tr><tr><td> Steady-state tracking accuracy</td><td> 99.4 % </td><td> 98.92 % </td><td> 100 % </td><td> 99.40 % </td><td> 100 % </td><td> 99.94 % </td></tr><tr><td> Tracking Power Loss</td><td> 2933.3 J </td><td > 208 2.49 J </td><td> 1787.7 J </td><td> 1092.89 J </td><td> 490.61 J </td><td> 502.62 J </td></tr><tr>< Td> Average tracking power loss</td><td> 58.67 W </td><td> 41.65 W </td><td> 35.76 W </td><td> 21.86 W </td><td> 9.81 W </td><td> 10.05 W </td></tr></TBODY></TABLE>

於暫態表現上,本發明的上升時間相較於固定步階式擾動觀察法降低了2.8秒,與變動步階式擾動觀察法相較降低了0.8秒;穩定時間相較於固定步階式擾動觀察法降低了2.6秒,與變動步階式擾動觀察法相較降低了0.4秒,因此得證本發明所提之方法擁有快速追蹤之優點。於穩態部分,固定步階式擾動觀察法進入穩態後會於最大功率點附近振盪導致穩態平均功率降低,其穩態平均功率僅有248.61 W,穩態追蹤精確度為98.92 %;由於變動步階式擾動觀察法加入可變之步階,大幅降低於最大功率點附近之振盪,與固定步階式擾動觀察法相較,可有效提升穩態追蹤精確度至99.40 %;本發明提出之決定型杜鵑鳥搜尋法穩態追蹤精確度為99.94 %,與前兩種方法相比各提升1.02 %與0.54%,故本發明之決定型杜鵑鳥搜尋法有較佳之穩態響應。於追蹤電能損失部分,由於固定步階式擾動觀察法其步階設計須考慮暫態及穩態響應表現之權衡問題,無法兼顧兩者表現,平均追蹤電能損失較多,而變動步階式擾動觀察法因暫態響應較固定步階式擾動觀察法快,故其平均追蹤電能損失較固定步階式擾動觀察法降低47.5 %;而本發明所提出之決定型杜鵑鳥搜尋法不論暫態及穩態響應均有良好的表現,因此其平均追蹤電能損失為三種方法中最低的,與固定步階式擾動觀察法相比減少75.87 %,與變動步階式擾動觀察法相比減少54.02%,故整體成績表現最佳。In terms of transient performance, the rise time of the present invention is reduced by 2.8 seconds compared to the fixed step disturbance observation method, and is reduced by 0.8 seconds compared with the variable step disturbance observation method; the stabilization time is compared to the fixed step disturbance The observation method was reduced by 2.6 seconds, which was reduced by 0.4 seconds compared with the variable step disturbance observation method, so that the method proposed by the present invention has the advantage of fast tracking. In the steady-state part, the fixed-step disturbance observation method will oscillate near the maximum power point and will cause the steady-state average power to decrease. The steady-state average power is only 248.61 W, and the steady-state tracking accuracy is 98.92%. The variable step disturbance observation method adds a variable step and greatly reduces the oscillation near the maximum power point. Compared with the fixed step disturbance observation method, the steady state tracking accuracy can be effectively improved to 99.40%; The steady-state tracking accuracy of the deterministic cuckoo search method is 99.94%, which is 1.02% and 0.54% higher than the first two methods. Therefore, the deterministic cuckoo search method of the present invention has a better steady state response. In the tracking of power loss, due to the fixed-step disturbance observation method, the step design must consider the trade-off between transient and steady-state response performance, and can not take into account the performance of both, the average tracking energy loss is more, and the variable step disturbance The observation method is faster than the fixed step disturbance analysis method, so the average tracking energy loss is reduced by 47.5 % compared with the fixed step disturbance observation method; and the deterministic cuckoo bird search method proposed by the present invention regardless of the transient state The steady-state response has a good performance, so the average tracking energy loss is the lowest of the three methods, which is 75.87 % lower than the fixed step disturbance observation method, and 54.02% compared with the variable step disturbance observation method. The results are the best.

結論:in conclusion:

本發明提出決定型杜鵑鳥搜尋法,本發明採用傳統杜鵑鳥搜尋法的精神及理念,但簡化其程式判斷及運算流程並將其實現於數位訊號處理器中,最後再與目前工業界較常被應用之擾動觀察法方法進行性能比較及評估分析。依照實測結果可得知擾動觀察法雖然可利用變動步階式來改善其暫態及穩態響應之權衡問題,但與本發明所提出之追蹤方法相較,本發明之追蹤方法既可應用於部分遮蔽之情況且不論暫態或穩態響應均有良好之表現,因此於上升時間、穩態時間、追蹤電能損失及平均追蹤電能損失方面之表現均為三者中之最佳者,且穩態追蹤精確度更高達99.94%,與變動步階式相較提升了0.5%。由上述可知本發明所提出之決定型杜鵑鳥搜尋法同時具備快速的暫態響應及高性能的穩態響應,也改善變動步階式無法應用於部分遮蔽之問題,因此本方法可於任何環境下成功達到太陽能電池最大功率追蹤之目的。The invention proposes a deterministic cuckoo bird searching method, and the invention adopts the spirit and concept of the traditional cuckoo bird searching method, but simplifies the program judgment and calculation process and implements it in the digital signal processor, and finally is more common with the current industry. The performance of the disturbance observation method is used for performance comparison and evaluation analysis. According to the measured results, it can be seen that although the disturbance observation method can use the variable step to improve the tradeoff between the transient and steady state response, the tracking method of the present invention can be applied to the tracking method of the present invention. Partially obscured and with good performance regardless of transient or steady-state response, so the performance in terms of rise time, steady-state time, tracking energy loss and average tracking energy loss are the best of the three, and stable State tracking accuracy is as high as 99.94%, which is an increase of 0.5% compared to the variable step. It can be seen from the above that the deterministic cuckoo bird search method proposed by the present invention has both a fast transient response and a high-performance steady-state response, and also improves the problem that the variable step cannot be applied to partial shading, so the method can be applied to any environment. Successfully achieved the goal of maximum power tracking of solar cells.

本發明所揭示者,乃較佳實施例,舉凡局部之變更或修飾而源於本發明之技術思想而為熟習該項技藝之人所易於推知者,俱不脫本發明之專利權範疇。The present invention has been disclosed in its preferred embodiments, and it is obvious that those skilled in the art will be able to illuminate the subject matter of the present invention without departing from the scope of the invention.

綜上所陳,本發明無論就目的、手段與功效,在在顯示其迥異於習知之技術特徵,且其首先發明合於實用,亦在在符合發明之專利要件,懇請 貴審查委員明察,並祈早日賜予專利,俾嘉惠社會,實感德便。In summary, the present invention, regardless of its purpose, means and efficacy, is showing its technical characteristics different from the prior art, and its first invention is practical and practical, and is also in compliance with the patent requirements of the invention, and is requested to be examined by the reviewing committee. Pray for the patents at an early date.

100‧‧‧升壓轉換器100‧‧‧Boost Converter

110‧‧‧數位控制器110‧‧‧Digital Controller

200‧‧‧太陽能電池200‧‧‧ solar cells

300‧‧‧負載300‧‧‧load

圖1繪示本發明太陽能發電系統之最大功率追蹤裝置之一實施例方塊圖。 圖2為太陽能電池之單二極體等效電路圖。 圖3a-3b分別為太陽能電池之一電流-電壓曲線及一功率-電壓曲線。 圖4.繪示本發明所採之一升壓轉換器。 圖5繪示本發明所採之一控制系統架構。 圖6為本發明所採之一有限脈衝響應濾波器之工作原理示意圖。 圖7為本發明所採之一PID控制結構方塊圖。 圖8為本發明所提出之一增量型PID控制器流程圖。 圖9為一列維飛行模式(Lévy flight pattern)示意圖。 圖10繪示一杜鵑鳥搜尋法之程式流程圖。 圖11繪示本發明所採之一決定型杜鵑鳥搜尋法之基本操作原理。 圖12為本發明所採之一防止錯追之換邊機制操作示意圖。 圖13為本發明所採之一決定型杜鵑鳥搜尋法之操作流程圖。 圖14為本發明所採之一韌體主程式實現架構。 圖15為太陽能電池之I-V,P-V模擬曲線圖。 圖16繪示本發明所定義之量測項目準則。 圖17繪示本發明在部分遮蔽情況下,不同a值成功追到最大功率之命中率。 圖18.繪示一固定步階式擾動觀察法之一實測波形。 圖19繪示一變動步階式擾動觀察法之一實測波形。 圖20為本發明所採一決定型杜鵑鳥搜尋法於均勻照度下之一實測波形。 圖21為決定型杜鵑鳥搜尋法於均勻照度實測功率和電壓波形放大。 圖22為本發明所採之一決定型杜鵑鳥搜尋法之防止錯追、換邊機制操作圖。 圖23繪示在本發明一實測操作中其第二峰為全域最大功率點之一追蹤波形。 圖24為圖23之追蹤波形之放大圖。 圖25為本發明所採之一換邊機制在第二峰為全域最大功率點時之一操作示意圖。 圖26.為本發明第二峰為全域最大功率點之實測。1 is a block diagram showing an embodiment of a maximum power tracking device of a solar power generation system of the present invention. 2 is an equivalent circuit diagram of a single diode of a solar cell. Figures 3a-3b are a current-voltage curve and a power-voltage curve for a solar cell, respectively. Figure 4 illustrates a boost converter of the present invention. FIG. 5 illustrates a control system architecture of the present invention. FIG. 6 is a schematic diagram showing the working principle of a finite impulse response filter according to the present invention. Figure 7 is a block diagram of a PID control structure taken in the present invention. FIG. 8 is a flow chart of an incremental PID controller according to the present invention. Figure 9 is a schematic diagram of a Lévy flight pattern. Figure 10 is a flow chart showing the program of a cuckoo search method. Figure 11 is a diagram showing the basic operation principle of the deterministic cuckoo searching method of the present invention. FIG. 12 is a schematic diagram of the operation of the edge changing mechanism for preventing mis-tracking according to the present invention. Figure 13 is a flow chart showing the operation of a deterministic cuckoo search method according to the present invention. FIG. 14 is a schematic diagram of a firmware main program implementation architecture. Figure 15 is a graph of I-V, P-V simulation of a solar cell. Figure 16 illustrates the measurement project criteria defined by the present invention. FIG. 17 is a diagram showing the hit rate of the maximum power successfully recovered by the different a values in the case of partial masking. Figure 18. depicts a measured waveform of a fixed step disturbance observation method. FIG. 19 illustrates a measured waveform of a variable step disturbance observation method. Figure 20 is a measured waveform of a determined cuckoo bird search method under uniform illumination according to the present invention. Figure 21 shows the deterministic cuckoo search method for the power and voltage waveform amplification of uniform illumination. Fig. 22 is a diagram showing the operation of preventing the wrong chasing and changing the mechanism of the deterministic cuckoo bird searching method of the present invention. Figure 23 is a diagram showing the tracking waveform of one of the maximum power points of the whole domain in a measured operation of the present invention. Figure 24 is an enlarged view of the tracking waveform of Figure 23. FIG. 25 is a schematic diagram of one of the operations of the edge changing mechanism of the present invention when the second peak is the global maximum power point. Figure 26. The second peak of the present invention is the actual measurement of the global maximum power point.

100‧‧‧升壓轉換器 100‧‧‧Boost Converter

110‧‧‧數位控制器 110‧‧‧Digital Controller

200‧‧‧太陽能電池 200‧‧‧ solar cells

300‧‧‧負載 300‧‧‧load

Claims (3)

一種太陽能發電系統之最大功率追蹤裝置,其具有:一升壓轉換器,具有一輸入端、一控制端及一輸出端,該輸入端係用以與一太陽能電池耦接,該控制端係用以接收一脈衝寬度調變信號,且該輸出端係用以與一負載耦接;以及一數位控制器,用以依一韌體程式執行一決定型杜鵑鳥搜尋法以調整該脈衝寬度調變信號之一責任週期,以使該太陽能電池之一輸出電壓逐步收斂至一功率最大化電壓,其中該決定型杜鵑鳥搜尋法包括:第一步驟:依序使該輸出電壓停留在三個不同電壓值並對應地測得該太陽能電池之三個功率輸出值,並將所述三個不同電壓值中與所述三個功率輸出值中的最大者相對應的一電壓值儲存在一第一記憶單元中,將所述三個不同電壓值中與所述三個功率輸出值中的第二大者相對應的一電壓值儲存在一第二記憶單元中,將所述三個不同電壓值中與所述三個功率輸出值中的最小者相對應的一電壓值儲存在一第三記憶單元中;第二步驟:依所述第二記憶單元的儲存值及所述第一記憶單元的儲存值之差值進行一第一電壓變動量計算程序以產生一第一電壓變動量命令,且依該第一電壓變動量命令調整所述的責任週期以使該太陽能電池輸出一暫定第二大功率電壓,並測得該太陽能電池在輸出該暫定第二大功率電壓時之一功率輸出值;及依所述第三記憶單元的儲存值、所述第二記憶單元的儲存值及所述第一記憶單元的儲存值進行一第二電壓變動量計算程序以產生一第二電壓變動量命令,且依該第二電壓變動量命令調整所述的責任週期以使該太陽能電池輸出一暫定 最小功率電壓,並測得該太陽能電池在輸出該暫定最小功率電壓時之一功率輸出值,其中所述第一電壓變動量計算程序及所述第二電壓變動量計算程序均包含乘以一變動比例因子α之一乘法運算,0<α<1,其中該第二電壓變動量計算程序包含一換邊機制需求判斷程序,其係在所述第一記憶單元的儲存值介於所述第二記憶單元的儲存值和所述第三記憶單元的儲存值之間時,依所述第三記憶單元的儲存值和所述第一記憶單元的儲存值之差值而產生所述第二電壓變動量命令;以及在所述第一記憶單元的儲存值未介於所述第二記憶單元的儲存值和所述第三記憶單元的儲存值之間時,依所述第二記憶單元的儲存值和所述第一記憶單元的儲存值之差值而產生所述第二電壓變動量命令;第三步驟:針對與所述第一記憶單元對應的功率輸出值、與該暫定第二大功率電壓對應的功率輸出值及與該暫定最小功率電壓對應的功率輸出值進行比較,以在所述第一記憶單元的儲存值、該暫定第二大功率電壓及該暫定最小功率電壓中找出產生最大功率輸出值之一新的最大功率電壓,產生第二大功率輸出值之一新的第二大功率電壓,及產生最小功率輸出值之一新的最小功率電壓,並將所述新的最大功率電壓存入所述第一記憶單元中,將所述新的第二大功率電壓存入所述第二記憶單元中以及將所述新的最小功率電壓存入所述第三記憶單元中;以及第四步驟:返回第二步驟。 A maximum power tracking device for a solar power generation system, comprising: a boost converter having an input end, a control end and an output end, wherein the input end is coupled to a solar cell, and the control end is used Receiving a pulse width modulation signal, and the output end is coupled to a load; and a digital controller for performing a decisive cuckoo search method according to a firmware program to adjust the pulse width modulation One of the signals is responsible for the cycle, such that the output voltage of one of the solar cells gradually converges to a power maximizing voltage, wherein the deterministic cuckoo searching method comprises: the first step: sequentially stopping the output voltage at three different voltages And correspondingly measuring three power output values of the solar cell, and storing a voltage value corresponding to the largest of the three power output values among the three different voltage values in a first memory In the unit, storing a voltage value corresponding to a second largest one of the three power output values among the three different voltage values in a second memory unit, and the three not a voltage value corresponding to a minimum of the three power output values is stored in a third memory unit; a second step: storing the value according to the second memory unit and the first memory Performing a first voltage fluctuation amount calculation program by using a difference between the stored values of the cells to generate a first voltage variation amount command, and adjusting the duty cycle according to the first voltage variation amount command to cause the solar cell to output a tentative number a second power voltage, and measuring a power output value of the solar cell when the tentative second high power voltage is output; and storing the value of the second memory unit according to the stored value of the third memory unit Performing a second voltage fluctuation amount calculation program on the stored value of the first memory unit to generate a second voltage variation amount command, and adjusting the duty cycle according to the second voltage fluctuation amount command to make the solar cell output tentatively a minimum power voltage, and measuring a power output value of the solar cell when the tentative minimum power voltage is output, wherein the first voltage variation calculation program and the second voltage variation calculation program both include multiplication by a change a multiplication operation of the scale factor α, 0<α<1, wherein the second voltage variation calculation program includes a changeover mechanism demand determination program, wherein the stored value of the first memory unit is between the second And generating, by the difference between the stored value of the third memory unit and the stored value of the first memory unit, the second voltage change between the stored value of the memory unit and the stored value of the third memory unit a quantity command; and when the stored value of the first memory unit is not between the stored value of the second memory unit and the stored value of the third memory unit, according to the stored value of the second memory unit Generating the second voltage fluctuation amount command with a difference between the stored values of the first memory unit; and third step: for the power output value corresponding to the first memory unit, and the tentative second high power Corresponding power output value and a power output value corresponding to the tentative minimum power voltage are compared to find that a maximum is generated in the stored value of the first memory unit, the tentative second high power voltage, and the tentative minimum power voltage a new maximum power voltage of one of the power output values, a new second high power voltage that produces one of the second highest power output values, and a new minimum power voltage that produces one of the minimum power output values, and the new maximum power Depositing a voltage into the first memory unit, storing the new second high power voltage in the second memory unit, and storing the new minimum power voltage in the third memory unit; Fourth step: return to the second step. 如申請專利範圍第1項所述之太陽能發電系統之最大功率追蹤裝置,其中該第二步驟之所述第二電壓變動量計算程序進一步包含一數值限制程序以限制該暫定最小功率電壓的上限及下限。 The maximum power tracking device of the solar power generation system of claim 1, wherein the second voltage variation calculation program of the second step further comprises a numerical limiting program to limit an upper limit of the tentative minimum power voltage and Lower limit. 如申請專利範圍第2項所述之太陽能發電系統之最大功率追蹤裝置, 其進一步包含一照度改變判斷步驟以決定是否回到所述第一步驟。 The maximum power tracking device of the solar power generation system as described in claim 2, It further includes an illumination change determination step to decide whether to return to the first step.
TW105133554A 2016-10-18 2016-10-18 A solar power system maximum power tracking device TWI600997B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105133554A TWI600997B (en) 2016-10-18 2016-10-18 A solar power system maximum power tracking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105133554A TWI600997B (en) 2016-10-18 2016-10-18 A solar power system maximum power tracking device

Publications (2)

Publication Number Publication Date
TWI600997B true TWI600997B (en) 2017-10-01
TW201816537A TW201816537A (en) 2018-05-01

Family

ID=61011061

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105133554A TWI600997B (en) 2016-10-18 2016-10-18 A solar power system maximum power tracking device

Country Status (1)

Country Link
TW (1) TWI600997B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109062314A (en) * 2018-09-20 2018-12-21 天津大学 Improvement cuckoo photovoltaic global maximum power method for tracing under the conditions of the masking of part
TWI669589B (en) * 2018-08-29 2019-08-21 崑山科技大學 Maximum power tracking method for solar cell and system thereof suitable for real-time online environment
TWI670612B (en) * 2018-11-06 2019-09-01 環隆科技股份有限公司 Maximun power point tracking method for photovoltaic module array
US11081959B2 (en) 2019-10-31 2021-08-03 Chicony Power Technology Co., Ltd. Power conversion device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI658688B (en) * 2018-06-01 2019-05-01 龍華科技大學 Improved quasi radon source converter
TWI669590B (en) * 2018-09-28 2019-08-21 龍華科技大學 Maximum power tracking method for solar power generation system
TWI697791B (en) * 2019-03-20 2020-07-01 龍華科技大學 Solar cell maximum power tracking method under shading
TWI706629B (en) * 2019-07-12 2020-10-01 龍華科技大學 A method for tracking the global maximum power of solar cells
TWI706261B (en) * 2019-07-31 2020-10-01 龍華科技大學 A method for tracking the global maximum power of solar cells
CN110377100B (en) * 2019-08-23 2020-08-11 广东工业大学 Maximum power tracking method and device for photovoltaic power generation system under local shadow
CN111679713B (en) * 2020-06-28 2022-03-08 齐鲁工业大学 Photovoltaic maximum power point tracking method for direct calculation
TWI765480B (en) * 2020-12-17 2022-05-21 國立中山大學 Charging system with mppt
TWI766719B (en) * 2021-06-09 2022-06-01 龍華科技大學 Method to prevent maximum power error tracking

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120314747A1 (en) * 2011-06-10 2012-12-13 Didier Boivin Powerline Control Interface in Photovoltaic Environment for Frequency and Amplitude Modulation Transmitter
CN202663326U (en) * 2012-05-18 2013-01-09 深圳古瑞瓦特新能源有限公司 Power tracking control device and photovoltaic power generation system
TW201414134A (en) * 2012-05-29 2014-04-01 Tokyo Electron Ltd Solar power generation monitoring method and solar power generation monitoring system used for said method
CN103885521A (en) * 2014-03-14 2014-06-25 河海大学 Photovoltaic array MPPT method based on cuckoo search algorithm
TW201532365A (en) * 2014-02-14 2015-08-16 Robert Bosch Sea Pte Ltd Topology and control strategy for hybrid storage systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120314747A1 (en) * 2011-06-10 2012-12-13 Didier Boivin Powerline Control Interface in Photovoltaic Environment for Frequency and Amplitude Modulation Transmitter
CN202663326U (en) * 2012-05-18 2013-01-09 深圳古瑞瓦特新能源有限公司 Power tracking control device and photovoltaic power generation system
TW201414134A (en) * 2012-05-29 2014-04-01 Tokyo Electron Ltd Solar power generation monitoring method and solar power generation monitoring system used for said method
TW201532365A (en) * 2014-02-14 2015-08-16 Robert Bosch Sea Pte Ltd Topology and control strategy for hybrid storage systems
CN103885521A (en) * 2014-03-14 2014-06-25 河海大学 Photovoltaic array MPPT method based on cuckoo search algorithm

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A soft computing MPPT for PV system based on Cuckoo Search algorithm Jubaer Ahmed, Zainal Salam,International Conference on 2013 Fourth Power Engineering, Energy and Electrical Drives (POWERENG), 2013/05/13. *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI669589B (en) * 2018-08-29 2019-08-21 崑山科技大學 Maximum power tracking method for solar cell and system thereof suitable for real-time online environment
CN109062314A (en) * 2018-09-20 2018-12-21 天津大学 Improvement cuckoo photovoltaic global maximum power method for tracing under the conditions of the masking of part
CN109062314B (en) * 2018-09-20 2020-06-09 天津大学 Improved cuckoo photovoltaic global maximum power tracking method under local shielding condition
TWI670612B (en) * 2018-11-06 2019-09-01 環隆科技股份有限公司 Maximun power point tracking method for photovoltaic module array
US11081959B2 (en) 2019-10-31 2021-08-03 Chicony Power Technology Co., Ltd. Power conversion device

Also Published As

Publication number Publication date
TW201816537A (en) 2018-05-01

Similar Documents

Publication Publication Date Title
TWI600997B (en) A solar power system maximum power tracking device
Joshi et al. Maximum power point tracking methodologies for solar PV systems–A review
Podder et al. MPPT methods for solar PV systems: a critical review based on tracking nature
Reisi et al. Classification and comparison of maximum power point tracking techniques for photovoltaic system: A review
Martin et al. MPPT algorithms comparison in PV systems: P&O, PI, neuro-fuzzy and backstepping controls
Jazayeri et al. Evaluation of maximum power point tracking techniques in PV systems using MATLAB/Simulink
Essefi et al. Maximum power point tracking control using neural networks for stand-alone photovoltaic systems
Wang et al. A fast and efficient maximum power tracking combining simplified state estimation with adaptive perturb and observe
Balato et al. A new control strategy for the optimization of distributed MPPT in PV applications
El Mentaly et al. Comparison between HC, FOCV and TG MPPT algorithms for PV solar systems using buck converter
CN106951024B (en) A kind of quick MPPT method of solar components
TWI669590B (en) Maximum power tracking method for solar power generation system
Sias et al. Recurrence Perturb and Observe algorithm for MPPT optimization under shaded condition
Dash et al. Comparative study of one and two diode model of solar photovoltaic cell
Fahim et al. Overview of maximum power point tracking techniques for PV system
TWI653521B (en) A maximum power tracking algorithm
Khadija et al. Nonlinear backstepping control of a partially shaded photovoltaic storage system
Yadav et al. Comparison of different parameters using Single Diode and Double Diode model of PV module in a PV-Battery system using MATLAB Simulink
Sharma et al. Improved power maxima point of photovoltaic system using umbrella optimizing technique under PSCs: An experimental study
Salim et al. A conceptual framework and a review of AI-based MPPT techniques for photovoltaic systems
Moyo et al. Comparative analysis of different computational intelligence techniques for maximum power point tracking of PV systems
Hua et al. A new maximum power point tracking method for PV string under PS condition
Mishra et al. MPPT for a Solar PV Array: ANN and P&O Comparison
Belova et al. Maximum power point tracking methods for the solar battery
Ratsame et al. An efficiency improvement boost converter circuit for photovoltaic power system with maximum power point tracking

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees