TWI391807B - A maximum power tracking system and method for photovoltaic power generation systems - Google Patents

A maximum power tracking system and method for photovoltaic power generation systems Download PDF

Info

Publication number
TWI391807B
TWI391807B TW098117495A TW98117495A TWI391807B TW I391807 B TWI391807 B TW I391807B TW 098117495 A TW098117495 A TW 098117495A TW 98117495 A TW98117495 A TW 98117495A TW I391807 B TWI391807 B TW I391807B
Authority
TW
Taiwan
Prior art keywords
solar photovoltaic
slope error
value
maximum power
input signal
Prior art date
Application number
TW098117495A
Other languages
Chinese (zh)
Other versions
TW201042416A (en
Inventor
Kueihsiang Chao
Chingju Li
Original Assignee
Nat Univ Chin Yi Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Chin Yi Technology filed Critical Nat Univ Chin Yi Technology
Priority to TW098117495A priority Critical patent/TWI391807B/en
Publication of TW201042416A publication Critical patent/TW201042416A/en
Application granted granted Critical
Publication of TWI391807B publication Critical patent/TWI391807B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Description

太陽光電發電系統之最大功率追蹤系統及方法Maximum power tracking system and method for solar photovoltaic power generation system

本發明是有關於一種太陽光電發電系統,且特別是有關於一種太陽光電發電系統之最大功率追蹤系統。The present invention relates to a solar photovoltaic power generation system, and more particularly to a maximum power tracking system for a solar photovoltaic power generation system.

近年來,專家學者們相繼提出許多太陽光電發電系統之最大功率追蹤控制的研究,例如:基於太陽光電發電陣列之電壓及電流法、功率回授法、直線近似法、擾動觀察法、增量電導法、智慧型模糊控制法、滑動模式及神經網路法。茲將各種最大功率追蹤控制方法之優缺點分述如下:電壓及電流法其架構簡單、成本低、易實現且無複雜之計算公式。其係利用太陽日照強度較高時所測得之太陽電池的開路電壓或短路電流,藉由調整太陽電池之輸出電壓或電流,使其與量測值相符,進而達到最大功率追蹤之效果。然而,此方法忽略太陽光電模組溫度之影響。以單晶矽太陽電池為例,當環境溫度上升1℃,其開路電壓將下降0.4%-0.5%。當大氣環境大幅改變時,此方法亦無法及時地追蹤到另一最大功率點。且電壓及電流法必須定時將太陽光電發電系統模組切斷或短路,以量測其開路電壓或短路電流作為參考值,因此將增加整個太陽光電發電系統之損失,降低整體效率。In recent years, experts and scholars have successively proposed the research of the maximum power tracking control of many solar photovoltaic power generation systems, such as voltage and current methods based on solar photovoltaic arrays, power feedback method, linear approximation method, disturbance observation method, incremental conductance. Method, intelligent fuzzy control method, sliding mode and neural network method. The advantages and disadvantages of various maximum power tracking control methods are described as follows: The voltage and current method has a simple structure, low cost, easy implementation and no complicated calculation formula. It uses the open circuit voltage or short-circuit current of the solar cell measured when the solar sun intensity is high, and adjusts the output voltage or current of the solar cell to match the measured value, thereby achieving the effect of maximum power tracking. However, this method ignores the effects of the temperature of the solar photovoltaic module. Taking a single crystal germanium solar cell as an example, when the ambient temperature rises by 1 ° C, the open circuit voltage will drop by 0.4% - 0.5%. When the atmospheric environment changes drastically, this method cannot track another maximum power point in time. Moreover, the voltage and current method must periodically cut off or short-circuit the solar photovoltaic power generation system module to measure its open circuit voltage or short circuit current as a reference value, thus increasing the loss of the entire solar photovoltaic power generation system and reducing the overall efficiency.

功率回授法與電壓迴授法類似,由於電壓迴授法無法在大氣條件瞬間變化下自動追蹤最大功率點,因此功率回授法加入太陽光電發電系統輸出功率與電壓之變化率的判斷邏輯,以因應大氣條件變化下之追蹤。由輸出功率與電壓之特性曲線可觀得,其最大功率點之斜率為零(即dP/dV =0),故而透過計算斜率值(dP/dV ),以求得其最大功率點。The power feedback method is similar to the voltage feedback method. Since the voltage feedback method cannot automatically track the maximum power point under transient changes in atmospheric conditions, the power feedback method adds the judgment logic of the rate of change of the output power and voltage of the solar photovoltaic power generation system. Tracking in response to changes in atmospheric conditions. It is observable from the characteristic curve of output power and voltage that the slope of the maximum power point is zero (ie, dP/dV =0), so the slope value ( dP/dV ) is calculated by calculation to obtain the maximum power point.

請參考第1圖,第1圖是習知之功率回授法的工作特性曲線圖。第1圖中,若目前工作點位於最大功率點之左方時,擷取任意兩點之斜率值定大於零;反之,若在最大功率點之右方,斜率則會小於零。因此當工作點改變時,由所求得之斜率將可得知目前工作點的位置,當斜率值趨近於零,即表示相當接近最大功率點。相較於電壓迴授法,此方法運算過程較為複雜,但其能量損失較小,且整體效率也較電壓迴授法高。不過礙於實際電路中之感測元件無法達到相當精密之量測,故系統真正工作在功率與電壓曲線斜率為零的機率極小。Please refer to FIG. 1 , which is a graph showing the operating characteristics of the conventional power feedback method. In Figure 1, if the current operating point is to the left of the maximum power point, the slope of any two points is greater than zero; conversely, if it is to the right of the maximum power point, the slope is less than zero. Therefore, when the operating point changes, the position of the current operating point will be known from the obtained slope. When the slope value approaches zero, it means that it is quite close to the maximum power point. Compared with the voltage feedback method, the calculation process of this method is more complicated, but its energy loss is smaller, and the overall efficiency is higher than the voltage feedback method. However, because the sensing components in the actual circuit cannot achieve a fairly accurate measurement, the probability that the system actually works at zero slope of the power and voltage curves is minimal.

直線近似法之出發點係以dP/dI =0概念下進行公式推導,經過數學模型之推導後,最後可得在最大功率點時輸出功率P mppt 與輸入電流I mppt 的關係式為The starting point of the linear approximation method is to derive the formula under the concept of dP/dI =0. After derivation of the mathematical model, the relationship between the output power P mppt and the input current I mppt at the maximum power point is finally obtained.

其中,A 為太陽電池之理想參數,大小約在1~5之間。K 為波茲曼常數,值約為1.3806×10-23J/°K。T 為太陽電池參考溫度,一般取298°K。q 為電子電荷量,亦即1.6022×10-19 庫侖。R s 為太陽電池內部之等效串聯電阻。Among them, A is an ideal parameter for solar cells, and the size is between 1 and 5. K is a Boltzmann constant with a value of about 1.3806 x 10-23 J/°K. T is the reference temperature of the solar cell, generally 298 °K. q is the amount of electron charge, which is 1.6022×10 -19 coulombs. R s is the equivalent series resistance inside the solar cell.

上列第1式為一個相當近似之直線方程式,當外部擷取之太陽光電發電系統的輸出功率與電流使第1式成立,則此時工作點操作於最大功率點。由第1式可觀得直線近似法中需要許多太陽電池之參數值,但這些參數值不易取得,且當太陽光電模組因老化或溫度改變時,其參數亦隨之改變,此時直線近似法必須重新測量參數值,使其運算上更加困難。The first formula above is a fairly approximate linear equation. When the output power and current of the externally captured solar photovoltaic system make the first formula, then the operating point operates at the maximum power point. It is obvious from the first formula that the parameter values of many solar cells are required in the linear approximation method, but these parameter values are not easy to obtain, and when the solar photovoltaic module changes due to aging or temperature, its parameters also change, and the linear approximation method at this time The parameter values must be re-measured to make it more computationally difficult.

請一併參考第2A圖與第2B圖,第2A圖與第2B圖是習知之擾動觀察法的工作特性曲線圖,第2A圖係繪示正向擾動電壓情形,而第2B圖係繪示負向擾動電壓情形。擾動觀察法(Perturb and Observe Method)是藉由週期性地增加或減少太陽電池輸出端電壓大小,並與變動前之輸出電壓及輸出功率作比較,以決定下一步擾動之方向。如第2A圖與第2B圖所示,若太陽電池之輸出功率較擾動前大(即P k +1 >P k ),則電壓將維持同方向擾動;反之,若太陽電池之輸出功率較擾動前小(即P k +1 <P k ),則下一週期須改變電壓擾動方向。經由反覆擾動與比較,即可使太陽光電發電系統之輸出功率逼近最大功率點。Please refer to FIG. 2A and FIG. 2B together. FIGS. 2A and 2B are working characteristic diagrams of the conventional disturbance observation method, and FIG. 2A shows the forward disturbance voltage situation, and FIG. 2B shows Negative disturbance voltage situation. The Perturb and Observe Method is used to periodically increase or decrease the voltage at the output of the solar cell and compare it with the output voltage and output power before the change to determine the direction of the next disturbance. As shown in Figures 2A and 2B, if the output power of the solar cell is larger than before the disturbance (ie, P k +1 > P k ), the voltage will maintain the same direction of disturbance; conversely, if the output power of the solar cell is more disturbed Before the small (ie P k +1 < P k ), the voltage disturbance direction must be changed in the next cycle. By repeating the disturbance and comparison, the output power of the solar photovoltaic system can be approximated to the maximum power point.

擾動觀察法架構簡單,其需量測之參數值少,且不需事先測量太陽電池之相關參數,因此在最大功率追蹤控制上最為廣泛使用。但其擾動量之大小將影響追蹤之暫態響應及穩態響應,若擾動量設定較大,其暫態響應較快,但其穩態響應則具有較大的振盪。反之,當擾動量設定較小,系統在穩態時振盪幅度亦變小,較易追蹤至最大功率點;但相對地暫態響應變慢。而其擾動過程亦導致工作點在最大功率點附近振盪,因而此方法在穩態下之準確性低,功率損失也會大幅增加,且當太陽日照量大幅改變時,擾動觀察法會因無法及時調整追蹤方向而導致追蹤錯誤。The perturbation observation method has a simple structure, and the parameter value required for measurement is small, and the relevant parameters of the solar cell are not required to be measured in advance, so it is most widely used in maximum power tracking control. However, the magnitude of the disturbance will affect the transient response and steady-state response of the tracking. If the disturbance is set larger, the transient response is faster, but the steady-state response has a larger oscillation. Conversely, when the disturbance amount is set small, the oscillation amplitude of the system becomes smaller at steady state, and it is easier to track to the maximum power point; however, the transient response is slower. The disturbance process also causes the operating point to oscillate near the maximum power point. Therefore, the accuracy of this method is low under steady state, the power loss is also greatly increased, and when the solar radiation amount is greatly changed, the disturbance observation method may not be timely. Adjusting the tracking direction leads to tracking errors.

增量電導法(Incremental Conductance Method)係根據太陽光電發電系統輸出功率與電壓之曲線,在最大功率點時斜率為零之工作原理(即dP /dV =0),用以改善擾動觀察法在大氣環境劇烈變化下之追蹤準確性及動態響應。其太陽電池之輸出電壓(V )、輸出電流(I )及輸出功率(P )的數學關係為:The Incremental Conductance Method is based on the output power and voltage curve of the solar photovoltaic system. The slope is zero at the maximum power point (ie, dP / dV =0) to improve the disturbance observation method in the atmosphere. Tracking accuracy and dynamic response under drastic changes in the environment. The mathematical relationship between the output voltage ( V ), output current ( I ) and output power ( P ) of the solar cell is:

由上列第2式得知,當所求得之dI/dV 斜率為-(I/V ),即表示目前工作點等於最大功率點,但因受限於感測元件無法達到相當精密之量測,故在實際電路中太陽光電發電系統工作在功率與電壓曲線之斜率為零的機率極小。It is known from the above formula 2 that when the obtained dI/dV slope is -( I/V ), it means that the current operating point is equal to the maximum power point, but it is limited by the fact that the sensing element cannot reach a fairly precise amount. Therefore, in the actual circuit, the solar photovoltaic power generation system works at a very small probability that the slope of the power and voltage curves is zero.

一般增量電導法係利用一固定之步階調整,其固定步階的大小將影響最大功率追蹤之性能。若步階值設定較大,其追蹤速度較快,但在穩態時將造成太陽光電發電系統輸出功率變化劇烈,不僅增加系統損失且不易追蹤至最大功率點。反之,當步階值設定較小,系統在穩態時輸出功率變化幅度亦變小,較易追蹤至最大功率點,但相對地追蹤時間變長。因此步階的大小取決於對精確度及追蹤速度之要求,故相關設計者應在暫態響應及穩態響應之間取得平衡。The general incremental conductance method utilizes a fixed step adjustment whose fixed step size will affect the performance of the maximum power tracking. If the step value is set larger, the tracking speed is faster, but in steady state, the output power of the solar photovoltaic system will change drastically, which not only increases the system loss but also is difficult to trace to the maximum power point. Conversely, when the step value is set small, the output power variation amplitude of the system becomes smaller at steady state, and it is easier to track to the maximum power point, but the relative tracking time becomes longer. Therefore, the size of the steps depends on the accuracy and tracking speed requirements, so the relevant designers should strike a balance between transient response and steady-state response.

然而,為了改善增量電導法之缺陷,有專家學者提出一修正型增量電導法,其採用可變步階追蹤,且在追蹤過程中加入固定電壓追蹤法,故此方法可根據太陽光電發電系統既有之特性曲線自動調整步階的大小。但此方法之追蹤過程相當複雜,因而增加系統成本,且一旦追蹤系統之控制開關由固定電壓追蹤法切換到修正型增量電導法模式或其追蹤起始點設定錯誤等因素,均將造成系統之不穩定。However, in order to improve the defects of the incremental conductance method, some experts have proposed a modified incremental conductance method, which uses variable step tracking and adds a fixed voltage tracking method in the tracking process. Therefore, the method can be based on the solar photovoltaic power generation system. The existing characteristic curve automatically adjusts the size of the step. However, the tracking process of this method is quite complicated, thus increasing the system cost, and the system will be caused once the control switch of the tracking system is switched from the fixed voltage tracking method to the modified incremental conductivity method mode or its tracking start point setting error. Unstable.

其他高階之智慧型最大功率追蹤方法,諸如著眼於太陽光電模組陣列非線性特性之智慧型模糊控制法、滑動模式及神經網路法等,皆可對太陽光電模組提供另種替代之最大功率追蹤法。但是,這些演算法需依太陽光電模組之輸出特性,建立專屬之最大功率點控制法則,且其計算過程相當複雜,因此這些控制法之實用性有限。Other high-end intelligent maximum power tracking methods, such as intelligent fuzzy control, sliding mode and neural network method, which focus on the nonlinear characteristics of solar photovoltaic module arrays, can provide the alternative to solar photovoltaic modules. Power tracking method. However, these algorithms need to establish the exclusive maximum power point control law according to the output characteristics of the solar photovoltaic module, and the calculation process is quite complicated, so the practicality of these control methods is limited.

本發明之一技術態樣是在提供一種太陽光電發電系統之最大功率追蹤系統,以提升一太陽光電發電系統追蹤最大功率點的速度。One aspect of the present invention is to provide a maximum power tracking system for a solar photovoltaic system to increase the speed at which a solar photovoltaic system tracks a maximum power point.

依據本發明一實施方式之太陽光電發電系統的最大功率追蹤系統,包含一太陽光電模組、一微分運算單元、一可拓分析單元以及一控制單元。微分運算單元係用以根據太陽光電模組之工作點狀態產生一功率對電壓之斜率訊號。可拓分析單元具有多個可拓物元模型,可利用這些可拓物元模型來分析功率對電壓斜率之誤差及其誤差變化率等輸入訊號,進而產生一追蹤訊號。控制單元則根據上述之追蹤訊號,使得太陽光電發電系統工作在最大功率點。A maximum power tracking system for a solar photovoltaic power generation system according to an embodiment of the present invention includes a solar photovoltaic module, a differential arithmetic unit, an extension analysis unit, and a control unit. The differential operation unit is configured to generate a power-to-voltage slope signal according to the operating point state of the solar photovoltaic module. The extension analysis unit has a plurality of extension matter element models, and the extension matter element model can be used to analyze the input signal such as the error of the power versus the voltage slope and the error rate of change, thereby generating a tracking signal. The control unit operates the solar photovoltaic system at the maximum power point based on the tracking signals described above.

藉此,本實施方式之太陽光電發電系統的最大功率追蹤系統,預判輸入訊號所應被歸類的可拓物元模型,再據以追蹤其最大功率點,因而具有快速之暫態響應與平穩之穩態響應。Thereby, the maximum power tracking system of the solar photovoltaic power generation system of the present embodiment prejudges the extension matter element model to which the input signal should be classified, and then tracks the maximum power point thereof, thereby having a fast transient response and Smooth steady state response.

本發明之另一技術態樣是在提供一種太陽光電發電系統之最大功率追蹤方法,以提升一太陽光電發電系統追蹤最大功率點的速度。Another aspect of the present invention is to provide a maximum power tracking method for a solar photovoltaic power generation system to increase the speed at which a solar photovoltaic power generation system tracks a maximum power point.

依據本發明一實施方式之太陽光電發電系統的最大功率追蹤方法,包含下列步驟:根據一太陽光電模組的功率-電壓(P-V )曲線,取得多個區域類別,及相對應的多個斜率誤差值e 與多個誤差變化量值。利用上述多個區域類別、上述多個斜率誤差值e 與上述多個誤差變化量值,建立多個可拓物元模型RA maximum power tracking method for a solar photovoltaic power generation system according to an embodiment of the present invention includes the steps of: obtaining a plurality of regional categories according to a power-voltage ( PV ) curve of a solar photovoltaic module, and corresponding plurality of slope errors Value e and multiple error change values . Using the plurality of region categories, the plurality of slope error values e, and the plurality of error variation values , establish multiple extension matter element models R :

其中,R k 為可拓物元模型R 中的第k 個可拓物元模型,F 0 為物元區間,c 1 c 2 F 0 的特徵值,V plk 為第k 個區域類別所對應之斜率誤差值e 的值域,V p2k 為第k 個區域類別所對應之斜率誤差變化量值的值域。如此可建立一可拓物元輸入模型,以接收一輸入訊號。利用上述多個可拓物元模型R 分析輸入訊號,以使得太陽光電發電系統工作在最大功率點。Wherein, R k is the k th Extension Element Model matter element model in R, F 0 is a matter element section, c 1, c 2 is F characteristic value of 0, V plk k-th region category Corresponding slope error value e , the value of V p2k is the slope error variation corresponding to the kth region category The value range. In this way, an extension element input model can be established to receive an input signal. The input signals are analyzed using the plurality of extensional matter element models R described above to cause the solar photovoltaic system to operate at a maximum power point.

藉此,本實施方式之太陽光電發電系統的最大功率追蹤方法,預判輸入訊號所應被歸類的可拓物元模型,再追蹤其最大功率點,因而具有快速之暫態響應與平穩之穩態響應。Thereby, the maximum power tracking method of the solar photovoltaic power generation system of the present embodiment predicts the extension matter element model to which the input signal should be classified, and then tracks the maximum power point thereof, thereby having a fast transient response and smoothing. Steady state response.

為了解決既有之最大功率點追蹤(Maximum Power Point Tracking,MPPT)方法的缺點,且同時提升太陽光電模組最大功率追蹤之動態響應及穩態響應等性能,本發明於下列諸實施方式中,以特有之創見,結合擾動觀察法、可拓理論及物元理論,提出一種太陽光電發電系統之最大功率追蹤系統及其追蹤方法。In order to solve the shortcomings of the existing Maximum Power Point Tracking (MPPT) method, and at the same time improve the dynamic response and steady state response of the maximum power tracking of the solar photovoltaic module, the present invention is in the following embodiments. Based on the unique ingenuity, combined with disturbance observation method, extension theory and matter-element theory, a maximum power tracking system and tracking method for solar photovoltaic power generation system are proposed.

請參考第3圖,第3圖是本發明一實施方式之太陽光電發電系統之最大功率追蹤方法的步驟流程圖。第3圖中,本實施方式之太陽光電發電系統的最大功率追蹤方法,包含下列步驟:首先,如步驟101所示,根據一太陽光電模組的功率-電壓(P-V )曲線,取得多個區域類別,及相對應的多個斜率誤差值e 與多個誤差變化量值Please refer to FIG. 3, which is a flow chart showing the steps of the maximum power tracking method of the solar photovoltaic power generation system according to an embodiment of the present invention. In the third embodiment, the maximum power tracking method of the solar photovoltaic power generation system of the present embodiment includes the following steps: First, as shown in step 101, multiple regions are obtained according to a power-voltage ( PV ) curve of a solar photovoltaic module. Category, and corresponding multiple slope error values e and multiple error variation values .

然後,如步驟102所示,利用上述多個區域類別、上述多個斜率誤差值e 與上述多個誤差變化量值,建立多個可拓物元模型RThen, as shown in step 102, using the plurality of region categories, the plurality of slope error values e, and the plurality of error variation values , establish multiple extension matter element models R :

其中,R k 為可拓物元模型R 中的第k 個可拓物元模型,F 0 為物元區間,c 1 c 2 F 0 的特徵值,V p1k 為第k 個區域類別所對應之斜率誤差值e 的值域,V p2k 為第k 個區域類別所對應之斜率誤差變化量值的值域。Wherein, R k is the k th Extension Element Model matter element model in R, F 0 is a matter element section, c 1, c 2 is F characteristic value of 0, V p1k k-th region category Corresponding slope error value e , the value of V p2k is the slope error variation corresponding to the kth region category The value range.

接下來,如步驟103所示,建立一可拓物元輸入模型,以接收一輸入訊號。Next, as shown in step 103, an extension object input model is established to receive an input signal.

最後,如步驟104所示,利用上述多個可拓物元模型R 分析輸入訊號,以使得太陽光電發電系統工作在最大輸出功率點。Finally, as shown in step 104, the input signals are analyzed using the plurality of extensional matter element models R described above to cause the solar photovoltaic system to operate at a maximum output power point.

藉此,本實施方式可使一太陽光電發電系統,快速地工作在太陽光電發電系統的最大功率點,進而對此太陽光電發電系統所產生之功率進行最有效率之利用。Thereby, the present embodiment enables a solar photovoltaic power generation system to quickly operate at the maximum power point of the solar photovoltaic power generation system, thereby making the most efficient use of the power generated by the solar photovoltaic power generation system.

本實施方式之運作原理茲解釋如下:在物元理論中,R 是描述事物的基本元,即稱作物元,N 代表著事物的名稱,C 為事物之特徵,V 是事物的特徵值。則物元表示式為:The operating principle of this embodiment is explained as follows: In the matter-element theory, R is the basic element describing the thing, which is called the matter element, N is the name of the thing, C is the characteristic of the thing, and V is the characteristic value of the thing. Then the matter element expression is:

R =(N,C,V)  ......(5) R = (N, C, V) ...... (5)

在經典域及節域之定義中,假設點f 為區間F =<a q ,b q >上任一點,且,則F 0 =<a p ,b p >所對應的物元R 0 可表示成:In the definition of the classical domain and the local domain, it is assumed that the point f is any point above the interval F = < a q , b q > Then, the matter element R 0 corresponding to F 0 =< a p ,b p > can be expressed as:

其中,cF 0 之特徵,而V p c 之量值,即經典域。而F 對應的物元R F 可表示成:Where c is the characteristic of F 0 and V p is the magnitude of c , ie the classical domain. The matter element R F corresponding to F can be expressed as:

同樣地,cF 之特徵值,而V q c 之量值,即節域。Similarly, c is the eigenvalue of F , and V q is the magnitude of c , the section domain.

請參考第4圖,第4圖是第3圖之可拓物元模型的關聯函數示意圖。本實施方式結合可拓理論與物元理論,利用可拓集合將模糊集合從(0,1)延伸到(-∞,∞)的特性,來定義論域中任何資料的集合值,進而建立了足以描述太陽光電模組特性之可拓物元模型。Please refer to FIG. 4, which is a schematic diagram of the correlation function of the extension matter element model of FIG. This embodiment combines the extension theory with the matter-element theory, and uses the extension set to extend the fuzzy set from (0,1) to (-∞,∞) to define the set value of any data in the domain, and then establishes An extension matter element model sufficient to describe the characteristics of a solar photovoltaic module.

距及關聯函數值的定義方法如下:設F 0 =<a p , b p >為一F 上任一區間,則其初等關聯函數值為:The method of defining the distance and associated function values is as follows: Let F 0 =< a p , b p > be any interval on a F , then the value of the elementary correlation function is:

其中:among them:

第11式即為fF 區間之距離。第4圖之初等關聯函數曲線圖,其關聯函數值可計算f 點屬於F 0 之關聯程度,當表示f 屬於F 0 的程度,K (f )<0稱為f 不屬於F 0 的程度,而在-1<K (f )<0之區域稱之為可拓域。在可拓域中,可藉由條件變換,使得f 可歸屬於F 0 之範圍。利用可拓關聯度之觀念,可建立特徵物元模型之關聯性,進而得知太陽光電模組P -V 曲線之工作點所在區域,以進行快速之太陽光電發電系統最大功率追蹤。The eleventh formula is the distance between the f and F intervals. The graph of the correlation function at the beginning of Fig. 4, the value of the correlation function can calculate the degree of association of point f belonging to F 0 Indicates the extent to which f belongs to F 0 , K ( f )<0 is called the degree that f does not belong to F 0 , and the region where -1< K ( f )<0 is called the extension domain. In the extension domain, f can be attributed to the range of F 0 by conditional transformation. Using the concept of extension correlation, the correlation of the feature element model can be established, and then the working point of the P - V curve of the solar photovoltaic module can be known to perform the maximum power tracking of the fast solar photovoltaic system.

請繼續參考第5圖,第5圖是第3圖之斜率變動量與太陽光電模組功率-電壓(P -V )工作特性曲線圖。具體而言,由第5圖可知,太陽光電模組功率-電壓(P -V )工作特性曲線在最大功率點(MPP)之斜率誤差值e 為零。愈接近MPP時e 變小;反之,離MPP越遠時e 越大,且兩誤差值之變化量會因控制方向不同而產生變化。當太陽光電模組之端電壓增加時,為負值;反之,當太陽光電模組之端電壓減少時,為正值。經由回授太陽光電發電系統之輸出電壓V pv 及輸出電流I pv ,進而計算其輸出功率P pv ,再用以計算斜率誤差值e (k )為:Please continue to refer to Figure 5, which is a graph of the slope variation of Figure 3 and the power-voltage ( P - V ) operating characteristics of the solar module. Specifically, as can be seen from FIG. 5, the slope error value e of the power-voltage ( P - V ) operating characteristic curve of the solar photovoltaic module at the maximum power point (MPP) is zero. The closer to MPP, the smaller e becomes; on the contrary, the farther from MPP, the larger e , and the difference between the two error values It will change due to different control directions. When the voltage at the end of the solar photovoltaic module increases, Negative value; conversely, when the terminal voltage of the solar photovoltaic module is reduced, It is positive. By outputting the output voltage V pv and the output current I pv of the solar photovoltaic power generation system, the output power P pv is calculated, and then the slope error value e ( k ) is calculated as:

及誤差值變化量(k )為:And the amount of error value change ( k ) is:

並選定e及為系統最大功率點之兩特徵值。And select e and It is the two eigenvalues of the maximum power point of the system.

請繼續參考第6圖,第6圖是第3圖之太陽光電模組功率-電壓(P-V )工作特性曲線斜率動態分析示意圖。本實施方式任選一太陽光電模組進行模擬,利用一升壓型轉換器來調整驅動訊號的責任週期(Duty Cycle,D),並以太陽光電日照量200W/m2 -1000W/m2 之範圍進行模擬,得出第6圖,以示範如何建立可拓物元模型。本實施方式將此太陽光電發電系統分為12個類別,並定義e的範圍為可拓理論中各類別之經典域如下列第1表:Please continue to refer to Figure 6, which is a schematic diagram of the dynamic analysis of the slope of the power-voltage ( PV ) operating characteristic curve of the solar photovoltaic module in Figure 3. In this embodiment, a solar photovoltaic module is selected for simulation, and a boost converter is used to adjust the duty cycle of the driving signal (Duty Cycle, D), and the solar photovoltaic solar radiation is 200 W/m 2 -1000 W/m 2 . The range is simulated and the sixth figure is drawn to demonstrate how to build the extension matter element model. This embodiment divides the solar photovoltaic power generation system into 12 categories and defines e and The scope of the classic domain of each category in the extension theory is as follows:

接下來,本實施方式依照太陽光電模組P-V 特性曲線所得之各類別斜率誤差e 及誤差變化量的特徵,建立可拓物元模型經典域<a p , b p >,如下列第2表:Next, in this embodiment, the slope error e and the error variation of each category obtained according to the PV characteristic curve of the solar photovoltaic module are obtained. The characteristics of the extension of the meta-model classic domain < a p , b p >, as shown in the following table 2:

而各特徵值之節域<a q , b q >可由經典域之最大值及最小值定義為:The nodes < a q , b q > of each eigenvalue can be defined by the maximum and minimum values of the classical domain:

在依照上述示範建立若干可拓物元模型後,本實施方式便可利用這些可拓物元模型來分析此太陽光電發電系統於任意日照狀態取得之P-V 特性曲線的斜率誤差e 及誤差變化量,以作為輸入訊號,進而產生追蹤訊號來調整太陽光電模組之發電,以使其工作在最大功率點。After establishing a plurality of extension matter element models according to the above demonstration, the present embodiment can use the extension matter element models to analyze the slope error e and the error variation of the PV characteristic curve obtained by the solar photovoltaic power generation system in an arbitrary sunshine state. As an input signal, a tracking signal is generated to adjust the power generation of the solar photovoltaic module to operate at the maximum power point.

請繼續參考第7圖,第7圖是本發明另一實施方式之太陽光電發電系統之最大功率追蹤方法的步驟流程圖。本實施方式係說明在依照上述實施方式建立若干可拓物元模型後,如何根據太陽光電發電系統於任意日照狀態下取得之P-V 特性曲線的斜率誤差e 及誤差變化量,以使其工作在最大功率點。本實施方式步驟如下:首先,如步驟201所示,啟動依上述實施方式建立太陽光電發電系統若干可拓物元模型。然後,如步驟202所示,偵測此太陽光電發電系統當前之電壓V pv 及電流I pv 。然後,如步驟203所示,依據電壓V pv 及電流I pv 計算目前太陽光電發電系統之輸出功率P pv 。接下來,如步驟204所示,計算P-V 曲線之斜率誤差值e 及誤差變化量值。然後,如步驟205所示,根據關聯函數值判斷誤差變化量值是否屬於某一可拓物元模型之經典域範圍。若是,如步驟206所示,利用經典域計算關聯函數;若否,如步驟207所示,利用節域計算關聯函數。Please refer to FIG. 7 again. FIG. 7 is a flow chart showing the steps of the maximum power tracking method of the solar photovoltaic power generation system according to another embodiment of the present invention. This embodiment describes how to calculate the slope error e and the error variation of the PV characteristic curve obtained by the solar photovoltaic power generation system in an arbitrary sunshine state after establishing a plurality of extension matter element models according to the above embodiment. To make it work at the maximum power point. The steps of this embodiment are as follows: First, as shown in step 201, a plurality of extension matter element models of the solar photovoltaic power generation system are started according to the above embodiment. Then, as shown in step 202, the current voltage V pv and current I pv of the solar photovoltaic power generation system are detected. Then, as shown in step 203, calculates the output current of the solar photovoltaic power generation system according to the voltage V pv P pv and current I pv. Next, as shown in step 204, the slope error value e and the error variation value of the PV curve are calculated. . Then, as shown in step 205, the error variation value is determined according to the value of the correlation function. Whether it belongs to the classic domain range of a certain extension matter model. If so, as shown in step 206, the correlation function is calculated using the classical domain; if not, as shown in step 207, the association function is calculated using the local domain.

接下來,如步驟208所示,輸出此太陽光電發電系統當前狀態之辨識類別,亦即其屬於哪一個可拓物元模型。接下來,如步驟209所示,根據其所屬之可拓物元模型調整追蹤訊號,即調整升壓型轉換器之驅動訊號的責任週期。最後,如步驟210所示,使得太陽光電發電系統工作在最大功率點。Next, as shown in step 208, the identification category of the current state of the solar photovoltaic power generation system, that is, which extension element model it belongs to, is output. Next, as shown in step 209, the tracking signal is adjusted according to the extension matter element model to which it belongs, that is, the duty cycle of the driving signal of the boost converter is adjusted. Finally, as shown in step 210, the solar photovoltaic system is operated at the maximum power point.

在上述實施方式中,由於太陽光電模組的P-V 特性曲線被區分為12種類別,所以各類別斜率誤差及誤差變化量之物元模型可表示為:In the above embodiment, since the PV characteristic curves of the solar photovoltaic module are divided into 12 categories, the matter-element model of the slope error and the error variation of each category can be expressed as:

而由上述步驟202~204,即可建立一可拓物元輸入模型:And by the above steps 202-204, an extension matter element input model can be established:

計算步驟205~207所示之關聯度時,可進一步選定各特徵之權重W j1 ,W j2 以代表各特徵值之重要程度。本實施方式選定W j1 =0.85,W j2 =0.15。則各類別之關聯度為:When calculating the degree of association shown in steps 205 to 207, the weights W j1 , W j2 of each feature can be further selected to represent the importance of each feature value. In the present embodiment, W j1 = 0.85 and W j2 = 0.15 are selected. Then the relevance of each category is:

在步驟209中,本實施方式由計算後之標準關聯度中選定最大值,以辨別輸入斜率誤差及斜率誤差變化量之歸屬類別,並調整一升壓型轉換器之責任週期的步階量ΔD 及誤差調整極性,以追蹤最大功率點。為了提升穩定性及適應性,新的責任週期D new 計算如下:In step 209, the present embodiment selects a maximum value from the calculated standard correlation degrees to identify the attribution category of the input slope error and the slope error variation, and adjusts the step size Δ of the duty cycle of the boost converter. D and error adjust the polarity to track the maximum power point. In order to improve stability and adaptability, the new duty cycle D new is calculated as follows:

D new =D old D +(ΔD ×p ×(K (f )-1)) ......(18) D new = D old D +(Δ D × p ×( K ( f )-1)) (18)

其中,D old 為前一週期所計算之責任週期值,而K(f) 為屬於各類別之關聯度中的最大值。Where D old is the duty cycle value calculated in the previous cycle, and K(f) is the maximum value among the degrees of association belonging to each category.

請參考第8圖,第8圖是本發明一實施方式之太陽光電發電系統之最大功率追蹤系統的功能方塊圖。本實施方式之太陽光電發電系統的最大功率追蹤系統300,包含一太陽光電模組310、一微分運算單元320、一可拓分析單元330以及一控制單元340。微分運算單元320係用以根據太陽光電模組310之狀態產生一輸入訊號。可拓分析單元330具有多個可拓物元模型,係用以利用這些可拓物元模型來分析輸入訊號,進而產生一追蹤訊號。控制單元340,例如一升壓型轉換器,則用以根據追蹤訊號,驅動太陽光電模組310,以使其工作在最大功率點。本實施方式之特點在於可拓控制單元330不需大量資料庫、不需學習過程、計算簡便且易以系統晶片實現。Please refer to FIG. 8. FIG. 8 is a functional block diagram of a maximum power tracking system of a solar photovoltaic power generation system according to an embodiment of the present invention. The maximum power tracking system 300 of the solar photovoltaic power generation system of the present embodiment includes a solar photovoltaic module 310, a differential operation unit 320, an extension analysis unit 330, and a control unit 340. The differential operation unit 320 is configured to generate an input signal according to the state of the solar photovoltaic module 310. The extension analysis unit 330 has a plurality of extension matter element models for analyzing the input signals by using the extension matter element models to generate a tracking signal. The control unit 340, such as a boost converter, is configured to drive the solar photovoltaic module 310 to operate at a maximum power point based on the tracking signal. The feature of this embodiment is that the extension control unit 330 does not need a large number of databases, does not require a learning process, is simple to calculate, and is easy to implement in a system wafer.

請繼續參考第9圖,第9圖是本發明另一實施方式之太陽光電發電系統的最大功率追蹤系統結構方塊圖。在第9圖中,太陽光電模組310係以一太陽光電模組陣列311來實現之;微分運算單元320係以一微分運算電路321來實現之;而控制單元340則以一升壓型轉換器341來實現之。具體而言,在太陽光電模組陣列311和負載間,係以一升壓型轉換器(Boost Converter)341之電路架構來完成最大功率點(MPP)的追蹤。微分運算電路321係用以根據輸入功率及電壓訊號計算P -V 特性曲線斜率誤差e 及斜率誤差變化量,可拓分析單元330則根據輸入訊號改變升壓型轉換器之責任週期,進而使太陽光電發電系統工作在最大功率點。換句話說,太陽光電發電系統經由可拓分析單元330計算輸入訊號之關聯函數值,判斷輸入訊號所歸屬之類別(即工作點所在區域),並依據上述最大功率追蹤方法,進行升壓型轉換器責任週期之微調,接著回傳追蹤訊號至升壓型轉換器341,藉以調整功率半導體開關之責任週期,以進行MPPT控制,進而達到最大功率追蹤之效果。Please refer to FIG. 9 again. FIG. 9 is a block diagram showing the structure of the maximum power tracking system of the solar photovoltaic power generation system according to another embodiment of the present invention. In FIG. 9, the solar photovoltaic module 310 is implemented by a solar photovoltaic module array 311; the differential operation unit 320 is implemented by a differential operation circuit 321; and the control unit 340 is converted by a boost type. The device 341 is implemented. Specifically, between the solar photovoltaic module array 311 and the load, the maximum power point (MPP) tracking is performed by a circuit configuration of a boost converter 341. The differential operation circuit 321 is configured to calculate the slope error e and the slope error variation of the P - V characteristic curve based on the input power and the voltage signal. The extension analysis unit 330 changes the duty cycle of the boost converter according to the input signal, thereby enabling the solar photovoltaic system to operate at the maximum power point. In other words, the solar photovoltaic power generation system calculates the correlation function value of the input signal via the extension analysis unit 330, determines the category to which the input signal belongs (ie, the area where the operating point is located), and performs the boost type conversion according to the maximum power tracking method described above. The fine-tuning of the duty cycle is followed by returning the tracking signal to the boost converter 341 to adjust the duty cycle of the power semiconductor switch for MPPT control to achieve maximum power tracking.

請一併參考第10A~10C圖,第10C圖係本發明一實施方式之太陽光電模組輸出功率動態響應波形圖,第10A圖係習知之擾動觀察固定步階法之太陽光電模組輸出功率動態響應波形圖,第10B圖係習知之增量電導固定步階法的太陽光電模組輸出功率動態響應波形圖。由第10A~10C圖可知,本實施方式之太陽光電模組輸出功率動態響應,於太陽日照量從1000W/m2 降到800W/m2 時,具有較快速之暫態響應與平順的穩態響應。Please refer to FIG. 10A to FIG. 10C together. FIG. 10C is a waveform diagram of the output power dynamic response of the solar photovoltaic module according to an embodiment of the present invention, and FIG. 10A is a conventional solar power module output power of the fixed step method. Dynamic response waveform diagram, Fig. 10B is a waveform diagram of the output power dynamic response of the solar photovoltaic module according to the conventional incremental conductance fixed step method. It can be seen from the figures 10A to 10C that the dynamic response of the output power of the solar photovoltaic module of the present embodiment has a relatively fast transient response and smooth steady state when the solar radiation decreases from 1000 W/m 2 to 800 W/m 2 . response.

請一併參考第10D~10F圖,第10F圖係本發明另一實施方式之太陽光電模組輸出功率動態響應波形圖,第10D圖係習知之擾動觀察固定步階法之太陽光電模組輸出功率動態響應波形圖,第10E圖係習知之增量電導固定步階法的太陽光電模組輸出功率動態響應波形圖。由第10D~10F圖可知,本實施方式之太陽光電模組輸出功率動態響應,於太陽日照量從400W/m2 提升到500W/m2 時,亦具有較快速之暫態響應與平順的穩態響應。Please refer to FIG. 10D to FIG. 10F together. FIG. 10F is a waveform diagram of the output power dynamic response of the solar photovoltaic module according to another embodiment of the present invention, and FIG. 10D is a conventional solar radiation module output of the disturbance step observation fixed step method. Power dynamic response waveform diagram, Fig. 10E is a waveform diagram of the output power dynamic response of the solar photovoltaic module according to the conventional incremental conductance fixed step method. It can be seen from the figures 10D to 10F that the dynamic response of the output power of the solar photovoltaic module of the present embodiment has a relatively fast transient response and smooth stability when the solar radiation is increased from 400 W/m 2 to 500 W/m 2 . State response.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and the present invention can be modified and modified without departing from the spirit and scope of the present invention. The scope is subject to the definition of the scope of the patent application attached.

101~210...步驟101~210. . . step

300...太陽光電發電系列之最大功率追蹤系統300. . . Solar Power Generation Series' Maximum Power Tracking System

310...太陽光電模組310. . . Solar photovoltaic module

311...太陽光電模組陣列311. . . Solar photovoltaic module array

320...微分運算單元320. . . Differential arithmetic unit

321...微分運算電路321. . . Differential operation circuit

330...可拓分析單元330. . . Extension analysis unit

340...控制單元340. . . control unit

341...升壓型轉換器341. . . Boost converter

為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:The above and other objects, features, advantages and embodiments of the present invention will become more apparent and understood.

第1圖是習知之功率回授法之工作特性曲線圖。Figure 1 is a graph showing the operating characteristics of a conventional power feedback method.

第2A圖是習知之擾動觀察法之工作特性曲線圖,其係繪示正向擾動電壓。Fig. 2A is a graph showing the operational characteristics of the conventional disturbance observation method, which shows the forward disturbance voltage.

第2B圖是習知之擾動觀察法之工作特性曲線圖,其係繪示負向擾動電壓。Figure 2B is a graph of the operational characteristics of the conventional perturbation observation method, which depicts the negative disturbance voltage.

第3圖是本發明一實施方式之太陽光電發電系統之最大功率追蹤方法之步驟流程圖。Fig. 3 is a flow chart showing the steps of the maximum power tracking method of the solar photovoltaic power generation system according to an embodiment of the present invention.

第4圖是第3圖之可拓物元模型的關聯函數示意圖。Fig. 4 is a schematic diagram of the correlation function of the extension matter element model of Fig. 3.

第5圖是第3圖之斜率變動量與太陽光電模組功率-電壓(P-V)工作特性曲線圖。Fig. 5 is a graph showing the slope variation of Fig. 3 and the power-voltage (P-V) operating characteristic of the solar photovoltaic module.

第6圖是第3圖之太陽光電模組功率-電壓(P-V)工作特性曲線斜率動態分析示意圖。Fig. 6 is a schematic diagram showing the dynamic analysis of the slope of the power-voltage (P-V) operating characteristic curve of the solar photovoltaic module of Fig. 3.

第7圖是本發明另一實施方式之太陽光電發電系統之最大功率追蹤方法的步驟流程圖。Fig. 7 is a flow chart showing the steps of the maximum power tracking method of the solar photovoltaic power generation system according to another embodiment of the present invention.

第8圖是本發明一實施方式之太陽光電發電系統之最大功率追蹤系統的功能方塊圖。Fig. 8 is a functional block diagram of a maximum power tracking system of a solar photovoltaic power generation system according to an embodiment of the present invention.

第9圖是本發明另一實施方式之太陽光電發電系統之最大功率追蹤系統結構示意圖。Figure 9 is a block diagram showing the structure of a maximum power tracking system of a solar photovoltaic power generation system according to another embodiment of the present invention.

第10A圖是習知之擾動觀察固定步階法,於太陽日照量由1000W/m2 變化至800W/m2 時,太陽光電模組輸出功率之動態響應波形圖。Fig. 10A is a dynamic response waveform diagram of the output power of the solar photovoltaic module when the solar radiation amount is changed from 1000 W/m 2 to 800 W/m 2 in the conventional disturbance observation fixed step method.

第10B圖是習知之增量電導固定步階法,於太陽日照量由1000W/m2 變化至800W/m2 時,太陽光電模組輸出功率之動態響應波形圖。Figure 10B is a diagram showing the dynamic response waveform of the output power of the solar photovoltaic module when the solar radiation changes from 1000 W/m 2 to 800 W/m 2 in the conventional incremental conductance fixed step method.

第10C圖是本發明一實施方式,於太陽日照量由1000W/m2 變化至800W/m2 時,太陽光電模組輸出功率之動態響應波形圖。Fig. 10C is a waveform diagram showing the dynamic response of the output power of the solar photovoltaic module when the solar radiation amount is changed from 1000 W/m 2 to 800 W/m 2 according to an embodiment of the present invention.

第10D圖是習知之擾動觀察固定步階法,於太陽日照量由400W/m2 變化至500W/m2 時,太陽光電模組輸出功率之動態響應波形圖。The 10th figure is a dynamic response waveform diagram of the output power of the solar photovoltaic module when the solar radiation amount changes from 400 W/m 2 to 500 W/m 2 in the conventional disturbance observation fixed step method.

第10E圖是習知之增量電導固定步階法,於太陽日照量由400W/m2 變化至500W/m2 時,太陽光電模組輸出功率之動態響應波形圖。Figure 10E is a diagram showing the dynamic response waveform of the output power of the solar photovoltaic module when the solar radiation amount changes from 400 W/m 2 to 500 W/m 2 in the conventional incremental conductance fixed step method.

第10F圖是本發明一實施方式,於太陽日照量由400W/m2 變化至500W/m2 時,太陽光電模組輸出功率之動態響應波形圖。FIG. 10F is a waveform diagram showing the dynamic response of the output power of the solar photovoltaic module when the amount of solar radiation changes from 400 W/m 2 to 500 W/m 2 according to an embodiment of the present invention.

201~210...步驟201~210. . . step

Claims (9)

一種太陽光電發電系統之最大功率追蹤方法,至少包含:根據一太陽光電模組的功率-電壓(P -V )曲線,取得複數個區域類別,及相對應的複數個斜率誤差值e 與複數個斜率誤差變化量值;利用該複數個區域類別、該複數個斜率誤差值e 與該複數個斜率誤差變化量值,建立複數個可拓物元模型R 其中,R k 為該複數個可拓物元模型R 中的第k 個可拓物元模型,F 0 為物元區間,c 1 c 2 F 0 的特徵值,V p1k 為第k 個區域類別所對應之斜率誤差值e 的值域,V p2k 為第k 個區域類別所對應之斜率誤差變化量值的值域;接收一輸入訊號;以及利用該複數個可拓物元模型R 分析該輸入訊號,以使得該太陽光電發電系統工作於最大功率點。A maximum power tracking method for a solar photovoltaic power generation system, comprising: obtaining a plurality of regional categories according to a power-voltage ( P - V ) curve of a solar photovoltaic module, and corresponding plurality of slope error values e and plural Slope error variation Using the plurality of region categories, the plurality of slope error values e and the plurality of slope error variations , establish a plurality of extension matter element models R : Wherein, a plurality of R k for the k-th Extension Element Model of a matter element model in R, F 0 is a matter element section, c 1, c 2 is the characteristic value F 0, V p1k k-th The range of the slope error value e corresponding to the region type, V p2k is the slope error variation value corresponding to the kth region category a value range; receiving an input signal; and analyzing the input signal using the plurality of extension matter element models R to operate the solar photovoltaic system at a maximum power point. 如請求項1所述之太陽光電發電系統之最大功率追蹤方法,更包括計算該複數個斜率誤差值e 與相對應之該複數個斜率誤差變化量值之複數個關聯函數,並藉由該複數個關聯函數以分析該輸入訊號。The maximum power tracking method of the solar photovoltaic power generation system according to claim 1, further comprising calculating the plurality of slope error values e and the corresponding plurality of slope error variation values The plurality of correlation functions are analyzed by the plurality of correlation functions to analyze the input signal. 如請求項2所述之太陽光電發電系統之最大功率追蹤方法,其中該關聯函數為K(e) 其中,為輸入訊號之斜率誤差值e 與經典域e 0 之一距離,為輸入訊號之斜率誤差值e 與節域e 1 之一距離,為輸入訊號之斜率誤差值e 、經典域e 0 與節域e 1 之一距離。The maximum power tracking method of the solar photovoltaic power generation system according to claim 2, wherein the correlation function is K(e) : among them, Is the distance between the slope error value e of the input signal and the classical domain e 0 , Is the distance between the slope error value e of the input signal and the region e 1 , It is the slope error value e of the input signal, the distance between the classical domain e 0 and the region e 1 . 如請求項3所述之太陽光電發電系統之最大功率追蹤方法,其中該輸入訊號之斜率誤差值e 與經典域e 0 之距離為: 其中,c 為區間e 0 之最小邊界值,d 為區間e 0 之最大邊界值。The maximum power tracking method of the solar photovoltaic power generation system according to claim 3, wherein the slope error value e of the input signal is different from the classical domain e 0 for: Wherein, c is the minimum interval value e 0 of the boundary, d is the maximum boundary value of the interval e 0. 如請求項1所述之太陽光電發電系統之最大功率追蹤方法,其中該輸入模型為一物元輸入模型: The maximum power tracking method of the solar photovoltaic power generation system according to claim 1, wherein the input model is a matter-element input model: 一種太陽光電發電系統之最大功率追蹤系統,包含:一太陽光電模組,其具有一功率-電壓(P -V )曲線; 一微分運算單元,係用以根據該太陽光電模組之工作點狀態產生一輸入訊號;一可拓分析單元,具有複數個可拓物元模型,係用以利用該複數個可拓物元模型分析該輸入訊號,進而產生一追蹤訊號,其中該複數個可拓物元模型係利用該功率-電壓(P -V )曲線取得複數個區域類別,及相對應的複數個斜率誤差值e 與複數個斜率誤差變化量值以建立該複數個可拓物元模型;以及一控制單元,係用以根據該追蹤訊號,使得該太陽光電模組工作在最大功率點;其中:該複數個可拓物元模型R 係為: 其中,R k 為該複數個可拓物元模型R 中的第k 個可拓物元模型,F 0 為物元區間,c 1 c 2 F 0 的特徵值,V p1k 為第k 個區域類別所對應之斜率誤差值e 的值域,V p2k 為第k 個區域類別所對應之斜率誤差變化量值的值域;及該輸入訊號係為一物元輸入模型: A maximum power tracking system for a solar photovoltaic power generation system, comprising: a solar photovoltaic module having a power-voltage ( P - V ) curve; and a differential computing unit for operating state of the solar photovoltaic module Generating an input signal; an extension analysis unit having a plurality of extension matter element models for analyzing the input signal by using the plurality of extension matter element models, thereby generating a tracking signal, wherein the plurality of extensions The meta-model uses the power-voltage ( P - V ) curve to obtain a plurality of region categories, and a corresponding plurality of slope error values e and a plurality of slope error variations. The plurality of extension element models are established; and a control unit is configured to operate the solar photovoltaic module at a maximum power point according to the tracking signal; wherein: the plurality of extension element models R are: Wherein, a plurality of R k for the k-th Extension Element Model of a matter element model in R, F 0 is a matter element section, c 1, c 2 is the characteristic value F 0, V p1k k-th The range of the slope error value e corresponding to the region type, V p2k is the slope error variation value corresponding to the kth region category The value range; and the input signal is a matter-element input model: 如請求項6所述之太陽光電發電系統之最大功率追蹤系統,其中該複數個可拓物元模型係計算該複數個斜率誤差值e 與相對應之該複數個誤差變化量值之複數個關聯函數,並藉由該複數個關聯函數以分析該輸入訊號。The maximum power tracking system of the solar photovoltaic power generation system according to claim 6, wherein the plurality of extensional matter element models calculate the plurality of slope error values e and the corresponding plurality of error variation values The plurality of correlation functions are analyzed by the plurality of correlation functions to analyze the input signal. 請求項7所述之太陽光電發電系統之最大功率追蹤系統,其中該關聯函數為K(e) 其中,為輸入訊號之斜率誤差值e 與經典域e 0 之一距離,為輸入訊號之斜率誤差值e 與節域e 1 之一距離,為輸入訊號之斜率誤差值e 、經典域e 0 與節域e 1 之一距離。The maximum power tracking system of the solar photovoltaic power generation system of claim 7, wherein the correlation function is K(e) : among them, Is the distance between the slope error value e of the input signal and the classical domain e 0 , Is the distance between the slope error value e of the input signal and the region e 1 , It is the slope error value e of the input signal, the distance between the classical domain e 0 and the region e 1 . 如請求項8所述之太陽光電發電系統之最大功率追蹤系統,其中該輸入訊號之斜率誤差值e 與經典域e 0 之可拓距離為: 其中,c 為區間e 0 之最小邊界值,d 為區間e 0 之最大邊界值。The maximum power tracking system of the solar photovoltaic power generation system according to claim 8, wherein the slope error value e of the input signal and the extension distance of the classical domain e 0 for: Wherein, c is the minimum interval value e 0 of the boundary, d is the maximum boundary value of the interval e 0.
TW098117495A 2009-05-26 2009-05-26 A maximum power tracking system and method for photovoltaic power generation systems TWI391807B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098117495A TWI391807B (en) 2009-05-26 2009-05-26 A maximum power tracking system and method for photovoltaic power generation systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098117495A TWI391807B (en) 2009-05-26 2009-05-26 A maximum power tracking system and method for photovoltaic power generation systems

Publications (2)

Publication Number Publication Date
TW201042416A TW201042416A (en) 2010-12-01
TWI391807B true TWI391807B (en) 2013-04-01

Family

ID=45000527

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098117495A TWI391807B (en) 2009-05-26 2009-05-26 A maximum power tracking system and method for photovoltaic power generation systems

Country Status (1)

Country Link
TW (1) TWI391807B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI426370B (en) * 2011-06-01 2014-02-11 Nat Univ Chin Yi Technology A maximum power point tracking method for photovoltaic module arrays
TWI438602B (en) 2011-12-02 2014-05-21 Ind Tech Res Inst Maximum power point tracking controllers, maximum power point tracking systems and maximum power point tracking methods
TWI484415B (en) * 2011-12-30 2015-05-11 Chroma Ate Inc Solar cell array simulator to adapt to the control method of photovoltaic inverter
CN103199721B (en) * 2012-01-05 2015-04-01 致茂电子(苏州)有限公司 Control method for enabling solar cell array simulator to be adapted to photovoltaic inverter
TWI463290B (en) 2012-03-22 2014-12-01 中原大學 Photovoltaic system having power-increment-aided incremental-conductance maximum power point tracking controller using variable-frequency constant-duty control and method thereof
TWI464555B (en) 2012-03-22 2014-12-11 中原大學 Photovoltaic system having power-increment-aided incremental-conductance maximum power point tracking controller using constant-frequency variable-duty control and method thereof
TWI470396B (en) 2013-06-26 2015-01-21 Ind Tech Res Inst Power point tracking method and apparatus
TWI721863B (en) * 2020-04-15 2021-03-11 國立勤益科技大學 Photovoltaic apparatus and maximum power point tracking method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5847543A (en) * 1997-06-30 1998-12-08 Compaq Computer Corporation AC adapter with automatically optimized output voltage and power
TW200723665A (en) * 2005-12-07 2007-06-16 Univ Chung Yuan Christian Impedance matching theory for tracking the maximum power point of the photovoltaic system
TWM327597U (en) * 2007-05-29 2008-02-21 Nat Univ Chin Yi Technology Hybrid power supply circuit with solar energy
CN101211192A (en) * 2006-12-31 2008-07-02 立锜科技股份有限公司 Simulated optical energy circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5847543A (en) * 1997-06-30 1998-12-08 Compaq Computer Corporation AC adapter with automatically optimized output voltage and power
TW200723665A (en) * 2005-12-07 2007-06-16 Univ Chung Yuan Christian Impedance matching theory for tracking the maximum power point of the photovoltaic system
CN101211192A (en) * 2006-12-31 2008-07-02 立锜科技股份有限公司 Simulated optical energy circuit
TWM327597U (en) * 2007-05-29 2008-02-21 Nat Univ Chin Yi Technology Hybrid power supply circuit with solar energy

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Guan-Chyun Hsieh, Energy management for interleaved PV stand-alone system with incremental conductance MPPT, TENCON 2009 - 2009 IEEE Region 10 Conference.2009/01/26 *
Kasa, N., Iida, T., Chen, L.,"Flyback Inverter Controlled by Sensorless Current MPPT for Photovoltaic Power System", IEEE Transactions on Industrial Electronics VOL. 52, 2005/08 *
Zhang Chao, He Xiangning, Zhang Dean,"Design and control of a novel module integrated converter with power pulsation decoupling for photovoltaic system", Conference on Electrical Machines and Systems,2008/10/17 *

Also Published As

Publication number Publication date
TW201042416A (en) 2010-12-01

Similar Documents

Publication Publication Date Title
Lasheen et al. Maximum power point tracking using Hill Climbing and ANFIS techniques for PV applications: A review and a novel hybrid approach
Yilmaz et al. Improved MPPT method to increase accuracy and speed in photovoltaic systems under variable atmospheric conditions
TWI391807B (en) A maximum power tracking system and method for photovoltaic power generation systems
Li et al. Maximum power point tracking of photovoltaic generation based on the fuzzy control method
Chung et al. Comparative study of P&O and modified incremental conductance algorithm in solar maximum power point tracking
Ebrahim et al. Whale inspired algorithm based MPPT controllers for grid-connected solar photovoltaic system
Chin et al. Fuzzy logic based MPPT for PV array under partially shaded conditions
Kang et al. A Novel MPPT Control of photovoltaic system using FLC algorithm
Mirbagheri et al. A PSO-based MPPT re-initialised by incremental conductance method for a standalone PV system
Mahmoud Toward a long-term evaluation of MPPT techniques in PV systems
Sharma et al. Maximum power point tracking techniques: A review
Boudaraia et al. MPPT design using artificial neural network and backstepping sliding mode approach for photovoltaic system under various weather conditions
Alrubaie et al. Review on MPPT techniques in solar system
El Khateb et al. Type-2 fuzzy logic approach of a maximum power point tracking employing sepic converter for photovoltaic system
Siddique et al. Maximum power point tracking with modified incremental conductance technique in grid-connected PV array
Melhem Analyzing and modeling pv with “p&o” mppt algorithm by matlab/simulink
Ma et al. Dem: direct estimation method for photovoltaic maximum power point tracking
Zamora et al. Efficiency based comparative analysis of selected classical MPPT methods
Rahman et al. Artificial Neural Network Based Maximum Power Point Tracking of a Photovoltaic System
TWI426370B (en) A maximum power point tracking method for photovoltaic module arrays
Ou et al. A variable step maximum power point tracking method using taylor mean value theorem
Cho et al. A variable step size incremental conductance MPPT of a photovoltaic system using DC-DC converter with direct control scheme
Triki et al. Unity efficiency and zero-oscillations based MPPT for photovoltaic systems
Ostadrahimi et al. Curve computation MPPT method based on simple modeling of the photovoltaic modules
Sagonda et al. Comparison of three techniques for maximum power point tracking of solar PV

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees