TWI669590B - Maximum power tracking method for solar power generation system - Google Patents
Maximum power tracking method for solar power generation system Download PDFInfo
- Publication number
- TWI669590B TWI669590B TW107134422A TW107134422A TWI669590B TW I669590 B TWI669590 B TW I669590B TW 107134422 A TW107134422 A TW 107134422A TW 107134422 A TW107134422 A TW 107134422A TW I669590 B TWI669590 B TW I669590B
- Authority
- TW
- Taiwan
- Prior art keywords
- value
- maximum power
- current
- voltage
- tracking
- Prior art date
Links
Landscapes
- Control Of Electrical Variables (AREA)
- Photovoltaic Devices (AREA)
Abstract
一種太陽能發電系統的最大功率追蹤方法,其係利用一控制電路實現,該方法包括以下步驟:量測一太陽能發電系統之一初始操作點之輸出電流值及輸出電壓值以獲得(I 1,V 1);對一隨機猜測之估測照度值G guess 進行一簡化型估測法運算以獲得一目前照度值 G,該簡化型估測法運算包括: ,及 G= G guess + | I o - I 1 |/ I sc 其中, I o 係一估測的輸出電流值, I sc 、 I s 、 q、 k、 n及 T為常數;依所述目前照度值 G計算一最大功率點電壓值 V mpp ,其中, ;以及依該最大功率點電壓值 V mpp進行一α因子擾動觀察法運算以決定一電壓命令,該α因子擾動觀察法運算包括: , P(n-2) < P(n-1) 且 P(n) < P(n-1), 其中,ΔV pv (n)為目前之電壓擾動量,Δ V pv (n-1)為前一次之電壓擾動量,α為小於1之常數以降低穩態振盪, P(n)為目前功率值, P(n-1) 為前一次取樣之功率值, P(n-2)為前兩次取樣之功率值。 A method for tracking maximum power of a solar power generation system, which is implemented by a control circuit. The method includes the following steps: measuring the output current value and output voltage value of an initial operating point of a solar power generation system to obtain 1, V 1); Estimated illumination value G for a random guess guess Perform a simplified estimation operation to obtain a current illuminance value GThe simplified estimation method operations include: ,and G= G guess + | I o - I 1 | / I sc among them, I o Is an estimated output current value, I sc , I s , q, k, nand TIs constant; according to the current illuminance value GCalculate a maximum power point voltage V mpp ,among them, ; And according to the maximum power point voltage value V mppPerform an alpha factor perturbation observation operation to determine a voltage command. The alpha factor perturbation observation operation includes: , P(n-2) < P(n-1) and P(n) < P(n-1), where ΔV pv (n) is the current voltage disturbance amount, Δ V pv (n-1) is the previous voltage disturbance amount, α is a constant less than 1 to reduce steady state oscillation, P(n) is the current power value, P(n-1) is the power value of the previous sampling, P(n-2) is the power value of the first two samples.
Description
本發明係有關於一種太陽能發電系統的最大功率追蹤方法,特別 是一種結合簡化型估測法運算和α因子擾動觀察法運算以追蹤太陽能發電系統之最大功率的方法。The present invention relates to a method for tracking maximum power of a solar power generation system, and more particularly to a method for tracking the maximum power of a solar power generation system by combining a simplified estimation method operation and an α-factor disturbance observation method operation.
環保觀念及永續發展已成為全球共識,如何更有效率地使用現有 能源,並積極開發新的替代能源,係目前工程科技界首要之務。2015年在法國舉行之第21屆聯合國氣候變化大會(COP21),通過歷史上具有包容性及法律約束力之減碳協議-巴黎協議,與會國家均一致同意控制温室氣體之排放,以達到工業化前至2100年全球平均氣温上升不超過2 oC,並努力控制在1.5 oC內之目標。足見因温室氣體排放造成地球環境、氣候及生態之惡化已受到世人所關注,而綠色環保與節能減碳等議題亦日漸受到世界各國的重視,因此如何減少用電、提升電能轉換及使用效率以減少溫室氣體排放為當務之急。 The concept of environmental protection and sustainable development have become a global consensus. How to use existing energy more efficiently and actively develop new alternative energy are the top priorities of the engineering and technology community. The 21st United Nations Climate Change Conference (COP21), held in France in 2015, adopted the historically inclusive and legally binding carbon reduction agreement, the Paris Agreement, and all participating countries agreed to control greenhouse gas emissions in order to achieve pre-industrialization. By 2100, the average global temperature will not rise more than 2 o C, and strive to control the target within 1.5 o C. This shows that the degradation of the global environment, climate, and ecology due to greenhouse gas emissions has attracted worldwide attention, and issues such as green environmental protection and energy conservation and carbon reduction have received increasing attention from countries around the world. Therefore, how to reduce electricity consumption, improve energy conversion and use efficiency Reducing greenhouse gas emissions is a top priority.
對於商用之太陽能發電系統,基於成本與體積之考量下,太陽能 電池之利用率及轉換效率之改善變得極其重要。目前商用太陽能電池之發電效率僅20%左右,由於太陽能電池之電氣特性為非線性並存在一最大功率點,且其電氣特性容易受到照度值與溫度影響,亦即太陽能電池在某一固定的日照及溫度下均存在一個最大功率輸出點,因此,如何擷取太陽能電池之最大輸出功率,使太陽能電池發揮最大成本效益為目前開發太陽能發電系統之重要議題,而這使得最大功率追蹤(Maximum Power Point Tracking, MPPT)方法在高效能的太陽能發電系統中扮演著關鍵的角色。For commercial solar power generation systems, based on cost and volume considerations, the improvement of solar cell utilization and conversion efficiency becomes extremely important. At present, the power generation efficiency of commercial solar cells is only about 20%. Because the electrical characteristics of solar cells are non-linear and there is a maximum power point, and their electrical characteristics are easily affected by the illuminance value and temperature, that is, the solar cells are in a certain fixed sunlight. There is a maximum power output point at both temperature and temperature. Therefore, how to capture the maximum output power of solar cells to maximize the cost-effectiveness of solar cells is an important issue for the development of solar power systems, which makes maximum power tracking (Maximum Power Point Tracking (MPPT) method plays a key role in high-efficiency solar power systems.
目前已有許多文獻提出太陽能發電系統最大功率之追縱技術,由 於習知技術之擾動觀察法及增量電導法均無法快速因應環境變化,因此開發快速最大功率追蹤之方法非常重要,目前能快速因應環境變化之最大功率追蹤技術可分成以下三類:At present, many literatures have proposed tracking technology for maximum power of solar power generation systems. As the perturbation observation method and incremental conductance method of conventional technologies cannot quickly respond to environmental changes, it is very important to develop a method for fast maximum power tracking. The maximum power tracking technology in response to environmental changes can be divided into the following three categories:
一、變動步階式之最大功率追蹤法:I. Maximum power tracking method with changing steps:
其追蹤方法係將利用當前操作點與最大功率點間之距離決定步 階大小,當操作點接近最大功率點時,使用較小之步階量,反之則使用較大之步階量。一般追蹤方法係在所有照度下採用相同固定比例因子,但在照度改變時可能會產生較緩慢之動態響應,原因為在不同照度條件下比例因子之最佳值並非相同。有文獻以功率變化作為回授訊號,並使用比例積分控制器來決定擾動步階之大小,然而比例與積分參數k p、k i亦需調整,亦有文獻提出逐次近似暫存器之最大功方法,其擾動步階大小由最低位開始以二進制方式增加,為追蹤到最大功率點,一旦操作點經過最大功率點就採用單調遞減步驟,然其卻因複雜而難以實現。 The tracking method uses the distance between the current operating point and the maximum power point to determine the step size. When the operating point is close to the maximum power point, a smaller step amount is used, otherwise a larger step amount is used. The general tracking method uses the same fixed scale factor under all illuminances, but may produce a slower dynamic response when the illuminance changes, because the optimal values of the scale factors are not the same under different illuminance conditions. Some literatures use the power change as the feedback signal and use a proportional-integral controller to determine the size of the disturbance step. However, the proportional and integral parameters k p and k i also need to be adjusted, and some literatures have proposed successive approximation of the maximum power of the register. In the method, the size of the perturbation step is increased in a binary manner starting from the lowest bit. In order to track to the maximum power point, once the operating point passes the maximum power point, a monotonically decreasing step is adopted, but it is difficult to achieve due to complexity.
二、以數學模型與軟體計算為基礎之最大功率追蹤法:Second, the maximum power tracking method based on mathematical models and software calculations:
此法係利用不同數學模型計算來求得最大功率點,有文獻提出以 一維牛頓-拉弗森方法,亦有文獻提出以狀態估測法來估測目前照度及溫度,再利用所得之參數計算實際最大功率點位置,然上述技術均需準確之太陽能電池模型及複雜計算。此外,軟體計算法雖可用來開發快速因應環境變化之最大功率追蹤技術,例如利用粒子群優化法、非對稱模糊控制器、或模糊控制器結合類神經網路以求得適當之擾動步階量。然而利用軟體計算之最大功率追蹤技術亦需要較複雜之計算而不適用以低成本微控制器來實現。This method uses different mathematical models to calculate the maximum power point. Some literatures have proposed the one-dimensional Newton-Raphson method, and some literature have proposed the state estimation method to estimate the current illumination and temperature, and then use the parameters obtained. Calculate the actual maximum power point position. However, the above techniques all require accurate solar cell models and complicated calculations. In addition, the software calculation method can be used to develop the maximum power tracking technology that responds quickly to environmental changes, such as using particle swarm optimization, asymmetric fuzzy controllers, or fuzzy controllers in conjunction with neural networks to obtain appropriate perturbation steps. . However, the software-calculated maximum power tracking technology also requires more complex calculations and is not suitable for implementation with low-cost microcontrollers.
三、兩階段式之最大功率追蹤法:Three or two-stage maximum power tracking method:
此法之第一階段係使用數學模型分析或軟體計算方法將操作點 移動至最大功率點附近,接著採用第二階段獲得真實的最大功率點位置。有文獻提出第一階段可採用牛頓-拉弗森、比例短路電流法、螞蟻群聚法或β方法,而第二階段則可使用增量電導法、擾動觀察法或粒子群方法,兩階段式之最大功率追蹤技術雖不需精準之數學模型及智慧演算法,然而其第一階段之運算仍屬複雜。The first stage of this method uses mathematical model analysis or software calculation to move the operating point near the maximum power point, and then uses the second stage to obtain the true maximum power point position. Some literatures suggest that the first stage can use Newton-Raphson, proportional short-circuit current method, ant colony method or beta method, while the second stage can use incremental conductance method, perturbation observation method or particle swarm method, two-stage method Although the maximum power tracking technology does not require accurate mathematical models and intelligent algorithms, its first-stage operation is still complicated.
一個優良的最大功率追蹤法除了追蹤速度要快、追蹤損失要小之 外,亦必須具備實現之軟、硬體複雜度低、系統相容性佳、和容易擴充等特性,其中包含方法簡單而能以低成本微控制器來實現,不需額外感測裝置及電路(如照度計、感溫計和轉換電路),上述三類最大功率追蹤方法均無法達成,因此本領域亟需一新穎的最大功率追蹤方法。In addition to a fast tracking speed and a small tracking loss, an excellent maximum power tracking method must also have the characteristics of soft implementation, low hardware complexity, good system compatibility, and easy expansion, including simple and convenient methods. It can be implemented with a low-cost microcontroller without the need for additional sensing devices and circuits (such as illuminance meters, thermometers, and conversion circuits). None of the above three types of maximum power tracking methods can be achieved. Therefore, a new need is urgently needed in the field. Maximum power tracking method.
本案之一目的在於揭露一種最大功率追蹤方法,其第一階段係利 用簡化型估測法推估出太陽之目前照度,計算於此照度下之最大功率點電壓並將操作點移動至此電壓,第二階段則採用α因子擾動觀察法將操作點穩定控制在最大功率點上,以達到快速最大功率追蹤之目的。One of the purposes of this case is to disclose a maximum power tracking method. The first stage is to use the simplified estimation method to estimate the current illumination of the sun, calculate the maximum power point voltage under this illumination and move the operating point to this voltage. In the second stage, the α-factor disturbance observation method is used to stably control the operating point at the maximum power point to achieve the purpose of fast maximum power tracking.
本案之另一目的在於一種最大功率追蹤方法,其在暫態表現之上 升時間及穩定時間均較習知技術之固定步階式擾動觀察法與變動步階式擾動觀察法大幅縮短,而有良好的暫態與穩態響應。Another purpose of this case is a method of maximum power tracking, whose rise time and stability time in transient performance are significantly shorter than those of the fixed-step perturbation observation method and the variable-step perturbation observation method of the conventional technology. Transient and steady state response.
本案之又一目的在於揭露一種最大功率追蹤方法,其平均追蹤電 能損失較習知技術之固定步階式擾動觀察法與變動步階式擾動觀察法大幅減少,而有良好的追蹤效率。Another purpose of this case is to disclose a maximum power tracking method, in which the average tracking power loss is significantly reduced compared with the fixed-step perturbation observation method and the variable-step perturbation observation method of the conventional technology, and has good tracking efficiency.
本案之再一目的在於揭露一種最大功率追蹤方法,其具有良好之 暫態及穩態響應,相較於固定步階式擾動觀察法與變動步階式擾動觀察法,追蹤速度分別提高了92.6%和87.5%,追蹤電能損失也分別減少了85.85%和76.7%。Another purpose of this case is to disclose a method of maximum power tracking, which has good transient and steady state response. Compared with the fixed-step perturbation observation method and the variable-step perturbation observation method, the tracking speed is increased by 92.6%, respectively. And 87.5%, the tracking power loss also decreased by 85.85% and 76.7%, respectively.
為達前述目的,一種最大功率追蹤方法乃被提出,其係利用一控 制電路實現,該最大功率追蹤方法包括以下步驟:量測一太陽能發電系統之一初始操作點之輸出電流值及輸出電壓值以獲得(I 1,V 1); To achieve the foregoing object, a maximum power tracking method is proposed, which is implemented by a control circuit. The maximum power tracking method includes the following steps: measuring the output current value and output voltage value of an initial operating point of a solar power generation system To obtain (I 1 , V 1 );
對一隨機猜測之估測照度值G guess 進行一簡化型估測法運算以獲 得一目前照度值 G,該簡化型估測法運算包括: Perform a simplified estimation operation on the estimated illumination value G guess of a random guess to obtain a current illumination value G. The simplified estimation operation includes:
,及 ,and
G= G guess + | I o - I 1 |/ I sc G= G guess + | I o - I 1 | / I sc
其中,Io係一估測的輸出電流值,Isc 、Is、 q、 k、n及T為常 數;Among them, Io is an estimated output current value, and Isc, Is, q, k, n, and T are constants;
依所述目前照度值G計算一最大功率點電壓值Vmpp,其中, ;以及依該最大功率點電壓值Vmpp進行一α因子擾動觀察法運算以決定一電壓命令,該α因子擾動觀察法運算包括: Calculate a maximum power point voltage value Vmpp according to the current illumination value G, where: ; And performing an alpha factor disturbance observation method operation to determine a voltage command according to the maximum power point voltage value Vmpp, the alpha factor disturbance observation method operation includes:
, ,
P(n-2) < P(n-1) 且 P(n) < P(n-1), P (n-2) < P (n-1) and P (n) < P (n-1),
其中,ΔV pv (n)為目前之電壓擾動量,Δ V pv (n-1)為前一次之電壓 擾動量,α為小於1之常數以降低穩態振盪, P(n)為目前功率值, P(n-1) 為前一次取樣之功率值, P(n-2)為前兩次取樣之功率值。 Among them, ΔV pv (n) is the current voltage disturbance amount, Δ V pv (n-1) is the previous voltage disturbance amount, α is a constant less than 1 to reduce steady state oscillation, and P (n) is the current power value , P (n-1) is the power value of the previous sampling, and P (n-2) is the power value of the previous two samplings.
在一實施例中,其進一步包括一功率變化閥值判斷步驟,以在一 功率變化量大於一預設功率變化閥值時重新進行該簡化型估測法運算以獲得一新的所述估測照度值 G guess 。 In an embodiment, it further includes a power change threshold judgment step to re-perform the simplified estimation method operation to obtain a new estimation when a power change amount is greater than a preset power change threshold. Illuminance value G guess .
在一實施例中,該預設功率變化閥值為額定功率之5%。In one embodiment, the preset power change threshold is 5% of the rated power.
在一實施例中,該控制電路包括:一升壓轉換器,具有一輸入端、 一控制端及一輸出端,該輸入端係用以與一太陽能電池系統耦接,該控制端係用以接收一脈衝寬度調變信號,且該輸出端係用以與一負載耦接;以及一微控制器,用以產生該電壓命令及依該電壓命令提供該脈衝寬度調變信號。In one embodiment, the control circuit includes: a boost converter having an input terminal, a control terminal, and an output terminal, the input terminal is used for coupling with a solar cell system, and the control terminal is used for A pulse width modulation signal is received, and the output terminal is used for coupling with a load; and a microcontroller is used to generate the voltage command and provide the pulse width modulation signal according to the voltage command.
在一實施例中,該微控制器具有一數位訊號處理器,用以對該目 前電壓及該目前電流分別進行一類比至數位轉換運算及一數位濾波運算,及依該電壓命令執行一比例-積分控制運算及一脈衝寬度調變運算以輸出該脈衝寬度調變信號。In one embodiment, the microcontroller has a digital signal processor for performing an analog-to-digital conversion operation and a digital filtering operation on the current voltage and the current, respectively, and performing a proportional-integral operation according to the voltage command. A control operation and a pulse width modulation operation are performed to output the pulse width modulation signal.
為使 貴審查委員能進一步瞭解本案之結構、特徵及其目的,茲 附以圖式及較佳具體實施例之詳細說明如後。In order to enable your review committee to better understand the structure, characteristics and purpose of this case, the drawings and detailed description of the preferred embodiments are attached as follows.
請參照圖1,其繪示本案之最大功率追蹤方法之一實施例步驟流 程圖。Please refer to FIG. 1, which shows a flowchart of steps in an embodiment of the maximum power tracking method in this case.
如圖1所示,本案之最大功率追蹤方法,其係利用一控制電路實 現,該最大功率追蹤方法包括以下步驟:量測一太陽能發電系統之一初始操作點之輸出電流值及輸出電壓值以獲得(I 1,V 1);(步驟a);對一隨機猜測之估測照度值 G guess 進行一簡化型估測法運算以獲得一目前照度值 G,該簡化型估測法運算包括: As shown in Figure 1, the maximum power tracking method in this case is implemented using a control circuit. The maximum power tracking method includes the following steps: measuring the output current value and output voltage value of an initial operating point of a solar power system Obtain (I 1 , V 1 ); (step a); perform a simplified estimation operation on the estimated illumination value G guess of a random guess to obtain a current illumination value G , the simplified estimation operation includes:
,及 ,and
G= G guess + | I o - I 1 |/ I sc G= G guess + | I o - I 1 | / I sc
其中,Io係一估測的輸出電流值,Isc 、Is、 q、 k、n及T為常 數;(步驟b);依所述目前照度值G計算一最大功率點電壓值Vmpp,其中,Among them, Io is an estimated output current value, and Isc, Is, q, k, n, and T are constants; (step b); calculating a maximum power point voltage value Vmpp according to the current illumination value G, where:
;以及 ;as well as
依該最大功率點電壓值 V mpp進行一α因子擾動觀察法運算以決 定一電壓命令,該α因子擾動觀察法運算包括: Perform an alpha factor disturbance observation method operation to determine a voltage command according to the maximum power point voltage value V mpp . The alpha factor disturbance observation method operation includes:
, ,
P(n-2) < P(n-1) 且 P(n) < P(n-1), P (n-2) < P (n-1) and P (n) < P (n-1),
其中,ΔV pv (n)為目前之電壓擾動量,Δ V pv (n-1)為前一次之電壓 擾動量,α為小於1之常數以降低穩態振盪, P(n)為目前功率值, P(n-1) 為前一次取樣之功率值, P(n-2)為前兩次取樣之功率值。 Among them, ΔV pv (n) is the current voltage disturbance amount, Δ V pv (n-1) is the previous voltage disturbance amount, α is a constant less than 1 to reduce steady state oscillation, and P (n) is the current power value , P (n-1) is the power value of the previous sampling, and P (n-2) is the power value of the previous two samplings.
請參照圖2,其繪示本發明之最大功率追蹤方法之另一實施例步 驟流程圖。Please refer to FIG. 2, which illustrates a flowchart of another embodiment of the maximum power tracking method according to the present invention.
如圖2所示,其進一步包括一功率變化閥值判斷步驟,以在一功 率變化量大於一預設功率變化閥值時重新進行該簡化型估測法運算以獲得一新的所述估測照度值 G guess 。 As shown in FIG. 2, it further includes a power change threshold judgment step to re-perform the simplified estimation method operation when a power change amount is greater than a preset power change threshold to obtain a new estimation. Illuminance value G guess .
其中,該預設功率變化閥值例如但不限為額定功率之5%。The preset power change threshold is, for example, but not limited to, 5% of the rated power.
以下將針對本案的原理進行說明:The following will explain the principle of this case:
太陽能電池電氣特性:Electrical characteristics of solar cells:
請參照圖3,其繪示太陽能電池之單二極體等效電路圖。Please refer to FIG. 3, which shows a single diode equivalent circuit diagram of a solar cell.
如圖所示,太陽能電池之電氣特性為一非線性電源,且不允許逆 向電流,其電壓與電流呈現一指數曲線關係,因此當太陽能電池輸出電壓變動時,其輸出電流也會隨之變動。依據等效電路可得知太陽能電池輸出電壓與電流之關係式如方程式(1)所示。As shown in the figure, the electrical characteristics of a solar cell are a non-linear power source, and no reverse current is allowed. Its voltage and current exhibit an exponential relationship. Therefore, when the output voltage of a solar cell changes, its output current also changes accordingly. According to the equivalent circuit, it can be known that the relationship between the output voltage and the current of the solar cell is shown in equation (1).
(1) (1)
其中,I o為太陽能電池之輸出電流、I g為光電轉換電流、I S為二極 體逆向飽和電流、q為載子電荷量(1.602´10 -19C)、R S為等效串聯電阻、V o為太陽能電池之輸出電壓、n為介電常數(1~2之間) 、k為波茲曼常數(1.38065´10 -23J/ oK)、T為絕對溫度值、R P為等效並聯電阻。 Among them, I o is the output current of the solar cell, I g is the photoelectric conversion current, I S is the reverse saturation current of the diode, q is the carrier charge amount (1.602´10 -19 C), and R S is the equivalent series resistance , V o is the output voltage of the solar cell, n is the dielectric constant (between 1 and 2), k is the Boltzmann constant (1.38065´10 -23 J / o K), T is the absolute temperature value, and R P is Equivalent parallel resistance.
而光電轉換電流I g與照度值關係式如方程式(2)所示。 The relationship between the photoelectric conversion current I g and the illuminance value is shown in equation (2).
(2) (2)
其中,G為照度值,單位為W/m 2,I SC為太陽能電池之短路電流。 Among them, G is the illuminance value, the unit is W / m 2 , and I SC is the short-circuit current of the solar cell.
由方程式(2)得知,當照度值G上升時,半導體因為照射之光能 量增加使得輸出之電能量隨增加,太陽能電池之光電轉換電流I g亦隨之增加。 一般而言,由於太陽能電池並聯電阻之值遠大於串聯電阻之值,可將方程式(1)化簡成方程式(3)。 It is known from equation (2) that when the illuminance value G rises, the output electric energy of the semiconductor increases with the increase of the light energy of the semiconductor, and the photoelectric conversion current I g of the solar cell also increases accordingly. In general, since the value of the parallel resistance of the solar cell is much larger than the value of the series resistance, equation (1) can be simplified into equation (3).
(3) (3)
由方程式(3)得知,太陽能電池之輸出電流I o幾乎與光電轉換電流 I g成正比,因此照度值G增加時,太陽能電池輸出電流I o亦會隨之增加。 It is known from equation (3) that the output current I o of the solar cell is almost directly proportional to the photoelectric conversion current I g . Therefore, when the illumination value G increases, the output current I o of the solar cell also increases.
為了觀察照度值與環境溫度值改變時對太陽能電池輸出特性曲 線之影響,可將方程式(3)改寫成方程式(4)。In order to observe the influence on the output characteristic curve of the solar cell when the illuminance value and the ambient temperature value are changed, the equation (3) can be rewritten into the equation (4).
(4) (4)
由方程式(4) 得知,因存在自然對數關係,故太陽能電池輸出電 壓V o於照度值G上升時只有些微變化。 It is known from equation (4) that due to the natural logarithmic relationship, the output voltage V o of the solar cell changes only slightly when the illumination value G rises.
請一併參照圖4a及4b,其中圖4a其繪示太陽能電池在不同照度 值下電流-電壓曲線;圖4b其繪示太陽能電池在不同照度值下功率-電壓曲線。Please refer to FIGS. 4a and 4b together, wherein FIG. 4a shows the current-voltage curves of the solar cell under different illumination values; and FIG. 4b shows the power-voltage curves of the solar cell under different illumination values.
其中,環境溫度值係固定於25°C,不同照度值分別為200W/m 2、 400W/m 2、600W/m 2、800W/m 2及1000W/m 2,如圖所示,這五種照度值係使用方程式(3)運算後繪製之五條太陽能電池輸出曲線,所述特性曲線會隨照度值變化而改變。 Among them, the ambient temperature value is fixed at 25 ° C, and the different illuminance values are 200W / m 2 , 400W / m 2 , 600W / m 2 , 800W / m 2 and 1000W / m 2 , as shown in the figure. The illuminance values are the five solar cell output curves drawn after the operation of equation (3), and the characteristic curves will change as the illuminance values change.
請一併參照圖5a及5b,其中圖5a其繪示太陽能電池在不同溫度 值下電流-電壓曲線;圖5b其繪示太陽能電池在不同溫度值下功率-電壓曲線。Please refer to Figs. 5a and 5b together. Fig. 5a shows the current-voltage curves of the solar cell at different temperature values; and Fig. 5b shows the power-voltage curves of the solar cell at different temperature values.
如圖所示,太陽能電池輸出特性曲線也會受到環境溫度值影響, 由方程式(3)得知,當環境溫度值上升時,等效二極體電流減少使太陽能電池輸出電流I o略為上升;且由方程式(4)得知,環境溫度值與太陽能電池輸出電壓V o成正比關係,但太陽能電池輸出電流I o亦會隨溫度值上升而隨之上升,且其所受影響遠大於輸出電壓V o,因此環境溫度值對太陽能電池輸出電壓影響V o不大,反而等效串聯電阻跨壓衰減量因輸出電流I o增加而隨之增加,使太陽能電池之輸出電壓V o造成明顯下降,其輸出功率也下降。 As shown in the figure, the output characteristic curve of the solar cell is also affected by the ambient temperature value. According to equation (3), when the ambient temperature value increases, the equivalent diode current decreases and the solar cell output current I o slightly increases; And according to equation (4), the ambient temperature value is proportional to the output voltage V o of the solar cell, but the output current I o of the solar cell will also increase with the temperature value, and it will be affected much more than the output voltage. V o , so the ambient temperature value has little effect on the solar cell output voltage V o , but the equivalent series resistance across-voltage attenuation increases with the output current I o , which causes the solar cell output voltage V o to drop significantly. Its output power also decreases.
本案所採之太陽能最大功率追蹤系統硬體架構:The hardware architecture of the solar maximum power tracking system adopted in this case:
請參照圖6,其繪示本案所採之控制系統架構示意圖。Please refer to FIG. 6, which shows a schematic diagram of the control system architecture adopted in this case.
如圖6所示,本案所採之控制系統架構包含太陽能電池系統 100、升壓式轉換器200及微控制器300。As shown in FIG. 6, the control system architecture adopted in this case includes a solar cell system 100, a boost converter 200, and a microcontroller 300.
該升壓轉換器200具有一輸入端、一控制端及一輸出端,該輸入 端係用以與該太陽能電池系統100耦接,該控制端係用以接收一脈衝寬度調變信號,且該輸出端係用以與一負載400耦接。The boost converter 200 has an input terminal, a control terminal, and an output terminal. The input terminal is used for coupling with the solar cell system 100. The control terminal is used for receiving a pulse width modulation signal. The output terminal is used for coupling with a load 400.
該微控制器300具有一數位訊號處理器用以對太陽能電池系統 100輸出之電壓及電流分別進行一取樣、一類比至數位轉換運算及一數位濾波運算,再進行最大功率追蹤法之運算進而產生一電壓命令,該電壓命令經由一比例-積分控制運算及一脈衝寬度調變運算產生一責任週期用以控制該升壓式轉換器200達到最大功率追蹤之目的。The micro-controller 300 has a digital signal processor for sampling, voltage-analog-to-digital conversion, and digital-filtering operations on the voltage and current output by the solar cell system 100, and then performing the maximum power tracking method to generate a The voltage command generates a duty cycle through a proportional-integral control operation and a pulse width modulation operation to control the boost converter 200 to achieve the purpose of maximum power tracking.
其中,由於習知的太陽能電池系統100的輸出電壓普遍過低,該 升壓式轉換器200係用以提升該太陽能電池系統100之輸出電壓,該升壓式轉換器200例如但不限為一升壓型直流-直流轉換器;該微控制器300例如但不限為採用一低成本的數位訊號處理器來實現。Among them, since the output voltage of the conventional solar battery system 100 is generally too low, the boost converter 200 is used to boost the output voltage of the solar battery system 100. The boost converter 200 is, for example, but not limited to Step-up DC-DC converter; the microcontroller 300 is implemented by, for example, but not limited to, a low-cost digital signal processor.
本案所提出之最大功率追蹤技術係以兩階段式為基礎:The maximum power tracking technology proposed in this case is based on a two-stage approach:
第一階段係利用簡化型估測法推估出太陽能電池之目前照度,計 算於此照度下之最大功率點電壓並將操作點移動至此電壓,第二階段則採用α因子擾動觀察法將操作點穩定控制在最大功率點上,以達到快速最大功率追蹤之目的。The first stage is to use the simplified estimation method to estimate the current illuminance of the solar cell, calculate the maximum power point voltage under this illuminance and move the operating point to this voltage, and the second stage uses the α factor disturbance observation method to move the operating point Stable control at the maximum power point to achieve the purpose of fast maximum power tracking.
許多文獻提及太陽能電池之狀態估測(State Estimation)法,其基本 原理係觀察系統之已知資訊來估測其他未知資訊,最廣泛使用之方法為加權最小平方法(Weighted Least Square, WLS) ,此數學模型係依據系統量測值及狀態變數間之數值關係來進行狀態估測,因此能精準地估測出所需系統資訊。Many documents mention the State Estimation method of solar cells. The basic principle is to observe the known information of the system to estimate other unknown information. The most widely used method is the Weighted Least Square (WLS) method. This mathematical model performs state estimation based on the numerical relationship between system measurement values and state variables, so it can accurately estimate the required system information.
若要利用狀態估測法得到太陽能電池在目前環境下之照度與溫 度,實際估測時需量測兩組太陽能電池之操作電壓及電流,且容易因參數不準確或受到外在雜訊干擾,造成估測出之照度與溫度產生誤差。此外,為了降低誤差量,計算時需利用疊代方式使誤差量收斂,唯此法會大幅增加運算複雜度,使得不易使用具有數位訊號處理器之微控制器來實現。此外,模型參數誤差會使估測不易甚至無法收斂,故本案提出簡化型估測法來降低運算量,並避免無法收斂之問題。To use the state estimation method to obtain the solar cell's illuminance and temperature under the current environment, the actual operation needs to measure the operating voltage and current of the two sets of solar cells, and it is easy to be interfered by inaccurate parameters or external noise. Causes an error in the estimated illuminance and temperature. In addition, in order to reduce the amount of error, iterative methods need to be used to converge the amount of error during the calculation. However, this method will greatly increase the computational complexity, making it difficult to use a microcontroller with a digital signal processor to implement. In addition, model parameter errors can make estimation difficult or even impossible to converge. Therefore, a simplified estimation method is proposed in this case to reduce the amount of calculation and avoid the problem of inconsistency.
簡化型估測法之原理:Principle of simplified estimation method:
首先於第一次估測照度過程中假設環境溫度皆保持不變,接著系 統僅需量測一組太陽能電池之電壓及電流,將方程式(2)代入方程式(3),並為減少微控制器之運算量,忽略等效串聯電阻R S及並聯電阻 R P ,所得之太陽能電池輸出電流與電壓關係式,如方程式(5)所示 First, it is assumed that the ambient temperature remains the same during the first estimation of the illuminance. Then the system only needs to measure the voltage and current of a group of solar cells, and substitute equation (2) into equation (3) to reduce the microcontroller. The amount of calculation, ignoring the equivalent series resistance R S and the parallel resistance R P , the relationship between the output current and voltage of the solar cell, as shown in equation (5)
(5) (5)
其中, I o 為太陽能電池之輸出電流、 G為照度值、 I SC 為太陽能電 池之短路電流、 I S 為二極體逆向飽和電流、 q為載子電荷量(1.602´10 -19C)、V o為太陽能電池之輸出電壓、 n為介電常數(1~2之間) 、 k為波茲曼常數(1.38065´10 -23J/ oK)、 T為絕對溫度值。 Among them, I o is the output current of the solar cell, G is the illuminance value, I SC is the short-circuit current of the solar cell, I S is the reverse saturation current of the diode, q is the carrier charge amount (1.602´10 -19 C), V o is the output voltage of the solar cell, n is the dielectric constant (between 1 and 2), k is the Boltzmann constant (1.38065´10 -23 J / o K), and T is the absolute temperature value.
接著隨機猜測太陽能電池之目前照度,代入方程式(5)得到該目 前照度下太陽能電池之輸出電流值,並與實際量測之輸出電流值相減,再將兩者之差值除以太陽能電池之短路電流 I sc ,即為實際照度與猜測照度差,藉此達到估測太陽能電池目前照度之目的。利用此法之必要條件為第一次取樣之量測點需在太陽能電池輸出功率對電壓特性曲線之左半邊。 Then randomly guess the current illuminance of the solar cell, substitute equation (5) to get the output current value of the solar cell under the current illuminance, subtract it from the actual measured output current value, and then divide the difference between the two by the solar cell. The short-circuit current I sc is the difference between the actual illuminance and the estimated illuminance, thereby achieving the purpose of estimating the current illuminance of the solar cell. The necessary condition for using this method is that the measurement point of the first sampling should be on the left half of the solar cell output power vs. voltage characteristic curve.
請參照圖7,其繪示在不同電壓與溫度下之照度估測誤差示意 圖。Please refer to FIG. 7, which is a schematic diagram showing the error of illumination estimation under different voltages and temperatures.
如圖所示,當量測點位於電壓10V以下時溫度變化對估測照度 之影響不大,其誤差量皆小於5´10 -4,因此能估測出較準確之照度值,而實際溫度則需在操作點穩定於最大功率時計算。 As shown in the figure, when the measurement point is below the voltage of 10V, the temperature change has little effect on the estimated illuminance, and the amount of error is less than 5´10 -4 . Therefore, the more accurate illuminance value can be estimated, and the actual temperature It needs to be calculated when the operating point is stable at the maximum power.
請一併參照圖4b,如圖所示在不同照度下太陽能電池輸出功率- 電壓特性曲線都不相同,且其最大功率點電壓大小也不相同。Please refer to FIG. 4b together. As shown in the figure, the output power-voltage characteristics of the solar cell under different illumination levels are different, and the maximum power point voltage is also different.
請一併參照圖8a及8b,其中圖8a其繪示在照度100W/m 2至 1000W/m 2不同照度之輸出功率電壓曲線,圖8b其繪示照度值與最大功率點電壓之擬合曲線。 Please refer to FIGS. 8a and 8b together, where FIG. 8a shows output power voltage curves at different illuminances from 100W / m 2 to 1000W / m 2 , and FIG. 8b shows a fitting curve between the illuminance value and the maximum power point voltage .
為找出最大功率點電壓與照度間之關係,在此以模擬方式畫出 100W/m 2至1000W/m 2不同照度,每隔100W/m 2之輸出功率-電壓曲線圖,並標示出各照度下最大功率點位置。 In order to find out the relationship between the maximum power point voltage and the illuminance, the output power-voltage curve graphs with different illuminances of 100W / m 2 to 1000W / m 2 are plotted every 100W / m 2 in an analog manner, and each Position of the maximum power point under illumination.
如圖8a所示,因為在不同照度下之最大功率點電壓位置皆不相 同,在此利用曲線擬合(Curve Fitting)法以照度值G作為自變數,最大功率點電壓V mpp作為應變數來畫出G-Vmax曲線。 As shown in Figure 8a, because the position of the maximum power point voltage is different under different illumination, the curve fitting method is used here to take the illumination value G as the independent variable, and the maximum power point voltage V mpp as the strain number. Draw the G-Vmax curve.
該G-Vmax曲線係利用MATLAB所提供之polyfit功能以擬合出 一一元三次多項式,如方程式(6)所示。The G-Vmax curve uses the polyfit function provided by MATLAB to fit a one-variable cubic polynomial, as shown in equation (6).
(6) (6)
其中, G為照度值,單位為W/m 2,V mpp為最大功率點電壓值。 Among them, G is the illuminance value, the unit is W / m 2 , and V mpp is the maximum power point voltage value.
如圖8b所示,擬合曲線可看出方程式(6)與實際最大功率點電壓 十分接近,因此當估測出照度值時,即可代入方程式(6)以得到在此照度值下之最大功率點電壓值,並將系統電壓命令操作點移至此點。As shown in Figure 8b, the fitting curve shows that equation (6) is very close to the actual maximum power point voltage. Therefore, when the illumination value is estimated, it can be substituted into equation (6) to obtain the maximum value under this illumination value. Power point voltage value, and move the system voltage command operating point to this point.
a 因子擾動觀察法 之原理: The principle of a factor perturbation observation method :
為了避免固定步階式擾動觀察法在最大功率點附近來回振盪,需 採用變動步階擾動觀察法來改善,不少文獻提出各式變動步階擾動觀察法,唯因牽涉之參數較多且運算較複雜。In order to avoid the fixed-step perturbation observation method to oscillate back and forth near the maximum power point, the variable-step perturbation observation method needs to be used to improve it. Many literatures have proposed various variable-step perturbation observation methods. More complicated.
本案基於變動步階擾動觀察法之精神,採用a因子擾動觀察法, 關係式如方程式(7)所示。This case is based on the spirit of the variable step perturbation observation method, using the a-factor perturbation observation method, and the relationship is shown in equation (7).
(7) (7)
其中,Δ V pv ( n)為目前之電壓擾動量,Δ V pv ( n-1)為前一次之電壓 擾動量, α為所設定之a因子,a因子需小於1以縮小電壓擾動量來降低穩態振盪的問題。 Among them, Δ V pv ( n ) is the current voltage disturbance amount, Δ V pv ( n -1) is the previous voltage disturbance amount, α is a set a factor, and the a factor needs to be less than 1 to reduce the voltage disturbance amount. Reduce the problem of steady state oscillations.
方程式(7) 相較於其他方法較簡單以確保系統響應快速,唯此法 需滿足條件方程式(8)與條件方程式(9),如下所示。Equation (7) is simpler than other methods to ensure fast system response. However, this method needs to satisfy conditional equations (8) and (9), as shown below.
(8) (8)
(9) (9)
其中上述兩個條件式之參數定義分別為 P(n) 為目前之功率值, P(n-1) 為前一次取樣之功率值, P(n-2) 為前兩次取樣之功率值。 The parameters of the above two conditional expressions are defined as P (n) is the current power value, P (n-1) is the power value of the previous sampling, and P (n-2) is the power value of the previous two samplings.
請一併參照圖9a及9b,其中圖9a其繪示追蹤路徑係由P-V曲線 之左半平面跨越最大功率點至右半平面,圖9b其繪示追蹤路徑係由P-V曲線之右半平面跨越最大功率點至左半平面。Please refer to FIGS. 9a and 9b together, where FIG. 9a shows that the tracking path crosses the maximum power point from the left half plane of the PV curve to the right half plane, and FIG. 9b shows that the tracking path crosses the right half plane of the PV curve Maximum power point to the left half plane.
如圖所示,上述兩狀況皆跨越最大功率點,當操作點經過最大功 率點後,代表目前操作點位於最大功率點附近,為消除固定步階式擾動觀察法在最大功率點附近來回振盪之現象,本案於通過最大功率點後將電壓擾動量乘上小於1之a因子來縮小擾動之程度,達到提升穩態追蹤精確度之目的。As shown in the figure, both of the above conditions cross the maximum power point. When the operating point passes the maximum power point, it means that the current operating point is located near the maximum power point. In order to eliminate the fixed-step disturbance observation method, it oscillates around the maximum power point. In this case, after the maximum power point is passed, the voltage disturbance is multiplied by a factor less than 1 to reduce the degree of disturbance to achieve the purpose of improving the accuracy of steady-state tracking.
其中,a因子擾動觀察法係先經由微控制器取樣太陽能電池電壓 與電流值,並計算其功率值大小,接著判斷條件方程式(8)與條件方程式(9)是否成立,決定是否須改變電壓擾動量之大小,最後利用擾動觀察法的基本原理與目前操作點位置計算所需電壓變動量,並將目前值覆蓋於先前值,上述流程經過反覆運作,即可達到最大功率追蹤之目的,該部分為習知技術,擬不再贅述。Among them, the a-factor perturbation observation method first samples the solar cell voltage and current value through a microcontroller and calculates its power value. Then it determines whether conditional equation (8) and conditional equation (9) are true and determines whether the voltage perturbation must be changed. The size of the amount is finally calculated by using the basic principle of the perturbation observation method and the current operating point position to calculate the required voltage change amount and covering the current value with the previous value. The above process can be repeated to achieve the purpose of maximum power tracking. This part For the sake of knowing the technology, I will not repeat them here.
此方式不管是由短路電流端或是開路電壓端開始追蹤皆可達成,未符合條件方程式(8)與條件方程式(9)時表示目前操作點離最大功率點尚有一段距離,因此可使用最大電壓擾動量以縮短暫態追蹤時間。由上述可得知a因子擾動觀察法有效保留快速暫態響應與高穩態追蹤精確度之優點,進而使系統產生穩定且高功率之輸出,獲得最佳的結果。This method can be achieved whether the tracking is started from the short-circuit current terminal or the open-circuit voltage terminal. When the conditional equation (8) and the conditional equation (9) are not met, it means that the current operating point is still a distance from the maximum power point, so the maximum value can be used. Voltage disturbance to reduce transient tracking time. From the above, it can be known that the a-factor perturbation observation method effectively retains the advantages of fast transient response and high steady-state tracking accuracy, thereby enabling the system to produce a stable and high-power output and obtain the best results.
請一併參照圖10a及10b,其中圖10a其繪示本案之最大功率追 蹤方法之追蹤示意圖,圖10b其繪示本案之最大功率追蹤方法於照度與溫度改變時之追蹤示意圖。Please refer to Figs. 10a and 10b together. Fig. 10a shows the tracking diagram of the maximum power tracking method in this case, and Fig. 10b shows the tracking diagram of the maximum power tracking method in this case when the illuminance and temperature change.
如圖10a所示,本案係先量測一太陽能發電系統之一初始操作點 之輸出電流值及輸出電壓值以獲得(I 1,V 1),並將取樣之操作點設定於太陽能特性曲線的左半邊(圖中V 1點),此時環境溫度的誤差對估測照度影響不大,接著隨機猜測一估測照度值 G guess ,並對該估測照度值 G guess 進行一簡化型估測法運算以獲得一目前照度值 G。 As shown in Figure 10a, this case is to first measure the output current value and output voltage value of an initial operating point of a solar power generation system to obtain (I 1 , V 1 ), and set the sampling operating point on the solar characteristic curve. The left half (point V 1 in the figure). At this time, the error of the ambient temperature has little effect on the estimated illuminance. Then, a random guess of the estimated illuminance value G guess is made , and a simplified type estimation of the estimated illuminance value G guess is performed. Normal operation to obtain a current illumination value G.
依所述目前照度值 G計算一最大功率點電壓值 V mpp ,並將操作點 移動至該此最大功率點電壓值 V mpp (圖中A點),依該最大功率點電壓值 V mpp進行一α因子擾動觀察法運算,此時操作點將於圖中A、B、C三點間進行收斂。 Calculate a maximum power point voltage value V mpp according to the current illuminance value G , and move the operating point to the maximum power point voltage value V mpp (point A in the figure), and perform a calculation based on the maximum power point voltage value V mpp . The α factor disturbs the observation method operation. At this time, the operating point will converge between the three points A, B, and C in the figure.
當操作點穩定於最大功率點時,判斷目前照度值 G是否有改變。 即當功率變化量大於某一預設功率變化閥值(例如但不限為額定功率之5%)時表示目前照度值 G改變,此時重新運算以獲得一目前照度值 G、一最大功率點電壓值 V mpp及後繼續之α因子擾動觀察法運算以決定一電壓命令(即圖中D點到F點)。 When the operating point is stable at the maximum power point, it is determined whether the current illumination value G has changed. That is, when the power change amount is greater than a preset power change threshold (for example, but not limited to 5% of the rated power), it means that the current illuminance value G is changed. At this time, the calculation is repeated to obtain a current illuminance value G and a maximum power point. The voltage value V mpp and the subsequent alpha factor perturbation observation method operation to determine a voltage command (ie, points D to F in the figure).
若目前照度值 G沒改變,則以當下操作點之輸出電壓 V O 、電流 I O 及目前照度值 G代入方程式(10)以求得一目前溫度值T。 If the current illuminance value G has not changed, the output voltage V O , current I O and the current illuminance value G at the current operating point are substituted into equation (10) to obtain a current temperature value T.
(10) (10)
所述目前溫度值T將用於下次照度改變時計算目前照度值 G,反 覆執行上述步驟即能達到本案之最大功率追蹤之目的。 The current temperature value T will be used to calculate the current illuminance value G when the illuminance changes next time. Repeatedly performing the above steps can achieve the purpose of maximum power tracking in this case.
如圖10b所示,假設系統照度初始值為1000W/m 2,經過一段時 間後下降為300W/m 2,最後則上升為700W/m 2,而系統溫度變化範圍為25°C至35°C。 10b, assuming the initial value of the illumination system of 1000W / m 2, over time decreased to 300W / m 2, and finally increased to 700W / m 2, and the system temperature ranges from 25 ° C to 35 ° C .
當時間為t 0時本案之最大功率追蹤方法會先隨機猜測一估測照 度值 G guess ,由於系統預設操作點位於太陽能特性曲線的左邊,此點之溫度對照度估測所造成的影響不大,因此即使預設溫度不等於實際溫度,本案之最大功率追蹤方法仍可估測出準確之目前照度值 G。 When the time is t 0 , the maximum power tracking method in this case will first randomly guess an estimated illuminance value G guess . Since the preset operating point of the system is located on the left side of the solar characteristic curve, the impact of temperature contrast estimation at this point will not affect Large, so even if the preset temperature is not equal to the actual temperature, the maximum power tracking method in this case can still estimate the accurate current illumination value G.
當時間為t 1時,本案之最大功率追蹤方法會依所述目前照度值 G計算一最大功率點電壓值 V mpp ,並在時間為t 2到t i之間進行一α因子擾動觀察法運算以使操作點穩定於最大功率點上。 When the time is t 1 , the maximum power tracking method in this case will calculate a maximum power point voltage value V mpp according to the current illuminance value G , and perform an alpha factor disturbance observation method operation between time t 2 and t i In order to stabilize the operating point at the maximum power point.
假設在t i時α因子擾動觀察法已進入穩態,本案之最大功率追 蹤方法便會在t i時間切換至溫度估測模式,若未偵測到目前照度值 G發生改變則會利用方程式(10)求得一目前溫度值T並予以記錄(如圖中t i至t j區間)。 When assuming t i α factor perturbation and observation method has entered the steady state, the maximum power point tracking method in this case will be switched to the temperature estimation mode in time t i, no detection current illuminance value G will be changed using the equation ( 10) Find a current temperature value T and record it (shown as t i to t j in the figure).
若目前照度值 G發生改變,本案之最大功率追蹤方法則會重新 運算以獲得一目前照度值 G、一最大功率點電壓值 V mpp及後續之α因子擾動觀察法運算以決定一電壓命令,並利用所記錄之目前溫度值T作為此一瞬間的溫度實際值(如圖中t j區間)。 If the current illuminance value G changes, the maximum power tracking method in this case will recalculate to obtain a current illuminance value G, a maximum power point voltage value V mpp, and subsequent alpha factor disturbance observation method operations to determine a voltage command, and Use the recorded current temperature value T as the actual temperature value at this moment (as shown in the interval tj in the figure).
由於系統溫度一般來說不會瞬間改變,因此此假設在實務系統上 應可成立。藉由反覆執行上述步驟便能達到本案之最大功率追蹤之目的。Since the system temperature generally does not change instantaneously, this assumption should be valid on a practical system. By repeatedly performing the above steps, the goal of maximum power tracking in this case can be achieved.
本案與The case with 習知技術之比較:Comparison of known technologies:
以下將針對本案提出的最大功率追蹤方法與習知技術之固定步 階式擾動觀察法以及變動步階式擾動觀察法進行比較,以驗證本案之可行性和性能改善。The maximum power tracking method proposed in this case is compared with the fixed-step perturbation observation method and the variable-step perturbation observation method of the conventional technology to verify the feasibility and performance improvement of the case.
本案在實際測試之輸入來源係使用AMETEK公司所推出之 TerraSAS ETS 600X8 D-PVE太陽能電池模擬機來模擬LDK Solar公司所推出型號為 LDK-85之太陽能電池,其電氣規格如表1所示。The input source for the actual test in this case was the TerraSAS ETS 600X8 D-PVE solar cell simulator introduced by AMETEK to simulate the solar cell model LDK-85 introduced by LDK Solar. The electrical specifications are shown in Table 1.
表1
而該太陽能電池模組經過7串1並後,其對應之實驗參數規格如 表2所示。After the solar cell module has passed through 7 series and 1 parallel, the corresponding experimental parameter specifications are shown in Table 2.
表2
其中,功率級電路為升壓式轉換器,控制級電路採用Microchip 公司所推出之dsPIC33FJ16GS502數位訊號微控制器為控制核心,來調控升壓式轉換器功率開關之責任週期以達到追蹤系統最大功率之目的,負載端則選用Chroma公司所推出之63108A電子式負載,並將其操作於定電壓模式穩壓至200V進行實際測試,量測波形部分採用Tektronix公司所推出之MSO2024示波器,並利用太陽能模擬機所提供之人機介面進行實驗數據紀錄。Among them, the power stage circuit is a step-up converter, and the control stage circuit uses the dsPIC33FJ16GS502 digital signal microcontroller introduced by Microchip as the control core to regulate the duty cycle of the step-up converter power switch to track the maximum power of the system. For the purpose, the load side uses the 63108A electronic load introduced by Chroma, and it is operated in a constant voltage mode and stabilized to 200V for actual testing. The measurement waveform part uses the MSO2024 oscilloscope introduced by Tektronix, and a solar simulator is used. The provided man-machine interface records the experimental data.
為了驗證本案之最大功率追蹤方法之正確性,本案實際完成一 600W之最大功率追蹤電路,除了用實驗結果驗證其可行性,並與習知技術之固定步階式擾動觀察法及變動式步階擾動觀察法進行比較,以突顯本案之新型太陽能最大功率追蹤方法之性能。In order to verify the correctness of the maximum power tracking method in this case, a 600W maximum power tracking circuit was actually completed in this case. In addition to verifying its feasibility by using experimental results, it also uses the fixed step perturbation observation method and variable step of the conventional technology. The perturbation observation method is compared to highlight the performance of the novel solar maximum power tracking method in this case.
實測時各方法均以0.2秒更新一次最大功率追蹤命令,其中習知 技術之固定步階式擾動觀察法及變動步階式擾動觀察法係測試在一般均勻照度(Standard Test Condition, STC)之情況,而本案之新型太陽能最大功率追蹤方法則增加了照度變化之測試。In the actual measurement, each method updates the maximum power tracking command once in 0.2 seconds. Among them, the fixed-step disturbance observation method and the variable-step disturbance observation method of the conventional technology test the condition of the standard uniform test condition (STC). , And the new solar maximum power tracking method in this case adds a test for illumination change.
(( 一One )) 習知技術之固定步階式擾動觀察法實測:Observation of fixed step perturbation observation method of conventional techniques:
請一併參照圖11a及11b,其中圖11a其繪示習知技術之固定步 階式擾動觀察法之追蹤電壓及電流之實測波形圖;圖11b其繪示習知技術之固定步階式擾動觀察法之追蹤功率之實測波形圖。Please refer to FIGS. 11a and 11b together, where FIG. 11a shows the measured waveforms of the tracking voltage and current of the fixed step perturbation observation method of the conventional technology; FIG. 11b shows the fixed step perturbation of the conventional technology Measured waveform of the tracking power of the observation method.
由於在相同系統規格下,固定步階式擾動觀察法在Δ V cmd = 4 V 時性能評估表現最佳,故將電壓變動之步階命令Δ V cmd 設定為4 V來進行實測。 Under the same system specifications, the fixed step perturbation observation method performs the best performance evaluation when Δ V cmd = 4 V, so the step command Δ V cmd for voltage fluctuation is set to 4 V for actual measurement.
如圖所示,在均勻照度1000 W/m 2及溫度為25˚C之情況下,實測 結果顯示習知技術之固定步階式擾動觀察法上升時間為5.4秒,穩定時間為6.6秒,穩態平均功率為580.52 W,穩態追蹤功率精確度為98.4 %,追蹤電能損失為8669.1 J,平均追蹤功率損失為173.38 W。 As shown in the figure, with a uniform illumination of 1000 W / m 2 and a temperature of 25˚C, the actual measurement results show that the fixed-step perturbation observation method of the conventional technique has a rise time of 5.4 seconds and a stabilization time of 6.6 seconds. The average state power is 580.52 W, the steady-state tracking power accuracy is 98.4%, the tracking power loss is 8669.1 J, and the average tracking power loss is 173.38 W.
(( 二)two) 習知技術之變動步階式擾動觀察法實測:Measured changes in the conventional technique:
請一併參照圖12a及12b,其中圖12a其繪示習知技術之變動步 階式擾動觀察法之追蹤電壓及電流之實測波形圖;圖12b其繪示習知技術之變動步階式擾動觀察法之追蹤功率之實測波形圖。Please refer to Figs. 12a and 12b together. Fig. 12a shows the measured waveforms of the tracking voltage and current of the step change perturbation observation method of the conventional technology; Fig. 12b shows the step change perturbations of the conventional technology. Measured waveform of the tracking power of the observation method.
由於在相同系統規格下,變動步階式擾動觀察法在比例因子M =1.4時性能評估表現最佳,故將M值設定為1.4來進行實測。Under the same system specifications, the variable-step disturbance observation method performs best when the scale factor M = 1.4, so the M value is set to 1.4 for actual measurement.
如圖所示,在均勻照度1000 W/m 2及測溫度為25˚C之情況下,實 測結果顯示習知技術之變動步階式擾動觀察法上升時間3.2秒,穩定時間為4.2秒,穩態平均功率為597.02 W,穩態追蹤功率精確度為99.84 %,追蹤電能損失為5259.5 J,平均追蹤功率損失為105.19 W。 As shown in the figure, under the condition of uniform illumination of 1000 W / m 2 and measured temperature of 25˚C, the actual measurement results show that the variation of the conventional technique is stepwise disturbance observation method with a rise time of 3.2 seconds and a settling time of 4.2 seconds. The average state power is 597.02 W, the steady-state tracking power accuracy is 99.84%, the tracking power loss is 5259.5 J, and the average tracking power loss is 105.19 W.
(三)本案之實測結果:(3) Actual measurement results in this case:
本案實測分為二部分,第一部分為均勻照度實測,第二部分為變 化照度實測。The actual measurement in this case is divided into two parts. The first part is the measurement of uniform illumination and the second part is the measurement of changing illumination.
請一併參照圖13a及13b,其中圖13a其繪示本案之均勻照度之 追蹤電壓及電流之實測波形圖;圖13b其繪示本案之均勻照度之追蹤功率之實測波形圖。Please refer to FIGS. 13a and 13b together. FIG. 13a shows the measured waveforms of the tracking voltage and current of the uniform illuminance in this case; and FIG. 13b shows the measured waveforms of the tracking power of the uniform illuminance in this case.
如圖所示,均勻照度實測部分,在均勻照度1000 W/m 2及測溫度 為25˚C之情況下,實測結果顯示本案之上升時間為0.4秒,穩定時間為1.4秒,穩態平均功率為597.66 W,穩態追蹤功率精確度為99.95 %,追蹤電能損失為1227.3 J,平均追蹤功率損失為24.54 W。 As shown in the figure, under the condition of uniform illuminance of 1000 W / m 2 and measured temperature of 25 ° C, the actual measurement results show that the rise time of this case is 0.4 seconds, the settling time is 1.4 seconds, and the steady-state average power It is 597.66 W, the steady-state tracking power accuracy is 99.95%, the tracking power loss is 1227.3 J, and the average tracking power loss is 24.54 W.
請一併參照圖14a及14b,其中圖14a其繪示本案之變化照度之 追蹤電壓及電流之實測波形圖;圖14b其繪示本案之變化照度之追蹤功率之實測波形圖。Please refer to Figs. 14a and 14b together, where Fig. 14a shows the measured waveforms of the tracking voltage and current with varying illuminance in this case; and Fig. 14b shows the measured waveforms of the tracking power with varying illuminance in this case.
如圖所示,變化照度實測部分,在照度變化從1000 W/m 2下降至 300 W/m 2最後再提升為700 W/m 2,而溫度變化從25˚C上升至35˚C最後再下降為30˚C之情況下,實測結果顯示照度在瞬間變化後,只需利用目前操作點與系統估測之溫度即可跳至目前最大功率點附近進行Alpha因子擾動觀察法。 As shown in the figure, the measured part of the illuminance changes, after the illuminance changes from 1000 W / m 2 to 300 W / m 2 and finally rises to 700 W / m 2 , and the temperature changes from 25˚C to 35˚C and finally In the case of a decrease of 30˚C, the actual measurement results show that after the instantaneous change in illumination, the current operating point and the temperature estimated by the system can be used to jump to the vicinity of the current maximum power point for the Alpha factor disturbance observation method.
請一併參照圖15a~15f,其中圖15a其繪示本案於1000 W/m 2照度 及31˚C溫度之變化追蹤表現圖;圖15b其繪示本案於1000 W/m 2照度及35˚C溫度之變化追蹤表現圖;圖15c其繪示本案於300 W/m 2照度及35˚C溫度之變化追蹤表現圖;圖15d其繪示本案於300 W/m 2照度及32˚C溫度之變化追蹤表現圖;圖15e其繪示本案於300 W/m 2照度及30˚C溫度之變化追蹤表現圖;圖15f其繪示本案於700 W/m 2照度及30˚C溫度之變化追蹤表現圖。 Please refer to FIGS. 15a to 15f together, where FIG. 15a shows the change tracking performance diagram of the case at 1000 W / m 2 illuminance and 31˚C temperature; FIG. 15b shows the case at 1000 W / m 2 illuminance and 35˚ track the performance of change of temperature C; Figure 15c illustrates a case in which 300 W / m 2, and illumination variations 35˚C track the performance of the temperature; Figure 15d illustrates a case in which 300 W / m 2 illumination and temperature 32˚C Figure 15e shows the change tracking performance of the case at 300 W / m 2 illuminance and 30 ; C temperature; Figure 15f shows the change of the case at 700 W / m 2 illuminance and 30˚C temperature Track performance graphs.
如圖所示,本案在各照度及溫度情況下之追蹤表現其穩態追蹤精 確度均高於99.58 %,其實驗結果與模擬結果大致相同,因此可驗證本案所提出之快速最大功率追蹤技術的可行性。As shown in the figure, the tracking performance of this case under various illuminance and temperature conditions has a steady-state tracking accuracy higher than 99.58%. The experimental results are roughly the same as the simulation results, so the fast maximum power tracking technology proposed in this case can be verified. feasibility.
(四) 比較與分析:(4) Comparison and analysis:
習知技術之固定步階式擾動觀察法之模擬與實測結果如表3所 示。Table 3 shows the simulation and measurement results of the fixed-step perturbation observation method of the conventional technique.
表3
習知技術之變動步階式擾動觀察法之模擬與實測結果如表4所 示。Table 4 shows the simulation and actual measurement results of the variation step of the conventional technique.
表4
本案之模擬與實測結果如表5所示。The simulation and actual measurement results in this case are shown in Table 5.
表5
由上述表中可看出所述最大功率追蹤技術之模擬與實測結果誤 差不大,故可驗證所提出的追蹤方法之正確性。It can be seen from the above table that the simulation and actual measurement results of the maximum power tracking technology are not too different, so the correctness of the proposed tracking method can be verified.
於實測結果中,可得知固定步階式擾動觀察法由於步階大小為固 定值而有無法同時滿足上升時間與穩態追蹤精確度之權衡問題,故固定步階式擾動觀察法之上升時間、穩定時間及穩態追蹤精確度等均劣於其他兩者;而變動步階式擾動觀察法雖能成功克服固定步階式擾動觀察法之權衡問題,但也衍生出比例因子M之設計問題,M值設計過大會導致系統不穩定,反之,M值設計過小也會造成暫態響應過慢之情況,且在不同照度下,其比例因子M之理想值也皆不相同,故變動步階式擾動觀察法須針對所採用不同的太陽能發電系統進行設計,比例因子M之理想值也只能適用特定太陽能電池曲線,增加設計困難度;而本案之最大功率追蹤方法可解決上述兩種方法之問題,雖然也只能適用特定曲線,但暫態及穩態表現良好,因此得到最佳之性能改善。From the actual measurement results, it can be known that the fixed stepped disturbance observation method cannot meet the trade-off problem of rise time and steady-state tracking accuracy at the same time because the step size is fixed. Therefore, the fixed stepped disturbance observation method has a rise time. , Stability time, and accuracy of steady-state tracking are inferior to the other two; while the variable-step perturbation observation method can successfully overcome the trade-off problem of the fixed-step perturbation observation method, it also generates the design problem of the scale factor M If the M value is too large, the system will be unstable. Conversely, if the M value is too small, the transient response will be too slow. The ideal value of the scale factor M is also different under different illumination levels, so the change step The perturbation observation method must be designed for different solar power generation systems. The ideal value of the scale factor M can only be applied to the specific solar cell curve, which increases the design difficulty; and the maximum power tracking method in this case can solve the above two methods. Although the problem can only be applied to specific curves, the transient and steady state performance is good, so the best performance improvement is obtained.
如表6所示,本案之上升時間比固定步階式擾動觀察法減少了5 秒,與變動步階式擾動觀察法相較減少了2.8秒,追蹤速度分別提高了92.6%和87.5%;穩定時間相較於固定步階式擾動觀察法減少了5.2秒,與變動步階式擾動觀察法相較減少了2.8秒。As shown in Table 6, the rise time in this case was reduced by 5 seconds compared to the fixed-step disturbance observation method, compared with the variable-step disturbance observation method by 2.8 seconds, and the tracking speed was increased by 92.6% and 87.5%, respectively; the stabilization time Compared with the fixed step perturbation observation method, it is reduced by 5.2 seconds, and compared with the variable step perturbation observation method, it is reduced by 2.8 seconds.
表6
如表7所示,在穩態部分,固定步階式擾動觀察法進入穩態後會 於最大功率點附近振盪,其穩態平均功率僅有580.52 W,穩態追蹤精確度為98.4 %;由於變動步階式擾動觀察法加入可變步階,在最大功率點不會發生振盪,故穩態追蹤精確度提升至99.84 %;本案之穩態追蹤精確度為99.95 %,具有最佳的穩態響應。As shown in Table 7, in the steady state part, the fixed-step perturbation observation method will oscillate near the maximum power point after entering the steady state. Its steady-state average power is only 580.52 W, and the steady-state tracking accuracy is 98.4%. The variable step type perturbation observation method adds a variable step, and no oscillation occurs at the maximum power point, so the steady-state tracking accuracy is increased to 99.84%; the steady-state tracking accuracy of this case is 99.95%, which has the best steady-state response.
表7
如表8所示,在追蹤電能損失部分,由於固定步階式擾動觀察法 其步階設計須考慮暫態及穩態響應表現之權衡問題,無法兼顧兩者表現,平均追蹤電能損失較多,而變動步階式擾動觀察法因有較好之暫態響應與穩態響應,故其平均追蹤電能損失與固定步階式擾動觀察法相比降低39.3 %;而本案具有良好之暫態及穩態響應,因此其平均追蹤電能損失為三種方法中最低,與固定步階式擾動觀察法相比減少85.85 %,與變動步階式擾動觀察法相比減少76.7 %,故整體性能表現最佳。As shown in Table 8, in the part of tracking power loss, because the step design of the fixed step disturbance observation method must consider the trade-off between transient and steady-state response performance, it is impossible to take into account both performances, and the average tracking power loss is more. The variable-step disturbance observation method has a better transient and steady-state response, so its average tracking power loss is reduced by 39.3% compared with the fixed-step disturbance observation method; and the case has good transient and steady-state. Response, so its average tracking power loss is the lowest of the three methods, which is 85.85% lower than the fixed-step perturbation observation method and 76.7% lower than the variable-step perturbation observation method, so the overall performance is the best.
表8
綜上所述,實驗結果證實與固定步階式擾動觀察法和變動式步階 擾動觀察法相比,本案的追蹤速度分別提高了92.6%和87.5%;此外,追蹤電能損失也分別減少了85.85%和76.7%。In summary, the experimental results confirm that compared with the fixed-step perturbation observation method and the variable-step perturbation observation method, the tracking speed in this case has been increased by 92.6% and 87.5%, respectively; in addition, the tracking power loss has also been reduced by 85.85% And 76.7%.
藉由前述所揭露的設計,本案乃具有以下的優點:With the design disclosed above, this case has the following advantages:
1.本案揭露的最大功率追蹤方法,其採用第一階段係利用簡化型 估測法推估出太陽能電池之目前照度,計算於此照度下之最大功率點電壓並將操作點移動至此電壓,第二階段則採用α因子擾動觀察法將操作點穩定控制在最大功率點上,以達到快速最大功率追蹤之目的。1. The maximum power tracking method disclosed in this case uses the first stage to use the simplified estimation method to estimate the current illuminance of the solar cell, calculate the maximum power point voltage under this illuminance and move the operating point to this voltage. In the second stage, the α-factor disturbance observation method is used to stably control the operating point at the maximum power point to achieve the purpose of fast maximum power tracking.
2.本案揭露的最大功率追蹤方法,其在暫態表現之上升時間及穩 定時間均較習知技術之固定步階式擾動觀察法與變動步階式擾動觀察法大幅縮短,而有良好的暫態響應。2. The maximum power tracking method disclosed in this case has a significantly shorter rise time and stable time in the transient performance than the fixed-step perturbation observation method and the variable-step perturbation observation method of the conventional technology. State response.
3.本案揭露的最大功率追蹤方法,其平均追蹤電能損失較習知技 術之固定步階式擾動觀察法與變動步階式擾動觀察法大幅減少,而有良好的追蹤效率。3. The maximum power tracking method disclosed in this case has an average tracking power loss that is significantly reduced compared to the fixed step perturbation observation method and variable step perturbation observation method of conventional technology, and has good tracking efficiency.
4.本案揭露的最大功率追蹤方法,其具有良好之暫態及穩態響 應,相較於固定步階式擾動觀察法與變動步階式擾動觀察法,追蹤速度分別提高了92.6%和87.5%,追蹤電能損失也分別減少了85.85%和76.7%。4. The maximum power tracking method disclosed in this case has good transient and steady-state response. Compared with the fixed-step perturbation observation method and the variable-step perturbation observation method, the tracking speed is increased by 92.6% and 87.5%, respectively. The tracking power loss also decreased by 85.85% and 76.7%, respectively.
本案所揭示者,乃較佳實施例,舉凡局部之變更或修飾而源於本 案之技術思想而為熟習該項技藝之人所易於推知者,俱不脫本案之專利權範疇。What is disclosed in this case is a preferred embodiment. For example, any local changes or modifications that are derived from the technical ideas of this case and are easily inferred by those who are familiar with the technology, do not depart from the scope of patent rights in this case.
綜上所陳,本案無論就目的、手段與功效,在在顯示其迥異於習 知技術,且其首先發明合於實用,亦在在符合發明之專利要件,懇請 貴審查委員明察,並祈早日賜予專利,俾嘉惠社會,實感德便。In summary, regardless of the purpose, method and effect, this case shows that it is very different from the conventional technology, and that its first invention is practical, and it is also in line with the patent requirements of the invention. Granting patents will benefit society and feel good.
100‧‧‧太陽能電池系統100‧‧‧solar battery system
200‧‧‧升壓式轉換器 200‧‧‧Boost Converter
300‧‧‧微控制器 300‧‧‧Microcontroller
400‧‧‧負載 400‧‧‧ load
步驟a‧‧‧量測一太陽能發電系統之一初始操作點之輸出電流值及輸出電壓值以獲得(I1,V1) 。Step a‧‧‧ measures the output current value and output voltage value of an initial operating point of a solar power generation system to obtain (I 1 , V 1 ).
步驟b‧‧‧對一隨機猜測之估測照度值Gguess 進行一簡化型估測法運算以獲得一目前照度值G。Step b‧‧‧ performs a simplified estimation operation on the estimated illuminance value G guess of a random guess to obtain a current illuminance value G.
步驟c‧‧‧依所述目前照度值G計算一最大功率點電壓值Vmpp 。Step c‧‧‧ calculates a maximum power point voltage value V mpp according to the current illumination value G.
步驟d‧‧‧依該最大功率點電壓值V mpp進行一α因子擾動觀察法運算以決定一電壓命令。Step d‧‧‧ performs an alpha factor disturbance observation method operation according to the maximum power point voltage value V mpp to determine a voltage command.
步驟e‧‧‧依該最大功率點電壓值V mpp進行一α因子擾動觀察法運算以決定一電壓命令。Step e‧‧‧ performs an alpha factor disturbance observation method operation according to the maximum power point voltage value V mpp to determine a voltage command.
圖1繪示本案之最大功率追蹤方法之一實施例步驟流程圖。 圖2繪示本案之最大功率追蹤方法之另一實施例步驟流程圖。 圖3繪示太陽能電池之單二極體等效電路圖。 圖4a繪示太陽能電池在不同照度值下電流-電壓曲線; 圖4b繪示太陽能電池在不同照度值下功率-電壓曲線。 圖5a繪示太陽能電池在不同溫度值下電流-電壓曲線; 圖5b繪示太陽能電池在不同溫度值下功率-電壓曲線。 圖6繪示本案所採之控制系統架構示意圖。 圖7繪示在不同電壓與溫度下之照度估測誤差示意圖。 圖8a繪示在照度100W/m 2至1000W/m 2不同照度之輸出功率電壓曲線。 圖8b繪示照度值與最大功率點電壓之擬合曲線。 圖9a繪示追蹤路徑係由P-V曲線之左半平面跨越最大功率點至右半平面。 圖9b繪示追蹤路徑係由P-V曲線之右半平面跨越最大功率點至左半平面。 圖10a繪示本案之最大功率追蹤方法之追蹤示意圖。 圖10b繪示本案之最大功率追蹤方法於照度與溫度改變時之追蹤示意圖。 圖11a繪示習知技術之固定步階式擾動觀察法之追蹤電壓及電流之實測波形圖。 圖11b繪示習知技術之固定步階式擾動觀察法之追蹤功率之實測波形圖。 圖12a繪示習知技術之變動步階式擾動觀察法之追蹤電壓及電流之實測波形圖。 圖12b繪示習知技術之變動步階式擾動觀察法之追蹤功率之實測波形圖。 圖13a繪示本案之均勻照度之追蹤電壓及電流之實測波形圖。 圖13b繪示本案之均勻照度之追蹤功率之實測波形圖。 圖14a繪示本案之變化照度之追蹤電壓及電流之實測波形圖。 圖14b繪示本案之變化照度之追蹤功率之實測波形圖。 圖15a繪示本案於1000 W/m 2照度及31˚C溫度之變化追蹤表現圖。 圖15b繪示本案於1000 W/m 2照度及35˚C溫度之變化追蹤表現圖。 圖15c繪示本案於300 W/m 2照度及35˚C溫度之變化追蹤表現圖。 圖15d繪示本案於300 W/m 2照度及32˚C溫度之變化追蹤表現圖。 圖15e繪示本案於300 W/m 2照度及30˚C溫度之變化追蹤表現圖。 圖15f繪示本案於700 W/m 2照度及30˚C溫度之變化追蹤表現圖。 FIG. 1 is a flowchart illustrating steps of an embodiment of the maximum power tracking method in this case. FIG. 2 is a flowchart illustrating steps of another embodiment of the maximum power tracking method. FIG. 3 shows a single diode equivalent circuit diagram of a solar cell. FIG. 4a shows current-voltage curves of solar cells under different illumination values; FIG. 4b shows power-voltage curves of solar cells under different illumination values. FIG. 5a shows current-voltage curves of the solar cell at different temperature values; FIG. 5b shows power-voltage curves of the solar cell at different temperature values. FIG. 6 is a schematic diagram of a control system architecture adopted in this case. FIG. 7 is a schematic diagram showing the error of illumination estimation under different voltages and temperatures. FIG. 8 a shows output power voltage curves at different illuminances from 100 W / m 2 to 1000 W / m 2 . FIG. 8b shows a fitting curve of the illuminance value and the maximum power point voltage. FIG. 9a shows that the tracking path crosses the maximum power point from the left half plane of the PV curve to the right half plane. FIG. 9b shows that the tracking path crosses the maximum power point from the right half plane of the PV curve to the left half plane. FIG. 10a is a schematic diagram of the maximum power tracking method in this case. FIG. 10b is a schematic diagram illustrating the tracking of the maximum power tracking method in this case when the illuminance and temperature are changed. FIG. 11 a shows the measured waveforms of the tracking voltage and current of the fixed step perturbation observation method of the conventional technique. FIG. 11b shows the measured waveforms of the tracking power of the conventional fixed-step disturbance observation method. FIG. 12a shows the measured waveforms of the tracking voltage and current of the step change disturbance observation method of the conventional technique. FIG. 12b is a waveform diagram of the measured power of the tracking power of the step change disturbance observation method of the conventional technique. Figure 13a shows the measured waveforms of the tracking voltage and current of the uniform illuminance in this case. FIG. 13b shows the measured waveform of the tracking power of the uniform illuminance in this case. Figure 14a shows the measured waveforms of the tracking voltage and current with varying illuminance in this case. FIG. 14b shows the measured waveforms of the tracking power with varying illuminance in this case. Figure 15a shows the change tracking performance of this case at 1000 W / m 2 illuminance and 31 ° C temperature. Figure 15b shows the change tracking performance of the case at 1000 W / m 2 illuminance and 35 ° C temperature. Figure 15c shows the change tracking performance of the case at 300 W / m 2 illumination and 35 ° C temperature. Figure 15d shows the change tracking performance of the case at 300 W / m 2 illuminance and 32 ° C temperature. Fig. 15e shows the change tracking performance of the case at 300 W / m 2 illuminance and 30 ° C temperature. Figure 15f shows the change tracking performance of this case at 700 W / m 2 illuminance and 30 ° C temperature.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107134422A TWI669590B (en) | 2018-09-28 | 2018-09-28 | Maximum power tracking method for solar power generation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107134422A TWI669590B (en) | 2018-09-28 | 2018-09-28 | Maximum power tracking method for solar power generation system |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI669590B true TWI669590B (en) | 2019-08-21 |
TW202013116A TW202013116A (en) | 2020-04-01 |
Family
ID=68316689
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107134422A TWI669590B (en) | 2018-09-28 | 2018-09-28 | Maximum power tracking method for solar power generation system |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI669590B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI766719B (en) * | 2021-06-09 | 2022-06-01 | 龍華科技大學 | Method to prevent maximum power error tracking |
CN114967822A (en) * | 2022-05-27 | 2022-08-30 | 北京华能新锐控制技术有限公司 | Photovoltaic power station FPPT tracking method based on binary nonlinear search |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI721864B (en) * | 2020-04-15 | 2021-03-11 | 國立勤益科技大學 | Photovoltaic apparatus and maximum power point tracking method using particle swarm optimization |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201104380A (en) * | 2009-07-29 | 2011-02-01 | Univ Nat Cheng Kung | Largest power density tracking device |
TW201320362A (en) * | 2011-11-04 | 2013-05-16 | Univ Nat Taiwan Science Tech | Photovoltaic power apparatus and analog circuit for tracking maximum power thereof |
TW201413412A (en) * | 2012-09-18 | 2014-04-01 | Univ Nat Taiwan | Multipoint direct-prediction method for maximum power point tracking of photovoltaic modules system and control device of photovoltaic modules array |
TW201631433A (en) * | 2015-02-26 | 2016-09-01 | 國立中山大學 | Maximum power point tracking method for photovoltaic generation |
CN106951024A (en) * | 2017-04-28 | 2017-07-14 | 上海交通大学 | A kind of quick MPPT methods of solar components |
TW201816537A (en) * | 2016-10-18 | 2018-05-01 | 龍華科技大學 | Maximum power point tracking device of solar power generation system capable of gradually converging an output voltage of the solar cell to a power maximizing voltage by using a deterministic cuckoo search algorithm |
-
2018
- 2018-09-28 TW TW107134422A patent/TWI669590B/en not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201104380A (en) * | 2009-07-29 | 2011-02-01 | Univ Nat Cheng Kung | Largest power density tracking device |
TW201320362A (en) * | 2011-11-04 | 2013-05-16 | Univ Nat Taiwan Science Tech | Photovoltaic power apparatus and analog circuit for tracking maximum power thereof |
TW201413412A (en) * | 2012-09-18 | 2014-04-01 | Univ Nat Taiwan | Multipoint direct-prediction method for maximum power point tracking of photovoltaic modules system and control device of photovoltaic modules array |
TW201631433A (en) * | 2015-02-26 | 2016-09-01 | 國立中山大學 | Maximum power point tracking method for photovoltaic generation |
TW201816537A (en) * | 2016-10-18 | 2018-05-01 | 龍華科技大學 | Maximum power point tracking device of solar power generation system capable of gradually converging an output voltage of the solar cell to a power maximizing voltage by using a deterministic cuckoo search algorithm |
CN106951024A (en) * | 2017-04-28 | 2017-07-14 | 上海交通大学 | A kind of quick MPPT methods of solar components |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI766719B (en) * | 2021-06-09 | 2022-06-01 | 龍華科技大學 | Method to prevent maximum power error tracking |
CN114967822A (en) * | 2022-05-27 | 2022-08-30 | 北京华能新锐控制技术有限公司 | Photovoltaic power station FPPT tracking method based on binary nonlinear search |
CN114967822B (en) * | 2022-05-27 | 2023-09-12 | 北京华能新锐控制技术有限公司 | Photovoltaic power station FPPT tracking method based on binary nonlinear search |
Also Published As
Publication number | Publication date |
---|---|
TW202013116A (en) | 2020-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | A comparative study on maximum power point tracking techniques for photovoltaic generation systems operating under fast changing environments | |
Zakzouk et al. | Improved performance low‐cost incremental conductance PV MPPT technique | |
Pandey et al. | High-performance algorithms for drift avoidance and fast tracking in solar MPPT system | |
Ghasemi et al. | Partial shading detection and smooth maximum power point tracking of PV arrays under PSC | |
Reisi et al. | Classification and comparison of maximum power point tracking techniques for photovoltaic system: A review | |
Sera et al. | Optimized maximum power point tracker for fast changing environmental conditions | |
Ishaque et al. | The performance of perturb and observe and incremental conductance maximum power point tracking method under dynamic weather conditions | |
Zhong et al. | Power reserve control with real-time iterative estimation for PV system participation in frequency regulation | |
TWI669590B (en) | Maximum power tracking method for solar power generation system | |
Dasgupta et al. | Voltage-sensing-based photovoltaic MPPT with improved tracking and drift avoidance capabilities | |
TWI391807B (en) | A maximum power tracking system and method for photovoltaic power generation systems | |
Li et al. | Evaluation of different maximum power point tracking (MPPT) techniques based on practical meteorological data | |
Zhang et al. | An online maximum power point capturing technique for high-efficiency power generation of solar photovoltaic systems | |
Wang et al. | A fast and efficient maximum power tracking combining simplified state estimation with adaptive perturb and observe | |
Forcan et al. | An algorithm for elimination of partial shading effect based on a Theory of Reference PV String | |
Chen et al. | A comparative study on MPPT for photovoltaic generation systems | |
CN111367350A (en) | Photovoltaic maximum power tracking control method based on rolling small window | |
Jayawardana et al. | Design and implementation of switch-mode solar photovoltaic emulator using power-hardware-in-the-loop simulations for grid integration studies | |
Durusu et al. | Performance comparison of widely-used maximum power point tracker algorithms under real environmental conditions | |
Kumar et al. | Design and analysis of nonlinear controller for a standalone photovoltaic system using Lyapunov stability theory | |
Yahiaoui et al. | Experimental validation and intelligent control of a stand-alone solar energy conversion system using dSPACE platform | |
TWI706629B (en) | A method for tracking the global maximum power of solar cells | |
TWI653521B (en) | A maximum power tracking algorithm | |
CN105824347A (en) | Improved control method for variable-step-length maximum power point tracking on basis of beta parameter | |
TWI706261B (en) | A method for tracking the global maximum power of solar cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |