TWI653521B - A maximum power tracking algorithm - Google Patents

A maximum power tracking algorithm Download PDF

Info

Publication number
TWI653521B
TWI653521B TW107107498A TW107107498A TWI653521B TW I653521 B TWI653521 B TW I653521B TW 107107498 A TW107107498 A TW 107107498A TW 107107498 A TW107107498 A TW 107107498A TW I653521 B TWI653521 B TW I653521B
Authority
TW
Taiwan
Prior art keywords
maximum power
value
tracking
tracking algorithm
voltage
Prior art date
Application number
TW107107498A
Other languages
Chinese (zh)
Other versions
TW201939194A (en
Inventor
王順忠
劉益華
Original Assignee
龍華科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 龍華科技大學 filed Critical 龍華科技大學
Priority to TW107107498A priority Critical patent/TWI653521B/en
Application granted granted Critical
Publication of TWI653521B publication Critical patent/TWI653521B/en
Publication of TW201939194A publication Critical patent/TW201939194A/en

Links

Abstract

一種最大功率追蹤演算法,其係利用一控制電路實現,該最大功率追蹤演算法包括以下步驟:量測一太陽能發電系統之兩個初始操作點之輸出電流值及輸出電壓值以獲得(I 1,V 1)及(I 2,V 2);對所述(I 1,V 1)及(I 2,V 2)進行一簡化型加權最小平方法運算以獲得一估測照度值 S guess 及一估測溫度值 T guess ,該簡化型加權最小平方法運算包括: ,及 , 其中,Sf及Tf為預設的照度值和溫度值, ,其中Isc 、Is、 q、 K、 A及 N為常數, ,以及 ; 依所述估測照度值Sguess計算一最大功率點電壓值Vmpp,其中 ;以及 依該最大功率點電壓值Vmpp進行一擾動觀察法運算以決定一電壓命令。 A maximum power tracking algorithm is implemented using a control circuit. The maximum power tracking algorithm includes the following steps: measuring the output current value and output voltage value of two initial operating points of a solar power generation system to obtain (I 1 , V 1 ) and (I 2 , V 2 ); perform a simplified weighted least square method operation on the (I 1 , V 1 ) and (I 2 , V 2 ) to obtain an estimated illuminance value S guess and An estimated temperature value T guess , the simplified weighted least square method operation includes: ,and , Where Sf and Tf are preset illuminance values and temperature values, , , Where Isc, Is, q, K, A, and N are constants, , , ,as well as Calculate a maximum power point voltage value Vmpp according to the estimated illumination value Sguess, where ; And performing a disturbance observation method operation according to the maximum power point voltage value Vmpp to determine a voltage command.

Description

一種最大功率追蹤演算法A Maximum Power Tracking Algorithm

本發明係有關於一種太陽能發電系統之最大功率追蹤方法,特別是一種結合簡化型加權最小平方法和擾動觀察法以追蹤太陽能發電系統之最大功率輸出點之演算法。The invention relates to a maximum power tracking method for a solar power generation system, in particular to an algorithm combining a simplified weighted least square method and a disturbance observation method to track the maximum power output point of a solar power generation system.

自工業革命以後,能源的使用量就隨之大幅增長。由2016年全球能源消耗的分配比例可得知,目前能源消耗以化石燃料及核能為主,比例高達75.5%,次者則是再生能源。然而石油及化石燃料因需求量逐年升高已有短缺問題,而燃燒石油與化石燃料所產生的二氧化碳及甲烷造成溫室效應的問題也日益嚴重,造成近年全球環境變遷及暖化。為使人類能在地球永續生存發展,使用不造成生態溫染與破壞的再生能源已成為全球的共識。太陽能是目前最受到矚目的再生能源之一,主要因為它蘊藏豐富且使用時對環境負影響低。由2009-2016年再生能源之發電均化成本可看出,太陽能發電均化成本逐年減少。因此如何開發與有效利用光伏轉換設備已是發展太陽能發電系統十分重要的課題。Since the Industrial Revolution, energy use has grown significantly. According to the distribution of global energy consumption in 2016, it is known that the current energy consumption is mainly fossil fuels and nuclear energy, with the proportion as high as 75.5%, and the second is renewable energy. However, due to the increasing demand for petroleum and fossil fuels, there has been a shortage. The carbon dioxide and methane produced by burning petroleum and fossil fuels have caused the greenhouse effect, which has caused global environmental changes and warming in recent years. In order to enable human beings to survive and develop on the earth, it has become a global consensus to use renewable energy sources that do not cause ecological warming and destruction. Solar energy is currently one of the most attractive renewable energy sources, mainly because it has abundant reserves and has a low negative impact on the environment when used. From 2009 to 2016, it can be seen that the average cost of power generation from renewable energy sources, the average cost of solar power generation is decreasing year by year. Therefore, how to develop and effectively use photovoltaic conversion equipment has become a very important subject for the development of solar power generation systems.

然而目前商用太陽能電池之發電效率僅及20%左右,由於太陽能電池之電氣特性為非線性且該非線性曲線存在一最大功率點,且該電氣特性容易受到照度值與溫度影響,亦即太陽能電池在某一固定的日照及溫度下均存在一個最大功率輸出點,因此,如何擷取太陽能電池之最大輸出功率,使太陽能電池發揮最大成本效益為目前開發太陽能發電系統之重要議題,而這使得最大功率追蹤(Maximum Power Point Tracking, MPPT)演算法在高效能的太陽能發電系統中扮演著關鍵的角色。However, the current generation efficiency of commercial solar cells is only about 20%. Because the electrical characteristics of solar cells are non-linear and the non-linear curve has a maximum power point, and the electrical characteristics are easily affected by the illumination value and temperature, that is, the solar cells are at There is a maximum power output point under a certain fixed sunlight and temperature. Therefore, how to capture the maximum output power of solar cells to maximize the cost-effectiveness of solar cells is an important issue for the development of solar power systems, which makes the maximum power The tracking (Maximum Power Point Tracking, MPPT) algorithm plays a key role in high-efficiency solar power systems.

為了盡量從太陽能電池得到最多的轉換功率來最佳化光伏轉換效率,太陽能電池便須操作在最大功率點,此操作工法被稱為最大功率追蹤技術,而其演算法之相關研究可分成兩大重點:In order to obtain the maximum conversion power from the solar cell to optimize the photovoltaic conversion efficiency, the solar cell must be operated at the maximum power point. This operation method is called the maximum power tracking technology, and the related research of its algorithm can be divided into two major Focus:

1.當系統追至最大功率點前,會產生一暫態追蹤損失,而為應變外在環境並減少暫態追蹤損失,擁有理想的暫態響應是最大功率追蹤系統必須具備。1. When the system reaches the maximum power point, a transient tracking loss will occur. In order to strain the external environment and reduce the transient tracking loss, it is necessary for the maximum power tracking system to have an ideal transient response.

2.即使太陽能發電系統長期處於穩態狀態,為避免在穩態時工作點於最大功率點附近發生振盪而產生一穩態損失,如何增加太陽能穩態時的精確度亦是太陽能最大功率追蹤系統必須探討的重要課題。2. Even if the solar power generation system is in a steady state for a long time, in order to avoid a steady state loss when the operating point oscillates near the maximum power point in the steady state, how to increase the accuracy of the solar steady state is the solar maximum power tracking system Important topics that must be explored.

目前商用太陽能發電系統中最常用的最大功率追蹤法為擾動觀察法及增量電導法。其中擾動觀察法係根據前一操作狀態與目前操作點所獲得的功率值決定系統的控制命令值,而增量電導法則係以功率-電壓微分值決定系統的控制命令值。At present, the most commonly used maximum power tracking methods in commercial solar power generation systems are disturbance observation methods and incremental conductance methods. The disturbance observation method determines the control command value of the system based on the previous operating state and the power value obtained at the current operating point, while the incremental conductance method determines the control command value of the system with the power-voltage differential value.

在控制量的變動值較大時,系統由穩態追蹤到另一個穩態所需的時間較少,但到了穩態時因為擾動所造成的功率損失將會變大;另一方面,較小的控制量變動值可以改善穩態時因擾動所造成的功率損失,但是追蹤速度會變慢,此現象一般稱為追蹤速度-追蹤精確度之權衡問題。一般而言,使用固定步階進行擾動的最大功率追蹤方法皆會受此一問題所影響。When the value of the control variable is large, the time required for the system to track from steady state to another steady state is less, but at the steady state, the power loss caused by disturbance will become larger; on the other hand, the smaller The value of the control variable can improve the power loss caused by disturbance in the steady state, but the tracking speed will be slower. This phenomenon is generally called the tracking speed-tracking accuracy trade-off. Generally speaking, the maximum power tracking method using a fixed step for disturbance will be affected by this problem.

有文獻指出將傳統的增量電導法變成變動步階式,以藉由功率變化量、電壓變化量、電流變化量及縮放因子來決定步階的大小,再依照目前操作點對應出步階大小;亦有文獻利用一組比例-積分控制器來改善傳統固定步階擾動觀察法之權衡問題,並利用另一組比例-積分控制器來決定責任週期大小,以擁有良好的暫態與穩態響應。但使用兩組比例-積分控制器的運算量相對大,會加重數位訊號處理器的計算負荷;另有文獻以增量電導法為基礎,將模糊控制應用於太陽能發電系統中。Some literatures point out that the traditional incremental conductance method is changed into a variable step type to determine the step size by the power change amount, the voltage change amount, the current change amount, and the scaling factor, and then the step size is corresponding to the current operating point. ; There are also literatures that use a set of proportional-integral controllers to improve the trade-off problem of the traditional fixed-step disturbance observation method, and use another set of proportional-integral controllers to determine the duty cycle to have a good transient and steady state. response. However, the use of two sets of proportional-integral controllers has a relatively large amount of calculation, which will increase the calculation load of the digital signal processor. In addition, based on the incremental conductance method, fuzzy control is applied to solar power generation systems.

然而上述方法在最大功率點的追蹤能力、穩態時的精準度及能否以低成本的微控制器來實現追蹤法則仍有改進的空間,因此本領域亟需一新穎的最大功率追蹤演算法。However, there is still room for improvement in the tracking ability of the above method at the maximum power point, the accuracy at steady state, and whether the tracking rule can be implemented with a low-cost microcontroller. Therefore, a new maximum power tracking algorithm is urgently needed in the field. .

本發明之一目的在於揭露一種最大功率追蹤演算法,其採用簡化型加權最小平方法,僅需進行1次估測運算即能相當準確地估測出照度值,並進而求出最大功率點電壓,以達到一運算簡單而能以低成本的微控制器來實現之目的。An object of the present invention is to disclose a maximum power tracking algorithm, which uses a simplified weighted least square method, which can estimate the illumination value quite accurately with only one estimation operation, and then obtain the maximum power point voltage. In order to achieve a simple operation and can be achieved with a low-cost microcontroller.

本發明之另一目的在於揭露一種最大功率追蹤演算法,其在暫態表現之上升時間及穩定時間均較習知技術之固定步階式擾動觀察法與變動步階式擾動觀察法為佳。Another object of the present invention is to disclose a maximum power tracking algorithm, whose rise time and stabilization time in transient performance are better than the fixed-step perturbation observation method and the variable-step perturbation observation method of the conventional technology.

本發明之又一目的在於揭露一種最大功率追蹤演算法,其平均追蹤電能損失可較習知技術之固定步階式擾動觀察法與變動步階式擾動觀察法大幅減少,而有良好的追蹤效率。Another object of the present invention is to disclose a maximum power tracking algorithm. The average tracking power loss can be greatly reduced compared to the fixed step and perturbation observation methods of the variable step and the conventional method with good tracking efficiency. .

本發明之再一目的在於揭露一種最大功率追蹤演算法,其採用適當的估測運算配合擾動觀察法,而其追蹤結果與固定步階式擾動觀察法和變動式步階擾動觀察法相比,追蹤速度分別提高了84.6%和76%,追蹤電能損失也分別減少了68.48%和47.5%。Yet another object of the present invention is to disclose a maximum power tracking algorithm that employs an appropriate estimation operation in conjunction with the disturbance observation method. The tracking results are compared with the fixed-step disturbance observation method and the variable-step disturbance observation method. Speed increased by 84.6% and 76% respectively, and tracking power loss also decreased by 68.48% and 47.5%, respectively.

為達前述目的,一種最大功率追蹤演算法乃被提出,其係利用一控制電路實現,該最大功率追蹤演算法包括以下步驟:量測一太陽能發電系統之兩個初始操作點之輸出電流值及輸出電壓值以獲得(I 1,V 1)及(I 2,V 2);對所述(I 1,V 1)及(I 2,V 2)進行一簡化型加權最小平方法運算以獲得一估測照度值 S guess 及一估測溫度值 T guess ,該簡化型加權最小平方法運算包括: In order to achieve the aforementioned purpose, a maximum power tracking algorithm is proposed, which is implemented using a control circuit. The maximum power tracking algorithm includes the following steps: measuring the output current values of two initial operating points of a solar power generation system and Output voltage values to obtain (I 1 , V 1 ) and (I 2 , V 2 ); perform a simplified weighted least square method operation on the (I 1 , V 1 ) and (I 2 , V 2 ) to obtain An estimated illuminance value S guess and an estimated temperature value T guess . The simplified weighted least square method operation includes:

,及 ,and

,

其中, S f T f 為預設的照度值和溫度值, Where S f and T f are preset illuminance values and temperature values,

,

其中 I sc I s qKAN為常數, Where I sc , I s , q , K , A and N are constants,

,以及 , ,as well as ;

依所述估測照度值 S guess 計算一最大功率點電壓值 V mpp ,其中 ;以及 Calculate a maximum power point voltage value V mpp according to the estimated illumination value S guess , where ;as well as

依該最大功率點電壓值 V mpp 進行一擾動觀察法運算以決定一電壓命令。 A disturbance observation method operation is performed according to the maximum power point voltage value V mpp to determine a voltage command.

在一實施例中,其進一步包括一功率變化閥值判斷步驟,以在一功率變化量大於一預設功率變化閥值時重新進行該簡化型加權最小平方法運算以獲得一新的所述估測照度值 S guess In an embodiment, it further includes a power change threshold judgment step to re-perform the simplified weighted least square method operation when a power change is greater than a preset power change threshold to obtain a new said estimate. Measure illumination value S guess .

在一實施例中,該預設功率變化閥值為15W。In one embodiment, the preset power change threshold is 15W.

在一實施例中,其中該控制電路包括:一升壓轉換器,具有一輸入端、一控制端及一輸出端,該輸入端係用以與一太陽能電池系統耦接,該控制端係用以接收一脈衝寬度調變信號,且該輸出端係用以與一負載耦接;以及一微控制器,用以產生該電壓命令及依該電壓命令提供該脈衝寬度調變信號。In one embodiment, the control circuit includes: a boost converter having an input terminal, a control terminal, and an output terminal. The input terminal is used for coupling with a solar cell system, and the control terminal is used for To receive a pulse width modulation signal, and the output terminal is used for coupling with a load; and a microcontroller is used to generate the voltage command and provide the pulse width modulation signal according to the voltage command.

在一實施例中,該微控制器具有一數位訊號處理器,用以對該目前電壓及該目前電流分別進行一類比至數位轉換運算及一數位濾波運算,及依該電壓命令執行一比例-積分控制運算及一脈衝寬度調變運算以輸出該脈衝寬度調變信號。In one embodiment, the microcontroller has a digital signal processor for performing an analog-to-digital conversion operation and a digital filtering operation on the current voltage and the current, respectively, and performing a proportional-integral operation according to the voltage command. A control operation and a pulse width modulation operation are performed to output the pulse width modulation signal.

為使 貴審查委員能進一步瞭解本發明之結構、特徵及其目的,茲附以圖式及較佳具體實施例之詳細說明如後。In order to enable your reviewers to further understand the structure, characteristics, and purpose of the present invention, drawings and detailed descriptions of the preferred embodiments are attached below.

請參照圖1,其繪示本發明之最大功率追蹤演算法之一實施例步驟流程圖。Please refer to FIG. 1, which illustrates a flowchart of steps in an embodiment of the maximum power tracking algorithm of the present invention.

如圖所示,本發明之最大功率追蹤演算法,其係利用一控制電路實現,該最大功率追蹤演算法包括以下步驟:量測一太陽能發電系統之兩個初始操作點之輸出電流值及輸出電壓值以獲得(I 1,V 1)及(I 2,V 2);(步驟a); As shown in the figure, the maximum power tracking algorithm of the present invention is implemented using a control circuit. The maximum power tracking algorithm includes the following steps: measuring the output current value and output of two initial operating points of a solar power generation system Voltage value to obtain (I 1 , V 1 ) and (I 2 , V 2 ); (step a);

對所述(I 1,V 1)及(I 2,V 2)進行一簡化型加權最小平方法運算以獲得一估測照度值 S guess 及一估測溫度值 T guess ,該簡化型加權最小平方法運算包括: Perform a simplified weighted least square method operation on the (I 1 , V 1 ) and (I 2 , V 2 ) to obtain an estimated illuminance value S guess and an estimated temperature value T guess . The Xiaoping method operations include:

,及 ,and

,

其中, S f T f 為預設的照度值和溫度值, Where S f and T f are preset illuminance values and temperature values,

,

其中 I sc I s qKAN為常數, ,以及 ;(步驟b); Where I sc , I s , q , K , A and N are constants, , , ,as well as ; (Step b);

依所述估測照度值 S guess 計算一最大功率點電壓值 V mpp ,其中 ;(步驟c);以及 Calculate a maximum power point voltage value V mpp according to the estimated illumination value S guess , where ; (Step c); and

依該最大功率點電壓值 V mpp 進行一擾動觀察法運算以決定一電壓命令 (步驟d) 。 A disturbance observation method is performed according to the maximum power point voltage value V mpp to determine a voltage command (step d).

請參照圖2,其繪示本發明之最大功率追蹤演算法之另一實施例步驟流程圖。Please refer to FIG. 2, which illustrates a flowchart of steps in another embodiment of the maximum power tracking algorithm of the present invention.

如圖所示,其進一步包括一功率變化閥值判斷步驟,以在一功率變化量大於一預設功率變化閥值時重新進行該簡化型加權最小平方法運算以獲得一新的所述估測照度值 S guess As shown in the figure, it further includes a power change threshold judgment step to re-perform the simplified weighted least square method operation when a power change is greater than a preset power change threshold to obtain a new said estimate. Illumination value S guess .

其中,該預設功率變化閥值例如但不限為15W。The preset power change threshold is, for example, but not limited to, 15W.

該擾動觀察法(Perturb and observe)運算係針對功率對電壓「未到達最大功率時曲線上升,超過最大功率時則曲線下降」的曲線特性。藉由小幅的增加或減少電壓,並觀察負載變動後的輸出電壓及輸出功率的大小,以決定產生一電壓命令,該部分為習知技術,擬不再贅述。The Perturb and observe calculation is based on the curve characteristic of power versus voltage "curve rises when the maximum power is not reached, and decreases when the maximum power is exceeded". By slightly increasing or decreasing the voltage, and observing the output voltage and output power after the load changes, it is decided to generate a voltage command. This part is a conventional technology, and it will not be repeated here.

以下將針對本發明的原理進行說明:The following will explain the principle of the present invention:

太陽能電池電氣特性:Electrical characteristics of solar cells:

請參照圖3,其繪示太陽能電池之單二極體等效電路圖。Please refer to FIG. 3, which shows a single diode equivalent circuit diagram of a solar cell.

如圖所示,太陽能電池之電氣特性為一非線性電源,其電壓與電流呈現一指數曲線的關係,因此當太陽能電池輸出電壓變動時,其輸出電流也會隨之變動。依據等效電路可得知太陽能電池輸出電壓與電流之關係式如方程式(1)所示。As shown in the figure, the electrical characteristics of a solar cell are a non-linear power source, and its voltage and current exhibit an exponential relationship. Therefore, when the output voltage of a solar cell changes, its output current also changes accordingly. According to the equivalent circuit, it can be known that the relationship between the output voltage and the current of the solar cell is shown in equation (1).

(1) (1)

其中,I T為太陽能電池輸出電流、I g為光電轉換電流、I S為二極體逆向飽和電流、q為載子電荷量( )、R S為串聯等效電阻、V T為太陽能電池輸出電壓、K為波茲曼常數( )、A為介電常數(1~2之間)、T為絕對溫度值、N為太陽能模組串聯數、R P為並聯等效電阻。 Among them, I T is the output current of the solar cell, I g is the photoelectric conversion current, I S is the reverse saturation current of the diode, and q is the carrier charge amount ( ), R S is the series equivalent resistance, V T is the solar cell output voltage, and K is the Bozman constant ( ), A is the dielectric constant (between 1 and 2), T is the absolute temperature value, N is the number of solar modules in series, and R P is the parallel equivalent resistance.

而光電轉換電流I g與照度值關係式如方程式(2)所示。 The relationship between the photoelectric conversion current I g and the illuminance value is shown in equation (2).

(2) (2)

其中,S為照度值,單位為W/m 2,I SC為太陽能電池之短路電流。 Among them, S is the illuminance value, the unit is W / m 2 , and I SC is the short-circuit current of the solar cell.

一般而言,由於太陽能電池的並聯電阻之值遠大於串聯電阻之值,可將方程式(1)與方程式(2)整合化簡成方程式(3)。In general, since the value of the parallel resistance of the solar cell is much larger than the value of the series resistance, Equation (1) and Equation (2) can be integrated into Equation (3).

(3) (3)

為了觀察照度值與環境溫度值改變時對太陽能電池輸出特性曲線之影響,可將方程式(3)改寫成方程式(4)。In order to observe the influence on the output characteristic curve of the solar cell when the illuminance value and the ambient temperature value change, the equation (3) can be rewritten into the equation (4).

(4) (4)

請一併參照圖4a及4b,其中圖4a繪示太陽能電池在不同照度值下功率-電壓曲線;圖4b繪示太陽能電池在不同照度值下電流-電壓曲線。Please refer to FIGS. 4a and 4b together, wherein FIG. 4a shows the power-voltage curves of the solar cell under different illumination values; and FIG. 4b shows the current-voltage curves of the solar cell under different illumination values.

其中,環境溫度值固定於25°C,不同照度值分別為200W/m 2、400W/m 2、600W/m 2、800W/m 2及1000W/m 2,如圖所示,這五種照度值由方程式(3)繪製出五條太陽能電池輸出曲線,所述特性曲線會隨照度值變化而改變。 Among them, the ambient temperature value is fixed at 25 ° C, and the different illuminance values are 200W / m 2 , 400W / m 2 , 600W / m 2 , 800W / m 2 and 1000W / m 2 , as shown in the figure. The value is drawn from equation (3) by five solar cell output curves, and the characteristic curve will change with the change of the illumination value.

由方程式(2)得知,當太陽光照度值上升,半導體因照入的光能量增加使得輸出的電能量增加,太陽能電池之光電轉換電流也隨之增加。由方程式(3)得知,太陽能電池輸出電流幾乎與光電轉換電流成正比,因此照度值增加時,太陽能電池輸出電流亦會隨之增加。由方程式(4) 得知,因存在自然對數關係,故太陽能電池輸出電壓於照度值上升時只有些微變化。It is known from equation (2) that when the solar illuminance value is increased, the output electric energy of the semiconductor is increased due to the increase of the incident light energy, and the photoelectric conversion current of the solar cell is also increased accordingly. It is known from equation (3) that the output current of the solar cell is almost directly proportional to the photoelectric conversion current, so when the illuminance value increases, the output current of the solar cell also increases. It is known from equation (4) that due to the natural logarithmic relationship, the output voltage of the solar cell changes only slightly when the illuminance value rises.

請一併參照圖5a及5b,其中圖5a繪示太陽能電池在不同溫度值下功率-電壓曲線;圖5b繪示太陽能電池在不同溫度值下電流-電壓曲線。Please refer to FIGS. 5a and 5b together, wherein FIG. 5a shows the power-voltage curves of the solar cell at different temperature values; and FIG. 5b shows the current-voltage curves of the solar cell at different temperature values.

如圖所示,太陽能電池輸出特性曲線也會受到環境溫度值影響,由方程式(3)得知,當環境溫度值上升時,等效二極體電流減少使太陽能電池輸出電流略為上升,且由方程式(4)得知,環境溫度值與太陽能電池輸出電壓成正比關係,但太陽能電池輸出電流也會隨溫度值上升而上升,且其所受影響遠大於輸出電壓,因此環境溫度值對太陽能電池輸出電壓影響不大,反而串聯等效電阻跨壓衰減量因輸出電流增加而增加,使太陽能電池輸出電壓造成明顯的下降,其輸出功率也下降。As shown in the figure, the output characteristic curve of the solar cell is also affected by the ambient temperature value. According to equation (3), when the ambient temperature value increases, the equivalent diode current decreases and the output current of the solar cell increases slightly. Equation (4) shows that the ambient temperature value is directly proportional to the output voltage of the solar cell, but the output current of the solar cell will also increase as the temperature value rises, and it will be affected much more than the output voltage. The output voltage has little effect. On the contrary, the attenuation of the series equivalent resistance across voltage increases due to the increase of the output current, which causes a significant drop in the output voltage of the solar cell, and its output power also decreases.

本發明所採之太陽能最大功率追蹤系統硬體架構Hardware architecture of solar maximum power tracking system adopted by the present invention :

請參照圖6,其繪示本發明所採之控制系統架構示意圖。Please refer to FIG. 6, which illustrates a schematic diagram of a control system architecture adopted by the present invention.

如圖所示,本發明所採之控制系統架構包含太陽能電池系統100、升壓式轉換器200及微控制器300。As shown in the figure, the control system architecture adopted by the present invention includes a solar cell system 100, a boost converter 200, and a microcontroller 300.

該升壓轉換器200具有一輸入端、一控制端及一輸出端,該輸入端係用以與該太陽能電池系統100耦接,該控制端係用以接收一脈衝寬度調變信號,且該輸出端係用以與一負載400耦接。The boost converter 200 has an input terminal, a control terminal, and an output terminal. The input terminal is used for coupling with the solar cell system 100. The control terminal is used for receiving a pulse width modulation signal. The output terminal is used for coupling with a load 400.

該微控制器300具有一數位訊號處理器用以對太陽能電池系統100輸出之電壓及電流分別進行一取樣、一類比至數位轉換運算及一數位濾波運算,再進行最大功率追蹤法之運算進而產生一電壓命令,該電壓命令經由一比例-積分控制運算及一脈衝寬度調變運算產生一責任週期用以控制該升壓式轉換器200達到最大功率追蹤之目的。The micro-controller 300 has a digital signal processor for sampling, voltage-analog-to-digital conversion, and digital-filtering operations on the voltage and current output by the solar cell system 100, and then performing the maximum power tracking method to generate a The voltage command generates a duty cycle through a proportional-integral control operation and a pulse width modulation operation to control the boost converter 200 to achieve the purpose of maximum power tracking.

其中,由於習知的太陽能電池系統100的輸出電壓普遍過低,該升壓式轉換器200係用以提升該太陽能電池系統100之輸出電壓;該微控制器300例如但不限為採用一低成本的數位訊號處理器來實現。Among them, since the output voltage of the conventional solar cell system 100 is generally too low, the boost converter 200 is used to increase the output voltage of the solar cell system 100; the microcontroller 300 is, for example but not limited to, using a low voltage. Cost of a digital signal processor to implement.

狀態估測技術之加權最小平方法之介紹:Introduction to the weighted least square method of state estimation technology:

狀態估測(State Estimation)係藉由觀察系統中的已知資訊來估測其他未知資訊,其行為類似於使用一台濾波器來消除資料中的誤差,最常被使用的狀態估測技術為加權最小平方法(Weighted Least Square ,WLS),而此方法是依據系統量測值以及系統狀態變數之間的數值關係來進行狀態估測,說明如下:State Estimation estimates other unknown information by observing known information in the system. Its behavior is similar to using a filter to eliminate errors in the data. The most commonly used state estimation technology is Weighted Least Square (WLS) method, and this method is based on the system measurement and the numerical relationship between system state variables to perform state estimation, as follows:

首先確立量測值與狀態變數的關係,如方程式(5)所示。First establish the relationship between the measured value and the state variable, as shown in equation (5).

(5) (5)

其中,z為測量值向量,h(x)為量測值函數,x為狀態變數,n為量測值之誤差向量。Among them, z is the measured value vector, h (x) is the measured value function, x is the state variable, and n is the error vector of the measured value.

加權最小平方法係藉由解出方程式(6)之最小值,來求出系統之狀態變數。The weighted least square method is to find the state variables of the system by solving the minimum of equation (6).

(6) (6)

其中,w i為第i次量測值之權重,z i為第i個量測值,h i為第i個量測值之關係函數,J(x)為量測值與關係函數之誤差函數, z-h(x)為剩餘向量(Residual Vector),W為量測值之權重向量,[] T表轉置矩陣 (Transposed Matrix)。 Wherein, w i is the i th weight measured values of weight, z i is the i-th measured value, h i is the relationship between the measured values of the i-th vector function, J (x) is the error measured values the relationship between the function of Function, zh (x) is the Residual Vector, W is the weight vector of the measured value, [] T table Transposed Matrix.

對方程式(6)微分並令其等於零,以求得誤差函數之最小值,如方程式(7)所示。Differentiate the equation (6) and make it equal to zero to find the minimum value of the error function, as shown in equation (7).

(7) (7)

其中,H(x)為加權最小平方法之雅可比矩陣(Jacobian matrix),h(x)為量測值函數,如方程式(8) 所示。Among them, H (x) is the Jacobian matrix of the weighted least square method, and h (x) is the measurement value function, as shown in equation (8).

(8) (8)

方程(7)為非線性方程式,可藉由疊代運算進行求解,而第j次疊代如方程式(9)所示。Equation (7) is a non-linear equation that can be solved by iterative operations, and the jth iteration is shown in equation (9).

(9) (9)

其中,G(x)為系統之增益矩陣(Gain Matrix),如方程式(10) 所示。Among them, G (x) is the gain matrix of the system, as shown in equation (10).

(10) (10)

整個系統可藉由疊代運算,直到△X j收斂到小於一設定值為止,其中△X j如方程式(11)所示。。 The entire system can be iteratively calculated until ΔX j converges to less than a set value, where ΔX j is as shown in equation (11). .

(11) (11)

本發明係以所量測之兩個初始操作點之輸出電流值及輸出電壓值作為系統量測值進行運算,以求出一估測之照度值及溫度值之系統狀態變數。The invention uses the measured output current values and output voltage values of the two initial operating points as system measurement values to perform calculations to obtain an estimated system state variable of the illuminance value and temperature value.

由方程式(3)中輸出電壓與電流之關係式可得知,光電轉換電流受照度值影響,而二極體電流則受到溫度值影響,本發明以照度值與溫度值當作系統狀態變數,並且藉由在不同操作點量測輸出電壓與輸出電流,照度值與溫度值即可被估測,將方程式(6)改寫成方程式(12),並求出最小值以估測照度值與溫度值。According to the relationship between the output voltage and current in equation (3), it can be known that the photoelectric conversion current is affected by the illuminance value, and the diode current is affected by the temperature value. In the present invention, the illuminance value and temperature value are used as system state variables. And by measuring the output voltage and output current at different operating points, the illuminance value and temperature value can be estimated. Rewrite equation (6) into equation (12), and find the minimum value to estimate the illuminance value and temperature value.

(12) (12)

其中,J(S, T)為加權最小平方法之誤差函數, 為第i次量測之權重,m為總量測次數。接著將 J(S, T)進行微分並令其等於零來進行求解,如方程式(13)所示。 Among them, J (S, T) is the error function of the weighted least square method, Is the weight of the i-th measurement, and m is the total number of measurements. J (S, T ) is then differentiated and made equal to zero to solve, as shown in equation (13).

(13) (13)

其中,H為雅可比矩陣、W為量測值之權重向量、△I為電流誤差向量,分別如方程式(14)、方程式(15)和方程式(16)所示。Among them, H is a Jacobian matrix, W is a weight vector of the measured value, and ΔI is a current error vector, as shown in Equation (14), Equation (15), and Equation (16), respectively.

(14) (14)

(15) (15)

(16) (16)

對方程式(3)進行微分求解,分別如方程式(17)和方程式(18)所示。The equation (3) is solved differentially, as shown in equation (17) and equation (18), respectively.

(17) (17)

(18) (18)

而方程式(13)可由疊代運算進行求解,其中第j次疊代可表示如方程式(19)所示。Equation (13) can be solved by an iterative operation. The jth iteration can be expressed as shown in equation (19).

(19) (19)

其中,本發明係藉由量測一太陽能發電系統之兩個初始操作點之輸出電流值及輸出電壓值以獲得(I 1,V 1)及(I 2,V 2)來完成估測,其中雅可比矩陣Hj、權重向量Wj及電流誤差向量△Ij分別如方程式(20)、方程式(21)及方程式(22)所示,再藉由疊代運算,直到△S及△T收斂到小於一設定值為止,即可估測出照度值與溫度值。 Among them, the present invention completes the estimation by measuring the output current value and output voltage value of two initial operating points of a solar power generation system to obtain (I 1 , V 1 ) and (I 2 , V 2 ), where The Jacobian matrix Hj, weight vector Wj, and current error vector △ Ij are shown in Equation (20), Equation (21), and Equation (22), respectively, and then iterate until △ S and △ T converge to less than one. Up to the set value, the illuminance value and temperature value can be estimated.

(20) (20)

(21) (twenty one)

(22) (twenty two)

請一併參照圖4a及圖7,其中圖4a繪示太陽能電池在不同照度值下功率-電壓曲線;圖7繪示本發明之追蹤示意圖。 Please refer to FIG. 4a and FIG. 7 together, wherein FIG. 4a shows the power-voltage curves of the solar cell under different illuminance values; and FIG. 7 shows the tracking diagram of the present invention.

由圖4a得知,在不同照度值下其輸出功率-電壓曲線圖均不相同,太陽能電池之最大功率點電壓也不相同。如圖7所示,本發明係藉由量取兩個在太陽能輸出功率-電壓曲線的不同操作點(圖中的V1、V2),進行一加權最小平方法之狀態估測運算以獲得一估測之照度值及溫度值,接著將操作點電壓跳至該照度值之最大功率點(圖中的b點)電壓附近並進行擾動觀察法,以達到最大功率追蹤之效果。 It is known from FIG. 4a that the output power-voltage curves are different under different illuminance values, and the maximum power point voltages of solar cells are also different. As shown in FIG. 7, the present invention calculates the state estimation operation of a weighted least square method by measuring two different operating points (V 1 and V 2 ) in the solar power-voltage curve. An estimated illuminance value and temperature value, then jump the operating point voltage to the voltage near the maximum power point (point b in the figure) of the illuminance value and perform a perturbation observation method to achieve the effect of maximum power tracking.

請一併參照圖8及圖9,其中圖8繪示照度值為100W/m2至1000W/m2的輸出功率-電壓曲線;圖9繪示照度值與最大功率點電壓曲線。 Please refer to FIG. 8 and FIG. 9 together, wherein FIG. 8 shows an output power-voltage curve with an illuminance value of 100 W / m 2 to 1000 W / m 2 ; and FIG. 9 shows an illuminance value and a maximum power point voltage curve.

如圖8所示,其照度值變化量為100W/m2,每個照度值下之最大功率點電壓皆不相同,圖中圓點即為每個照度值之最大功率點電壓;如圖9所示,其係為以照度值為自變數,最大功率點電壓為應變數,作成一S-Vmpp曲線,如方程式(23)所示。 8, the illumination change value of 100W / m 2, the maximum power point voltage of each are different from each luminance value, is the dot FIG maximum power point voltage of each of the illuminance values; FIG. 9 As shown in the figure, an SV mpp curve is made by taking the illumination value as an independent variable and the maximum power point voltage as the strain number, as shown in equation (23).

V mpp =16.86S 3-37.97S 2+32.76S+55.76 (23) V mpp = 16.86 S 3 -37.97 S 2 +32.76 S +55.76 (23)

其中,Vmpp為最大功率點電壓,S為照度值,由圖可知該曲線與實際最大功率點電壓十分接近,因此當運算出照度值,便可將該值代入以獲得該照度值下之最大功率點電壓。 Among them, V mpp is the maximum power point voltage and S is the illuminance value. The graph shows that the curve is very close to the actual maximum power point voltage. Therefore, when the illuminance value is calculated, this value can be substituted to obtain the maximum value under the illuminance value. Power point voltage.

本發明採用簡化型加權最小平方法之進行估測運算之理由:Reasons for the estimation operation of the present invention using a simplified weighted least square method:

在進行狀態估測模擬時發現,僅需進行1次估測運算即能準確估測出照度值,其模擬結果如表1所示。其中,初始設定之照度值為800W/m2,溫度值為50˚C;在理想狀態下,會估測出照度值為1000 W/m 2,溫度值則為25˚C。 When performing state estimation simulation, it was found that only one estimation operation was needed to accurately estimate the illuminance value. The simulation results are shown in Table 1. Among them, the initial illumination value is 800 W / m 2 and the temperature value is 50˚C. In an ideal state, the illumination value is estimated to be 1000 W / m 2 and the temperature value is 25˚C.

從表1可得知,須要進行4次估測運算方能準確估測出照度值與溫度值,但僅進行1次估測運算,雖溫度值與理想狀態相比稍有誤差,卻仍能準確估測出照度值。As can be seen from Table 1, four estimation calculations are required to accurately estimate the illuminance value and temperature value, but only one estimation calculation is performed. Although the temperature value is slightly different from the ideal state, it still can Accurately estimate the illuminance value.

表1 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 估測次數 </td><td> 1 </td><td> 2 </td><td> 3 </td><td> 4 </td></tr><tr><td> 估測照度值(W/m<sup>2</sup>) </td><td> 1000 </td><td> 1000 </td><td> 1000 </td><td> 1000 </td></tr><tr><td> 估測溫度值(˚C) </td><td> 19.98 </td><td> 24.8 </td><td> 24.99 </td><td> 25 </td></tr></TBODY></TABLE>Table 1         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> Estimated times </ td> <td> 1 </ td> <td> 2 </ td> <td> 3 </ td> <td> 4 </ td> </ tr> <tr> <td> Estimated illumination value (W / m <sup> 2 </ sup>) </ td> < td> 1000 </ td> <td> 1000 </ td> <td> 1000 </ td> <td> 1000 </ td> </ tr> <tr> <td> Estimated temperature (˚C) < / td> <td> 19.98 </ td> <td> 24.8 </ td> <td> 24.99 </ td> <td> 25 </ td> </ tr> </ TBODY> </ TABLE>

因為本發明主要與估測照度值有關,所以將加權最小平方法之狀態估測流程予以簡化,僅進行1次估測運算,即能準確估測出照度值並進行最大功率追蹤。Because the present invention is mainly related to estimating the illuminance value, the state estimation process of the weighted least square method is simplified, and only one estimation operation can be performed to accurately estimate the illuminance value and perform maximum power tracking.

簡化型加權最小平方法估測照度值及溫度值如方程式(24)所示,雅可比矩陣 H f 及電流誤差向量△ I f 分別如方程式(25)及方程式(26)所示。其中, S guess T guess 分別為狀態估測出之照度值與溫度值, S f T f 為第一次猜測之照度值與溫度值。 The simplified weighted least square method estimates the illuminance and temperature values as shown in equation (24), and the Jacobian matrix H f and current error vector Δ I f are as shown in equation (25) and equation (26), respectively. Among them, S guess and T guess are respectively the illuminance value and temperature value estimated by the state, and S f and T f are the illuminance value and temperature value of the first guess.

(24) (twenty four)

(25) (25)

(26) (26)

本發明與This invention is related to 習知技術之比較:Comparison of known technologies:

以下將針對本發明提出的最大功率追蹤演算法與習知技術之固定步階式擾動觀察法以及變動步階式擾動觀察法進行比較,以驗證本發明之可行性和性能改善。In the following, the maximum power tracking algorithm proposed by the present invention is compared with the fixed step perturbation observation method and the variable step perturbation observation method of the conventional technology to verify the feasibility and performance improvement of the present invention.

各演算法之控制命令均係以每0.2秒更新一次最大功率追蹤命令,其中固定步階式擾動觀察法僅測試一般均勻照度於800W/m 2情況,而本發明和變動步階式擾動觀察法將以增加照度變化來測試。 The control commands of each algorithm are updated with the maximum power tracking command every 0.2 seconds. The fixed-step perturbation observation method only tests the case where the average uniform illumination is 800W / m 2 , and the present invention and the variable-step perturbation observation method It will be tested with increasing illumination changes.

本發明採用2個TYNS62610290太陽能電池模組進行串聯作為系統輸入來源,太陽能電池規格如表2所示。In the present invention, two TYNS62610290 solar cell modules are connected in series as a system input source, and the solar cell specifications are shown in Table 2.

表2 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 最大功率<i>P<sub>mpp</sub></i></td><td> 290W </td><td> 開路電壓<i>V<sub>OC</sub></i></td><td> 39.54V </td><td> 短路電流<i>I<sub>SC</sub></i></td><td> 9.41A </td></tr><tr><td> 最大功率點電壓<i>V<sub>mpp</sub></i></td><td> 32.24V </td><td> 最大功率點電流<i>I<sub>mpp</sub></i></td><td> 8.73A </td></tr><tr height="0"><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr></TBODY></TABLE>而該太陽能電池模組經過串聯後其對應之實驗參數規格如表3所示。 Table 2         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> Maximum power <i> P <sub> mpp </ sub> </ i> </ td > <td> 290W </ td> <td> Open circuit voltage <i> V <sub> OC </ sub> </ i> </ td> <td> 39.54V </ td> <td> Short circuit current <i > I <sub> SC </ sub> </ i> </ td> <td> 9.41A </ td> </ tr> <tr> <td> Maximum power point voltage <i> V <sub> mpp < / sub> </ i> </ td> <td> 32.24V </ td> <td> Maximum power point current <i> I <sub> mpp </ sub> </ i> </ td> <td> 8.73A </ td> </ tr> <tr height = "0"> <td> </ td> <td> </ td> <td> </ td> <td> </ td> <td> < / td> <td> </ td> <td> </ td> <td> </ td> </ tr> </ TBODY> </ TABLE> After the solar cell module is connected in series, its corresponding experimental parameters The specifications are shown in Table 3.       

表3 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 最大功率<i>P<sub>mpp</sub></i></td><td> 580W </td><td> 開路電壓<i>V<sub>OC</sub></i></td><td> 79.08V </td><td> 短路電流<i>I<sub>SC</sub></i></td><td> 9.41A </td></tr><tr><td> 最大功率點電壓<i>V<sub>mpp</sub></i></td><td> 64.48V </td><td> 最大功率點電流<i>I<sub>mpp</sub></i></td><td> 8.73A </td></tr><tr height="0"><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr></TBODY></TABLE>table 3         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> Maximum power <i> P <sub> mpp </ sub> </ i> </ td > <td> 580W </ td> <td> Open circuit voltage <i> V <sub> OC </ sub> </ i> </ td> <td> 79.08V </ td> <td> Short circuit current <i > I <sub> SC </ sub> </ i> </ td> <td> 9.41A </ td> </ tr> <tr> <td> Maximum power point voltage <i> V <sub> mpp < / sub> </ i> </ td> <td> 64.48V </ td> <td> Maximum power point current <i> I <sub> mpp </ sub> </ i> </ td> <td> 8.73A </ td> </ tr> <tr height = "0"> <td> </ td> <td> </ td> <td> </ td> <td> </ td> <td> < / td> <td> </ td> <td> </ td> <td> </ td> </ tr> </ TBODY> </ TABLE>

(( One )) 習知技術之固定步階式擾動觀察法之實測結果:The measurement results of the fixed-step perturbation observation method of the conventional technique:

請參照圖10,其繪示習知技術之固定步階式擾動觀察法之實測結果波形圖。Please refer to FIG. 10, which illustrates a waveform diagram of the measurement result of the fixed step perturbation observation method of the conventional technique.

其中在擾動命令為 ,均勻照度800W/m 2,溫度為25˚C的情況下,如圖所示,實測之上升時間為3.9秒,穩定時間為4.8秒,穩態平均功率為475.67 W,穩態追蹤功率精確度為97.97 %,追蹤電能損失為4378.7 J,平均追蹤功率損失為89.02 W。 Where the perturbation order is In the case of uniform illumination of 800W / m 2 and temperature of 25 如图 C, as shown in the figure, the measured rise time is 3.9 seconds, the settling time is 4.8 seconds, the steady-state average power is 475.67 W, and the steady-state tracking power accuracy It is 97.97%, the tracking power loss is 4378.7 J, and the average tracking power loss is 89.02 W.

(( 二)習知技術之變動步階式擾動觀察法之實測結果:2. The measured results of the step-by-step perturbation observation method for the change of the conventional technology:

請一併參照圖11a及圖11b,其中圖11a其繪示習知技術之變動步階式擾動觀察法之均勻照度實測結果波形圖,圖11b其繪示習知技術之變動步階式擾動觀察法之變化照度實測結果波形圖。Please refer to FIG. 11a and FIG. 11b together, wherein FIG. 11a shows a waveform diagram of the measured result of uniform illumination of the step change disturbance observation method of the conventional technique, and FIG. 11b shows the step change disturbance observation of the conventional technique. Waveform diagram of the actual measurement results of the change in illumination.

本實測分為二部分,第一部分為均勻照度實測,第二部分為變化照度實測。This actual measurement is divided into two parts, the first part is the measurement of uniform illumination, and the second part is the measurement of varying illumination.

均勻照度實測部分,照度為800W/m 2,溫度為25˚C,因為比例因子M為0.65之性能表現最佳,故選用M為0.65進行實測。如圖11a所示,實測之上升時間2.5秒,穩定時間為3.2秒,穩態平均功率為481.64W,穩態追蹤功率精確度為99.2 %,追蹤電能損失為2967.32 J,平均追蹤功率損失為53.53 W。 The measured part of the uniform illuminance is 800W / m 2 and the temperature is 25˚C. Because the performance of the scale factor M is 0.65 is the best, so M is selected for the actual measurement. As shown in Figure 11a, the measured rise time is 2.5 seconds, the settling time is 3.2 seconds, the steady-state average power is 481.64W, the steady-state tracking power accuracy is 99.2%, the tracking power loss is 2967.32 J, and the average tracking power loss is 53.53 W.

變化照度實測部分,照度則從300W/m 2變化至800W/m 2,溫度為25˚C,比例因子M設定為0.65進行實測。如圖11b所示,可得出在照度為800W/m 2的M之最佳值,在照度為300W/m 2時,其M值太小,導致追蹤速度慢,追蹤電能損失增加,而變化至800W/m 2後,便可迅速追到最大功率點,這也看出變動步階式選擇比例因子設計困難之問題。 The measured part of the illuminance changes, the illuminance changes from 300W / m 2 to 800W / m 2 , the temperature is 25˚C, and the scale factor M is set to 0.65 for actual measurement. As shown in Figure 11b, the best value of M at 800W / m 2 is obtained. At 300W / m 2 , the M value is too small, resulting in slow tracking speed and increased tracking power loss. After 800 W / m 2 , the maximum power point can be quickly tracked. This also shows that it is difficult to select a scale factor for the variable step design.

(( 三)本發明之實測結果:C) The measured results of the present invention:

請一併參照圖12a至圖12c,其中圖12a繪示本發明之均勻照度實測結果波形圖,圖12b繪示本發明之變化照度300W/m 2變化至800W/m 2實測結果波形圖,圖12c繪示本發明之變化照度800W/m 2變化至100W/m 2實測結果波形圖。 Please refer to FIG. 12a to FIG. 12c together, where FIG. 12a is a waveform diagram of the measured result of uniform illumination of the present invention, and FIG. 12b is a waveform diagram of the measured result of variation of illumination of 300W / m 2 to 800W / m 2 of the present invention. 12c shows a waveform diagram of the actual measurement result of the change of the illuminance from 800 W / m 2 to 100 W / m 2 according to the present invention.

本實測亦分為二部分,第一部分為均勻照度實測,第二部分為變化照度實測。This actual measurement is also divided into two parts, the first part is the measurement of uniform illumination, and the second part is the measurement of varying illumination.

均勻照度實測部分,照度為800W/m 2,溫度為25˚C進行實測。如圖12a所示,實測之上升時間0.6秒,穩定時間為0.8秒,穩態平均功率為481.25 W,穩態追蹤功率精確度為99.12 %,追蹤電能損失為696.16 J,平均追蹤功率損失為28.06 W。 The measured part of the uniform illuminance is 800W / m 2 and the temperature is 25˚C. As shown in Figure 12a, the measured rise time is 0.6 seconds, the settling time is 0.8 seconds, the steady-state average power is 481.25 W, the steady-state tracking power accuracy is 99.12%, the tracking power loss is 696.16 J, and the average tracking power loss is 28.06. W.

變化照度實測部分,照度從300W/m 2變化至800W/m 2,溫度為25˚C進行實測時,結果如圖12b所示;照度從800W/m 2變化至100W/m 2,溫度為25˚C進行從高照度變化至低照度的實測時,結果如圖12c所示。可看出在照度變化後,只需量測到兩操作點即可跳回最大功率點附近進行擾動,和理論推導相吻合。 The measured part of the illuminance is changed from 300W / m 2 to 800W / m 2 and the temperature is 25 2C. The results are shown in Figure 12b. The illuminance is changed from 800W / m 2 to 100W / m 2 and the temperature is 25. When ˚C is measured from high illuminance to low illuminance, the results are shown in Figure 12c. It can be seen that after the illuminance changes, it only needs to measure two operating points to jump back to the vicinity of the maximum power point for disturbance, which is consistent with the theoretical derivation.

(( 四) 比較與分析:4. Comparison and analysis:

以下將各最大功率演算法之模擬與實測結果進行比對,並將各最大功率演算法之結果列於表4至表6,由表中可看出所述追蹤方法之模擬結果與實測誤差不大,故可驗證所提出的追蹤方法之正確性。In the following, the simulation and measured results of each maximum power algorithm are compared, and the results of each maximum power algorithm are listed in Tables 4 to 6. From the table, it can be seen that the simulation results and measured errors of the tracking method are not the same. Large, it can verify the correctness of the proposed tracking method.

表4 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 固定步階式擾動觀察法 </td><td> 模擬結果 </td><td> 實驗結果 </td></tr><tr><td> 上升時間 </td><td> 3.8 秒 </td><td> 3.9 秒 </td></tr><tr><td> 穩定時間 </td><td> 5 秒 </td><td> 4.8 秒 </td></tr><tr><td> 穩態平均功率 </td><td> 464.59 W </td><td> 475.67 W </td></tr><tr><td> 穩態追蹤精確度 </td><td> 98.12 % </td><td> 97.97 % </td></tr><tr><td> 追蹤電能損失 </td><td> 4277.4 J </td><td> 4378.7 J </td></tr><tr><td> 平均追蹤電能損失 </td><td> 81.71 W </td><td> 89.02 W </td></tr></TBODY></TABLE>Table 4         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> Fixed-step perturbation observation method </ td> <td> Simulation results </ td> < td> Experimental results </ td> </ tr> <tr> <td> Rise time </ td> <td> 3.8 seconds </ td> <td> 3.9 seconds </ td> </ tr> <tr> < td> settling time </ td> <td> 5 seconds </ td> <td> 4.8 seconds </ td> </ tr> <tr> <td> steady state average power </ td> <td> 464.59 W < / td> <td> 475.67 W </ td> </ tr> <tr> <td> Steady-state tracking accuracy </ td> <td> 98.12% </ td> <td> 97.97% </ td> < / tr> <tr> <td> Tracking power loss </ td> <td> 4277.4 J </ td> <td> 4378.7 J </ td> </ tr> <tr> <td> Tracking power loss averagely </ td> td> <td> 81.71 W </ td> <td> 89.02 W </ td> </ tr> </ TBODY> </ TABLE>

表5 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 變動步階式擾動觀察法 </td><td> 模擬結果 </td><td> 實驗結果 </td></tr><tr><td> 上升時間 </td><td> 2.4 秒 </td><td> 2.5 秒 </td></tr><tr><td> 穩定時間 </td><td> 3 秒 </td><td> 3.2 秒 </td></tr><tr><td> 穩態平均功率 </td><td> 473.41 W </td><td> 481.64 W </td></tr><tr><td> 穩態追蹤精確度 </td><td> 99.98 % </td><td> 99.2 % </td></tr><tr><td> 追蹤電能損失 </td><td> 2577.4 J </td><td> 2967.32 J </td></tr><tr><td> 平均追蹤電能損失 </td><td> 51.15 W </td><td> 53.53 W </td></tr></TBODY></TABLE>table 5         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> Variable step-type disturbance observation method </ td> <td> Simulation results </ td> < td> Experimental results </ td> </ tr> <tr> <td> Rise time </ td> <td> 2.4 seconds </ td> <td> 2.5 seconds </ td> </ tr> <tr> < td> settling time </ td> <td> 3 seconds </ td> <td> 3.2 seconds </ td> </ tr> <tr> <td> steady state average power </ td> <td> 473.41 W < / td> <td> 481.64 W </ td> </ tr> <tr> <td> Steady-state tracking accuracy </ td> <td> 99.98% </ td> <td> 99.2% </ td> < / tr> <tr> <td> Tracking power loss </ td> <td> 2577.4 J </ td> <td> 2967.32 J </ td> </ tr> <tr> <td> Tracking power loss averagely </ td> td> <td> 51.15 W </ td> <td> 53.53 W </ td> </ tr> </ TBODY> </ TABLE>

表6 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 本發明 </td><td> 模擬結果 </td><td> 實驗結果 </td></tr><tr><td> 上升時間 </td><td> 0.6秒 </td><td> 0.6 秒 </td></tr><tr><td> 穩定時間 </td><td> 1秒 </td><td> 0.8 秒 </td></tr><tr><td> 穩態平均功率 </td><td> 472.88 W </td><td> 481.25 W </td></tr><tr><td> 穩態追蹤精確度 </td><td> 99.87 % </td><td> 99.12 % </td></tr><tr><td> 追蹤電能損失 </td><td> 848.7 J </td><td> 1403.3 J </td></tr><tr><td> 平均追蹤電能損失 </td><td> 16.97 W </td><td> 28.06 W </td></tr></TBODY></TABLE>Table 6         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> The invention </ td> <td> Simulation results </ td> <td> Experimental results < / td> </ tr> <tr> <td> Rise time </ td> <td> 0.6 seconds </ td> <td> 0.6 seconds </ td> </ tr> <tr> <td> Stabilization time < / td> <td> 1 second </ td> <td> 0.8 seconds </ td> </ tr> <tr> <td> Steady state average power </ td> <td> 472.88 W </ td> <td > 481.25 W </ td> </ tr> <tr> <td> Steady-state tracking accuracy </ td> <td> 99.87% </ td> <td> 99.12% </ td> </ tr> <tr > <td> Tracking power loss </ td> <td> 848.7 J </ td> <td> 1403.3 J </ td> </ tr> <tr> <td> Average tracking power loss </ td> <td> 16.97 W </ td> <td> 28.06 W </ td> </ tr> </ TBODY> </ TABLE>

於實測結果中,可得知固定步階式擾動觀察法由於固定步階而有無法同時滿足上升時間與穩態追蹤精確度之權衡問題,故固定步階式擾動觀察法之上升時間、穩定時間及穩態追蹤精確度等均劣於其他兩者;而變動步階式擾動觀察法雖成功克服固定步階式擾動觀察法之權衡問題,但也衍生出比例因子M之設計問題,過大之設計值會導致系統不穩定,反之,過小設計值也會造成暫態響應過慢之情況,且在不同照度下,其比例因子M之理想值也皆不相同,故變動步階式擾動觀察法須一一對不同太陽能電池進行設計,比例因子M之理想值也只能適用特定太陽能電池曲線,增加設計困難度;而本發明之最大功率追蹤演算法可解決上述兩種演算法之問題,雖然也只能適用特定曲線,但暫態及穩態表現良好,因此得到最佳之性能改善。From the actual measurement results, it can be known that the fixed-step disturbance observation method cannot meet the trade-off problem of rise time and steady-state tracking accuracy at the same time because of the fixed step. Therefore, the fixed-step disturbance observation method has a rise time and a stable time. And steady-state tracking accuracy are inferior to the other two; while the variable-step perturbation observation method successfully overcomes the trade-off problem of the fixed-step perturbation observation method, it also generates the design problem of the scale factor M, which is too large. The value will cause the system to be unstable. Conversely, too small a design value will also cause the transient response to be too slow, and the ideal value of the scale factor M is different under different illumination levels. Designing a pair of different solar cells, the ideal value of the scale factor M can only be applied to a specific solar cell curve, increasing the design difficulty; and the maximum power tracking algorithm of the present invention can solve the problems of the above two algorithms, although Only specific curves can be applied, but the transient and steady state performance is good, so the best performance improvement is obtained.

如表7所示,在暫態表現上,本發明之上升時間比固定步階式擾動觀察法快了3.3秒,與變動步階式擾動觀察法相較快了1.9秒;穩定時間相較於固定步階式擾動觀察法快了4秒,比變動步階式擾動觀察法快了2.4秒,在三個方法中擁有最佳的暫態響應。As shown in Table 7, in the transient performance, the rise time of the present invention is 3.3 seconds faster than the fixed-step perturbation observation method, and 1.9 seconds faster than the variable-step perturbation observation method; the stabilization time is compared to the fixed The stepwise disturbance observation method is 4 seconds faster and 2.4 seconds faster than the variable stepwise disturbance observation method. It has the best transient response among the three methods.

表7 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> </td><td> 固定步階式 擾動觀察法 </td><td> 變動步階式擾動觀察法 </td><td> 本發明 </td></tr><tr><td> 上升時間 </td><td> 3.9 秒 </td><td> 2.5 秒 </td><td> 0.6 秒 </td></tr><tr><td> 穩定時間 </td><td> 4.8 秒 </td><td> 3.2 秒 </td><td> 0.8 秒 </td></tr></TBODY></TABLE>Table 7         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> </ td> <td> Fixed-step perturbation observation method </ td> <td> Variable step type perturbation observation method </ td> <td> The present invention </ td> </ tr> <tr> <td> Rise time </ td> <td> 3.9 seconds </ td> <td> 2.5 seconds </ td> <td> 0.6 seconds </ td> </ tr> <tr> <td> Stabilization time </ td> <td> 4.8 seconds </ td> <td> 3.2 seconds </ td> <td> 0.8 second </ td> </ tr> </ TBODY> </ TABLE>

如表8所示,在穩態部分,固定步階式擾動觀察法進入穩態後會於最大功率點附近振盪,其穩態平均功率僅有475.67 W,穩態追蹤精確度為97.97 %;由於變動步階式擾動觀察法加入可變步階,在最大功率點不會發生振盪,故穩態追蹤精確度提升至99.2 %;本發明之最大功率追蹤演算法因最後為擾動觀察法,雖是擾動1V但仍會在最大功率點附近發生振盪,故穩態追蹤精確度為99.12 %,只比變動步階式擾動觀察法少了0.08%,故所提之方法仍有良好之穩態響應。As shown in Table 8, in the steady-state part, the fixed-step disturbance observation method will oscillate near the maximum power point after entering the steady-state. Its average steady-state power is only 475.67 W, and the steady-state tracking accuracy is 97.97%; The variable step type perturbation observation method adds a variable step, and no oscillation occurs at the maximum power point, so the steady-state tracking accuracy is increased to 99.2%; the maximum power tracking algorithm of the present invention is the perturbation observation method at the end, although it is Perturbation of 1V will still oscillate near the maximum power point, so the steady-state tracking accuracy is 99.12%, which is only 0.08% less than the variable-step perturbation observation method. Therefore, the proposed method still has a good steady-state response.

表8 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> </td><td> 固定步階式 擾動觀察法 </td><td> 變動步階式擾動觀察法 </td><td> 本發明 </td></tr><tr><td> 穩態平均功率 </td><td> 475.67 W </td><td> 481.64 W </td><td> 481.25 W </td></tr><tr><td> 穩態追蹤精確度 </td><td> 97.97 % </td><td> 99.2 % </td><td> 99.12 % </td></tr></TBODY></TABLE>Table 8         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> </ td> <td> Fixed-step perturbation observation method </ td> <td> Variable step type perturbation observation method </ td> <td> The present invention </ td> </ tr> <tr> <td> Steady state average power </ td> <td> 475.67 W </ td> <td> 481.64 W </ td> <td> 481.25 W </ td> </ tr> <tr> <td> Steady-state tracking accuracy </ td> <td> 97.97% </ td> <td> 99.2% </ td> <td> 99.12% </ td> </ tr> </ TBODY> </ TABLE>

如表9所示,在追蹤電能損失部分,由於固定步階式擾動觀察法其步階設計須考慮暫態及穩態響應表現之權衡問題,平均追蹤電能損失較多,而變動步階式擾動觀察法因有較好之暫態響應與穩態響應,故其平均追蹤電能損失與固定步階式擾動觀察法相比降低39.8 %;而本發明之最大功率追蹤演算法具有良好之暫態及穩態響應,因此其平均追蹤電能損失為三種方法中最低,與固定步階式擾動觀察法相比減少68.48 %,與變動步階式擾動觀察法相比減少47.5 %,故整體性能表現最佳。As shown in Table 9, in the tracking power loss part, because the step design of the fixed step disturbance observation method must consider the trade-off between transient and steady state response performance, the average tracking power loss is more, and the variable step disturbance The observation method has better transient response and steady-state response, so its average tracking power loss is reduced by 39.8% compared with the fixed-step perturbation observation method; and the maximum power tracking algorithm of the present invention has good transient and stability. The average tracking power loss is the lowest of the three methods, which is 68.48% lower than the fixed-step disturbance observation method and 47.5% lower than the variable-step disturbance observation method. Therefore, the overall performance is the best.

表9 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> </td><td> 固定步階式 擾動觀察法 </td><td> 變動步階式擾動觀察法 </td><td> 本發明 </td></tr><tr><td> 追蹤電能損失 </td><td> 4378.7 J </td><td> 2967.32 J </td><td> 1403.3 J </td></tr><tr><td> 平均追蹤電能損失 </td><td> 89.02 W </td><td> 53.53 W </td><td> 28.06 W </td></tr></TBODY></TABLE>Table 9         <TABLE border = "1" borderColor = "# 000000" width = "85%"> <TBODY> <tr> <td> </ td> <td> Fixed-step perturbation observation method </ td> <td> Variable step-type disturbance observation method </ td> <td> The present invention </ td> </ tr> <tr> <td> Tracking power loss </ td> <td> 4378.7 J </ td> <td> 2967.32 J </ td> <td> 1403.3 J </ td> </ tr> <tr> <td> Average tracking power loss </ td> <td> 89.02 W </ td> <td> 53.53 W </ td> <td> 28.06 W </ td> </ tr> </ TBODY> </ TABLE>

綜上所述,實驗結果證實與固定步階式擾動觀察法和變動式步階擾動觀察法相比,本發明的追蹤速度分別提高了84.6%和76%;此外,追蹤電能損失也分別減少了68.48%和47.5%。In summary, the experimental results confirm that compared with the fixed-step disturbance observation method and the variable-step disturbance observation method, the tracking speed of the present invention is increased by 84.6% and 76% respectively; in addition, the tracking power loss is also reduced by 68.48 % And 47.5%.

藉由前述所揭露的設計,本發明乃具有以下的優點:With the design disclosed above, the present invention has the following advantages:

1.本發明揭露的最大功率追蹤演算法,其採用簡化型加權最小平方法,僅需進行1次估測運算即能準確估測出照度值,並進而求出最大功率點電壓,以達到一運算簡單而能以低成本的微控制器來實現之目的。1. The maximum power tracking algorithm disclosed in the present invention adopts a simplified weighted least square method, which can accurately estimate the illuminance value only after one estimation operation, and then obtain the maximum power point voltage to achieve a The operation is simple and can be achieved by a low-cost microcontroller.

2.本發明揭露的最大功率追蹤演算法,其在暫態表現之上升時間及穩定時間均較習知技術之固定步階式擾動觀察法與變動步階式擾動觀察法大幅縮短,而有良好的暫態響應。2. The maximum power tracking algorithm disclosed in the present invention has a significantly shorter rise time and stable time in the transient performance than the fixed-step perturbation observation method and the variable-step perturbation observation method of the conventional technology. Transient response.

3.本發明揭露的最大功率追蹤演算法,其平均追蹤電能損失較習知技術之固定步階式擾動觀察法與變動步階式擾動觀察法大幅減少,而有良好的追蹤效率。3. The maximum power tracking algorithm disclosed in the present invention has a significantly reduced average tracking power loss compared with the fixed-step perturbation observation method and the variable-step perturbation observation method of the conventional technology, and has good tracking efficiency.

4.本發明揭露的最大功率追蹤演算法,其採用適當的估測運算配合擾動觀察法,相較於固定步階式擾動觀察法與變動步階式擾動觀察法,其追蹤速度分別提高了84.6%和76%,追蹤電能損失也分別減少了68.48%和47.5%。4. The maximum power tracking algorithm disclosed in the present invention adopts appropriate estimation operation and disturbance observation method. Compared with the fixed-step disturbance observation method and the variable-step disturbance observation method, the tracking speed is increased by 84.6, respectively. % And 76%, the tracking power loss also decreased by 68.48% and 47.5%.

本案所揭示者,乃較佳實施例,舉凡局部之變更或修飾而源於本案之技術思想而為熟習該項技藝之人所易於推知者,俱不脫本案之專利權範疇。What is disclosed in this case is a preferred embodiment. For example, those who have partial changes or modifications that are derived from the technical ideas of this case and are easily inferred by those skilled in the art, do not depart from the scope of patent rights in this case.

綜上所陳,本案無論就目的、手段與功效,在在顯示其迥異於習知之技術特徵,且其首先發明合於實用,亦在在符合發明之專利要件,懇請 貴審查委員明察,並祈早日賜予專利,俾嘉惠社會,實感德便。To sum up, regardless of the purpose, method and effect, this case is showing its technical characteristics that are quite different from the conventional ones, and its first invention is practical, and it is also in line with the patent requirements of the invention. Granting patents at an early date will benefit society and feel good.

100‧‧‧太陽能電池系統100‧‧‧solar battery system

200‧‧‧升壓式轉換器200‧‧‧Boost Converter

300‧‧‧微控制器300‧‧‧Microcontroller

400‧‧‧負載400‧‧‧ load

步驟a‧‧‧量測一太陽能發電系統之兩個初始操作點之輸出電流值及輸出電壓值以獲得(I 1,V 1)及(I 2,V 2)Step a‧‧‧Measure the output current value and output voltage value of two initial operating points of a solar power generation system to obtain (I 1 , V 1 ) and (I 2 , V 2 )

步驟b‧‧‧對所述(I 1,V 1)及(I 2,V 2)進行一簡化型加權最小平方法運算以獲得一估測照度值 S guess 及一估測溫度值 T guess Step b‧‧‧ performs a simplified weighted least square method operation on the (I 1 , V 1 ) and (I 2 , V 2 ) to obtain an estimated illuminance value S guess and an estimated temperature value T guess

步驟c‧‧‧依所述估測照度值 S guess 計算一最大功率點電壓值 V mpp Step c‧‧‧ calculate a maximum power point voltage value V mpp according to the estimated illumination value S guess

步驟d‧‧‧依該最大功率點電壓值 V mpp 進行一擾動觀察法運算以決定一電壓命令 Step d‧‧‧ performs a disturbance observation method operation according to the maximum power point voltage value V mpp to determine a voltage command

圖1繪示本發明之最大功率追蹤演算法之一實施例步驟流程圖。 圖2繪示本發明之最大功率追蹤演算法之另一實施例步驟流程圖。 圖3繪示太陽能電池之單二極體等效電路圖。 圖4a繪示太陽能電池在不同照度值下功率-電壓曲線 圖4b繪示太陽能電池在不同照度值下電流-電壓曲線。 圖5a繪示太陽能電池在不同溫度值下功率-電壓曲線 圖5b繪示太陽能電池在不同溫度值下電流-電壓曲線。 圖6繪示本發明所採之控制系統架構示意圖。 圖7繪示本發明之追蹤示意圖。 圖8繪示照度值為100W/m 2至1000W/m 2的輸出功率-電壓曲線。 圖9繪示照度值與最大功率點電壓曲線。 圖10繪示習知技術之固定步階式擾動觀察法之實測結果波形圖。 圖11a繪示習知技術之變動步階式擾動觀察法之一般均勻照度實測結果波形圖。 圖11b繪示習知技術之變動步階式擾動觀察法之變化照度實測結果波形圖。 圖12a繪示本發明之均勻照度實測結果波形圖。 圖12b繪示本發明之變化照度300W/m 2變化至800W/m 2實測結果波形圖。 圖12c繪示本發明之變化照度800W/m 2變化至100W/m 2實測結果波形圖。 FIG. 1 is a flowchart of steps in an embodiment of a maximum power tracking algorithm of the present invention. FIG. 2 is a flowchart illustrating steps of another embodiment of the maximum power tracking algorithm of the present invention. FIG. 3 shows a single diode equivalent circuit diagram of a solar cell. FIG. 4a shows the power-voltage curve of the solar cell under different illumination values. FIG. 4b shows the current-voltage curve of the solar cell under different illumination values. FIG. 5a shows the power-voltage curves of the solar cell at different temperature values. FIG. 5b shows the current-voltage curves of the solar cell at different temperature values. FIG. 6 is a schematic diagram of a control system architecture adopted by the present invention. FIG. 7 illustrates a tracking diagram of the present invention. FIG. 8 illustrates output power-voltage curves with illuminance values from 100 W / m 2 to 1000 W / m 2 . FIG. 9 shows the curve of the illuminance value and the maximum power point voltage. FIG. 10 is a waveform diagram of actual measurement results of the fixed-step disturbance observation method of the conventional technique. FIG. 11 a is a waveform diagram showing the measurement results of the general uniform illumination of the step-by-step disturbance observation method of the conventional technique. FIG. 11b is a waveform diagram of the actual measurement results of the illuminance of the step change perturbation observation method in the conventional technique. FIG. 12a is a waveform diagram showing a measurement result of uniform illumination of the present invention. FIG. 12b is a waveform diagram of the actual measurement result of the variation of the illumination intensity from 300 W / m 2 to 800 W / m 2 according to the present invention. FIG. 12c is a waveform diagram of the actual measurement result of changing the illuminance from 800 W / m 2 to 100 W / m 2 according to the present invention.

Claims (5)

一種最大功率追蹤演算法,其係利用一控制電路實現,該最大功率 追蹤演算法包括以下步驟: 量測一太陽能發電系統之兩個初始操作點之輸出電流值及輸出電壓值以獲得(I1,V1)及(I2,V2); 對所述(I1,V1)及(I2,V2)進行一簡化型加權最小平方法運算以獲得一估測照度值Sguess及一估測溫度值Tguess,該簡化型加權最小平方法運算包括: ,及 , 其中,Sf及Tf為預設的照度值和溫度值, ,其中Isc 、Is、 q、 K、 A及 N為常數, ,以及 ;依所述估測照度值Sguess計算一最大功率點電壓值Vmpp,其中 ;以及 依該最大功率點電壓值Vmpp進行一擾動觀察法運算以決定一電壓命令。 A maximum power tracking algorithm is implemented using a control circuit. The maximum power tracking algorithm includes the following steps: Measure the output current value and output voltage value of two initial operating points of a solar power generation system to obtain (I1, V1) and (I2, V2); performing a simplified weighted least square method operation on the (I1, V1) and (I2, V2) to obtain an estimated illuminance value Sguess and an estimated temperature value Tguess, the simplification Type weighted least square method operations include: ,and , Where Sf and Tf are preset illuminance values and temperature values, , , Where Isc, Is, q, K, A, and N are constants, , , ,as well as ; Calculate a maximum power point voltage value Vmpp according to the estimated illumination value Sguess, where ; And performing a disturbance observation method operation according to the maximum power point voltage value Vmpp to determine a voltage command. 如申請專利範圍第1項所述之最大功率追蹤演算法,其進一步包括 一功率變化閥值判斷步驟,以在一功率變化量大於一預設功率變化閥值時重新進行該簡化型加權最小平方法運算以獲得一新的所述估測照度值Sguess。The maximum power tracking algorithm described in item 1 of the scope of patent application, further comprising a power change threshold judgment step to re-perform the simplified weighted minimum flat when a power change is greater than a preset power change threshold. The method operates to obtain a new estimated illumination value Sguess. 如申請專利範圍第2項所述之最大功率追蹤演算法,該預設功率變 化閥值為15W。According to the maximum power tracking algorithm described in item 2 of the patent application scope, the preset power change threshold is 15W. 如申請專利範圍第1項所述之最大功率追蹤演算法,其中該控制電 路包括: 一升壓轉換器,具有一輸入端、一控制端及一輸出端,該輸入端係用以與一 太陽能電池系統耦接,該控制端係用以接收一脈衝寬度調變信號,且該輸出端係用以與一負載耦接;以及 一微控制器,用以產生該電壓命令及依該電壓命令提供該脈衝寬度調變信 號。The maximum power tracking algorithm according to item 1 of the patent application scope, wherein the control circuit includes: a boost converter having an input terminal, a control terminal, and an output terminal, and the input terminal is used for connection with a solar energy The battery system is coupled, the control terminal is used for receiving a pulse width modulation signal, and the output terminal is used for coupling with a load; and a microcontroller is used for generating the voltage command and providing according to the voltage command The pulse width modulation signal. 如申請專利範圍第4項所述之最大功率追蹤演算法,其中該微控制 器具有一數位訊號處理器,用以對該目前電壓及該目前電流分別進行一類比至數位轉換運算及一數位濾波運算,及依該電壓命令執行一比例-積分控制運算及一脈衝寬度調變運算以輸出該脈衝寬度調變信號。The maximum power tracking algorithm as described in item 4 of the scope of patent application, wherein the microcontroller has a digital signal processor for performing an analog-to-digital conversion operation and a digital filtering operation on the current voltage and the current, respectively. And execute a proportional-integral control operation and a pulse width modulation operation according to the voltage command to output the pulse width modulation signal.
TW107107498A 2018-03-06 2018-03-06 A maximum power tracking algorithm TWI653521B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107107498A TWI653521B (en) 2018-03-06 2018-03-06 A maximum power tracking algorithm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107107498A TWI653521B (en) 2018-03-06 2018-03-06 A maximum power tracking algorithm

Publications (2)

Publication Number Publication Date
TWI653521B true TWI653521B (en) 2019-03-11
TW201939194A TW201939194A (en) 2019-10-01

Family

ID=66591018

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107107498A TWI653521B (en) 2018-03-06 2018-03-06 A maximum power tracking algorithm

Country Status (1)

Country Link
TW (1) TWI653521B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI766719B (en) * 2021-06-09 2022-06-01 龍華科技大學 Method to prevent maximum power error tracking
CN115344078A (en) * 2022-08-15 2022-11-15 深圳市冲锋兔新能源科技有限公司 MPPT power fast tracking algorithm

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI766719B (en) * 2021-06-09 2022-06-01 龍華科技大學 Method to prevent maximum power error tracking
CN115344078A (en) * 2022-08-15 2022-11-15 深圳市冲锋兔新能源科技有限公司 MPPT power fast tracking algorithm
CN115344078B (en) * 2022-08-15 2023-09-22 深圳市冲锋兔新能源科技有限公司 MPPT power quick tracking algorithm

Also Published As

Publication number Publication date
TW201939194A (en) 2019-10-01

Similar Documents

Publication Publication Date Title
Lasheen et al. Maximum power point tracking using Hill Climbing and ANFIS techniques for PV applications: A review and a novel hybrid approach
Joshi et al. Maximum power point tracking methodologies for solar PV systems–A review
Paz et al. Zero oscillation and irradiance slope tracking for photovoltaic MPPT
Aashoor et al. A variable step size perturb and observe algorithm for photovoltaic maximum power point tracking
Desai et al. Maximum power point algorithm in PV generation: An overview
Qin et al. Comparative analysis of incremental conductance and perturb-and-observation methods to implement MPPT in photovoltaic system
Gaga et al. Design and implementation of MPPT solar system based on the enhanced P&O algorithm using Labview
Fathabadi Novel fast and high accuracy maximum power point tracking method for hybrid photovoltaic/fuel cell energy conversion systems
Satapathy et al. Variable step size MPPT algorithm for photo voltaic array using zeta converter-A comparative analysis
Luo et al. A variable step maximum power point tracking method using differential equation solution
De Brito et al. Main maximum power point tracking strategies intended for photovoltaics
Huang et al. A novel global maximum power point tracking method for PV system using Jaya algorithm
Mahmoud Toward a long-term evaluation of MPPT techniques in PV systems
Gouda et al. Modelling and performance analysis for a PV system based MPPT using advanced techniques
Yu et al. A new fractional-order based intelligent maximum power point tracking control algorithm for photovoltaic power systems
TWI653521B (en) A maximum power tracking algorithm
Kim et al. Voltage-offset resistive control for DC-DC converters in photovoltaic applications
Ma et al. Dem: direct estimation method for photovoltaic maximum power point tracking
TWI669590B (en) Maximum power tracking method for solar power generation system
Mohammad et al. Improved solar photovoltaic array model with FLC based maximum power point tracking
Fahim et al. Overview of maximum power point tracking techniques for PV system
Zhu et al. Modeling and analysis of output features of the solar cells based on MATLAB/Simulink
Sen et al. Modeling of PV array using P&O algorithm in boost converter
Ahmed et al. Non-iterative MPPT Method: A Comparative Study
Mishra et al. Artificial Neural Network Based MPPT Controller for Stand-alone Solar PV System

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees