TWI600768B - Molecular marker and application for early determining sexes and sex-related traits of papaya - Google Patents

Molecular marker and application for early determining sexes and sex-related traits of papaya Download PDF

Info

Publication number
TWI600768B
TWI600768B TW105142722A TW105142722A TWI600768B TW I600768 B TWI600768 B TW I600768B TW 105142722 A TW105142722 A TW 105142722A TW 105142722 A TW105142722 A TW 105142722A TW I600768 B TWI600768 B TW I600768B
Authority
TW
Taiwan
Prior art keywords
papaya
sex
gender
related traits
sequence
Prior art date
Application number
TW105142722A
Other languages
Chinese (zh)
Other versions
TW201823470A (en
Inventor
李鎮宇
陳福旗
金石文
林慧君
蔣羽娟
Original Assignee
國立屏東科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立屏東科技大學 filed Critical 國立屏東科技大學
Priority to TW105142722A priority Critical patent/TWI600768B/en
Application granted granted Critical
Publication of TWI600768B publication Critical patent/TWI600768B/en
Publication of TW201823470A publication Critical patent/TW201823470A/en

Links

Description

用於早期鑑別木瓜性別及性別相關性狀 之分子標記及其應用 For early identification of papaya sex and gender-related traits Molecular markers and their applications

本發明是有關於一種分子標記及其應用,特別是有關於一種分子標記及其用於早期鑑別木瓜性別及性別相關性狀之方法及系統。 The present invention relates to a molecular marker and its use, and more particularly to a molecular marker and method and system for early identification of papaya sex and gender-related traits.

番木瓜(Carica papaya L.)俗稱木瓜,屬番木瓜科(Caricaceae),番木瓜屬(Carica)植物。番木瓜一年四季都能結果其含豐富的營養價值,為熱帶地區的重要作物。番木瓜同時具有雌雄異株異花(dioecious),分別是雌株(Female,F)、雄株(Male,M)及雌雄同株同花之兩性株(Hermaphrodite,H)。 Papaya ( Carica papaya L.) is commonly known as papaya, belonging to the Caricaceae family and the Carica plant. Papaya can be rich in nutritional value throughout the year and is an important crop in the tropics. Papaya also has dioecious, which are female (F), male (Male), and hermaphrodite (Hermaphrodite, H).

一般而言,雄株不結果,不具經濟價值。雌株需人工授粉才能結果。兩性株可自花授粉,經濟價值高,因此商業栽培者較希望種植純兩性株。 In general, male plants are not fruitful and have no economic value. Female plants need artificial pollination to get results. Amphiphilic strains can be self-pollinated and have high economic value, so commercial growers prefer to grow pure amphoteric strains.

番木瓜從生長至花蕾形成前,不論是葉型、莖幹顏色、株型等各種外部型態,都尚未發現與植株性別連鎖的外部特徵,無法利用外部型態判斷植株性別。農民為得到 較具商業價值的兩性株,須於每一植穴中種植2-3株番木瓜苗,等生長6-8個月待植株花蕾形成後,始能由花朵構造確認其性別,此時再選留一棵兩性株,其餘植株砍除,以達到全園生產長橢圓形的兩性果。然而這樣的栽培方式不僅造成番木瓜幼苗期的養分競爭與浪費,也造成栽培者大量的勞力支出,增加苗木費用與管理費用。此外,部分植穴可能因無栽植到兩性株而造成缺株情形,不易控制正常株距。 Before the formation of papaya from the growth to the flower bud, no external characteristics such as leaf type, stem color, plant type and so on, but no external characteristics linked to the sex of the plant were found, and the external type could not be used to judge the sex of the plant. Farmers get For the more economically valuable amphoteric strains, 2-3 papaya seedlings should be planted in each planting hole. After the flower buds are formed for 6-8 months, the flower structure can be confirmed by the flower structure. An amphibious strain, the rest of the plants were cut off to achieve the long oval fruit of the whole garden. However, such cultivation methods not only cause nutrient competition and waste of papaya seedlings, but also cause a large amount of labor expenditure for the growers, and increase seedling costs and management costs. In addition, some of the acupoints may be caused by lack of planting to the amphipathic strain, and it is difficult to control the normal plant spacing.

為了生產同一性別的番木瓜種苗,番木瓜種苗業者經常採行無性繁殖法,如利用組織培養、扦插、嫁接等技術。在這些方式中,組織培養繁殖之商業生產,其繁殖倍數高且所有植株均為兩性株是其優點,但是這種生產方式的技術門檻高,生產成本相對提高,致使組織培養苗的售價約為實生苗的7-15倍。嫁接苗因需要分別培養母穗及砧木,生產步驟多,需要較大的生產空間及加濕設備,且苗木生產速度較慢。至於扦插苗的繁殖倍率雖然較嫁接苗高,但是因為與組織培養苗同樣沒有種子根,部分農民認為其對逆境環境的忍受性較差而不喜種植。因此,對於多數農民而言,全兩性株的種子苗被認為是較具發展價值的種苗生產方式。 In order to produce papaya seedlings of the same sex, papaya seedlings often use asexual reproduction methods, such as tissue culture, cutting, grafting and other techniques. Among these methods, the commercial production of tissue culture and reproduction, the multiplication ratio is high and all the plants are amphoteric strains, but the technical threshold of this production method is high, the production cost is relatively increased, and the price of tissue culture seedlings is about 7-15 times the seedlings. Grafted seedlings need to separately cultivate the mother ears and rootstocks. There are many production steps, which require large production space and humidification equipment, and the seedling production speed is slow. As for the breeding rate of cutting seedlings, although it is higher than that of grafted seedlings, because there are no seed roots as well as tissue culture seedlings, some farmers think that their tolerance to the adversity environment is poor and they do not like planting. Therefore, for most farmers, seedlings of whole amphipathic strains are considered to be more developmental seed production methods.

近年來,生物科技相關技術進展迅速,目前分子標記已證明在生物學上可以進行早期偵測,解決許多問題,具有極佳的應用價值。常見之分子標記檢測種類可例如簡單重複序列(Simple Sequence Repeat,SSR)、簡單重複序列間多態性(Inter-Simple Sequence Repeats,ISSR)、逢機擴增多型性DNA(Random Amplified Polymorphic DNA,RAPD)、擴增片段長度多型性(Amplified Fragment Length Polymorphism,AFLP)、限制性片段長度多型性(Restriction Fragment Length Polymorphism,RFLP)、特異性序列擴增區域(Sequence Characterized Amplified Region,SCAR)等。 In recent years, biotechnology-related technologies have advanced rapidly. At present, molecular markers have been proven to be early detection in biology, solve many problems, and have excellent application value. Common types of molecular marker detection can be, for example, Simple Sequence Repeat (SSR), Inter-Simple Sequence Repeats (ISSR), and Random Amplified DNA (Random Amplified). Polymorphic DNA (RAPD), Amplified Fragment Length Polymorphism (AFLP), Restriction Fragment Length Polymorphism (RFLP), Sequence Characterized Amplified Region (Sequence Characterized Amplified Region, SCAR) and so on.

舉例而言,在過去研究中,上述SSR可用於區別石斛蘭品種鑑定以及番木瓜之親源鑑定等。ISSR可應用於番木瓜以及茄子種內鑑定分析。RAPD、AFLP及RFLP可應用於區分番木瓜性別。SCAR則是由RAPD衍生而來,可作為區分番木瓜性別之分子標記。 For example, in the past studies, the above SSR can be used to distinguish the identification of Dendrobium species and the identification of papaya. ISSR can be applied to the identification and analysis of papaya and eggplant. RAPD, AFLP and RFLP can be applied to distinguish papaya sex. SCAR is derived from RAPD and can be used as a molecular marker to distinguish the sex of papaya.

目前發展出一些分子標記,在番木瓜幼苗株無法以目視辨識性別的情況下,可用於鑑別性別。然而,目前大多數的木瓜性別相關基因之分子標記,單一種分子標記僅供鑑別單一種性別,無法在同時鑑別三種性別。其次,木瓜幼株在不同環境培養下,花性會不穩定,尤其兩性株的花朵在不合適的環境或營養缺乏的情況下,甚至有退化、畸形的現象產生,影響性別相關性狀,這也會影響鑑別性別及性別相關性狀的準確率。 Some molecular markers have been developed and can be used to identify sex in cases where papaya seedlings cannot be visually identified. However, most of the current molecular markers of papaya sex-related genes, a single molecular marker is only for the identification of a single gender, can not identify three genders at the same time. Secondly, the flowering of papaya young plants under different environmental conditions will be unstable, especially in the case of unsuitable environment or lack of nutrients, even the phenomenon of degeneration and deformity will affect the gender-related traits. Affect the accuracy of identifying gender and gender-related traits.

有鑑於此,亟需開發一種早期鑑別木瓜性別及性別相關性狀之分子標記,以改善習知分子標記的種種缺點。 In view of this, it is urgent to develop a molecular marker for early identification of sex and gender-related traits of papaya to improve the shortcomings of conventional molecular markers.

因此,本發明之一態樣是在提供一種用於早期 鑑別木瓜性別及性別相關性狀之分子標記。 Therefore, one aspect of the present invention is to provide an early use Identification of molecular markers of papaya sex and gender-related traits.

本發明之另一態樣係在提供一種早期鑑別木瓜性別及性別相關性狀的方法,其係由包含複數個單核苷酸多型性位點、基因體序列及轉錄體序列的分子標記與複數個性別相關基因建立相關性模式,藉此在木瓜樣本之花器發育早期,同時且準確鑑別其性別及性別相關性狀。 Another aspect of the present invention provides a method for early identification of sex and sex-related traits in papaya, which is composed of a plurality of single nucleotide polymorphic sites, a gene sequence, and a transcript sequence. A sex-related gene establishes a correlation model, which simultaneously and accurately identifies gender and gender-related traits in the early development of flowering of papaya samples.

本發明之又一態樣係在提供一種提出一種早期鑑別木瓜性別及性別相關性狀的系統,其包含上述分子標記。 Yet another aspect of the present invention provides a system for identifying an early identification of sex and gender-related traits of papaya, comprising the above molecular markers.

本發明之再一態樣係在提供一種重組載體,其包含上述之分子標記。 A further aspect of the invention provides a recombinant vector comprising the molecular markers described above.

本發明又另一態樣係在提供一種轉形植物細胞,其包含上述之重組載體。 Yet another aspect of the present invention is to provide a transformed plant cell comprising the recombinant vector described above.

根據本發明之上述態樣,提出一種用於早期鑑別木瓜性別及性別相關性狀之分子標記,包含至少一序列選自於由SEQ ID NO:1~64以及與SEQ ID NO:1~51、53、55、57、59、61、63互補之序列所組成之一群組。 According to the above aspect of the present invention, a molecular marker for early identification of sex and sex-related traits of papaya is proposed, comprising at least one sequence selected from the group consisting of SEQ ID NOS: 1-64 and SEQ ID NO: 1-51, 53 A group consisting of 55, 57, 59, 61, 63 complementary sequences.

根據本發明之另一態樣,提出一種早期鑑別木瓜性別及性別相關性狀的方法,其係藉由包含複數個單核苷酸多型性位點、基因體序列及轉錄體序列的分子標記與複數個性別相關基因建立相關性模式,藉此在木瓜樣本之花器發育早期,同時且準確鑑別其性別及性別相關性狀。 According to another aspect of the present invention, a method for early identification of sex and sex-related traits of papaya is proposed by molecular markers comprising a plurality of single nucleotide polymorphic sites, genome sequences and transcript sequences. A number of gender-related genes establish a correlation model to identify gender and gender-related traits simultaneously in the early development of the flowering of papaya samples.

在上述實施例中,建立相關性模式之步驟可包含但不限於由複數個木瓜之複數個花器獲得複數個核酸樣 本。接著,由前述核酸樣本獲得複數個分子標記,其中前述分子標記包括至少一序列選自於由SEQ ID NO:1~64以及與SEQ ID NO:1~51、53、55、57、59、61、63互補之序列所組成之一群組。之後,定義前述性別相關基因之任一者與前述分子標記之至少一者的對應關係,以建立相關性模式。 In the above embodiment, the step of establishing a correlation mode may include, but is not limited to, obtaining a plurality of nucleic acid samples from a plurality of flower organs of a plurality of papayas. this. Next, a plurality of molecular markers are obtained from the nucleic acid sample, wherein the molecular marker comprises at least one sequence selected from the group consisting of SEQ ID NOs: 1-64 and SEQ ID NOs: 1-51, 53, 55, 57, 59, 61 A group of 63 complementary sequences. Thereafter, a correspondence relationship between any of the aforementioned sex-related genes and at least one of the aforementioned molecular markers is defined to establish a correlation pattern.

在上述實施例中,上述獲得核酸樣本之步驟中,上述花器之平均長度不超過0.2cm,且前述核酸樣本包含複數個基因體序列以及複數個轉錄體序列。 In the above embodiment, in the step of obtaining the nucleic acid sample, the average length of the flower is not more than 0.2 cm, and the nucleic acid sample comprises a plurality of gene sequences and a plurality of transcript sequences.

在上述實施例中,前述利用相關性模式鑑別木瓜樣本之性別以及複數個性別相關基因之步驟可包含但不限於由木瓜樣本之待測花器獲得待測核酸樣本,由該待測核酸樣本獲得複數個性別分型資料,將上述性別分型資料輸入上述相關性模式,以比對前述性別分型資料是否與上述分子標記之至少一者相符,並獲得分子標記之至少一者之對應關係之相關正確率。當前述性別分型資料之至少一者與上述分子標記之至少一者相符,且相關正確率為100%時,判斷此木瓜樣本具有對應關係之性別以及上述性別相關基因之至少一者。 In the above embodiment, the step of using the correlation mode to identify the sex of the papaya sample and the plurality of sex-related genes may include, but is not limited to, obtaining the nucleic acid sample to be tested from the flower sample of the papaya sample, and obtaining the plurality of nucleic acid samples from the sample to be tested. The gender typing data is input into the above correlation pattern to compare whether the sex typing data matches at least one of the above molecular markers, and obtain a correlation between at least one of the molecular markers Correct rate. When at least one of the aforementioned sex typing data is consistent with at least one of the above molecular markers, and the correlation correctness rate is 100%, it is determined that the papaya sample has a gender of a corresponding relationship and at least one of the sex-related genes.

依據本發明一實施例,上述木瓜以及木瓜樣本可包含但不限於番木瓜(Carica papaya L.)之佛羅里達種、日昇種、吉隆坡種、日昇13號種、日昇23號種、日昇與台農7號雜交種。 According to an embodiment of the present invention, the papaya and papaya samples may include, but are not limited to, Carica papaya L., Florida, Risheng, Kuala Lumpur, Risheng 13th, Risheng 23, Risheng Hybrid with Tai Nong No. 7.

依據本發明一實施例,當上述第二性別分型資 料包含SEQ ID NO:1~16、18、20~21、25~26、30~31、35~36、40~41、45~46、49~50、53~58、63~64以及與SEQ ID NO:1~16、18、20~21、25~26、30~31、35~36、40~41、45~46、49~50、53~58、63~64互補之序列之至少一者時,判斷木瓜樣本之性別為兩性。 According to an embodiment of the present invention, when the second sex classification is performed The materials include SEQ ID NO: 1~16, 18, 20~21, 25~26, 30~31, 35~36, 40~41, 45~46, 49~50, 53~58, 63~64 and SEQ. ID NO: at least one of the complementary sequences of 1~16, 18, 20~21, 25~26, 30~31, 35~36, 40~41, 45~46, 49~50, 53~58, 63~64 When judging, the gender of the papaya sample is determined to be gender.

依據本發明一實施例,當上述第二性別分型資料包含SEQ ID NO:1~17、19、23~24、28~29、33~34、38~39、43~44、48、51~52、61~62以及與SEQ ID NO:1~17、19、23~24、28~29、33~34、38~39、43~44、48、51~52、61~62互補之序列之至少一者時,判斷木瓜樣本之性別為雄性。 According to an embodiment of the invention, when the second sex classification data includes SEQ ID NOs: 1-17, 19, 23-24, 28-29, 33-34, 38-39, 43-44, 48, 51~ 52, 61~62 and sequences complementary to SEQ ID NO: 1~17, 19, 23~24, 28~29, 33~34, 38~39, 43~44, 48, 51~52, 61~62 In at least one, the sex of the papaya sample is judged to be male.

依據本發明一實施例,當上述第二性別分型資料包含SEQ ID NO:1~16、22、27、32、37、42、47、59~60以及與SEQ ID NO:1~16、22、27、32、37、42、47、59~60互補之序列之至少一者時,判斷木瓜樣本之性別為雌性。 According to an embodiment of the present invention, when the second sex classification data includes SEQ ID NOs: 1 to 16, 22, 27, 32, 37, 42, 47, 59 to 60, and SEQ ID NOs: 1 to 16, 22 When at least one of the sequences of 27, 32, 37, 42, 47, and 59 to 60 is complementary, the sex of the papaya sample is determined to be female.

依據本發明一實施例,上述該些性別相關性狀基因與複數個性別相關性狀相關,且該些性別相關性狀包含複數個花器型態及/或複數個果實形狀。 According to an embodiment of the invention, the sex-related trait genes are related to a plurality of gender-related traits, and the gender-related traits comprise a plurality of flower shapes and/or a plurality of fruit shapes.

根據本發明之又一態樣,提出一種早期鑑別木瓜性別及性別相關性狀的系統,其包含上述早期鑑別木瓜性別及性別相關性狀的分子標記。 According to still another aspect of the present invention, a system for early identification of sex and gender-related traits of papaya is proposed, which comprises the above molecular markers for early identification of sex and gender-related traits of papaya.

根據本發明之再一態樣係在提供一種重組載體,其包含上述之分子標記。 According to still another aspect of the present invention, there is provided a recombinant vector comprising the above molecular marker.

根據本發明又另一態樣係在提供一種轉形植物細胞,其包含上述之重組載體。 According to still another aspect of the present invention, there is provided a transforming plant cell comprising the recombinant vector described above.

應用本發明之用於早期鑑別木瓜性別及性別相關性狀之分子標記及其應用,其利用特定的分子標記與性別相關性狀基因之任一者建立相關性模式,可於木瓜花器早期發育時,鑑別此木瓜樣本之性別以及性別相關性狀,以有效、快速且準確獲得木瓜兩性株,並有助於減少不結實花及畸形花果的產生,進而多方應用,例如用於早期鑑別木瓜性別及性別相關性狀的系統、製得包含上述之分子標記重組載體以及含此重組載體的轉形植物細胞等。 The molecular marker of the invention for early identification of sex and gender-related traits of papaya and its application can be established by using a specific molecular marker and a gender-related trait gene to establish a correlation pattern, which can be identified in the early development of papaya flower The gender and gender-related traits of this papaya sample were used to obtain papaya strains effectively, quickly and accurately, and to help reduce the production of unconsolidated flowers and malformed flowers, and thus applied in various applications, such as early identification of papaya sex and gender correlation. A system for traits, a recombinant vector comprising the above-described molecular marker, a transformed plant cell containing the recombinant vector, and the like are prepared.

100‧‧‧方法 100‧‧‧ method

120/130/140/150/160/170/180/190‧‧‧步驟 120/130/140/150/160/170/180/190‧‧‧ steps

為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之詳細說明如下:〔圖1〕係繪示根據本發明一實施例之早期鑑別木瓜性別及性別相關性狀的方法之部分流程圖。 The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Part of the flow chart of the method of gender-related traits.

〔圖2A〕至〔圖2B〕係繪示根據本發明一實施例之Yh染色體BAC 71E16分析CpSVP-LIKE於番木瓜不同性型表現之cDNA序列(圖2A)及內含子/外顯子在BAC位置(圖2B)的差異性。 2A to 2B are diagrams showing the cDNA sequence of CpSVP-LIKE in different papatype expressions (Fig. 2A) and intron/exon according to Y h chromosome BAC 71E16 according to an embodiment of the present invention. The difference in the BAC position (Figure 2B).

〔圖3A〕至〔圖3B〕係繪示根據本發明一實施例之Yh染色體BAC71E16分析CpSERK於番木瓜不同性型表現之cDNA序列(圖3A)及內含子/外顯子在BAC位置(圖3B)的差異性。 [Figure 3A] to [] FIG 3B illustrates the analysis based on the cDNA sequence CpSERK type exhibit different properties of papaya (FIG. 3A) and the intron / exon Y h BAC position in accordance with an embodiment of the chromosome BAC71E16 present invention (Figure 3B) the difference.

〔圖4A〕至〔圖4E〕係繪示根據本發明數個實施例以不同SNP基因型作為番木瓜性別及性別相關性狀基因之分子標記的HRM分析結果,其中圖10A為利用CpSVP-LIKE 88引子對的HRM分析結果,圖10B為利用CpSERK 30704引子對的HRM分析結果,圖10C為利用CpSERK 34072引子對的HRM分析結果,圖10D為利用CpSERK 34760引子對的HRM分析結果,圖10E為利用CpSERK 34787引子對的HRM分析結果,F代表雌性,M代表雄性,H代表兩性。 [Fig. 4A] to Fig. 4E are diagrams showing HRM analysis results of molecular markers of different SNP genotypes as papaya sex and sex-related trait genes according to several embodiments of the present invention, wherein Fig. 10A shows the use of CpSVP-LIKE 88. The HRM analysis results of the primer pair, FIG. 10B is the HRM analysis result using the CpSERK 30704 primer pair, FIG. 10C is the HRM analysis result using the CpSERK 34072 primer pair, FIG. 10D is the HRM analysis result using the CpSERK 34760 primer pair, and FIG. 10E is the utilization result. The results of HRM analysis of CpSERK 34787 primer pairs, F for females, M for males, and H for both sexes.

〔圖5A〕至〔圖5B〕係繪示根據本發明數個實施例以不同SNP基因型作為番木瓜性別及性別相關性狀基因之分子標記之PCR-RFLP分析結果,其中F代表雌性,M代表雄性,H代表兩性,左邊的M代表DNA標記(Marker),H代表兩性木瓜株,FM代表佛羅里達種雄性木瓜株。 [Fig. 5A] to [Fig. 5B] are PCR-RFLP analysis results of molecular markers of different SNP genotypes as papaya sex and sex-related trait genes according to several embodiments of the present invention, wherein F represents female and M represents Male, H stands for amphoteric, M on the left stands for DNA marker (Marker), H stands for amphibian papaya strain, and FM stands for Florida male papaya strain.

〔圖6〕係繪示根據本發明一實施例之番木瓜性別及性別相關性狀基因之分子標記的三性型基因連鎖圖及其表現模式,其中F代表雌性,M代表雄性,H代表兩性。 6 is a three-type gene linkage map and a molecular expression pattern of a papaya sex and sex-related trait gene according to an embodiment of the present invention, wherein F represents a female, M represents a male, and H represents a sex.

承前所述,本發明提供一種用於早期鑑別木瓜性別及性別相關性狀基因之分子標記及其應用,其係利用包含複數個特定的單核酸多型性位點、基因體序列及轉錄體序列的分子標記與性別相關性狀基因建立相關性模式,藉此於木瓜樣本之花器發育早期,同時且準確鑑別木瓜樣本之性別 及性別相關性狀。 As stated above, the present invention provides a molecular marker for early identification of a sex and sex-related trait gene of papaya and its use, which utilizes a plurality of specific single nucleic acid polymorphic sites, genome sequences and transcript sequences. Molecular markers establish a correlation model with gender-related trait genes, so as to accurately identify the sex of papaya samples in the early stage of flower development of papaya samples. And gender-related traits.

申言之,本發明此處所稱之木瓜以及木瓜樣本,係指番木瓜(Carica papaya L.),其品種並無特別限制,可包含但不限於番木瓜(Carica papaya L.)之佛羅里達種、日昇種、吉隆坡種、日昇13號種、日昇23號種、日昇與台農7號雜交種等。 The papaya and papaya samples referred to herein are papaya ( Carica papaya L.), and the variety thereof is not particularly limited and may include, but is not limited to, the Florida species of papaya ( Carica papaya L.). Risheng, Kuala Lumpur, Risheng 13th, Risheng 23, Risheng and Tainong 7 hybrids.

本發明此處所稱之木瓜性別,係指雄性、雌性及兩性。依據Storey在1938年及1953年提出的理論,番木瓜性別(雄株、雌株及兩性株)分别由3個等位基因控制:M1(雄,顯性)、M2(兩性,顯性)及m(雌性,隱性),而顯性等位基因(MM,MMh,MhMh)的所有組合都是胚致死。通常兩性株自交,後代發生兩性株及雌性株的比例為2:1,兩性株與雌性株雜交後代發生兩性株與雌性株的比例為1:1。 The term "papaya" as used herein refers to male, female and amphoteric. According to the theory that Storey proposed in 1938 and 1953, the papaya sex (male, female, and amphoteric) was controlled by three alleles: M1 (male, dominant), M2 (bisexual, dominant), and m (female, recessive), and all combinations of dominant alleles (MM, MMh, MhMh) are embryonic lethal. Usually, the amphipathic strains are selfed, and the proportion of the amphoteric and female plants in the offspring is 2:1. The ratio of the amphoteric and female plants in the offspring of the amphoteric and female plants is 1:1.

本發明此處所稱之性別相關性狀,係指其性別相關性狀基因表現及/或性狀表現與性別相關。在一例示中,上述性別相關性狀包含複數個花器型態及/或複數個果實形狀或與上述性狀相關的基因表現。 The term "gender-related trait" as used herein means that the sex-related trait gene expression and/or trait expression is related to gender. In one example, the gender-related trait comprises a plurality of floral patterns and/or a plurality of fruit shapes or gene expression associated with the traits.

本發明此處所稱之早期鑑別木瓜性別及性別相關性狀之分子標記,包括至少一序列選自於由1~64以及與SEQ ID NO:1~51、53、55、57、59、61、63互補之序列所組成之一群組。在一實施例中,上述分子標記包含上述序列本身、或者上述序列衍生之產物且含有上述序列者,例如PCR產物、HRM的產物、RFLP的產物、由上述序列轉 錄的RNA(或mRNA)、由上述序列轉譯的多肽等。 The molecular marker for identifying the sex and sex-related traits of papaya in the early stage of the present invention includes at least one sequence selected from 1 to 64 and SEQ ID NO: 1 to 51, 53, 55, 57, 59, 61, 63. A group of complementary sequences. In one embodiment, the above molecular marker comprises the above sequence itself, or the product derived from the above sequence and contains the above sequence, such as a PCR product, a product of HRM, a product of RFLP, and is transferred from the above sequence. Recorded RNA (or mRNA), a polypeptide translated from the above sequence, and the like.

本發明此處所稱之早期發育,係指木瓜花器之平均長度不超過0.2cm。一般而言,平均長度不超過0.2cm之花器無法以目視辨識性別,但使用本發明的分子標記可以有效、快速且準確區分番木瓜性別以及性別相關性狀。 The term "early development" as used herein means that the average length of the papaya flower is not more than 0.2 cm. In general, flowers with an average length of no more than 0.2 cm cannot visually identify sex, but the molecular markers of the present invention can effectively and quickly and accurately distinguish papaya sex and gender-related traits.

申言之,在一實施例中,上述分子標記可用於早期鑑別木瓜性別及性別相關性狀的方法,其係藉由分子標記與複數個性別相關基因建立相關性模式,以在木瓜樣本之花器發育早期,同時且準確鑑別其性別及性別相關性狀。在此實施例中,上述分子標記可包含複數個單核苷酸多型性位點、基因體序列、轉錄體序列及多肽的分子標記。 In a specific embodiment, the above molecular marker can be used for early identification of sex and gender-related traits of papaya, which is based on molecular markers and a plurality of sex-related genes to establish a correlation pattern for flower development in papaya samples. Early, simultaneous and accurate identification of gender and gender-related traits. In this embodiment, the above molecular marker may comprise a plurality of single nucleotide polymorphism sites, a genome sequence, a transcript sequence, and a molecular marker of the polypeptide.

在一例示中,本發明此處所稱用於鑑別木瓜性別及性別相關性狀之單核苷酸多型性(Single Nucleotide Polymorphism,SNP)位點,係指與性別具有顯著相關性,並足資鑑別不同性別者的SNP位點。前述位點可以座落於性別相關性狀基因的外顯子(exon)或內含子(intron),例如SEQ ID NO:17~51、53、55、57、59、61、63以及與SEQ ID NO:17~51、53、55、57、59、61、63互補之序列之至少一者。 In an illustration, the single Nucleotide Polymorphism (SNP) locus used herein to identify the sex and sex-related traits of papaya is a significant correlation with gender and is sufficiently identified. SNP loci for different genders. The aforementioned site may be located in an exon or an intron of a sex-related trait gene, such as SEQ ID NOS: 17-51, 53, 55, 57, 59, 61, 63 and with SEQ ID NO: at least one of the sequences complementary to 17 to 51, 53, 55, 57, 59, 61, and 63.

上述用於鑑別木瓜性別及性別相關性狀之基因體序列係指與性別具有顯著相關性,且為性別相關性狀基因的外顯子及/或內含子的一部或全部,例如SEQ ID NO:17~50以及與SEQ ID NO:17~50互補之序列之至少一者。 The above-described genomic sequence for identifying the sex and sex-related traits of papaya refers to one or all of the exons and/or introns of the sex-related trait gene, which is significantly related to sex, such as SEQ ID NO: At least one of 17 to 50 and a sequence complementary to SEQ ID NOS: 17 to 50.

上述用於鑑別木瓜性別及性別相關性狀之轉錄 體序列,係指對應於上述性別相關性狀基因所能轉錄出的所有RNA的總和,例如SEQ ID NO:51、53、55、57、59、61、63以及與SEQ ID NO:51、53、55、57、59、61、63互補之序列之至少一者。在其他例子中,上述用於鑑別木瓜性別及性別相關性狀之分子標記亦可包含由上述轉錄體序列所轉譯之所有多肽的總和,例如SEQ ID NO:52、54、56、58、60、62、64之至少一者。 The above transcription for identifying the sex and gender-related traits of papaya The body sequence refers to the sum of all RNAs transcribed corresponding to the above sex-related trait genes, such as SEQ ID NO: 51, 53, 55, 57, 59, 61, 63 and SEQ ID NO: 51, 53, At least one of the complementary sequences of 55, 57, 59, 61, 63. In other examples, the molecular markers described above for identifying papaya sex and sex-related traits may also comprise the sum of all polypeptides translated from the transcript sequences described above, eg, SEQ ID NOs: 52, 54, 56, 58, 60, 62. At least one of 64.

請參閱表1,其係顯示根據本發明一實施例之部分的分子標記、引子對序列及其座落之性別相關性狀基因的比對表。 Please refer to Table 1, which is a comparison table showing the molecular markers, the primer pair sequences, and the sex-related trait genes of the locus according to an embodiment of the present invention.

舉例而言,本發明適用的SNP分子標記可包含例如表1所列之SNP位點,包含CpSVP-LIKE基因內含子3第8511個核苷酸的SNP位點(SNP#88)、CpSERK基因內含子1第122453個核苷酸的SNP位點(SNP#30704)、CpSERK基因內含子7第119290、119295個核苷酸的SNP 位點(SNPs#34072a、34072b)、CpSERK基因外顯子9第118602個核苷酸的SNP位點(SNP#34760)以及CpSERK基因外顯子9第118575個核苷酸的SNP位點(SNP#34787)。 For example, a SNP molecular marker to which the present invention is applicable may include, for example, the SNP site listed in Table 1, a SNP site comprising the 8511th nucleotide of the intron 3 of the CpSVP-LIKE gene (SNP#88), and the CpSERK gene. SNP site of intron 1 122453 nucleotide (SNP#30704), CpSERK gene intron 7 119290, 119295 nucleotide SNP Site (SNPs #34072a, 34072b), SNP site of 118602 nucleotides of exon 9 of CpSERK gene (SNP#34760) and SNP site of 118575 nucleotides of exon 9 of CpSERK gene (SNP) #34787).

在一些實施例中,上述分子標記可以是探針、引子對、基因體序列或轉錄體序列,其長度並無特別限制,只要涵蓋上述SNP位點即可。然而在一些實施例中,當上述分子標記是探針或引子對時,其長度可例如15至30個鹼基對、或如表1所列、抑或更短或更長,藉此偵測上述SNP位點之至少一者,進而同時鑑別性別及性別相關性狀。 In some embodiments, the above molecular marker may be a probe, a primer pair, a gene sequence or a transcript sequence, and the length thereof is not particularly limited as long as the above SNP site is encompassed. In some embodiments, however, when the above molecular marker is a probe or primer pair, the length can be, for example, 15 to 30 base pairs, or as listed in Table 1, or shorter or longer, thereby detecting the above At least one of the SNP loci, thereby simultaneously identifying gender and gender-related traits.

在其他實施例中,當上述分子標記是基因體序列或轉錄體序列本身時,其長度可例如200至400個鹼基對,以偵測上述SNP位點並偵測其上下游約200至400個鹼基對的序列,藉此提高偵測的準確性。 In other embodiments, when the molecular marker is a gene sequence or a transcript sequence itself, the length may be, for example, 200 to 400 base pairs to detect the above SNP site and detect about 200 to 400 upstream and downstream thereof. A sequence of base pairs to improve the accuracy of detection.

上述分子標記可應用於早期鑑別木瓜性別及性別相關性狀的方法。請參閱圖1,其係繪示根據本發明一實施例之早期鑑別木瓜性別及性別相關性狀的方法100之部分流程圖。 The above molecular markers can be applied to early methods for identifying papaya sex and gender-related traits. Please refer to FIG. 1 , which is a partial flow chart showing a method 100 for early identification of papaya sex and gender-related traits according to an embodiment of the present invention.

在一實施例中,此方法100可如步驟120所示,首先由複數個木瓜之複數個花器獲得複數個核酸樣本,其中上述花器之平均長度不超過0.2cm,且此核酸樣本包含複數個基因體序列以及複數個轉錄體序列。接著,如步驟130所示,由核酸樣本獲得複數個分子標記,以建立基因體資料庫及轉錄體資料庫,其中分子標記包括至少一序列選自於由 SEQ ID NO:1~64以及與SEQ ID NO:1~51、53、55、57、59、61、63互補之序列所組成之一群組。之後,如步驟140所示,定義性別相關基因之任一者與分子標記之至少一者的對應關係,以建立相關性模式。 In one embodiment, the method 100 can obtain a plurality of nucleic acid samples from a plurality of flower organs of a plurality of papayas, wherein the average length of the flower plants does not exceed 0.2 cm, and the nucleic acid sample comprises a plurality of genes. The body sequence as well as a plurality of transcript sequences. Next, as shown in step 130, a plurality of molecular markers are obtained from the nucleic acid sample to establish a gene library and a transcript database, wherein the molecular marker comprises at least one sequence selected from the group consisting of SEQ ID NOS: 1 to 64 and a group consisting of sequences complementary to SEQ ID NOS: 1 to 51, 53, 55, 57, 59, 61, and 63. Thereafter, as shown in step 140, a correspondence between any of the gender-related genes and at least one of the molecular markers is defined to establish a correlation pattern.

上述性別分型資料可包含單核苷酸多型性位點、基因體序列、轉錄體序列及多肽,其可利用例如高解析度熔解分析(High Resolution Melting,HRM)、PCR-RFLP及/或習知解析胺基酸序列的方式獲得。以HRM為例,HRM為近來DNA分子標記技術發展出之方式,藉由高分辨率的熔解曲線,以分辨序列中單一核苷酸差異。由於HRM具有精確、快速、方便以及低成本等優點,過去常用於基因序列性狀上差異性分析,例如桃樹品種間性狀差異性序列之品種差異性分析、番茄誘變育種特定基因之掃描分析以及羽扇豆遺傳連鎖圖譜分析等。在其他實施例中,本發明亦可使用其他習知方式,例如聚合酶鏈反應-限制性片段長度多型性(PCR-RFLP)分析法及/或其他習知方法,取得性別分型資料,且其結果亦可與前述HRM分析結果再核對。前述所述之建立基因體資料庫及轉錄體資料庫、HRM、PCR-RFLP及/或其他習知方法係參考習知方法建立,應為本發明所屬技術領域中任何具有通常知識者所熟知,此處不另贅述。 The above sex typing data may comprise a single nucleotide polymorphic site, a genome sequence, a transcript sequence, and a polypeptide, which may utilize, for example, High Resolution Melting (HRM), PCR-RFLP, and/or It is conventionally obtained by analyzing the amino acid sequence. Taking HRM as an example, HRM is a recent development of DNA molecular tagging technology that uses a high resolution melting curve to resolve single nucleotide differences in a sequence. Because HRM has the advantages of accuracy, speed, convenience and low cost, it has been used in the past for the differential analysis of gene sequence traits, such as varietal analysis of trait difference sequences of peach cultivars, scanning analysis of specific genes for tomato mutation breeding, and Analysis of the genetic linkage map of lupins. In other embodiments, the invention may also use other conventional means, such as polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis and/or other conventional methods to obtain sex typing data. And the results can be re-checked with the aforementioned HRM analysis results. The establishment of the aforementioned genomic database and transcript database, HRM, PCR-RFLP and/or other conventional methods are established with reference to conventional methods and should be well known to those of ordinary skill in the art to which the present invention pertains. It will not be repeated here.

在一實施例中,本發明此處所稱之對應關係,係指利用習知商業統計軟體,將所得之性別分型資料進行相關性分析,以定義性別相關基因之任一者與分子標記之至少 一者的對應關係。 In one embodiment, the term "correspondence" as used herein refers to the use of conventional commercial statistical software to correlate the obtained sex-sex data to define at least one of the gender-related genes and at least the molecular markers. The correspondence of one.

在建立相關性模式之後,在一例示中,上述利用相關性模式鑑別木瓜樣本之性別以及複數個性別相關基因之步驟150可包括由木瓜樣本之待測花器獲得待測核酸樣本,如步驟160所示。在一例示中,上述花器之平均長度不超過0.2cm,且前述核酸樣本亦包含複數個待測基因體序列以及複數個待測轉錄體序列。 After establishing the correlation mode, in an example, the step 150 of using the correlation pattern to identify the sex of the papaya sample and the plurality of sex-related genes may include obtaining the nucleic acid sample to be tested from the flower sample of the papaya sample, as in step 160. Show. In an example, the average length of the flower is not more than 0.2 cm, and the nucleic acid sample also includes a plurality of gene sequences to be tested and a plurality of transcript sequences to be tested.

然後,如步驟170所示,由待測核酸樣本獲得複數個性別分型資料,其中性別分型資料可包括例如複數個待測單核苷酸多型性位點、待測單核苷酸多型性位點對應的待測基因體序列以及待測基因體序列對應之待測轉錄體序列。上述性別分型資料利用例如HRM分析法、PCR-RFLP分析法及/或其他習知方法獲得,此處不另贅述。 Then, as shown in step 170, a plurality of sex genotyping data are obtained from the nucleic acid sample to be tested, wherein the sex genotyping data may include, for example, a plurality of single nucleotide polymorphism sites to be tested, and more single nucleotides to be tested. The sequence of the gene to be tested corresponding to the type site and the sequence of the transcript to be tested corresponding to the sequence of the gene to be tested. The above sex typing data is obtained by, for example, HRM analysis, PCR-RFLP analysis, and/or other conventional methods, and will not be further described herein.

接下來,如步驟180所示,將性別分型資料輸入上述相關性模式,以比對性別分型資料是否與分子標記之至少一者相符,並獲得分子標記之至少一者之對應關係之相關正確率。當性別分型資料之至少一者與分子標記之至少一者相符且相關正確率為100%時,判斷木瓜樣本具有對應關係之性別的一者以及性別相關基因之至少一者,如步驟190所示。 Next, as shown in step 180, the sex typing data is input into the correlation mode to compare whether the sex typing data matches at least one of the molecular markers, and obtain a correlation between at least one of the molecular markers. Correct rate. When at least one of the sex typing data matches at least one of the molecular markers and the correlation correct rate is 100%, determining that the papaya sample has one of the genders of the corresponding relationship and at least one of the sex-related genes, as in step 190 Show.

舉例而言,當待測核酸樣本利用HRM所得之性別分型資料,與上述相關性模式比對後,與分子標記中的SNP#88(T)相符,則判斷木瓜樣本為兩性株,且具有對應CpSVP-LIKE基因的內含子(intron)3。CpSVP-LIKE基因 在兩性株中具有(Alternative Splicing,AS)之多型性,詳見後述。 For example, when the nucleic acid sample to be tested is subjected to the sex typing data obtained by HRM, and compared with the above correlation pattern, and the SNP#88(T) in the molecular marker is matched, the papaya sample is determined to be an amphoteric strain, and has Corresponding to the intron 3 of the CpSVP-LIKE gene. CpSVP-LIKE gene In the amphoteric strain, there is a polymorphism of (Alternative Splicing, AS), which will be described later.

本發明之技術特徵之一,在於定義前述分子標記與性別相關性狀基因之間的對應關係,以建立相關性模式。值得留意的是,倘若使用上述以外之分子標記及/或上述以外的相關性模式鑑別木瓜株,無法預期能於花器早期發育時同時且準確鑑別出木瓜性別及特定的性別相關性狀。 One of the technical features of the present invention is to define a correspondence relationship between the aforementioned molecular marker and a sex-related trait gene to establish a correlation pattern. It is worth noting that if the papa strain is identified using molecular markers other than the above and/or related patterns other than the above, it is not expected that the papaya sex and specific gender-related traits can be simultaneously and accurately identified in the early development of the flower.

在上述實施例中,前述利用相關性模式鑑別木瓜樣本之性別以及複數個性別相關基因之步驟可包含但不限於由木瓜樣本之待測花器獲得待測核酸樣本,由該待測核酸樣本獲得複數個性別分型資料,將該些性別分型資料輸入該相關性模式,以比對該些性別分型資料是否與該些分子標記之至少一者相符,並獲得該分子標記之該至少一者之該對應關係之相關正確率。當該些性別分型資料之該至少一者與該些分子標記之該至少一者相符,且相關正確率為100%時,判斷該木瓜樣本具有該對應關係之該些性別以及該些性別相關基因之至少一者。 In the above embodiment, the step of using the correlation mode to identify the sex of the papaya sample and the plurality of sex-related genes may include, but is not limited to, obtaining the nucleic acid sample to be tested from the flower sample of the papaya sample, and obtaining the plurality of nucleic acid samples from the sample to be tested. a gender typing data, the gender typing data is input into the correlation mode to match whether the gender typing data matches at least one of the molecular markers, and the at least one of the molecular markers is obtained The correlation correctness of the correspondence. When the at least one of the gender typing data matches the at least one of the molecular markers, and the correlation correctness rate is 100%, determining that the papaya sample has the corresponding relationship of the genders and the gender correlations At least one of the genes.

依據Storey在1938年及1953年所提出番木瓜性別(雄株、雌株及兩性株)遺傳假說分别由3個等位基因控制:M1(雄)、M2(兩性)及m(雌性),而顯性等位基因(MM,MMh,MhMh)的所有組合都是胚致死。通常兩性株自交,後代發生兩性株及雌性株的比例為2:1。兩性株與雌性株雜交,後代發生兩性株與雌性株的比例為1:1。 According to Storey's genetic hypothesis of papaya sex (male, female and amphoteric) in 1938 and 1953, respectively, controlled by three alleles: M1 (male), M2 (bisexual) and m (female). All combinations of dominant alleles (MM, MMh, MhMh) are embryonic lethal. Usually, the amphipathic strains are selfed, and the proportion of the amphoteric and female plants in the offspring is 2:1. The amphipathic strain is crossed with the female strain, and the ratio of the amphoteric strain to the female strain in the offspring is 1:1.

在此說明的是,本發明之分子標記不僅可同時 鑑別木瓜株的三種性別,亦可由轉錄體之選擇性剪接(AS)的多型性,判斷木瓜花器的性別相關性狀是否受影響而有退化、畸形的可能,藉此根據進行早期偵測的結果及早因應。 It is stated herein that the molecular markers of the present invention are not only simultaneously Identification of the three sexes of papaya strains, or the variability of alternative splicing (AS) of transcripts, to determine whether the sex-related traits of papaya flowers are affected and degenerate or deformed, thereby based on the results of early detection. Early response.

舉例而言,當上述第二性別分型資料包含SEQ ID NO:1~16、18、20~21、25~26、30~31、35~36、40~41、45~46、49~50、53~58、63~64以及與SEQ ID NO:1~16、18、20~21、25~26、30~31、35~36、40~41、45~46、49~50、53~58、63~64互補之序列之至少一者時,判斷木瓜樣本之性別為兩性。 For example, when the second gender classification data includes SEQ ID NOs: 1 to 16, 18, 20 to 21, 25 to 26, 30 to 31, 35 to 36, 40 to 41, 45 to 46, and 49 to 50 , 53~58, 63~64 and SEQ ID NO: 1~16, 18, 20~21, 25~26, 30~31, 35~36, 40~41, 45~46, 49~50, 53~ When at least one of the sequences of 58 and 64 complements each other, the sex of the papaya sample is determined to be gender.

當上述第二性別分型資料包含SEQ ID NO:1~17、19、23~24、28~29、33~34、38~39、43~44、48、51~52、61~62以及與SEQ ID NO:1~17、19、23~24、28~29、33~34、38~39、43~44、48、51~52、61~62互補之序列之至少一者時,判斷木瓜樣本之性別為雄性。 When the second gender classification data includes SEQ ID NOs: 1-17, 19, 23-24, 28-29, 33-34, 38-39, 43-44, 48, 51-52, 61-62, and When at least one of the complementary sequences of SEQ ID NO: 1 to 17, 19, 23 to 24, 28 to 29, 33 to 34, 38 to 39, 43 to 44, 48, 51 to 52, and 61 to 62, the papaya is judged. The gender of the sample is male.

當上述第二性別分型資料包含SEQ ID NO:1~16、22、27、32、37、42、47、59~60以及與SEQ ID NO:1~16、22、27、32、37、42、47、59~60互補之序列之至少一者時,判斷木瓜樣本之性別為雌性。 When the second sex typing data includes SEQ ID NOS: 1 to 16, 22, 27, 32, 37, 42, 47, 59 to 60, and SEQ ID NOS: 1 to 16, 22, 27, 32, 37, When at least one of the complementary sequences of 42, 47, and 59 to 60 is determined, the sex of the papaya sample is determined to be female.

此外,上述分子標記更可多方應用,例如用於早期鑑別木瓜性別及性別相關性狀的系統、包含上述之分子標記重組載體以及含此重組載體的轉形植物細胞等。 In addition, the above molecular markers are more versatile, for example, a system for early identification of papaya sex and sex-related traits, a molecular marker-containing recombinant vector comprising the same, and a transformed plant cell containing the recombinant vector.

以下利用數個實施例以說明本發明之應用,然其並非用以限定本發明,本發明技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與 潤飾。 The following examples are used to illustrate the application of the present invention, and are not intended to limit the present invention. Those skilled in the art can make various changes without departing from the spirit and scope of the present invention. Retouching.

實施例1. 建立番木瓜基因體資料庫及轉錄體資料庫Example 1. Establishment of papaya genome database and transcript database

此實施例係由多個木瓜株建立番木瓜基因體資料庫(或稱基因體BAC庫)及轉錄體資料庫(或稱轉錄體BAC庫)。 In this embodiment, a papaya genome database (or a genomic BAC library) and a transcript database (or a transcript BAC library) are established from a plurality of papaya strains.

首先,取番木瓜不同性別植株與花器,包含雌花4個、雄花4個及兩性花4個,共12個樣品,經萃取其基因體及轉錄體後,進行高通量定序(High-throughput Sequencing),以獲得複數個基因體序列及轉錄體序列。 First, take papaya different sex plants and flowers, including 4 female flowers, 4 male flowers and 4 bisexual flowers, a total of 12 samples, after extracting their genome and transcript, high-throughput sequencing (High-throughput) Sequencing) to obtain a plurality of genome sequences and transcript sequences.

關於前述基因體資料庫及轉錄體資料庫係參考習知方法建立。簡言之,在NCBI上搜尋番木瓜細菌人工染色體(Bacterial Artificial Chromosome,BAC)基因庫,以BAC序列為模板,將上述轉錄體所表現之基因序列組裝到模板上,並依據不同性別表現量之不同,選出15個番木瓜BAC(圖未繪示)。 The aforementioned genomic database and transcript database are established by reference to conventional methods. Briefly, the Bacterial Artificial Chromosome (BAC) gene pool was searched on NCBI, and the gene sequence represented by the above transcript was assembled into the template using the BAC sequence as a template, and the expression was based on gender. Different, 15 papaya BACs were selected (not shown).

實施例2. 番木瓜性別決定基因之篩選Example 2. Screening of Papaya Sex Determination Genes

在上述15個番木瓜BAC中,初步篩選出性別相關基因共117個,其中有27個基因可於二種性別株中表現,有28個基因可於三種性別株中表現,合計55個基因。 Among the above 15 papaya BACs, a total of 117 sex-related genes were initially screened, of which 27 genes could be expressed in two sex strains, and 28 genes could be expressed in three sex strains, totaling 55 genes.

將上述所得55個性別相關基因進行核酸及胺基酸多重序列比對,其係利用市售統計分析軟體,例如excel比對,根據外顯子跳躍(Exon Jump)、內含子跳躍(Intron Jump)、胺基酸短少(AA Short)及胺基酸無改變(None AA Change)等胺基酸不同變化,篩選出RNA具有選擇性剪接(Alternative RNA splice)之性別相關基因。上述所得55個基因中,番木瓜BAC-71E16的基因中產生胺基酸變化者,如表2所示。 The 55 sex-related genes obtained above were subjected to nucleic acid and amino acid multiple sequence alignment using commercially available statistical analysis software, such as excel alignment, according to exon jump (Exon Jump), intron jump (Intron) Jump, amino acid shortness (AA Short) and amino acid change (None AA Change) and other amino acid changes, screening for RNA with alternative splicing (Alternative RNA splice) sex-related genes. Among the 55 genes obtained above, a change in amino acid was produced in the gene of papaya BAC-71E16, as shown in Table 2.

將上述選出之基因利用商業軟體,例如ClustalW2(網址為http://www.ebi.ac.uk/Tools/msa/clustalw2/)以及基因核酸與胺基酸之多重序列比對後,依照基因表現序列區分為type_1(單一性別不表現,另二個性別之胺基酸表現序列有差異)、type_2(三個性別均表現,且胺基酸表現序列皆有差異)以及type_3(三個性別皆有表現,其中二個性別之胺基酸表現序列無差異)等三種區分方式,以由番木瓜BAC-71E16中篩選出RNA具有選擇性剪接(Alternative RNA splice)之性別相關基因。將選出之基因利用商業軟體,例如SMART(網址為http://smart.embl-heidelberg.de/smart/change_mode.pl),預測蛋白質功能域,其結果如表3所示。 The above selected genes are expressed by commercial software, such as ClustalW2 ( http://www.ebi.ac.uk/Tools/msa/clustalw2/) and the multiple sequences of the gene nucleic acid and the amino acid, according to the gene expression The sequence is divided into type_1 (single gender does not show, the other two amino acid amino acid sequences are different), type_2 (all three genders, and amino acid performance sequences are different) and type_3 (all three genders have The expression, in which the amino acid of the two sexes showed no difference in sequence, was used to distinguish the sex-related genes of RNA with alternative RNA splice from papaya BAC-71E16. The selected gene was predicted using a commercial software such as SMART ( http://smart.embl-heidelberg.de/smart/change_mode.pl ), and the results are shown in Table 3.

表3 table 3

由表3比對結果可知,在由番木瓜BAC-71E16中,type_1基因有2個,type_2基因有1個,而type_3基因有1個。 From the results of the comparison of Table 3, it was found that in the papaya BAC-71E16, there were two type_1 genes, one type_2 gene, and one type_3 gene.

實施例3. 番木瓜不同性別間CpSVP-LIKE及CpSERK之基因結構分析Example 3. Gene structure analysis of CpSVP-LIKE and CpSERK between different sexes of papaya

此實施例利用SNP-HRM以及PCR-RFLP等方式,評估分子標記用於檢測並分析性別與性別性狀基因之相關性。 This example uses SNP-HRM and PCR-RFLP to evaluate molecular markers for detecting and analyzing the correlation between sex and gender trait genes.

1. 利用SNP-HRM分子標記,檢測並分析性別與性別性狀基因之相關性1. Detect and analyze the correlation between sex and gender trait genes using SNP-HRM molecular markers

經由基因組資料分析性別相關之單核苷酸多態性(SNP)位置,利用Beacon DesignerTM軟體設計SNP-HRM分析引子,兩基因共設計5組引子。將64個已知性別之番木瓜樣品DNA(包含親本與子代),進行SNP-HRM檢測,每一HRM反應試劑包含:Precision melt supermix(Bio-Rad):6.34μl DDH2O,10μl Precision melt supermix,0.4μl 10μM正向引子,0.4μl 10μM反向引子,3μl(1.5ng/μl)DNA樣品,總共15μl/孔,於96孔盤(BIOplastics)封膜(BIOplastics),利用即時定量聚合酶鏈鎖反應儀(Bio-Rad CFX Connect)配合軟體 (Bio-Rad CFX Manager)Real-time Polymerase chain reaction(PCR)program。 Analysis by the genome-related information on gender single nucleotide polymorphism (SNP) position, the Beacon Designer TM SNP-HRM analysis software design primer, two gene primers were designed 5 groups. 64 known papaya sample DNAs (including parents and progeny) were tested for SNP-HRM. Each HRM reaction reagent contained: Precision melt supermix (Bio-Rad): 6.34 μl DDH 2 O, 10 μl Precision Melt supermix, 0.4μl 10μM forward primer, 0.4μl 10μM reverse primer, 3μl (1.5ng/μl) DNA sample, total 15μl/well, in 96-well plate (BIOplastics) sealing membrane (BIOplastics), using instant quantitative polymerase The Bio-Rad CFX Connect is equipped with a Bio-Rad CFX Manager Real-time Polymerase chain reaction (PCR) program.

上述PCR溫度程序設定條件如下:DNA雙股解離(Denaturation):95℃進行2min。接著,進行39個循環的聚合酶鏈鎖反應,包括DNA雙股解離(Denaturation):95℃ 10sec;以及引子配對黏合與單股DNA加長(Annealing and Elongation):57℃ 30sec。上述PCR產物螢光解離曲線溫度程序之設定條件如下:DNA雙股解離(Denaturation):95℃ 30sec,60℃ 1min;以及DNA雙股螢光偵測:65℃至90℃,每10秒增加0.2℃。 The above PCR temperature program set conditions were as follows: DNA double strand dissociation (Denaturation): 95 ° C for 2 min. Next, 39 cycles of polymerase chain reaction were performed, including DNA double strand dissociation (Denaturation): 95 ° C for 10 sec; and primer paired binding and single stranded DNA lengthening (Annealing and Elongation): 57 ° C for 30 sec. The above PCR product fluorescence dissociation curve temperature program is set as follows: DNA double strand dissociation (Denaturation): 95 ° C 30 sec, 60 ° C 1 min; and DNA double strand fluorescence detection: 65 ° C to 90 ° C, an increase of 0.2 per 10 seconds °C.

上述Real-time PCR結果利用軟體(Bio-Rad Precision Melt Analysis)進行叢集分析(cluster analysis),並計算與番木瓜性別之相關正確率(correlection%)。將所得相關正確率達100%之SNP-HRM分子標記,於兩性親本與雄性親本雜交子代族群中選出96個番木瓜盲樣,計算SNP-HRM分析之性別數量,進行卡方分析了解子代族群SNP-HRM分子標記之性別性狀分離率是否符合理論值。 The above Real-time PCR results were subjected to cluster analysis using Bio-Rad Precision Melt Analysis, and the correlation rate (correlection%) related to the sex of papaya was calculated. The SNP-HRM molecular markers with 100% correct rate were selected, and 96 papaya blind samples were selected from the offspring of male and female parents. The sex number of SNP-HRM analysis was calculated and analyzed by chi-square analysis. Whether the sex trait separation rate of the SNP-HRM molecular markers of the progeny group is in agreement with the theoretical value.

2. 利用PCR-RFLP分子標記,檢測並分析性別與性別性狀基因之相關性2. Detection and analysis of the correlation between sex and sex trait genes using PCR-RFLP molecular markers

依據SNP序列設計PCR-RFLP引子其PCR產物大小約200bp,PCR條件為:34μl DDH2O,5μl DMSO(Dimethyl sulfoxide),5μl 10xPC2 buffer (500mM Tris-HCl pH=9.1,160mM(NH4)2SO4,35mM MgCl2,1.5mg/ml BSA),1μl 10mM dNTP,1μl 10mM正向引子,1μl 10mM反向引子,1μl Taq(2U/μl),2μl DNA樣品,總共50μl。分裝於0.2ml eppendorf經聚合酶鏈鎖反應儀(BIOER-GenePro)PCR溫度程序設定:Denaturation:94℃ 40sec;35個循環反應:引子配對黏合(Annealing):61℃ 40sec,單股DNA加長(Elongation):72℃ 30sec。所得PCR產物用純化試劑組(Geneaid),進行純化後,檢測PCR產物濃度。取400ng的PCR產物和酵素作用分析其中:MADS-BOX gene的PCR產物,以Nde I酵素配合buffer分析;SERK gene的PCR產物,以Ase I酵素配合buffer分析,均於37℃作用8小時,將酵素作用前與作用後之PCR產物,分別進行電泳分析並UV數位照相。 PCR-RFLP primers were designed according to SNP sequence. The PCR product size is about 200 bp. The PCR conditions are: 34 μl DDH 2 O, 5 μl DMSO (Dimethyl sulfoxide), 5 μl 10×PC2 buffer (500 mM Tris-HCl pH=9.1, 160 mM (NH 4 ) 2 SO 4 , 35 mM MgCl 2 , 1.5 mg/ml BSA), 1 μl of 10 mM dNTP, 1 μl of 10 mM forward primer, 1 μl of 10 mM reverse primer, 1 μl of Taq (2 U/μl), 2 μl of DNA sample, for a total of 50 μl. Divided into 0.2 ml eppendorf by polymerase chain reaction reactor (BIOER-GenePro) PCR temperature program setting: Denaturation: 94 ° C 40 sec; 35 cycles of reaction: primer pairing (Annealing): 61 ° C 40 sec, single-stranded DNA lengthening ( Elongation): 72 ° C 30 sec. The obtained PCR product was purified by a purification reagent set (Geneaid), and the concentration of the PCR product was measured. 400 ng of PCR products and enzymes were used to analyze: the PCR product of MADS-BOX gene was analyzed by Nde I enzyme in combination with buffer; the PCR product of SERK gene was analyzed by Ase I enzyme in combination with buffer for 8 hours at 37 ° C. The PCR products before and after the action of the enzyme were separately subjected to electrophoresis analysis and UV digital photography.

經上述HRM與PCR-RFLP篩選後,發現位於Yh chromosome BAC 71E16距離約26000bp的短營養生長期(Short vegetative phase,CpSVP-LIKE)及體細胞胚胎發育受體激酶(Somatic Embryogenesis Receptor Kinase,CpSERK),此二基因均與性別相關。其次,番木瓜(Carica papaya L.,Cp)CpSVP-LIKE基因與CpSERK基因與釀酒葡萄(Vitis vinifera,Vv)VvSVP及VvSERK之胺基酸序列比對後,分別可達72%及96%相似度(資料未顯示)。 After screening by HRM and PCR-RFLP, a short vegetative phase (CpSVP-LIKE) and Somatic Embryogenesis Receptor Kinase (CpSERK) located at a distance of about 26000 bp from Y h chromosome BAC 71E16 were found. These two genes are all related to gender. Secondly, Papaya ( Carica papaya L., Cp) CpSVP-LIKE gene and CpSERK gene and Vitis vinifera (Vv) VvSVP and VvSERK amino acid sequence alignment, respectively, up to 72% and 96% similarity (Information not shown).

請參閱圖2A及圖2B。圖2A至圖2B係繪示根據 本發明一實施例之Yh染色體BAC 71E16分析CpSVP-LIKE於番木瓜不同性型表現之cDNA序列(圖2A)及內含子/外顯子在BAC位置(圖2B)的差異性。圖2A至圖2B之雙底線的數字代表BAC上的位置,F代表雌性,M代表雄性,H代表兩性,圓型圖號代表起始密碼,三角型圖號代表終止密碼,方格代表外顯子,黑色方格代表無轉譯域,直條紋方格代表非特定域,方格E1/E2代表MADS-BOX域(GenBank序列編號:BAR64349.1,其胺基酸序列如SEQ ID NO:65所示),方格E3/E4/E5代表K-BOX域,橫線代表內插子。每種結構的右側標示其核酸、胺基酸數目。ORF代表開放閱讀框(open reading frame),AA代表胺基酸(amino acid),UTR代表非轉譯區(untranslated regions),單底線數字為核酸數,結構下方標有primer位置,h代表HRM引子,dc代表PCR-RFLP引子,箭頭表示SNP位置。 Please refer to FIG. 2A and FIG. 2B. FIGS. 2A-2B illustrates a system according to the cDNA sequence of papaya CpSVP-LIKE different manifestations of the type (FIG. 2A) and the intron / exon BAC embodiment of the present invention, a position Y h BAC 71E16 embodiment of chromosome analysis ( Figure 2B) is the difference. The figures of the double bottom line of Figures 2A to 2B represent the position on the BAC, F stands for female, M stands for male, H stands for gender, the round figure represents the starting password, the triangle type represents the termination password, and the square represents the explicit The black square represents the untranslated domain, the straight striped square represents the non-specific domain, and the square E1/E2 represents the MADS-BOX domain (GenBank sequence number: BAR64349.1, whose amino acid sequence is SEQ ID NO: 65 Show), the square E3/E4/E5 represents the K-BOX domain, and the horizontal line represents the interpolation. The right side of each structure indicates the number of nucleic acids and amino acids. ORF stands for open reading frame, AA stands for amino acid, UTR stands for untranslated regions, single bottom line numbers are nucleic acid numbers, primers are marked under the structure, and h stands for HRM primers. Dc represents the PCR-RFLP primer and the arrow indicates the SNP position.

圖2A結果指出,CpSVP-LIKE基因推測蛋白質序列長度而其推測蛋白質序列包含有K-BOX domain,含有6個內插子以及7個外顯子。該基因於番木瓜雌性0.2cm花苞不表現;雄性0.2cm花苞具有一種轉錄表現型推測轉譯長度167胺基酸(cDNA:4416bp;ORF:501bp);而兩性0.2cm花苞則是3種轉錄表現型,兩性的三種推測轉譯長度分別為98個胺基酸(cDNA:839bp;ORF:294bp;4th intron alternative splicing)、167個胺基酸(cDNA:5093bp;ORF:501bp)以及203個胺基酸(cDNA:840 bp;ORF:609bp;2nd intron alternative splicing)。經由性別性狀SNP genotyping分析,發現位於intron 3第8511個核酸(MSY Yh chromosome BAC 71E16為參考位置)SNP G(M)→T(H)具有性別性狀之相關性,而且僅有CpSVP-LIKE基因在兩性株中具有AS之多型性,確實具有性別相關性,如圖2A所示。因此,依據SNP位置設計SNP-HRM引子,及PCR-RFLP引子,分別命名為:SVP_HRM_88及SVP_RFLP_Nde I,如表1及SEQ ID NO:1~4所示。 The results of Figure 2A indicate that the CpSVP-LIKE gene is predicted to have a protein sequence length and its putative protein sequence contains a K-BOX domain containing six interposons and seven exons. The gene was not expressed in female papyrus 0.2cm calyx; male 0.2cm calyx had a transcriptional phenotype with a predicted translation length of 167 amino acid (cDNA: 4416bp; ORF: 501bp); and amphoteric 0.2cm calyx was three transcriptional phenotypes. The three putative lengths of the two sexes were 98 amino acids (cDNA: 839 bp; ORF: 294 bp; 4th intron alternative splicing), 167 amino acids (cDNA: 5093 bp; ORF: 501 bp) and 203 amino acids ( cDNA: 840 bp; ORF: 609 bp; 2nd intron alternative splicing). Through SNP genotyping analysis of sex traits, it was found that SNP G(M)→T(H) is located in the 3rd intron 3 (MSY Y h chromosome BAC 71E16 is the reference position) and has only the CpSVP-LIKE gene. It has a polymorphism of AS in amphipathic strains and does have gender relevance, as shown in Figure 2A. Therefore, the SNP-HRM primer and the PCR-RFLP primer are designed according to the SNP position, and are named as SVP_HRM_88 and SVP_RFLP_Nde I, as shown in Table 1 and SEQ ID NOs: 1-4.

請參閱圖3A及圖3B,其係繪示根據本發明一實施例之Yh染色體BAC71E16分析CpSERK於番木瓜不同性型表現之cDNA序列(圖3A)及內含子/外顯子在BAC位置(圖3B)的差異性。 See FIGS. 3A and 3B, the system which is shown in the cDNA sequence analysis CpSERK type exhibit different properties of papaya (FIG. 3A) and the intron / exon The positions Y h BAC chromosome BAC71E16 embodiment of the present invention, an embodiment (Figure 3B) the difference.

圖3A至圖3B之雙底線的數字代表BAC上的位置,F代表雌性,M代表雄性,H代表兩性,圓型圖號代表起始密碼,三角型圖號代表終止密碼,方格代表外顯子,黑色方格代表無轉譯域,方格E1代表訊息胜肽(Signal peptide,SP域),方格E2/E3/E4/E5代表富含亮胺酸重複序列(Leucine-rich repeats,或稱LRR域),方格E7代表穿膜區(Transmembrane region,或稱TM域)(E7),方格E9/E10/E11代表絲胺酸/蘇胺酸蛋白激酶(Serine/Threonine protein kinases,或稱Kinase域),橫線代表內插子。每種結構的右側標示其核酸、胺基酸數目。ORF代表開放閱讀框(open reading frame),AA代表 胺基酸(amino acid),UTR代表非轉譯區(untranslated regions),單底線數字為核酸數,結構下方標有primer位置,h代表HRM引子,dc代表PCR-RFLP引子,箭頭表示SNP位置。 The figures of the double bottom line of Figures 3A to 3B represent the position on the BAC, F stands for female, M stands for male, H stands for gender, the round figure represents the starting password, the triangle type represents the termination password, and the square represents the explicit The black square represents the untranslated domain, the square E1 represents the signal peptide (SP domain), and the square E2/E3/E4/E5 represents the Leucine-rich repeats. In the LRR domain, the square E7 represents the Transmembrane region (TM) (E7), and the square E9/E10/E11 represents Serine/Threonine protein kinases. Kinase domain), the horizontal line represents the interpolation. The right side of each structure indicates the number of nucleic acids and amino acids. ORF stands for open reading frame, AA stands for The amino acid, UTR represents the untranslated regions, the single bottom line number is the number of nucleic acids, the primer position is indicated below the structure, h represents the HRM primer, dc represents the PCR-RFLP primer, and the arrow indicates the SNP position.

圖3A、圖3B、表3及表4之結果指出,CpSERK基因蛋白質序列包含有訊息胜肽(SP域)、富含亮胺酸重複序列(LRR域)、穿膜區(TM域)與絲胺酸/蘇胺酸蛋白激酶(Kinase域)之C端域〔C-terminal(S_TKC-like)domain〕,含有10個內插子以及11個外顯子,而且番木瓜三種性別都不同:雌性593個胺基酸(cDNA:2183bp;ORF:1779bp)、雄性523個胺基酸(cDNA:1952bp;ORF:1569bp;10th intron alternative splicing)以及兩性628個胺基酸(cDNA:2467bp;ORF:1884bp)。經由性別性狀SNP genotyping分析,發現intron 1第122453個核酸的SNP若為A則為雌性,若為G則為雄性及兩性;intron 7第119295個核酸的SNP若為T則為雌性,若為G則為雄性及兩性;以及第119290個核酸的SNP若為A則為雌性及雄性,若為T則為兩性;Exon 9第118602個核酸的SNP若為C則為雌性,若為T則為雄性及兩性;以及第118575個核酸的SNP若為G則為雌性,若為A則為雄性及兩性。上述SNP均具有性別相關之變化,可用於鑑別木瓜性別。依據SNP位置分別設計SNP-HRM及PCR-RFLP引子對,依序命名為:SERK_HRM_30704、SERK_HRM_34072、SERK_HRM_34760、 SERK_HRM_34787、SERK_RFLP_Dde I與SERK_RFLP_Spe I,如表1及SEQ ID NO:1~16所示。 The results of Fig. 3A, Fig. 3B, Table 3 and Table 4 indicate that the CpSERK gene protein sequence contains a message peptide (SP domain), a leucine-rich repeat (LRR domain), a transmembrane region (TM domain) and silk. The C-terminal (S_TKC-like domain) of the amino acid/threonine protein kinase (Kinase domain) contains 10 interposons and 11 exons, and papaya is different in three sexes: female 593 amino acids (cDNA: 2183 bp; ORF: 1779 bp), male 523 amino acids (cDNA: 1952 bp; ORF: 1569 bp; 10th intron alternative splicing) and amphoteric 628 amino acids (cDNA: 2467 bp; ORF: 1884 bp) ). According to the sex trait SNP genotyping analysis, it was found that the SNP of the 122453th nucleic acid of intron 1 is female if it is A, and male and amphoteric if it is G; the SNP of 119295 nucleic acid of intron 7 is female if it is T, if it is G And male and female; and the SNP of the 119,290th nucleic acid is female and male if it is A, and is amphoteric if it is T; the SNP of Exon 9 118602 nucleic acid is female if it is C, and male if it is T And the sexes; and the SNP of the 118,575 nucleic acids is a female if G, and a male and amphoteric if A. All of the above SNPs have gender-related changes that can be used to identify papaya sex. The SNP-HRM and PCR-RFLP primer pairs are designed according to the SNP position, and are named as SERK_HRM_30704, SERK_HRM_34072, SERK_HRM_34760, respectively. SERK_HRM_34787, SERK_RFLP_Dde I and SERK_RFLP_Spe I are shown in Table 1 and SEQ ID NOs: 1-16.

請參閱表4,其係繪示根據本發明一實施例之三性CpSERK與Yh染色體BAC 71E16胺基酸序列之比對。 Please refer to Table 4, which shows the alignment of the trisex CpSERK with the Y h chromosome BAC 71E16 amino acid sequence according to an embodiment of the present invention.

表4之結果指出,上述2個基因(CpSVP-LIKE及CpSERK)確實具有性別相關性。另外,上述2個基因(CpSVP-LIKE及CpSERK)僅有CpSVP-LIKE基因在兩性株中具有AS之多型性,如圖2A所示。 The results in Table 4 indicate that the above two genes (CpSVP-LIKE and CpSERK) do have gender relevance. In addition, the above two genes (CpSVP-LIKE and CpSERK) only have the CpSVP-LIKE gene having an AS polymorphism in the amphoteric strain, as shown in Fig. 2A.

實施例4. 番木瓜性別分子標記檢測與遺傳分析Example 4. Detection and Genetic Analysis of Papaya Molecular Markers

此實施例係利用上述分子標記,進行40個盲樣族群測試,以評估上述分子標記用於早期鑑別木瓜性別及性別相關性狀之相關正確率。 In this example, 40 blind population testes were performed using the above molecular markers to evaluate the relative correctness of the above molecular markers for early identification of papaya sex and gender-related traits.

首先,在蛋白質編碼的基因組範圍進行性別性狀SNP genotyping分析,發現CpSVP-LIKE及CpSERK基因有性別相關的基因型SNP分佈,如圖2A至圖3B及表5所示。 First, a sex trait SNP genotyping analysis was performed on the genome-encoded genome. It was found that the CpSVP-LIKE and CpSERK genes have gender-related genotype SNP distributions, as shown in Figures 2A to 3B and Table 5.

其次,在CpSVP-LIKE基因中,SVP_HRM_88引子檢測結果發現三性之間具有明顯的DNA解離螢光曲線之差異(圖4A,CpSVP-LIKE 88引子對),性別性狀遺傳分析結果發現24個親本與40個子代樣品測試,三性間SVP-HRM_88檢測之相關性達100%。再者,40個盲樣族群測試中,SVP_HRM_88引子檢測三性別之比值,經卡方檢測符合1:1:1理論值,如表5之結果所示。經由PCR-RFLP分析結果則發現SVP_RFLP_Nde I引子組針對不同性別進行PCR,雌性不會產生之PCR產物,而雄性與兩性的之PCR產物,經Nde I酵素處理後,該SNP可以區別雄性與兩性,如圖5A之結果所示。 Secondly, in the CpSVP-LIKE gene, the SVP_HRM_88 primer found that there was a significant difference in the DNA dissociation fluorescence curve between the three sexes (Fig. 4A, CpSVP-LIKE 88 primer pair), and the genetic analysis of the gender traits found 24 parents. Tested with 40 progeny samples, the correlation between the three sex SVP-HRM_88 tests was 100%. Furthermore, in the 40 blind sample group tests, the SVP_HRM_88 primer detected the ratio of the three sexes, and the chi-square test met the 1:1:1 theoretical value, as shown in the results of Table 5. The results of PCR-RFLP analysis showed that the SVP_RFLP_Nde I primer group was PCR-based for different genders, and the PCR products produced by the females, while the male and amphoteric PCR products were treated with Nde I enzyme, the SNP could distinguish between males and males. As shown in the results of Figure 5A.

在CpSERK基因中,SERK_HRM_34072、SERK_HRM_30704、SERK_HRM_34760以及SERK_HRM_34787四組引子對,檢測都能區別雌性,如圖4B至圖4E之結果所示。而SERK_HRM_34072則是發現三性之間具有明顯的DNA解離螢光曲線之差異,如圖4B之結果所示。該遺傳分析中親本與子代的 SERK_HRM_34072、SERK_HRM_34760與SERK_HRM_34787之分析結果發現,雌性與兩性的SNP-HRM檢測之相關性達100%,40個盲樣族群測試該三組檢測雌性與其他性別之比值,經卡方檢測符合1:2理論值,如表5之結果所示。而PCR-RFLP分析第119737核酸,利用SERK_RFLP_Spe I引子組針對不同性別進行PCR,其產物不同性別之間並無差異,而經Spe I酵素處理後,該SNP可以區別兩性與其他性別,如圖5B之結果所示。 In the CpSERK gene, the SERK_HRM_34072, SERK_HRM_30704, SERK_HRM_34760, and SERK_HRM_34787 four sets of primer pairs can detect females, as shown in the results of Figures 4B to 4E. The SERK_HRM_34072 was found to have a significant difference in the DNA dissociation fluorescence curve between the three sexes, as shown in the results of Figure 4B. Parents and offspring in the genetic analysis The analysis results of SERK_HRM_34072, SERK_HRM_34760 and SERK_HRM_34787 found that the correlation between female and SNP-HRM detection of the two sexes reached 100%, and 40 blind sample groups tested the ratio of females to other sexes in the three groups, and the chi-square test met 1:2. The theoretical values are shown in the results of Table 5. PCR-RFLP analysis of the 119737 nucleic acid, using the SERK_RFLP_Spe I primer group for PCR of different genders, the product has no difference between the sexes, and after Spe I enzyme treatment, the SNP can distinguish between the sexes and other genders, as shown in Figure 5B The results are shown.

上述實施例中,每組數據之樣本數至少為3個(n≧3)。 In the above embodiment, the number of samples per set of data is at least three (n ≧ 3).

請參閱圖6,繪示根據本發明一實施例之番木瓜性別及性別相關性狀基因之分子標記的三性型基因連鎖圖及其表現模式,其中F代表雌性,M代表雄性,H代表兩性。舉例而言,當上述第二性別分型資料包含SEQ ID NO:1~16、22、27、32、37、42、47、59~60以及與SEQ ID NO:1~16、22、27、32、37、42、47、59~60互補之序列之至少一者但不含SEQ ID NO:51~58時,判斷木瓜樣本之花器型態及/或果實形狀為穩定的雌性型。當上述第二性別分型資料包含SEQ ID NO:1~17、19、23~24、28~29、33~34、38~39、43~44、48、51~52、61~62以及與SEQ ID NO:1~17、19、23~24、28~29、33~34、38~39、43~44、48、51~52、61~62互補之序列之至少一者時,判斷木瓜樣本之花器型態及/或果實形狀為穩定的雄性型。當上述第二性別分型資料包含SEQ ID NO:1~16、18、 20~21、25~26、30~31、35~36、40~41、45~46、49~50、53~58、63~64以及與SEQ ID NO:1~16、18、20~21、25~26、30~31、35~36、40~41、45~46、49~50、53~58、63~64互補之序列之至少一者時,判斷木瓜樣本之花器型態及/或果實形狀為不穩定的兩性型。 Please refer to FIG. 6 , which illustrates a linkage map of a triple-type gene of a molecular marker of a papaya sex and sex-related trait gene according to an embodiment of the present invention, and a representation pattern thereof, wherein F represents a female, M represents a male, and H represents a sex. For example, when the second sex typing data includes SEQ ID NOS: 1 to 16, 22, 27, 32, 37, 42, 47, 59 to 60, and SEQ ID NOS: 1 to 16, 22, 27, When at least one of the complementary sequences of 32, 37, 42, 47, 59-60, but not SEQ ID NO: 51-58, the flower type and/or fruit shape of the papaya sample is determined to be a stable female type. When the second gender classification data includes SEQ ID NOs: 1-17, 19, 23-24, 28-29, 33-34, 38-39, 43-44, 48, 51-52, 61-62, and When at least one of the complementary sequences of SEQ ID NO: 1 to 17, 19, 23 to 24, 28 to 29, 33 to 34, 38 to 39, 43 to 44, 48, 51 to 52, and 61 to 62, the papaya is judged. The floral pattern and/or fruit shape of the sample is a stable male type. When the second sex classification data includes SEQ ID NOs: 1-16, 18, 20~21, 25~26, 30~31, 35~36, 40~41, 45~46, 49~50, 53~58, 63~64 and SEQ ID NO: 1~16, 18, 20~21 When at least one of 25~26, 30~31, 35~36, 40~41, 45~46, 49~50, 53~58, 63~64 complementary sequences is determined, the flower type of the papaya sample is judged and/or Or the shape of the fruit is unstable and bisexual.

綜言之,由上述數個實施例證實,本發明之用於早期鑑別木瓜性別及性別相關性狀之分子標記,確實可在木瓜樣本之花器發育早期,鑑別其性別及性別相關性狀,且經實驗證實,由此所得之鑑別結果確實能於早期同時且準確鑑別木瓜性別及性別相關性狀。 In summary, the above several examples demonstrate that the molecular markers of the present invention for early identification of sex and gender-related traits of papaya can indeed identify gender and gender-related traits in the early stage of flower development of papaya samples, and experimentally It was confirmed that the identification result thus obtained can accurately and accurately identify the sex and gender-related traits of papaya in the early stage.

申言之,上述數個實施例證實,在基因組方面,CpSVP-LIKE在番木瓜具有X、Ym與Yh基因組上有著可以區分三性型之差異,且CpSVP-LIKE與CpSERK基因則是在X基因組緊密連鎖著相同雌性型之基因型變化。在轉錄體方面,該基因座上CpSVP-LIKE在兩性花器上的表現序列型可達三種,而雄性的表現序列只有一種,不僅可解釋該基因座在三性型X、Ym與Yh基因組的差異可能造成CpSVP-LIKE在不同性別表現上的差異,特別是兩性株CpSVP-LIKE表現序列之多型性與番木瓜兩性花器畸型變化的現象可能具有關聯性(如圖6之所示)。 In conclusion, the above several examples show that, in terms of genome, CpSVP-LIKE has a difference in the X, Y m and Y h genomes in papaya, and the CpSVP-LIKE and CpSERK genes are in The X genome is closely linked to genotypic changes in the same female type. In terms of transcripts, there are three types of CpSVP-LIKE on the bisexual flower at the locus, and only one of the males has a sequence of expression, which can explain not only the locus X, Y m and Y h genomes. The difference may cause CpSVP-LIKE to differ in gender performance. In particular, the polymorphism of the CpSVP-LIKE sequence of the amphipathic strain may be related to the phenomenon of papaya variability (as shown in Figure 6).

其次,上述數個實施例亦證實,利用HRM分析盲樣基因體資料,SNP#34072、SNP#34760及SNP#34787可達到100%雌性相關;而利用PCR-RFLP分析盲樣CpSVP-LIKE基因之SNP#88及CpSERK基因之 SNP#34072均可區別三性及雌性別。另外,利用HRM分析盲樣轉錄體資料,CpSVP-LIKE基因在雌株無法表現,於雄性則是單一表現序列,而兩性基因表現具有選擇性RNA剪接(alternative RNA splicing)之三種表現序列;CpSERK基因表現序列在不同性別間之轉錄體序列亦具有差異性。由上述結果可判斷木瓜花器的性別與性別相關性狀是否受影響而有退化、畸形的可能,藉此根據進行早期偵測的結果及早因應。 Secondly, the above several examples also confirmed that using HRM to analyze blind-type genetic data, SNP#34072, SNP#34760 and SNP#34787 can achieve 100% female correlation; and PCR-RFLP analysis of blind-like CpSVP-LIKE gene SNP#88 and CpSERK genes SNP #34072 can distinguish between three sexes and female sex. In addition, using HRM to analyze blind transcript data, CpSVP-LIKE gene can not be expressed in female plants, males are single expression sequences, and amphipathic genes exhibit three sequences of alternative RNA splicing; CpSERK gene The transcript sequences of the expression sequences between different genders also differ. From the above results, it can be judged whether the gender and gender-related traits of the papaya flower are affected and there is the possibility of degeneration and deformity, thereby early response according to the results of early detection.

再者,上述數個實施例更證實,本發明之上述分子標記可多方應用,例如用於早期鑑別木瓜性別及性別相關性狀的系統、包含上述之分子標記重組載體以及含此重組載體的轉形植物細胞等。 Furthermore, the above several examples further demonstrate that the above molecular markers of the present invention can be used in various applications, such as a system for early identification of sex and sex-related traits of papaya, a molecular marker-containing recombinant vector comprising the same, and a transformation comprising the recombinant vector. Plant cells, etc.

需補充的是,本發明雖以特定的品種、特定的分子標記、特定的性別相關性狀基因或特定的評估方式作為例示,說明本發明之用於早期鑑別木瓜性別及性別相關性狀之分子標記及其應用,惟本發明所屬技術領域中任何具有通常知識者可知,本發明並不限於此,在不脫離本發明之精神和範圍內,本發明之用於早期鑑別木瓜性別及性別相關性狀之分子標記及其應用,亦可使用其他的品種、其他的分子標記、其他的性別相關性狀基因或其他的評估方式進行。 It should be noted that the present invention exemplifies a molecular marker of the early identification of sex and sex-related traits of papaya by using a specific variety, a specific molecular marker, a specific sex-related trait gene or a specific evaluation method as an example. It is to be understood that the invention is not limited thereto, and the present invention is intended to identify molecules of sex and sex-related traits of papaya in the early stage without departing from the spirit and scope of the present invention. Markers and their applications can also be carried out using other varieties, other molecular markers, other gender-related trait genes or other assessment methods.

由上述實施例可知,本發明之用於早期鑑別木瓜性別及性別相關性狀之分子標記及其應用,其利用特定的分子標記與性別相關性狀基因之任一者建立相關性模式,可於木瓜花器早期發育時,鑑別此木瓜樣本之性別以及性別相 關性狀,藉此有效、快速且準確獲得木瓜兩性株,並有助於減少不結實花及畸形花果的產生。 It can be seen from the above examples that the molecular marker of the present invention for early identification of sex and gender-related traits of papaya and its application utilize a specific molecular marker to establish a correlation pattern with any of the sex-related trait genes, which can be used in papaya flowers. Identification of the sex and gender of this papaya sample during early development The traits are used to obtain the papaya strains effectively, quickly and accurately, and help to reduce the production of unconsolidated flowers and deformed flowers and fruits.

雖然本發明已以數個實施例揭露如上,然其並非用以限定本發明,在本發明所屬技術領域中任何具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 While the invention has been described above in terms of several embodiments, it is not intended to limit the scope of the invention, and the invention may be practiced in various embodiments without departing from the spirit and scope of the invention. The scope of protection of the present invention is defined by the scope of the appended claims.

<110> 國立屏東科技大學 <110> National Pingtung University of Science and Technology

<120> 用於早期鑑別木瓜性別及性別相關性狀之分子標記及其應用 <120> Molecular markers for early identification of sex and gender-related traits in papaya and their applications

<130> 無 <130> None

<160> 65 <160> 65

<210> 1 <210> 1

<211> 27 <211> 27

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> SVP_HRM_88之正向引子 <223> Forward SVP_HRM_88

<400> 1 <400> 1

<210> 2 <210> 2

<211> 23 <211> 23

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> SVP_HRM_88之反向引子 <223> SVP_HRM_88 reverse primer

<400> 2 <400> 2

<210> 3 <210> 3

<211> 27 <211> 27

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> SVP_RFLP_Nde I之正向引子 <223> SVP_RFLP_Nde I forward of I

<400> 3 <400> 3

<210> 4 <210> 4

<211> 27 <211> 27

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> SVP_RFLP_Nde I之反向引子 <223> SVP_RFLP_Nde I reverse primer

<400> 4 <400> 4

<210> 5 <210> 5

<211> 19 <211> 19

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> SERK_HRM_30704之正向引子 <223> Forward introduction of SERK_HRM_30704

<400> 5 <400> 5

<210> 6 <210> 6

<211> 19 <211> 19

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> SERK_HRM_30704之反向引子 <223> Reverse Inversion of SERK_HRM_30704

<400> 6 <400> 6

<210> 7 <210> 7

<211> 18 <211> 18

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> SERK_HRM_34072之正向引子(偵測第119290個鹼基對) <223> Forward introduction of SERK_HRM_34072 (detection of 119290 base pairs)

<400> 7 <400> 7

<210> 8 <210> 8

<211> 19 <211> 19

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> SERK_HRM_34072之反向引子(偵測第119290個鹼基對) <223> Reverse primer for SERK_HRM_34072 (detects 119290 base pairs)

<400> 8 <400> 8

<210> 9 <210> 9

<211> 18 <211> 18

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> SERK_HRM_34072之正向引子(偵測第119295個鹼基對) <223> Forward introduction of SERK_HRM_34072 (detection of 119295 base pairs)

<400> 9 <400> 9

<210> 10 <210> 10

<211> 19 <211> 19

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> SERK_HRM_34072之反向引子(偵測第119295個鹼基對) <223> Reverse primer for SERK_HRM_34072 (detection of 119295 base pairs)

<400> 10 <400> 10

<210> 11 <210> 11

<211> 20 <211> 20

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> SERK_HRM_34760之正向引子 <223> Positive thrust of SERK_HRM_34760

<400> 11 <400> 11

<210> 12 <210> 12

<211> 20 <211> 20

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> SERK_HRM_34760之反向引子 <223> Reverse inversion of SERK_HRM_34760

<400> 12 <400> 12

<210> 13 <210> 13

<211> 20 <211> 20

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> SERK_HRM_34787之正向引子 <223> Forward introduction of SERK_HRM_34787

<400> 13 <400> 13

<210> 14 <210> 14

<211> 20 <211> 20

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> SERK_HRM_34787之反向引子 <223> Reverse introduction of SERK_HRM_34787

<400> 14 <400> 14

<210> 15 <210> 15

<211> 26 <211> 26

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> SERK_RFLP_Spe I之正向引子 <223> SERK_RFLP_Spe I forward primer

<400> 15 <400> 15

<210> 16 <210> 16

<211> 21 <211> 21

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> SERK_RFLP_Spe I之反向引子 <223> SERK_RFLP_Spe I reverse primer

<400> 16 <400> 16

<210> 17 <210> 17

<211> 231 <211> 231

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SVP_HRM_88引子對(SNP# 88)的雄性株PCR產物 <223> SVP_HRM_88 primer pair (SNP# 88) male strain PCR product

<400> 17 <400> 17

<210> 18 <210> 18

<211> 4416 <211> 4416

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SVP_HRM_88引子對(SNP# 88)的兩性株PCR產物 <223> SVP_HRM_88 primer pair (SNP# 88) amphiphilic PCR product

<400> 18 <400> 18

<210> 19 <210> 19

<211> 88 <211> 88

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SVP_RFLP_Nde I引子對(SNP# 88)的雄性株PCR產物 <223> SVP_RFLP_Nde I primer pair (SNP# 88) male strain PCR product

<400> 19 <400> 19

<210> 20 <210> 20

<211> 88 <211> 88

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SVP_RFLP_Nde I引子對(SNP# 88)的兩性株PCR產物 <223> SVP_RFLP_Nde I primer pair (SNP# 88) amphipathic PCR product

<400> 20 <400> 20

<210> 21 <210> 21

<211> 88 <211> 88

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SVP_RFLP_Nde I引子對(SNP# 88)的兩性株PCR產物 <223> SVP_RFLP_Nde I primer pair (SNP# 88) amphipathic PCR product

<400> 21 <400> 21

<210> 22 <210> 22

<211> 88 <211> 88

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SERK_HRM_30704引子對(SNP# 30704)的雌性株PCR產物 <223> SERK_HRM_30704 primer pair (SNP# 30704) female strain PCR product

<400> 22 <400> 22

<210> 23 <210> 23

<211> 4416 <211> 4416

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SERK_HRM_30704引子對(SNP# 30704)的雄性株PCR產物 <223> SERK_HRM_30704 primer pair (SNP# 30704) male strain PCR product

<400> 23 <400> 23

<210> 24 <210> 24

<211> 4416 <211> 4416

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SERK_HRM_30704引子對(SNP# 30704)的雄性株PCR產物 <223> SERK_HRM_30704 primer pair (SNP# 30704) male strain PCR product

<400> 24 <400> 24

<210> 25 <210> 25

<211> 88 <211> 88

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SERK_HRM_30704引子對(SNP# 30704)的兩性株PCR產物 <223> SERK_HRM_30704 primer pair (SNP# 30704) amphiphilic PCR product

<400> 25 <400> 25

<210> 26 <210> 26

<211> 88 <211> 88

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SERK_HRM_30704引子對(SNP# 30704)的兩性株PCR產物 <223> SERK_HRM_30704 primer pair (SNP# 30704) amphiphilic PCR product

<400> 26 <400> 26

<210> 27 <210> 27

<211> 92 <211> 92

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SERK_HRM_34072引子對(SNP# 34072a)的雌性株PCR產物 <223> SERK_HRM_34072 primer pair (SNP# 34072a) female strain PCR product

<400> 27 <400> 27

<210> 28 <210> 28

<211> 92 <211> 92

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SERK_HRM_34072引子對(SNP# 34072a)的雄性株PCR產物 <223> SERK_HRM_34072 primer pair (SNP# 34072a) male strain PCR product

<400> 28 <400> 28

<210> 29 <210> 29

<211> 92 <211> 92

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SERK_HRM_34072引子對(SNP# 34072a)的雄性株PCR產物 <223> SERK_HRM_34072 primer pair (SNP# 34072a) male strain PCR product

<400> 29 <400> 29

<210> 30 <210> 30

<211> 92 <211> 92

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SERK_HRM_34072引子對(SNP# 34072a)的兩性株PCR產物 <223> SERK_HRM_34072 primer pair (SNP# 34072a) amphiphilic PCR product

<400> 30 <400> 30

<210> 31 <210> 31

<211> 92 <211> 92

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SERK_HRM_34072引子對(SNP# 34072a)的兩性株PCR產物 <223> SERK_HRM_34072 primer pair (SNP# 34072a) amphiphilic PCR product

<400> 31 <400> 31

<210> 32 <210> 32

<211> 90 <211> 90

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SERK_HRM_34072引子對(SNP# 34072b)的雌性株PCR產物 <223> SERK_HRM_34072 primer pair (SNP# 34072b) female strain PCR product

<400> 32 <400> 32

<210> 33 <210> 33

<211> 92 <211> 92

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SERK_HRM_34072引子對(SNP# 34072b)的雄性株PCR產物 <223> SERK_HRM_34072 primer pair (SNP# 34072b) male strain PCR product

<400> 33 <400> 33

<210> 34 <210> 34

<211> 92 <211> 92

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SERK_HRM_34072引子對(SNP# 34072b)的雄性株PCR產物 <223> SERK_HRM_34072 primer pair (SNP# 34072b) male strain PCR product

<400> 34 <400> 34

<210> 35 <210> 35

<211> 90 <211> 90

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SERK_HRM_34072引子對(SNP# 34072b)的兩性株PCR產物 <223> SERK_HRM_34072 primer pair (SNP# 34072b) amphipathic PCR product

<400> 35 <400> 35

<210> 36 <210> 36

<211> 90 <211> 90

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SERK_HRM_34072引子對(SNP# 34072b)的兩性株PCR產物 <223> SERK_HRM_34072 primer pair (SNP# 34072b) amphipathic PCR product

<400> 36 <400> 36

<210> 37 <210> 37

<211> 65 <211> 65

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SERK_HRM_34760引子對(SNP# 34760)的雌性株PCR產物 <223> SERK_HRM_34760 primer pair (SNP# 34760) female strain PCR product

<400> 37 <400> 37

<210> 38 <210> 38

<211> 65 <211> 65

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SERK_HRM_34760引子對(SNP# 34760)的雄性株PCR產物 <223> SERK_HRM_34760 primer pair (SNP# 34760) male strain PCR product

<400> 38 <400> 38

<210> 39 <210> 39

<211> 65 <211> 65

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SERK_HRM_34760引子對(SNP# 34760)的雄性株PCR產物 <223> SERK_HRM_34760 primer pair (SNP# 34760) male strain PCR product

<400> 39 <400> 39

<210> 40 <210> 40

<211> 65 <211> 65

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SERK_HRM_34760引子對(SNP# 34760)的兩性株PCR產物 <223> SERK_HRM_34760 primer pair (SNP# 34760) amphiphilic PCR product

<400> 40 <400> 40

<210> 41 <210> 41

<211> 65 <211> 65

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SERK_HRM_34760引子對(SNP# 34760)的兩性株PCR產物 <223> SERK_HRM_34760 primer pair (SNP# 34760) amphiphilic PCR product

<400> 41 <400> 41

<210> 42 <210> 42

<211> 85 <211> 85

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SERK_HRM_34787引子對(SNP# 34787)的雌性株PCR產物 <223> SERK_HRM_34787 Inducible pair (SNP# 34787) female strain PCR product

<400> 42 <400> 42

<210> 43 <210> 43

<211> 85 <211> 85

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SERK_HRM_34787引子對(SNP# 34787)的雄性株PCR產物 <223> SERK_HRM_34787 Primer pair (SNP# 34787) male strain PCR product

<400> 43 <400> 43

<210> 44 <210> 44

<211> 85 <211> 85

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SERK_HRM_34787引子對(SNP# 34787)的雄性株PCR產物 <223> SERK_HRM_34787 Primer pair (SNP# 34787) male strain PCR product

<400> 44 <400> 44

<210> 45 <210> 45

<211> 4416 <211> 4416

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SERK_HRM_34787引子對(SNP# 34787)的兩性株PCR產物 <223> SERK_HRM_34787 primer pair (SNP# 34787) amphiphilic PCR product

<400> 45 <400> 45

<210> 46 <210> 46

<211> 4416 <211> 4416

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SERK_HRM_34787引子對(SNP# 34787)的兩性株PCR產物 <223> SERK_HRM_34787 primer pair (SNP# 34787) amphiphilic PCR product

<400> 46 <400> 46

<210> 47 <210> 47

<211> 238 <211> 238

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SERK_RFLP_Spe I引子對(SNP# 34072a)的雌性株PCR產物 <223> SERK_RFLP_Spe I primer pair (SNP# 34072a) female strain PCR product

<400> 47 <400> 47

<210> 48 <210> 48

<211> 238 <211> 238

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SERK_RFLP_Spe I引子對(SNP# 34072a)的雄性株PCR產物 <223> SERK_RFLP_Spe I primer pair (SNP# 34072a) male strain PCR product

<400> 48 <400> 48

<210> 49 <210> 49

<211> 248 <211> 248

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SERK_RFLP_Spe I引子對(SNP# 34072a)的兩性株PCR產物 <223> SERK_RFLP_Spe I primer pair (SNP# 34072a) amphiphilic PCR product

<400> 49 <400> 49

<210> 50 <210> 50

<211> 248 <211> 248

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SERK_RFLP_Spe I引子對(SNP# 34072a)的兩性株PCR產物 <223> SERK_RFLP_Spe I primer pair (SNP# 34072a) amphiphilic PCR product

<400> 50 <400> 50

<210> 51 <210> 51

<211> 4416 <211> 4416

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SVP_HRM_88引子對對應的雄性株CpSVP-LIKE基因的轉錄體cDNA序列 <223> SVP_HRM_88 transcript cDNA sequence of the corresponding male strain CpSVP-LIKE gene

<400> 51 <400> 51

<210> 52 <210> 52

<211> 166 <211> 166

<212> PRT <212> PRT

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SVP_HRM_88引子對對應的雄性株CpSVP-LIKE基因的轉錄體胺基酸序列 <223> SVP_HRM_88 transcript amino acid sequence of the corresponding male strain CpSVP-LIKE gene

<400> 52 <400> 52

<210> 53 <210> 53

<211> 840 <211> 840

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SVP_HRM_88引子對對應的兩性株H1 CpSVP-LIKE基因的轉錄體cDNA序列 <223> SVP_HRM_88 transcript cDNA sequence of the corresponding amphoteric strain H1 CpSVP-LIKE gene

<400> 53 <400> 53

<210> 54 <210> 54

<211> 202 <211> 202

<212> PRT <212> PRT

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SVP_HRM_88引子對對應的兩性株H1 CpSVP-LIKE基因的轉錄體胺基酸序列 <223> SVP_HRM_88 transcript amino acid sequence of the corresponding amphoteric strain H1 CpSVP-LIKE gene

<400> 54 <400> 54

<210> 55 <210> 55

<211> 5093 <211> 5093

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SVP_HRM_88引子對對應的兩性株H2 CpSVP-LIKE基因的轉錄體cDNA序列 <223> SVP_HRM_88 transcript cDNA sequence of the corresponding amphoteric strain H2 CpSVP-LIKE gene

<400> 55 <400> 55

<210> 56 <210> 56

<211> 166 <211> 166

<212> PRT <212> PRT

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SVP_HRM_88引子對對應的兩性株H2 CpSVP-LIKE基因的轉錄體胺基酸序列 <223> SVP_HRM_88 transcript amino acid sequence of the corresponding amphoteric strain H2 CpSVP-LIKE gene

<400> 56 <400> 56

<210> 57 <210> 57

<211> 843 <211> 843

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SVP_HRM_88引子對對應的兩性株H3 CpSVP-LIKE基因的轉錄體cDNA序列 <223> SVP_HRM_88 transcript cDNA sequence of the corresponding amphoteric strain H3 CpSVP-LIKE gene

<400> 57 <400> 57

<210> 58 <210> 58

<211> 98 <211> 98

<212> PRT <212> PRT

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SVP_HRM_88引子對對應的兩性株H3 CpSVP-LIKE基因的轉錄體胺基酸序列 <223> SVP_HRM_88 transcript amino acid sequence of the corresponding amphoteric strain H3 CpSVP-LIKE gene

<400> 58 <400> 58

<210> 59 <210> 59

<211> 2183 <211> 2183

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SERK_HRM_30702引子對對應的雌性株CpSERK基因的轉錄體cDNA序列 <223> SERK_HRM_30702 transcript cDNA sequence of the corresponding female strain CpSERK gene

<400> 59 <400> 59

<210> 60 <210> 60

<211> 593 <211> 593

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SERK_HRM_30702引子對對應的雌性株CpSERK基因的轉錄體胺基酸序列 <223> SERK_HRM_30702 Introduction to the transcript amino acid sequence of the corresponding female strain CpSERK gene

<400> 60 <400> 60

<210> 61 <210> 61

<211> 1952 <211> 1952

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SERK_HRM_30702引子對對應的雄性株CpSERK基因的轉錄體cDNA序列 <223> SERK_HRM_30702 transcript cDNA sequence of the corresponding male strain CpSERK gene

<400> 61 <400> 61

<210> 62 <210> 62

<211> 523 <211> 523

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SERK_HRM_30702引子對對應的雄性株CpSERK基因的轉錄體胺基酸序列 <223> SERK_HRM_30702 The transcript amino acid sequence of the corresponding male strain CpSERK gene

<400> 62 <400> 62

<210> 63 <210> 63

<211> 2392 <211> 2392

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SERK_HRM_30702引子對對應的兩性株CpSERK基因的轉錄體cDNA序列 <223> SERK_HRM_30702 transcript cDNA sequence of the corresponding amphoteric strain CpSERK gene

<400> 63 <400> 63

<210> 64 <210> 64

<211> 627 <211> 627

<212> DNA <212> DNA

<213> 番木瓜(Carica papaya L.) <213> Papaya ( Carica papaya L.)

<220> <220>

<223> SERK_HRM_30702引子對對應的兩性株CpSERK基因的轉錄體胺基酸序列 <223> SERK_HRM_30702 The transcript amino acid sequence of the corresponding amphoteric strain CpSERK gene

<400> 64 <400> 64

<210> 65 <210> 65

<211> 266 <211> 266

<212> PRT <212> PRT

<213> 番木瓜(Carica papaya) <213> Papaya ( Carica papaya )

<220> <220>

<223> MADS-box蛋白 <223> MADS-box protein

<400> 65 <400> 65

100‧‧‧方法 100‧‧‧ method

120/130/140/150/160/170/180/190‧‧‧步驟 120/130/140/150/160/170/180/190‧‧‧ steps

Claims (10)

一種用於早期鑑別木瓜性別及性別相關性狀之分子標記,包含至少一序列選自於由SEQ ID NO:1~4及17~21之序列所組成之一群組。 A molecular marker for early identification of papaya sex and sex-related traits, comprising at least one sequence selected from the group consisting of SEQ ID NOS: 1-4 and 17-21. 一種早期鑑別木瓜性別及性別相關性狀之系統,其包含如申請專利範圍第1項所述之用於早期鑑別木瓜性別及性別相關性狀之分子標記。 A system for early identification of sex and gender-related traits of papaya, comprising a molecular marker for early identification of sex and gender-related traits of papaya as described in claim 1 of the scope of the patent application. 一種早期鑑別木瓜性別及性別相關性狀的方法,包含:建立一相關性模式,包含:由複數個木瓜之複數個花器獲得複數個核酸樣本,其中該些花器之一平均長度不超過0.2cm,且該些核酸樣本包含複數個基因體序列以及複數個轉錄體序列;由該些核酸樣本獲得複數個分子標記,其中該些分子標記包括至少一序列選自於由SEQ ID NO:1~4及17~21之序列所組成之一群組;以及定義該些性別相關基因之任一者與該些分子標記之至少一者的一對應關係,以建立該相關性模式;以及利用該相關性模式鑑別一木瓜樣本之一性別以及複數個性別相關基因,包含:由該木瓜樣本之一待測花器獲得一待測核酸樣本,其中該些待測花器之一平均長度不超過0.2cm,且該待測核酸樣本包含一待測基因體序列以及一待測轉錄體序列; 由該待測核酸樣本獲得複數個性別分型資料,其中該些性別分型資料包括複數個待測單核苷酸多型性位點、該些待測單核苷酸多型性位點對應的該待測基因體序列以及該基因體序列對應之該待測轉錄體序列;將該些性別分型資料輸入該相關性模式,以比對該些性別分型資料是否與該些分子標記之至少一者相符,並獲得該分子標記之該至少一者之該對應關係之一相關正確率,且當該些性別分型資料之該至少一者與該些分子標記之該至少一者相符且該相關正確率為100%時,判斷該木瓜樣本具有該對應關係之該些性別的一者以及該些性別相關基因之至少一者。 An early method for identifying sex and gender-related traits of papaya comprises: establishing a correlation pattern comprising: obtaining a plurality of nucleic acid samples from a plurality of flower organs of a plurality of papayas, wherein an average length of one of the flowers is not more than 0.2 cm, and The nucleic acid samples comprise a plurality of gene body sequences and a plurality of transcript sequences; and the plurality of molecular markers are obtained from the nucleic acid samples, wherein the molecular markers comprise at least one sequence selected from the group consisting of SEQ ID NOs: 1 to 4 and 17 a group of ~21 sequences; and defining a correspondence between any one of the gender-related genes and at least one of the molecular markers to establish the correlation pattern; and using the correlation pattern to identify a sex of a papaya sample and a plurality of sex-related genes, comprising: obtaining a nucleic acid sample to be tested from one of the papaya samples, wherein an average length of one of the flowers to be measured does not exceed 0.2 cm, and the test is to be tested The nucleic acid sample comprises a sequence of the gene to be tested and a sequence of the transcript to be tested; Obtaining a plurality of sex genotyping data from the nucleic acid sample to be tested, wherein the sex genotyping data comprises a plurality of polymorphic sites of the single nucleotide to be tested, and the polymorphic sites of the single nucleotides to be tested correspond to The sequence of the gene to be tested and the sequence of the transcript to be tested corresponding to the sequence of the gene; and inputting the sex typing data into the correlation pattern to compare whether the sex typing data is related to the molecular markers At least one of the matches, and obtaining one of the correspondences of the at least one of the molecular markers is associated with a correct rate, and when the at least one of the sex-typing data matches the at least one of the molecular markers and When the correlation correct rate is 100%, it is determined that the papaya sample has one of the genders of the correspondence relationship and at least one of the sex-related genes. 根據申請專利範圍第3項所述之早期鑑別木瓜性別及性別相關性狀的方法,其中該些木瓜以及該木瓜樣本包含番木瓜(Carica papaya L.)之佛羅里達種、日昇種、吉隆坡種、日昇13號種、日昇23號種、日昇與台農7號雜交種。 A method for early identification of sex and gender-related traits of papaya according to the third aspect of the patent application, wherein the papaya and the papaya sample comprise papaya ( Carica papaya L.) of Florida species, Japanese ascending species, Kuala Lumpur species, and Japanese Rising No. 13 species, Risheng No. 23 species, Risheng and Tai Nong No. 7 hybrids. 根據申請專利範圍第3項所述之早期鑑別木瓜性別及性別相關性狀的方法,其中當該些第二性別分型資料包含SEQ ID NO:1~4、18、20~21、53~58之序列之至少一者時,判斷該木瓜樣本之該性別為兩性。 The method for early identification of sex and gender-related traits of papaya according to item 3 of the patent application scope, wherein the second sex classification data comprises SEQ ID NOS: 1 to 4, 18, 20 to 21, 53 to 58 In at least one of the sequences, the gender of the papaya sample is determined to be amphoteric. 根據申請專利範圍第3項所述之早期鑑別木瓜性別及性別相關性狀的方法,其中當該些第二性別分型資料包含SEQ ID NO:1~4、17、19、51~52之序列之至少一者時,判斷該木瓜樣本之該性別為雄性。 A method for early identification of sex and sex-related traits of papaya according to item 3 of the scope of the patent application, wherein the second sex-sex data comprises sequences of SEQ ID NOS: 1-4, 17, 19, 51-52 In at least one, the sex of the papaya sample is judged to be male. 根據申請專利範圍第3項所述之早期鑑別木瓜性別及性別相關性狀的方法,其中當該些第二性別分型資料包含SEQ ID NO:1~4之序列之至少一者時,判斷該木瓜樣本之該性別為雌性。 The method for early identification of sex and gender-related traits of papaya according to item 3 of the patent application scope, wherein the papaya is judged when the second sex type data includes at least one of the sequences of SEQ ID NOS: 1-4 The gender of the sample is female. 根據申請專利範圍第3項所述之早期鑑別木瓜性別及性別相關性狀的方法,其中該些性別相關性狀基因與複數個性別相關性狀相關,且該些性別相關性狀包含複數個花器型態及/或複數個果實形狀。 According to the method for identifying early sex and gender-related traits of papaya according to item 3 of the patent application scope, wherein the gender-related trait genes are related to a plurality of gender-related traits, and the gender-related traits comprise a plurality of flower patterns and/or Or a plurality of fruit shapes. 一種重組載體,其包含如申請專利範圍第1項所述之用於早期鑑別木瓜性別及性別相關性狀之分子標記。 A recombinant vector comprising the molecular marker for early identification of papaya sex and sex-related traits as described in claim 1 of the scope of the patent application. 一種轉形植物細胞,包含如申請專利範圍第9項所述之重組載體。 A transgenic plant cell comprising the recombinant vector of claim 9 of the patent application.
TW105142722A 2016-12-22 2016-12-22 Molecular marker and application for early determining sexes and sex-related traits of papaya TWI600768B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105142722A TWI600768B (en) 2016-12-22 2016-12-22 Molecular marker and application for early determining sexes and sex-related traits of papaya

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105142722A TWI600768B (en) 2016-12-22 2016-12-22 Molecular marker and application for early determining sexes and sex-related traits of papaya

Publications (2)

Publication Number Publication Date
TWI600768B true TWI600768B (en) 2017-10-01
TW201823470A TW201823470A (en) 2018-07-01

Family

ID=61011097

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105142722A TWI600768B (en) 2016-12-22 2016-12-22 Molecular marker and application for early determining sexes and sex-related traits of papaya

Country Status (1)

Country Link
TW (1) TWI600768B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI721708B (en) * 2019-12-12 2021-03-11 國立屏東科技大學 A molecular marker related to papaya fruiting

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Hiroki Ueno, Structural and functional analysis of sex chromosomes in papaya (Carica papaya), Doctoral Dissertation (Shinshu University),March 2015 *
Kafkas et al. BMC Genomics (2015) 16:98. *
Priyanka Vashistha et al, Molecular Plant Breeding , Vol.7, No.28, 1-18, Published: 12 Aug., 2016 Naoya Urasaki et al, Vol. 7,Issue 7 , e40904 July 2012. *
林慶光等人,SERK基因家族的研究進展, HEREDITAS (Beijing) 2007 年6 月, 29(6): 681-687 *

Also Published As

Publication number Publication date
TW201823470A (en) 2018-07-01

Similar Documents

Publication Publication Date Title
Chapman et al. A genomic scan for selection reveals candidates for genes involved in the evolution of cultivated sunflower (Helianthus annuus)
Schönhals et al. Identification and reproducibility of diagnostic DNA markers for tuber starch and yield optimization in a novel association mapping population of potato (Solanum tuberosum L.)
TWI721708B (en) A molecular marker related to papaya fruiting
Pootakham et al. Large-scale SNP discovery through RNA sequencing and SNP genotyping by targeted enrichment sequencing in cassava (Manihot esculenta Crantz)
US20220298549A1 (en) Method for identifying whether a diploid potato is self-compatible
CN108366539B (en) Genetic loci associated with phytophthora root rot in soybean
CN107488659B (en) Sequence related to red and yellow color characters of citrus peels and application thereof
TWI635182B (en) Molecular marker and application for early determining sexes and sex-related traits of papaya
Kim et al. Identification of SNPs in closely related Temperate Japonica rice cultivars using restriction enzyme-phased sequencing
CN110904266B (en) Identification of maize stalk lodging resistance QTL and development and application of molecular marker
González et al. Genetic structure based on EST–SSR: a putative tool for fruit color selection in Japanese plum (Prunus salicina L.) breeding programs
Zhang et al. Fine mapping of the male fertility restoration gene CaRf032 in Capsicum annuum L.
US20110107453A1 (en) Genetic loci associated with resistance to tropical rust in maize
BR112017026015B1 (en) METHODS FOR SELECTING A CORN PLANT WITH RESISTANCE TO STALK ROT CAUSED BY ANTHRACNOSIS AND METHOD FOR INTROGRESSING A QTL ALLELE ASSOCIATED WITH RESISTANCE TO STALK ROT CAUSED BY ANTHRACNOSIS INTO A CORN PLANT
Rajendran et al. Genotyping by sequencing advancements in barley
CN109280709A (en) One kind molecular labeling relevant to pig growth and reproductive trait and application
CN107815502B (en) dCAPS marker development and application for identifying waterlogging tolerance of chrysanthemum
CN106676180B (en) Molecular marker for regulating and controlling maize tassel branch number major QTL and application thereof
TWI600768B (en) Molecular marker and application for early determining sexes and sex-related traits of papaya
CN108220466A (en) For the molecular labeling and its application of Early Identification pawpaw gender and gender correlated traits
JP2013000066A (en) Method for identifying tree species of interspecific hybrid of eucalyptus
Singh et al. Molecular markers exploited in crop improvement practices
Li et al. Identification of a nuclear-recessive gene locus for male sterility on A2 chromosome using the Brassica 60 K SNP array in non-heading Chinese cabbage
CN112852996B (en) SCAR molecular marker for identifying marigold lingua petal lobe cracking character, detection primer and application thereof
US20130004951A1 (en) Bulked mutant analysis