TWI597365B - 大豆品件pDAB9582.816.15.1檢測方法 - Google Patents

大豆品件pDAB9582.816.15.1檢測方法 Download PDF

Info

Publication number
TWI597365B
TWI597365B TW102122533A TW102122533A TWI597365B TW I597365 B TWI597365 B TW I597365B TW 102122533 A TW102122533 A TW 102122533A TW 102122533 A TW102122533 A TW 102122533A TW I597365 B TWI597365 B TW I597365B
Authority
TW
Taiwan
Prior art keywords
sequence
soybean
dna
primer
identification number
Prior art date
Application number
TW102122533A
Other languages
English (en)
Other versions
TW201404887A (zh
Inventor
勞倫 克拉克
凱莉A 史密斯
王陽
周寧
Original Assignee
陶氏農業科學公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陶氏農業科學公司 filed Critical 陶氏農業科學公司
Publication of TW201404887A publication Critical patent/TW201404887A/zh
Application granted granted Critical
Publication of TWI597365B publication Critical patent/TWI597365B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8274Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance
    • C12N15/8277Phosphinotricin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8286Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for insect resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Description

大豆品件pDAB9582.816.15.1檢測方法
本發明有關大豆品件pDAB9582.816.15.1之檢測方法。
發明背景
編碼Cry1F以及Cry1Ac synpro(Cry1Ac)之基因,能夠給予轉基因植物抗蟲性,如,抗鱗翅目(lepidopteran)昆蟲;而編碼PAT(膦絲菌素(phosphinotrhicin)乙醯轉移酶)之基因,能夠給予轉基因植物除草劑固殺草(phoshpinothricin;glufosinate)之耐受性。PAT已成功地在大豆中表達,用於作為產生抗蟲性轉基因作物之選擇標記,以及在轉基因作物中,給予商業位準的除草劑固殺草耐受性。
也許是由於染色質結構(如,異染色質),或者是轉錄調節元素(如,增強子)靠近整合位點之接近程度,已知,轉基因於植物中之表達,會受到其等在植物基因組中之位置的影響(Weising et al.,Ann.Rev.Genet 22:421-477,1988)。出現在基因組中不同位置的轉基因,會以不同方式影響植物的總表現型。例如,在植物以及其它有機體中已 觀察到,引入的基因之表達位準,在品件中可能具有很大的變化。在表達之空間或時間樣式上,亦可能有差異,例如,轉基因在各種植物組織中相對表達之差異,此可能不會對應於從引入的基因結構中存在之轉錄調節元件預測的樣式。基於此,通常是產生數百至數千個不同的品件,然後從該等不同的品件中,篩選出具有商業用途之所欲的轉基因表達位準以及樣式。如此,為了鑑定出具有最佳表達所引入之感興趣的基因之特徵的品件,常需要篩選大量的品件。具有所欲的轉基因表達位準或樣式之品件,藉由習知育種方法之有性遠緣雜交(sexual outcrossing),可用於將轉基因,基因滲入其它遺傳背景中。此雜交之後代保留原始轉形體之轉基因表達特徵。此策略係用於確保在許多已適應局部生長條件之品種中,可靠的基因表達。
為了測定是否有性雜交之後代含有感興趣之轉基因或轉基因群,需要能夠檢測存在特定品件。此外,用於檢測特定品件之方法,有助於遵守需要上市前批准以及標識從基因重組作物植物衍生而來之食品之法規,或例如,用於環境監控、監控田野中作物之特質或監控從作物收成衍生而來之產品,以及用於確保當事人遵守法規或合約條款之管制。
任何已知之核酸檢測方法,均可用於檢測存在之轉基因品件,包括,但不限於,使用核酸探針之聚合酶鏈反應(PCR)或DNA雜交。此等檢測方法一般著重在常使用之遺傳元素,諸如啟動子、終結子、標記基因等等,因為許 多的DNA建構體中,編碼區域係可互換的。因此,除非鄰接插入的異源DNA之側翼DNA之DNA序列是已知的,否則此等方法可能無法在不同的品件之間作區分,特別是該等使用相同DNA建構體或非常相似的建構體產生者。例如,美國專利申請案第2006/0070139號中所述,用於玉米品件DAS-59122-7之品件專一性PCR分析法。希望可具有簡單且有識別力之方法,來鑑定大豆品件pDAB9582.816.15.1。
發明概要
本揭示內容有關一種用於檢測新的抗蟲性以及除草劑耐受性之轉基因大豆轉形品件,命名為大豆品件pDAB9582.816.15.1,之方法。代表性大豆種子已寄存在美國菌種中心(ATCC),10801 University Boulevard,Manassas,VA,20110。代表Dow AgroSciences LLC,在2012年2月23日進行該寄存,命名為ATCC Deposit No.PTA-12588。此寄存係依照布達佩斯條約有關專利程序之種子寄存條款進行以及維持。
含有此品件之大豆植物之DNA,包括在此所述之接合/側翼序列,其特徵為插入的DNA位置在大豆基因組內。序列辨識編號1以及序列辨識編號2可用於診斷大豆品件pDAB9582.816.15.1。更特別地,在序列辨識編號1之鹼基對1273/1274處以及序列辨識編號2之鹼基對175/176以及鹼基對316/317處之接合點周圍之序列,可用於診斷大豆品件pDAB9582.816.15.1。下列段落[0009]說明包含此等接合 點之序列之例子,其為含有大豆品件pDAB9582.816.15.1之大豆之DNA的特徵。
本主題揭示內容之具體例提供一種檢測包含大豆DNA之樣本中之大豆品件pDAB9582.816.15.1之方法,該方法包含:(a)使該樣本與一長度至少10個鹼基對之第一引子以及一長度至少10個鹼基對之第二引子接觸,該第一引子會選擇性地結合至序列辨識編號1之鹼基對1-1273內之側翼序列或其互補序列,而該第二引子會選擇性地結合至序列辨識編號1之鹼基對1274-1577內之插入序列或其互補序列;以及(b)分析該引子間產生之擴增子;或使該樣本與一長度至少10個鹼基對之第一引子以及一長度至少10個鹼基對之第二引子接觸,該第一引子會選擇性地結合至序列辨識編號2之鹼基對1-175內之插入序列或其互補序列,而該第二引子會選擇性地結合至序列辨識編號2之鹼基對176-1687內之側翼序列或其互補序列;以及(c)分析該引子間產生之擴增子。
在另一具體例中,該揭示內容提供一種檢測大豆品件pDAB9582.816.15.1之方法,其包含:a)使該樣本與一第一引子以及一第二引子接觸,該第一引子會選擇性地結合至擇自於由序列辨識編號1之鹼基對1-1273以及序列辨識編號2之鹼基對176-1687所構成之群組之側翼序列或其互補序列;以及該第二引子會選擇性地 結合至序列辨識編號3或其互補序列;b)使該樣本經歷聚合酶鏈反應之處理;以及c)分析該引子間產生之擴增子。
在本主題揭示內容之另一具體例中,提供一種分離的DNA分子,其可用於診斷大豆品件pDAB9582.816.15.1。除了序列辨識編號1以及2之外,此分子亦包括一包含序列辨識編號1之鹼基對1273-1274以及從序列辨識編號1中該鹼基對1273/1274接合點各方向上至少10個鹼基對,長度至少25個鹼基對之分子;一包含序列辨識編號2之鹼基175-176以及從序列辨識編號2中該鹼基175/176接合點各方向上至少10個鹼基對,長度至少25個鹼基對之擴增子。例子是序列辨識編號1之鹼基對1258-1288;序列辨識編號1之鹼基對1223-1323;序列辨識編號1之鹼基對1173-1373;序列辨識編號1之鹼基對1073-1473;序列辨識編號2之鹼基對160-190;序列辨識編號2之鹼基對125-225;以及序列辨識編號2之鹼基對75-275,以及其互補序列。
額外地,本主題揭示內容提供一種用於檢測存在於(例如,大豆)樣本中之主題品件之分析法。該分析法係以插入大豆基因組之重組建構體的DNA序列以及在該插入位點之側異之基因組序列為基礎。亦提供可用於進行該分析法之套組以及條件。
本主題揭示內容之具體例,部分有關一種選殖以及分析將從pDAB9582而來之T-DNA插入轉基因大豆株中 所產生之邊界區域之DNA序列。此等序列係獨特的。根據該插入以及接合序列,可能產生品件專一性引子。PCR分析證實,此等品件可藉由分析使用此等品件專一性引子組產生之PCR擴增子鑑定出。因此,此等以及其它相關的程序,可用於獨特地鑑定包含該主題揭示內容之品件之大豆株。
序列之簡單說明
序列辨識編號1是大豆品件9582.816.15.1之5’DNA側翼邊界序列。核苷酸1-1273是基因組序列。核苷酸1274-1577是插入序列。
序列辨識編號2是大豆品件9582.816.15.1之3’DNA側翼邊界序列。核苷酸1-175是插入序列。核苷酸176-316是從pDAB9582而來之重新排列序列。核苷酸317-1687是基因組序列。
序列辨識編號3是pDAB9582之DNA序列,其註釋於以下表1中。
序列辨識編號4是用於確認5'邊界基因組DNA之寡核苷酸引子81615_FW2。
序列辨識編號5是用於確認3'邊界基因組DNA之寡核苷酸引子81615_RV1。
序列辨識編號6是用於確認3'邊界基因組DNA之寡核苷酸引子81615_RV2。
序列辨識編號7是用於確認3'邊界基因組DNA之寡核苷酸引子81615_RV3。
序列辨識編號8是用於確認5'邊界基因組DNA之寡核苷酸引子5’IREnd-01。
序列辨識編號9是用於確認5'邊界基因組DNA之寡核苷酸引子5’IREnd-02。
序列辨識編號10是用於確認5'邊界基因組DNA之寡核苷酸引子AtUbi10RV1。
序列辨識編號11是用於確認5'邊界基因組DNA之寡核苷酸引子AtUbi10RV2。
序列辨識編號12是用於確認3'邊界基因組DNA之寡核苷酸引子3’PATEnd05。
序列辨識編號13是用於確認3'邊界基因組DNA之寡核苷酸引子3’PATEnd06。
序列辨識編號14是大豆品件9582.816.15.1之預測序列。包括5’基因組側翼序列、pDAB9582T-股插入物以及3’基因組側翼序列。
序列辨識編號15是寡核苷酸引子81615_3’F,其用於TAQMAN分析法,以便檢測大豆品件9582.816.15.1之3’邊界。
序列辨識編號16是寡核苷酸引子81615_3’R,其用於TAQMAN分析法,以便檢測3’邊界大豆品件9582.816.15.1。
序列辨識編號17是寡核苷酸探針81615_3’P,其用於TAQMAN分析法,以便檢測3’邊界大豆品件9582.816.15.1。此探針具有加至5’端之FAM螢光部分以及加 至3’端之MGB淬滅體。
序列辨識編號18是寡核苷酸引子GMS116 F,其用於TAQMAN分析法,以便檢測內源性參考基因GMFL01-25-J19(GenBank:AK286292.1)。
序列辨識編號19是寡核苷酸引子GMS116 R,其用於TAQMAN分析法,以便檢測內源性參考基因GMFL01-25-J19(GenBank:AK286292.1)。
序列辨識編號20是寡核苷酸探針GMS116,其用於TAQMAN分析法,以便檢測內源性參考基因GMFL01-25-J19(GenBank:AK286292.1)。此探針具有加至5’端之HEX螢光部分以及加至3’端之BHQ淬滅體。
圖1是含有cry1Fcry1Ac以及pat表達盒之pDAB9582之質體地圖。
圖2指出用於確認大豆品件pDAB9582.816.15.1之5’以及3’邊界序列之引子位置。
圖3指出大豆品件pDAB9582.816.15.1中基因組序列之排列。
圖4指出以TAQMAN分析大豆品件pDAB9582.816.15.1之引子以及探針之位置。
較佳實施例之詳細說明
大豆品件9582.816.15.1插入物之雙端已經過定序以及特徵描述。品件專一性分析法已建立。該品件亦已 經定位至該大豆基因組之染色體03上。該品件可經基因滲入進入另外的優良品系。
如在以上背景部分所提到的,轉基因進入植物基因組之引入以及整合,涉及一些隨機品件(即表達的給定插入物之“品件”名稱)。即,用許多諸如農桿菌屬轉形、生物射彈轉形(即,基因槍)以及碳化矽介導的轉形(即,WHISKERS)之轉形技術,無法預測基因組中轉基因會插入之位置。因此,鑑定插入物二側之側翼植物基因組DNA,在鑑定具有給定插入物品件之植物方面,可能很重要。例如,可將PCR引子設計成能產生跨越該插入物以及宿主基因組之接合區之PCR擴增子。此PCR擴增子可用於鑑定獨特或不同類型之插入物品件。
在此提供之定義以及範例,係用以幫助說明本揭示內容以及用以指導熟悉此技藝之人士實施本發明。除非有其它的註釋,否則術語是依照熟悉此相關技術之人士慣用之解釋。使用述於37 CFR §1.822中之DNA鹼基之命名法。
在此使用之術語"後代"指的是包含大豆品件pDAB9582.816.15.1之親本植株之任何世代之子代。
轉基因“品件”之產生,係經由異源DNA建構體,即,包含感興趣之轉基因之核酸,轉形植物細胞、使從轉基因插入植物之基因組產生之植物之族群再生以及選擇因插入至特定基因組位置而產生特徵之特定的植物。術語“品件”意指包括該異源DNA之原始轉形體以及轉形體之後代。術語“品件”亦指轉形體與包括基因組/轉基因DNA之另 一品種間之有性遠緣雜交產生之後代。即使在重覆與輪回親本進行回交後,從轉形的親本而來之插入的轉基因DNA以及側翼基因組DNA(基因組/轉基因DNA),在雜交之後代中,仍存在於相同的染色體位置處。術語“品件”亦指從包含插入的DNA以及鄰接該插入的DNA之側翼基因組序列之原始轉形體以及其後代而來之DNA,預測其可被轉移至一後代,該後代因一包括該插入的DNA之親本株(如,原始轉形體以及其自身產生之後代)與一不含該插入的DNA之親本株有性雜交,而接收包括感興趣的轉基因之插入的DNA。
“接合序列”或“邊界序列”跨越DNA插入基因組之點,其連繫從大豆天然基因組而來在該插入點側翼之DNA,鑑定或檢測植物遺傳材料中一或其它接合序列,能夠充分地用於診斷品件。包括的有,跨越在此所述之大豆品件中之插入物以及相似長度之側翼DNA之DNA序列。在此提供此診斷序列之特別範例;然而,其它與該插入物之接合點,或該插入物以及該基因組序列之接合點重疊之序列,亦為診斷上有價值的,且可依照本主題揭示內容使用。
本主題揭示內容部分有關使用此側翼、接合以及插入序列之品件鑑定。相關的PCR引子以及擴增子均包括在本揭示內容中。依照本主題揭示內容之具體例,使用跨越插入的DNA之以及其邊界之擴增子之PCR分析方法,可用於檢測或鑑定由該主題專有的大豆株衍生而來之商業化的轉基因大豆品種或株。
該側翼/接合序列可用於診斷大豆品件 pDAB9582.816.15.1。根據此等序列,產生品件專一性引子。PCR分析法證實,藉由分析用此等品件專一性引子組產生之PCR擴增子,可在不同的大豆基因型中鑑定出此等大豆株。因此,此等以及其它相關的程序,可用於獨特地鑑定此等大豆株。在此鑑定之序列是獨特的。
本主題揭示內容之檢測技術,特別可用於結合植物育種,以便測定在包含感興趣的品件之親本植株與另一企圖在後代中提供一或多個額外感興趣的特徵之植株雜交後,那一個後代植株包含所給定之品件。此等PCR分析方法有益於大豆育種計劃以及品質控制,特別是商業化轉基因大豆種子。現在亦可製造以及使用,用於此等轉基因大豆株之PCR檢測套組。此有利於產品登記以及產品管理工作。
再者,側翼大豆/基因組序列可專門地用於鑑定各插入的基因組位置。此資訊可用於製造對各品件具專一性之分子標記系統。此等可用於加速育種策略以及建立連結數據。
又進一步,該側翼序列資訊可用於研究以及描述轉基因整合過程、基因組整合位點特徵、品件分類、轉基因與其側翼序列之安定性以及基因表達(特別是有關基因沈默、轉基因甲基化模式、位置效應以及可能的表達相關元素,諸如MARS[基質附著區]等等)之特徵。
根據全部的主題揭示內容,應很清楚地,該主題揭示內容包括可從節段[0006]中識別之ATCC寄存號獲得之 種子。該主題揭示內容亦包括以從節段[0006]中識別之ATCC寄存號寄存之種子長成之除草劑耐受性大豆植物。本主題揭示內容進一步包括該植物之部分,諸如該植物產生之葉子、組織樣本、種子,花粉等等(其中,其等包含cry1Fcry1Acpat以及序列辨識編號1與2)。
在此使用之術語“大豆”意指Glycine max,且包括其所有可與大豆植物配種之品種。
本揭示內容之DNA分子可用作為標記輔助育種(MAB)方法中之分子標記。本揭示內容之DNA分子,可用於此技術中已知之諸如AFLP標記、RFLP標記、RAPD標記、SNPs以及SSRs之方法中,其等可鑑定遺傳相關之有用的農業特性。使用MAB方法,可在與本主題揭示內容之大豆植物雜交之後代(或其後代以及任何其它大豆培育植物或品種)中,追蹤抗蟲性以及除草劑耐受性特性。該DNA分子係此特性之標記,而在此技藝中熟知之MAB方法,可用於追蹤大豆植物中之除草劑耐受性特性,在此,本主題揭示內容中至少一種大豆株或其後代是親本或原種。本揭示內容之方法可用於鑑定任何具有本主題品件之大豆品種。
在此使用之“株”是一群植物,其個體間,在至少一種特性方面,展現微小或無遺傳變異。此等株可經由自花授粉數代以及選擇獲得,或是使用組織或細胞培養技術,從單一親本無性繁殖獲得。
在此使用之術語“培育植物”以及“品種”係同義詞,意指用於商業產品之株。
“安定性”或“安定的”意指針對一給定組份,該組份世代相傳,且較佳地三代相傳。
“商業實用性”定義為具有良好的植物活力以及高生殖力,如此該作物可由農夫使用慣用的農場設備生產,且可使用慣用破碎與萃取設備,從種子中萃取出具有所述組份之油。
“農業上精英品種”意指一株系,其除了因主題品件之抗蟲性以及除草劑耐受性之外,亦具有所欲的農業特徵,諸如產率、成熟度、抗病性等等。此等農業特徵以及數據點中之任一個以及全部,均可用於鑑定此植物,如用於鑑定此等植物之特徵範圍之一點或各端或二端。
熟悉此技藝之人士應了解,根據本揭示內容,檢測套組之較佳的具體例可包括,例如,針對和/或包含“接合序列”或“過渡序列”(在此該大豆基因組側翼序列接觸該插入序列)之探針和/或引子。例如,此包括設計用於鑑定一或二個接合序列(在此該插入物接觸該側翼序列)之多核苷酸探針、引子和/或擴增子。一種一般的設計是使具有一會在側翼區域雜交之引子,以及一會在該插入物中雜交之引子。此等引子之長度常各約至少~15個殘基。根據此安排,該等引子可用於產生/擴增可檢測的擴增子,其顯示出存在本主題揭示內容之品件。此等引子可用於產生跨越(以及包括)以上所示之接合序列之擴增子。
在側翼序列中"降落(touching down)"之引子,典型地不是設計用於雜交超過1200個鹼基或如此超過該接合 點。因此,典型的側翼引子應是設計成,包含從插入物開始進入側翼序列之1200個鹼基內各鏈中之至少15個殘基。即,包含(或雜交至)從序列辨識編號1之鹼基對451至1331和/或序列辨識編號2之鹼基對212至350而來之適當大小之序列之引子,落在本主題揭示內容之範疇內。插入引子同樣地可設計在該插入物之任何位置上,但可使用,例如,對此引子設計非獨特地序列辨識編號3之鹼基對451至1331以及13695至13833。
熟悉此技藝之人士亦應知道,引子以及探針可設計成可在標準的雜交和/或PCR條件範圍下進行雜交,其中該引子或探針沒有完全互補於例示序列。即,可容許一些程度的錯配。針對例如約20個核苷酸之引子,假如,錯配之鹼基是在與該擴增子相反之引子的內部或終端,典型地一或二個左右之核苷酸,不需結合與該相反鏈。以下提供各種適當的雜交條件。在探針中亦可使用合成的核苷酸類似物,諸如肌苷。亦可使用胜肽核酸(PNA)探針,以及DNA與RNA探針。重要的是,此等探針以及引子可用於診斷(能夠獨特地鑑定以及區別)是否存在本主題揭示內容之品件。
應注意,在PCR擴增中可能發生,例如,誤差,其可能導致微小的序列誤差。即,除非有特別指示,否則在此列出之序列之測定,係藉由從大豆基因組DNA產生長擴增子,然後對該擴增子進行選殖以及定序。以此方法產生以及測定之序列中,常會發現些微的不同以及微小的差異,因為要從基因組DNA產生足夠的擴增子供定序用,需 要許多回的擴增反應。熟悉此技藝之人士應可認知以及注意到,由於此等類型之常見的定序誤差或差異所需之任何的調整,均落在本主題揭示內容之範疇內。
亦應注意,例如,在製造品件期間插入序列時,會刪除掉一些基因組序列之情況是很常見的。因此,例如,在主題側翼序列與GENBANK中列出之基因組序列之間,亦可能出現一些差異。
DNA序列“插入物”之組份圖解於圖式中,且在以下範例中更詳細的討論。此等組份之DNA多核苷酸序列或其片段,可用作為本揭示內容之方法中之DNA引子或探針。
在本揭示內容之一些具體例中,提供一種用於檢測從大豆植物而來之植物以及種子等等中,存在之轉基因/基因組插入區域之組成物以及方法。提供之DNA序列包含在此提供之主題5’轉基因/基因組插入區域接合序列(序列辨識編號1之鹼基對451-1331以及序列辨識編號3之451-1331)、其片段,以及例示序列之互補序列以及其任何片段。提供之DNA序列包括在此提供之主題3’轉基因/基因組插入區域接合序列(序列辨識編號2之鹼基對212-350以及序辨識編號3之13695-13833)、其片段,以及例示序列之互補序列以及其任何片段。該插入區域接合序列跨越插至基因組之異源DNA,與從大豆細胞而來,在該插入位點側翼之DNA之間之接合點。此序列可診斷該給定之品件。
根據此等插入以及邊界序列,可產生品件專一性 引子。PCR分析法證實,分析利用此等品件專一性引子組產生之PCR擴增子,可在不同的大豆基因型中,鑑定出本主題揭示內容之大豆株。此等以及其它相關的程序可用於獨特地鑑定此等大豆株。因此,從此引子對衍生而得之PCR擴增子係獨特的,且可用於鑑定此等大豆株。
在一些具體例中,包含該新穎轉基因/基因組插入區域之連續片段之DNA序列,是本揭示內容之一態樣。包括的有一包含足夠長度之轉基因插入序列之多核苷酸以及足夠長度之從三種以上所述之大豆植物之一或多種而來之大豆基因組序列之多核苷酸之DNA序列,和/或一可用作為用於產生可診斷一或多種此等大豆植物之擴增子產物之引子序列之DNA序列。
相關的具體例關於包含下列之DNA序列:在此鑑定之DNA序列(諸如序列辨識編號1以及其片段)之轉基因部分之至少10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25或更多個連續的核苷酸,或其互補序列,以及相似長度之從此等序列而來之側翼大豆DNA序列,或其互補序列。此等序列可在DNA擴增方法中,用作為DNA引子。使用此等引子產生之擴增子,可用於診斷在此所指之任一種大豆品件。因此,本揭示內容亦包括由此DNA引子產生之擴增子。
此揭示內容亦包括檢測樣本中存在之DNA(其相當於在此所指之大豆品件)。此等方法可包含:(a)使該包含DNA之樣本與引子組接觸,該引子組當用於與從此等大 豆品件中之至少一種而來之DNA進行核酸擴增反應時,會產生可診斷該品件之擴增子;(b)進行核酸擴增反應,從而產生該擴增子;以及(c)檢測該擴增子。
本主題揭示內容之另外的檢測方法包括檢測樣本中存在之DNA(其相當於該品件)之方法,其中該方法包含:(a)使該包含DNA之樣本與探針接觸,該探針在嚴苛雜交條件下,會與從該大豆品件中至少一種而來之DNA雜交,且其在該嚴苛雜交條件下,不會與對照大豆植物(非感興的品件之DNA)雜交;(b)使該樣本以及探針經歷嚴苛雜交條件之處理;以及(c)檢測雜交至DNA之探針。
可使用在此所揭示之組成物以及DNA檢測技藝熟知之方法,建立DNA檢測套組。該套組可用於鑑定樣本中之主題大豆品件DNA,且可應用於育種含有此DNA之大豆植物之方法。該套組含有,例如,與在此揭示之擴增子一致或互補之DNA序列,或與本主題品件之轉基因遺傳元素所含之DNA一致或互補之DNA序列。此等DNA序列可用於DNA擴增反應,或作為DNA擴增方法中之探針。該套組亦可含有進行該檢測方法所需之試劑以及材料。
“探針”是一種分離的核酸分子,其帶有習知可檢測的標籤或受體分子(諸如放射同位素、配位子、化學發光劑或酵素)。此一探針與標的核酸之一股互補,在本揭示內容之情況下,與從該大豆品件之一者而來之基因組DNA(不論是從包含從該品件而來之DNA之大豆植物或樣本而來)之一股互補。根據本揭示內容之具體例之探針,不僅包括 去氧核糖核酸或核糖核酸,亦包括聚醯胺以及其它探針材料,其等可專一性地結合至標的DNA序列,且可用於檢測存在之標的DNA序列。
“引子”是分離/合成的核酸,其會藉由核酸雜交,黏合至互補標的DNA股上,在該引子以及該標的DNA股之間形成雜交,之後藉由聚合酶,如,DNA聚合酶,沿著該標的DNA股延伸。本揭示內容之引子對,指的是其等藉由,如,聚合酶鏈反應(PCR)或其它習知核酸擴增方法,於擴增標的核酸序列之用途。
探針以及引子之長度一般為5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99、100、101、102、103、104、105、106、107、108、109、110、111、112、113、114、115、116、117、118、119、120、121、122、123、124、125、126、127、128、129、130、131、132、133、134、135、136、137、138、139、140、141、142、143、144、145、146、147、148、149、150、151、152、153、154、155、156、157、158、159、160、161、162、163、164、165、166、167、168、169、170、171、172、 173、174、175、176、177、178、179、180、181、182、183、184、185、186、187、188、189、190、191、192、193、194、195、196、197、198、199、200、201、202、203、204、205、206、207、208、209、210、211、212、213、214、215、216、217、218、219、220、221、222、223、224、225、226、227、228、229、230、231、232、233、234、235、236、237、238、239、240、241、242、243、244、245、246、247、248、249、250、251、252、253、254、255、256、257、258、259、260、261、262、263、264、265、266、267、268、269、270、271、272、273、274、275、276、277、278、279、280、281、282、283、284、285、286、287、288、289、290、291、292、293、294、295、296、297、298、299、300、301、302、303、304、305、306、307、308、309、310、311、312、313、314、315、316、317、318、319、320、321、322、323、324、325、326、327、328、329、330、331、332、333、334、335、336、337、338、339、340、341、342、343、344、345、346、347、348、349、350、351、352、353、354、355、356、357、358、359、360、361、362、363、364、365、366、367、368、369、370、371、372、373、374、375、376、377、378、379、380、381、382、383、384、385、386、387、388、389、390、391、392、393、394、395、396、397、398、399、400、401、402、403、404、405、406、407、408、409、410、411、412、 413、414、415、416、417、418、419、420、421、422、423、424、425、426、427、428、429、430、431、432、433、434、435、436、437、438、439、440、441、442、443、444、445、446、447、448、449、450、451、452、453、454、455、456、457、458、459、460、461、462、463、464、465、466、467、468、469、470、471、472、473、474、475、476、477、478、479、480、481、482、483、484、485、486、487、488、489、490、491、492、493、494、495、496、497、498、499或500或1000或2000或5000個多核苷酸或更長。此探針以及引子在嚴苛雜交條件下,可專一性結合至標的序列。較佳地,依照本揭示內容之具體例之探針以及引子,具有完全與該標的序列相似之序列,然而探針與該標的序列不同,其可藉由習知方法設計成保有雜交至標的序列之能力。
用於製備以及使用探針以及引子之方法述於,例如,Molecular Cloning:A Laboratory Manual,2nd ed.,vol.1-3,ed.Sambrook et al.,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.,1989中。PCR引子對可藉由使用例如,為此目的之電腦程序,從已知序列衍生而來。
以在此所揭示之側翼DNA以及插入序列為基礎之引子以及探針,可藉由習知方法,如,再選殖(re-cloning)以及定序此序列,用於確認(且,若需要的話,校正)該揭示的序列。
本揭示內容之核酸探針以及引子,在嚴苛條件下 可雜交至標的DNA序列。任何習知之核酸雜交或擴增方法,均可用於鑑定樣本中,從轉基因品件而來之DNA。核酸分子或其片段,在某些環境下,能夠專一性地雜交至其它核酸分子。假如二個分子能夠形成反平行、雙鏈核酸結構,則在此使用之二個核酸分子,稱作能夠專一性雜交至另一個。假如其等展現完全互補,則核酸分子稱作與另一核酸分子“互補”。當該分子之一之每個核苷酸與另一個之核苷酸互補,在此使用之分子稱作展現“完全互補”。展現完全互補之分子,一般而言會以足夠安定之程度雜交至另一個,使其等在習知“高嚴苛”條件下仍彼此黏合在一起。Sambrook et al.,1989中說明有習知高嚴苛條件。
假如二個分子可以足夠安定性彼此雜交,使得其等在至少習知“低嚴苛”條件下仍彼此黏合在一起,則該二個分子稱作展現“最小互補”。Sambrook et al.,1989中說明有習知低嚴苛條件。為使核酸分子能作為引子或探針,其僅需要展現最小的互補,使序列能夠在所使用之特別的溶劑以及鹽濃度下,形成安定的雙鏈結構。
術語“嚴苛條件”功能上定義為核酸探針在Sambrook et al.,1989,於9.52-9.55討論之專一性雜交程序下,雜交至標的核酸(即,至感興趣的特定核酸序列)。亦見,Sambrook et al.,1989,9.47-9.52以及9.56-9.58。
根據應用之展望,吾人可使用不同的嚴苛條件,或探針或引子之多核苷酸序列簡併之條件,達到對標的序列不同程度的雜交選擇性。在需要高選擇性之應用方面, 吾人典型地使用相對嚴苛的條件,來雜交一多核苷酸序列與第二多核苷酸序列,如,選擇相對低鹽和/或高溫的條件,諸如約0.02M至約0.15M之NaCl,溫度約50℃至約70℃所提供之條件。嚴苛條件可能涉及,例如,用高嚴苛清洗緩衝清洗雜交濾器至少二次(0.2XSSC,0.1%SDS,65℃)。促進DNA雜交之適當的嚴苛條件,例如,6.0X氯化鈉/檸檬酸鈉(SSC),約45℃下,接著用2.0XSSC,50℃下清洗,係熟悉此技藝之人士已知的。例如,清洗步驟中之鹽濃度之選擇,可從低嚴苛度之約2.0XSSC,50℃,至高嚴苛之約0.2XSSC,50℃。此外,清洗步驟中之溫度可從低嚴苛條件之室溫,約22℃,增加至高嚴苛條件,約65℃。二種溫度以及鹽均可以改變,或溫度或鹽濃度其中一者保持恆定,而另一者變量改變。此選擇條件,在探針以及樣版間之錯配方面,若有的話,容忍度很小。透過雜交檢測DNA序列係熟悉此技藝之人士熟知的,且美國專利案第4,965,188號以及第5,176,995號之教示內容,例示有雜交分析之方法。
本揭示內容之具體例之核酸在高嚴苛條件下,會專一性雜交至在此示範或建議之一或多個引子(或擴增子或其它序列),包括其互補序列以及片段。在本揭示內容之一態樣中,本揭示內容之標記核酸分子具有在此所述,於示範序列之一者或其互補序列和/或片段中之核酸序列。
在本揭示內容之另一態樣中,本揭示內容之標記核酸分子與此核酸序列共有80%以及100%之間或90%以及100%之間之序列一致性。在本揭示內容之另一態樣中,本 揭示內容之標記核酸分子與此序列共同95%以及100%之間之序列一致性。此序列在植物育種方法中,可用作為標記,以鑑定遺傳雜交之後代。探針雜交至該標的DNA分子,可用任何熟悉此技藝之人士已知之方法檢測,此等可包括,但不限於,螢光標簽、放射活性標簽、抗體為主的標簽以及化學發光標簽。
在使用特別擴增引子對,擴增標的核酸序列方面(如PCR),“嚴苛條件”是容許引子對僅雜交至標的核酸序列之條件,於其中具有相對野生型序列(或其互補)之引子會結合且較佳地產生獨特的擴增產物,擴增子。
術語“對(標的序列)具專一性”指的是,探針或引子在嚴苛雜交條件下,僅雜交至包含該標的序列之樣本中之標的序列。
在此使用之“擴增的DNA”或“擴增子”意指標的核酸序列(其係核酸樣版之一部分)之核酸擴增產物。例如,為測定由有性雜交產生之大豆植物,是否含有從本揭示內容之大豆植物而來之轉基因品件基因組DNA,使從大豆植物組織樣本萃取而得之DNA,經歷核酸擴增方法之處理,該方法使用一引子對,其包含一個從該植物之基因組中鄰接該插入的異源DNA之插入位點之側翼序列衍生而得之引子,以及一個從插入的異源DNA衍生而來之第二引子,以便產生可用於診斷存在品件DNA之擴增子。該擴增子具有亦可診斷該品件之長度以及序列。該擴增子之長度範圍為該引子對加上一個核苷酸鹼基對之結合長度,和/或該引子 對加上下列之結合長度:約2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99、100、101、102、103、104、105、106、107、108、109、110、111、112、113、114、115、116、117、118、119、120、121、122、123、124、125、126、127、128、129、130、131、132、133、134、135、136、137、138、139、140、141、142、143、144、145、146、147、148、149、150、151、152、153、154、155、156、157、158、159、160、161、162、163、164、165、166、167、168、169、170、171、172、173、174、175、176、177、178、179、180、181、182、183、184、185、186、187、188、189、190、191、192、193、194、195、196、197、198、199、200、201、202、203、204、205、206、207、208、209、210、211、212、213、214、215、216、217、218、219、220、221、222、223、224、225、226、227、228、229、230、231、232、233、234、235、236、237、238、239、240、241、242、243、244、245、246、247、248、249、250、251、252、253、254、255、256、257、258、259、260、261、262、 263、264、265、266、267、268、269、270、271、272、273、274、275、276、277、278、279、280、281、282、283、284、285、286、287、288、289、290、291、292、293、294、295、296、297、298、299、300、301、302、303、304、305、306、307、308、309、310、311、312、313、314、315、316、317、318、319、320、321、322、323、324、325、326、327、328、329、330、331、332、333、334、335、336、337、338、339、340、341、342、343、344、345、346、347、348、349、350、351、352、353、354、355、356、357、358、359、360、361、362、363、364、365、366、367、368、369、370、371、372、373、374、375、376、377、378、379、380、381、382、383、384、385、386、387、388、389、390、391、392、393、394、395、396、397、398、399、400、401、402、403、404、405、406、407、408、409、410、411、412、413、414、415、416、417、418、419、420、421、422、423、424、425、426、427、428、429、430、431、432、433、434、435、436、437、438、439、440、441、442、443、444、445、446、447、448、449、450、451、452、453、454、455、456、457、458、459、460、461、462、463、464、465、466、467、468、469、470、471、472、473、474、475、476、477、478、479、480、481、482、483、484、485、486、487、488、489、490、491、492、493、494、495、496、497、498、499或500、750、1000、 1250、1500、1750、2000或更多個核苷酸鹼基對(加上或減去任何以上所列出之增量)。選擇性地,引子對可從插入的DNA之二側上之側翼序列衍生而得,以便產生包括整個插入核苷酸序列之擴增子。從該植物基因組序列衍生而來之引子對之成員的位置,可與該插入的DNA序列離一段距離。此距離之範圍可從一個核苷酸鹼基對至約20,000個核苷酸鹼基對。此術語“擴增子”之使用,特別排除了引子二聚體,其可能會在DNA熱擴增反應中形成。
核酸之擴增,可用此技藝中已知之各種核酸擴增方法完成,包括聚合酶鏈反應(PCR)。擴增反法之變化是業界已知的,尤其是美國專利案第4,683,195號以及美國專利案第4,683,202號中所述的。PCR擴增方法已發展成可擴增高達22kb之基因組DNA。此等方法以及其它業界已知之DNA擴增方法,可用於實施本發明。從主題大豆品件而來之異源轉基因DNA插入物之序列或側翼基因組序列之驗證(需要時,校正),可藉由使用從在此提供之序列衍生而來之引子,擴增此從該品件而來之序列,接著標準DNA定序該PCR擴增子或選殖的DNA。
此等方法產生之擴增子可利用數種技術檢測。瓊脂凝膠電泳以及用溴化乙錠染色,是一般熟知用於檢測DNA擴增子之方法。另一此方法是Genetic Bit分析法,在此,DNA寡核苷酸是設計成重疊鄰接側翼基因組DNA序列以及插入的DNA序列二者。將寡核苷酸固定在微孔板之孔中。在PCR感興趣之區域後(使用一個在插入的序列中之引 子,以及一個在鄰接的側翼基因組序列中之引子),使單鏈PCR產物雜交至固定的寡核苷酸,且作為使用DNA聚合酶以及對預測的下一個鹼基具專一性之標籤的ddNTP之單一鹼基延伸反應之樣版。透過定量螢光訊號,可完成結合的產物之分析。螢光訊號指出,由於成功的擴增、雜交以及單一鹼基延伸,所以存在插入/側翼序列。
另一方法是Winge所述之焦磷酸定序(Pyrosequencing)技術(Innov.Pharma.Tech.00:18-24,2000)。在此方法中,寡核苷酸設計成重疊該鄰接基因組DNA以及插入的DNA接合點。該寡核苷酸設計成可雜交至從感興趣之區域而來之單鏈PCR產物(一引子在該插人的序列,而一引子在該側翼基因組序列)且在DNA聚合酶、ATP、硫酸化酶、螢光素酶、腺苷三磷酸双磷酸酶、腺苷5'磷醯硫酸以及螢光素之存在下培育。個別加入DNTP,此併入產生可測量之光訊號。光訊號指出,由於成功的擴增、雜交以及單一或多鹼基延伸,所以存在轉基因插入/側翼序列。
螢光偏振是另一方法,其可用於檢測本揭示內容之擴增子。依照此方法,設計一重疊該基因組側翼以及插入的DNA接合點之寡核苷酸。使該寡核苷酸雜交至從感興趣之區域而來之單鏈PCR產物(一引子在該插入的DNA,而一引子在該側翼基因組DNA序列),然後在DNA聚合酶以及螢光標籤的ddNTP之存在下培育。單一鹼基延伸導致併入ddNTP。使用螢光計,可測量併入螢光標籤的ddNTP之偏振的改變。偏振之改變指出,由於成功的擴增、雜交以及單 一鹼基延伸,所以存在轉基因插入/側翼序列。
TAQMAN®(PE Applied Biosystems,Foster City,Calif.)是檢測以及量化存在的DNA序列之方法。簡言之,使設計成重疊該基因組側翼以及該插入的DNA接合點之FRET寡核苷酸探針(一引子在該插入的DNA序列,而一引子在該側翼基因組序列),在熱安定性聚合酶以及dNTP之存在下循環。在專一性擴增期間,Taq DNA聚合酶除錯機制,使螢光部分從FRET探針上之淬滅部分釋出。螢光訊號指出,由於成功的擴增以及雜交,所以存在側翼/轉基因插入序列。
已有關於分子信標(Molecular Beacons)用於多核苷酸序列檢測之說明。簡言之,設計重疊該側翼基因組以及插入DNA接合點之FRET寡核苷酸探針。FRET探針之獨特結構,導致其含有使螢光以及淬滅部分保持極接近之二級結構。使FRET探針以及PCR引子(一引子在該插入DNA序列,而一引子在側翼基因組序列),在熱安定性聚合酶以及dNTP之存在下循環。在成功的PCR擴增之後,FRET探針雜交至該標的序列,導致除去該探針二級結構,而螢光與淬滅部分在空間上分開。即產生螢光訊號。螢光訊號指出,由於成功的擴增以及雜交,所以存在側翼基因組/轉基因插入序列。
揭示大豆基因組中最適合插入的位置後,該主題揭示內容亦包含在此基因組位置一帶包含至少一種非大豆品件9582.816.15.1插入物之大豆種子和/或大豆植物。一個 選項是用不同的插人物,取代從在此例示之pDAB9582.816.15.1而來之插入物。在此方面,依照本主題揭示內容,可使用,例如,標的同源重組。此類之技術是例如WO 03/080809 A2,以及對應公開的美國申請案(US 20030232410)之主題。因此,本主題揭示內容包括一包含異源插入物(取代或具有多複本的cry1Fcry1Acpat基因),側邊為在此鑑定之側翼序列之全部或可辨識的部分(序列辨識編號1之鹼基對1-1273以及序列辨識編號2之鹼基對176-1287)之植物以及植物細胞。額外的cry1Fcry1Acpat複本(或額外的複本們),亦用於在此/此等方法中之插入物。
在此參考或引述之所有的專利、專利申請案、臨時申請案以及公開案中,與本發明之明白教示一致之全部內容,均在此併入本案以為參考。
下列範例係用以舉例說明用於實施本揭示內容之程序,以及用以證明本揭示內容之某些較佳具體例。此等範例不應解釋為本發明之限制。熟悉此技藝之人士應了解,在下列範例中揭示之技術,代表用於例示說明較佳模式之實施之特定的方法。然而,依照本揭示內容,熟悉此技藝之人士應了解,在此等特別具體例中可製造許多的改變,同時仍可在不逸離本揭示內容之技術思想範疇之情況下,獲得相同或相似的結果。除非有特別指出,否則全部的百分比以重量計,且全部的溶劑混合物比率以容積計。
除非有特別指示,否則使用下列縮寫。
範例 範例1:Cry1F以及Cry1Ac大豆品件pDAB9582.816.15.1之轉形以及選擇
透過農桿菌介導的轉形大豆子葉節外殖體,產生含有大豆品件pDAB9582.816.15.1之轉基因大豆(Glycine max)。使用卸甲的(disarmed)農桿菌菌株EHA101(Hood et al.,1993)起始轉形,該菌株帶有雙元載體pDAB9582( 1),在T股DNA區內含有選擇標記pat v6以及感興趣的基因cry1F v3以及cry1 Ac synpro。pDAB9582之T股DNA序列提供在序列辨識編號3中,其注釋在以下表1中。
使用Zeng et al.(2004)之經修飾的程序,進行農桿菌介導的轉形。簡言之,使大豆種子(cv Maverick)在基底介質中發芽,分離出子葉結,然後用農桿菌感染。於嫩芽形成、嫩芽伸長以及長根之介質中,補充頭孢噻肟(cefotaxime)、特美汀(timentin)以及萬古黴素(vancomycin),用於移除農桿菌。使用固殺草選擇,以便抑制無轉形的嫩芽之生長。將選擇的嫩芽移至長根介質中,供根的生長,之後移至供馴化幼苗之土壤混合物中。
用固殺草塗抹選定之幼苗之頂生小葉,以便篩選 推定的轉形體。將篩選出來的幼苗移至溫室中,使其馴化,然後用固殺草塗抹葉子,再次確認耐受性,然後視為推定的轉形體。對篩選出之植株採樣以及進行分子分析,以確認可選擇的標記基因和/或感興趣的基因。容許T0植物在溫室中自我受精,產生T1種子。
從獨立的轉形分離物中產生此品件,大豆品件pDAB9582.816.15.1。使T1植株在之後的世代回交以及基因滲入成精英品種。根據其獨特的特徵,諸如單一插入位點、正常的孟德爾分離、安定的表達以及優越的結合效率,包括抗蟲性、除草劑耐受性以及農業性能,選擇該品件。下列範例含有用於描述大豆品件pDAB9582.816.15.1之特徵之數據。
範例2:大豆品件pDAB9582.816.15.1中蛋白表達之特徵
描述大豆品件pDAB9582.816.15.1中表達之重組Cry1F、Cry1Ac以及PAT蛋白之生化特性。定量酵素連結免疫吸附分析法(ELISA)是一種業界已知之生化分析法,其可用於描述蛋白質之生化特性之特徵以及確認此等蛋白質於大豆品件pDAB9582.816.15.1中之表達。
範例2.1:植物組織中PAT、Cry1F以及Cry1Ac蛋白之表達
從測試植物中分離出大豆組織之樣本,然後製備供表達之分析。用含有含0.5%胎牛血清白蛋白(BSA)之清潔劑Tween-20之磷酸鹽緩衝食鹽水溶液(PBST),從大豆植物組織中萃取出PAT蛋白。離心該植物組織;收集水性上清液,需要時用適當的緩衝液稀釋,然後使用三明治版式之 PAT ELISA套組分析。依照製造商建議的操作手冊使用該套組(Envirologix,Portland,ME)。此分析法測得表達的PAT蛋白之濃度。
用含有清潔劑Tween-20之磷酸鹽緩衝食鹽水溶液(PBST),從大豆植物組織中萃取出Cry1F蛋白。離心該植物組織;收集水性上清液,需要時用適當的緩衝液稀釋,然後用三明治版式之Cry1F ELISA套組分析。依照製造商建議的操作手冊使用該套組(Strategic Diagnostics Inc.,Newark,DE)。此分析法測得表達的Cry1F蛋白之濃度。
用含有含0.5%胎牛血清白蛋白(BSA)之清潔劑Tween-20之磷酸鹽緩衝食鹽水溶液(PBST),從大豆植物組織中萃取出Cry1Ac蛋白。離心該植物組織;收集水性上清液,需要時用適當的緩衝液稀釋,然後用三明治版式之Cry1Ac ELISA套組分析。依照製造商建議的操作手冊使用該套組(Strategic Diagnostics Inc.,Newark,DE)。此分析法測得表達的Cry1Ac蛋白之濃度。
進行檢測方法,以研究大豆品件pDAB9582.816.15.1中,表達安定性以及垂直(世代之間)以及水平(世代內之品系間)之繼承性。
範例2.2:植物組織中Cry1F、Cry1Ac以及PAT蛋白之表達
使用以上所述之操作程序,測定大豆品件pDAB9582.816.15.1中Cry1F、Cry1Ac以及PAT蛋白之位準。使用定量酵素連結免疫吸附分析法(ELISA),從大豆葉子組織中測量可溶性、可萃取的蛋白。從T2至T6世代之大豆品 件pDAB9582.816.15.1,其等之表達是安定(不會分離)且恆定的,橫跨所有的品系。表2列出大豆品件pDAB9582.816.15.1中,轉基因蛋白之平均表達位準。
範例3:大豆品件pDAB9582.816.15.1之插入物以及側翼邊界區域之DNA序列之選殖以及特徵化
為特徵化以及描述基因組插入位點,測定大豆品件pDAB9582.816.15.1之側翼基因組T-DNA邊界區域之序列。大豆品件pDAB9582.816.15.1之基因組序列已經確認,其包含5’側翼邊界序列(序列辨識編號1)之1273個鹼基對以及3’側翼邊界序列(序列辨識編號2)之1371個鹼基對。以大豆品件pDAB9582.816.15.1邊界序列為基礎之PCR擴增證實,該邊界區域具有大豆複製起點,且接合區域係大豆品件pDAB9582.816.15.1之獨特的序列。該接合區域可用於品件專一性的鑑定大豆品件pDAB9582.816.15.1。此外,利用擴增對應於來自未轉形大豆之基因組之鑑定的側翼邊界序列之區域之基因組片段,可描述T股插入物位點之特徵。比較大豆品件pDAB9582.816.15.1以及未轉形的基因組序列透露出,在T股整合期間,從來源基因座產生約21鹼基對之缺失。總結,大豆品件pDAB9582.816.15.1之插入物以及邊 界序列之特徵化顯示出,在大豆基因組中,存在從pDAB9582而來之T股之完整複本。
範例3.1:大豆基因組序列之確認
5’以及3’側翼邊界與Glycine max之染色體03之全基因組霰彈槍序列比對指出,大豆品件pDAB9582.816.15.1之轉基因插入大豆基因組染色體03 中。為確認從大豆基因組而來之大豆品件pDAB9582.816.15.1之插入位點,用不同的引子對進行PCR(圖2,表3、表4以及表5)。使用從大豆品件pDAB9582.816.15.1以及其它轉基因或非轉基因大豆株而來之基因組DNA作為樣版。為確認5’邊界序列為正確的,使用一設計結合至At Ubi10啟動子基因元素,例如,AtUbi10RV1,之引子,以及一設計結合至大豆基因組染色體03上選殖的5’端邊界之引子(命名為81615_FW2),來擴增跨越At Ubi10啟動子元素至5’端邊界序列之DNA片段。相似地,在確認選殖的3’邊界序列方面,使用一pat專一性引子,例如,3’PATEnd05,以及一依照選殖的3’端邊界序列設計之引子,命名為81615_RV1以及81615_RV2,來擴增跨越pat基因至3’邊界序列之DNA片段。各引子對僅從大豆品件pDAB9582.816.15.1之基因組DNA中,擴增出具預測大小之DNA片段,但不會從其它轉基因大豆株或非轉基因對照組而來之DNA樣本擴增出。結果指出,選殖的5’以及3’邊界序列是大豆品件pDAB9582.816.15.1之T股插入物之側翼邊界序列。
為進一步確認大豆基因組中之DNA插入物,在不含大豆品件pDAB9582.816.15.1之T股插入物之基因組DNA上,完成跨越大豆邊界序列之PCR擴增。使用引子81615_FW2,依照5’端邊界序列設計,以及引子81615_RV3,依照3’端邊界序列設計,來擴增含有pDAB9582T股整合之基因座之DNA片段。如預測的,用81615_FW2 以及81615_RV3之引子對完成的PCR反應,從所有其它的大豆對照株中產生約1.8kb之DNA片段,但不是從pDAB9582.816.15.1中。大豆品件pDAB9582.816.15.1之鑑定出的5’以及3’邊界序列與Glycine max之染色體03之全基因組霰彈槍序列之比對指出,從原來的基因座上有約21個鹼基對之缺失(圖3)。此等結果證實,大豆品件pDAB9582.816.15.1之轉基因插入大豆基因組染色體03之位點。
範例4:透過南方墨點法之大豆品件pDAB9582.816.15.1之特徵化
使用南方法墨點分析法,建立大豆品件pDAB9582.816.15.1之整合模式。此等實驗產生可證明在大豆基因組中整合有cry1Ac以及cry1F轉基因之數據。描述大豆品件pDAB9582.816.15.1全長之特徵,其含有單一複本之從質體pDAB9582而來之cry1Ac以及cry1F PTU之單一整合品件。
南方墨點數據顯示,T股片段插入大豆品件pDAB9582.816.15.1之基因組中。使用對pDAB9582.816.15.1之T股整合區域中所含之cry1Ac以及cry1F基因具專一性之探針,以及在質體內具有斷裂位置,且會在質體內部產生雜交片段,或跨越質體與大豆基因組DNA之接合點之片段(邊界片段)之敘述性限制酵素,進行詳細的南方墨點分析法。結合限制酵素以及探針之南方雜交指出之分子量是該品件獨特的,且建立其鑑定模式。此等分析亦顯示出,已 經插入大豆基因組DNA中之質體片段,cry1Ac以及cry1F PTU沒有重排。
範例4.1:大豆葉子樣本之採集以及基因組DNA(gDNA)之分離
從含有大豆品件pDAB9582.816.15.1之個別大豆植物中得到之葉子組織中,萃取出基因組DNA。此外,從習知大豆植物,Maverick,中分離出gDNA,該習知大豆植物含有遺傳背景,為代表實體株,缺少cry1Ac以及cry1F基因。依照標準CTAB方法,從凍乾的葉子組織中萃取出個別基因組DNA。萃出後,使用Pico Green試劑(Invitrogen,Carlsbad,CA),利用螢光光譜法定量DNA。
範例4.2:DNA之消化以及分離
在南方墨點分子特徵化大豆品件pDAB9582.816.15.1方面,消化10微克(10μg)之基因組DNA。加入每微克DNA約5單位之選定的限制酵素以及對應的反應緩衝液至各DNA樣本中,消化從大豆品件pDAB9582.816.15.1以及非轉基因大豆株Maverick而來之基因組DNA。令各樣本在約37℃下培育一整夜。個別地使用限制酵素AseIHindIIINsiI以及NdeI供單酶消化(New England Biolabs,Ipswich,MA)。限制酵素NotI以及ApaLI一起使用,供雙酶消化(New England Biolabs,Ipswich,MA)。此外,藉由結合質體DNA,pDAB9582以及從非轉基因大豆品種,Maverick而來之基因組DNA,製備陽性雜交對照樣本。使用與測試樣本相同的程序以及限制酵素,消化質體 DNA/基因組DNA混合物。
培育一整夜消化後,加入25μL之Quick-Precip Plus溶液(Edge Biosystems,Gaithersburg,MD),然後用異丙醇沈澱消化的DNA樣本。將該沈澱的DNA沈澱丸再懸浮於15μL之1X載入緩衝液(0.01%溴酚藍,10.0mM EDTA,10.0%甘油,1.0mM Tris pH 7.5)中。之後透過0.85%瓊脂凝膠加上0.4X TAE緩衝液(Fisher Scientific,Pittsburgh,PA),在35伏特下,對DNA樣本以及分子尺寸標記進行電泳約18-22個小時,至達到片段分離。用溴化乙錠(Invitrogen,Carlsbad,CA)染該凝膠,然後在紫外線(UV)下呈現DNA。
範例4.3:南方轉移以及膜處理
南方墨點分析法基本上係依照Memelink,et al.(1994)所述之方法進行。簡言之,在電泳分開以及DNA片段呈現後,用0.25M HCl除去凝膠之嘌呤約20分鐘,然後使其曝露於變性溶液(0.4M NaOH,1.5M NaCl)約30分鐘,接著在中和溶液(1.5M NaCl,0.5M Tris pH 7.5)中至少30分鐘。使用wicking系統,用10XSSC,進行南方轉移至尼龍膜上一整夜。轉移後,利用UV交聯,使DNA結合至膜上,接著用2XSSC溶液清洗膜。此方法產生準備用於雜交之南方墨點膜。
範例4.4:DNA探針之標籤以及雜交
使用標籤的探針,檢測結合至尼龍膜之DNA片段(表6)。利用PCR,將地高辛(digoxigenin;DIG)標籤的核苷酸,[DIG-11]-dUTP,併入使用對基因元素具專一性之引 子,從質體pDAB9582中擴增出之DNA片段中,產生探針。利用PCR合成法產生DNA探針,係使用PCR DIG探針合成套組(Roche Diagnostics,Indianapolis,IN),依循製造商建議之程序進行。
利用瓊脂凝膠電泳分析標籤的探針,以測定其等之質與量。之後,使用基本上針對DIG Easy Hyb Solution(Roche Diagnostics,Indianapolis,IN)所述之程序,使用所欲數量之標籤的探針,雜交至在尼龍膜上之標的DNA,來檢測專一性片段。簡言之,簡略地用2XSSC清洗含有固定DNA之尼龍膜墨點,然後用20-25mL在雜交瓶中預熱約45-55℃之DIG Easy Hyb溶液,在雜交烤箱中進行預雜交,歷時約2個小時。之後倒出預雜交溶液,再用~15mL之預熱的DIG Easy Hyb溶液(其含有所欲數量,在熱循環中加熱約5分鐘而變性之專一性探針)替代。之後在雜交烤箱中,約45-55℃下,進行雜交步驟一整夜。
在探針雜交結束時,將含有該探針之DIG Easy Hyb溶液倒至乾淨的試管中,然後貯存在約-20℃下。依照製造商建議之操作程序,此等探針可重覆使用二次。簡單地潤洗膜墨點,然後於含有低嚴苛清洗緩衝液(2XSSC,0.1%SDS)之乾淨的塑膠容器中,在室溫下約5分鐘,清洗二次,接著用高嚴苛清洗緩衝液(0.1X SSC,0.1%SDS),各在約65℃下歷時15分鐘,清洗二次。簡單地用來自DIG Wash and Block Buffer Set(Roche Diagnostics,Indianapolis,IN)之1X馬來酸緩衝液,清洗膜墨點,歷時約5分鐘。此接著在1X 阻隔緩衝液中阻斷2個小時,然後用配製於1X阻隔緩衝液中之抗DIG-AP(鹼性磷酸酶)抗體(Roche Diagnostics,Indianapolis,IN)培育最少30分鐘。在用1X清洗緩衝液清洗2-3次後,專一性DNA探針仍結合在膜墨點上,然後使用CDP-Star化學發光核酸檢測系統(Roche Diagnostics,Indianapolis,IN),依循製造商之建議,呈現DIG標籤的DNA標準品。使墨點曝露於化學發光膜一或多個時間點,以檢測雜交片段以及呈現分子尺寸標準品。用All-Pro 100加上膜顯影劑(Konica Minolta,Osaka,Japan)顯影該膜,然後掃描影像。記錄每一探針之檢測帶之數量以及尺寸。使用可在如所述的DIG檢測後呈現之DIG標籤的DNA分子量標記II(DIG MWM II)以及DIG標籤的DNA分子量標記VII(DIG MWM VII),測定南方墨點上之雜交片段尺寸大小。
範例4.5:南方墨點法之結果
根據cry1Ac以及cry1F PTU之已知的酵素位點,特定消化以及探針處理之預測的以及觀察到的片段尺寸大小,提供在表7中。從此等消化以及雜交中鑑定出二種類型之片段:內部片段,在此已知的酵素位點在該探針區域之 側翼,且完全涵蓋在之cry1Ac以及cry1F PTU之插入區域內;以及邊界片段,在此已知酵素位點位在該探針區域之一端,而第二位點預測在該大豆基因組中。邊界片段尺寸大小隨品件而改變,因為在大部分情況下,DNA片段整合位點對每一個品件而言是獨特的。該邊界片段提供一種用於定出限制酵素相對於整合的DNA之位置,以及評估DNA插入之數量之工具。在含有大豆品件pDAB9582.816.15.1之大豆之數個世代上完成之南方墨點分析法,產生數據顯示出,於大豆品件pDAB9582.816.15.1之大豆基因組中,插入低複本,從質體pDAB9582而來之完整的cry1Ac以及cry1F PTU。
限制酵素AseI以及NsiI會結合以及打斷質體pDAB9582中獨特的限制位點。之後,此等酵素被選擇來特徵化大豆品件pDAB9582.816.15.1中之cry1Ac基因插入物,在分別由AseI以及NsiI消化後,預測>7286鹼基對或>9479鹼基對之邊界片段會與探針雜交(表7)。當分別使用AseI以及NsiI消化時,觀察到具有約8500以及>10000鹼基對之單一cry1Ac雜交帶。探針雜交到此尺寸,顯示在大豆品件pDAB9582.816.15.1之大豆基因組中,存在cry1Ac基因之單一插入位點。選擇限制酵素NotI以及ApaLI來進行雙消化以 及釋出含有cry1Ac植物轉錄單元之片段(PTU;啟動子/基因/終結子)(表7)。在NotI以及ApaLI雙酶消化後,觀察到與探針之預期的4550bp。用酵素消化pDAB9582.816.15.1樣本,接著探針雜交所獲得之結果指出,從質體pDAB9582而來之完整的cry1Ac PTU,插入大豆品件pDAB9582.816.15.1之大豆基因組中。
限制酵素NdeI以及NsiI會結合以及打斷質體pDAB9582中之限制位點。之後,此等酵素被選擇來特徵化大豆品件pDAB9582.816.15.1中之cry1F基因插入物。在分別用NdeI以及NsiI消化後,預測>5569bp以及>9479之邊界片段會與探針雜交(表7)。當分別使用NdeI以及NsiI時,觀察到~7500bp以及>10000bp之單一cry1F雜交帶。探針雜交至此尺寸,顯示在大豆品件pDAB9582.816.15.1之大豆基因組中,存在cry1F基因之單一插入位點。選擇限制酵素,HindIII,來釋出含有cry1F植物轉錄單元之片段(PTU;啟動子/基因/終結子)(表7)。在HindIII消化後,觀察到與探針之預測的7732bp片段。用酵素消化pDAB9582.816.15.1樣本,接著探針雜交所獲得之結果指出,從質體pDAB9582而來之完整的cry1F PTU,插入大豆品件pDAB9582.816.15.1之大豆基因組中。
範例4.6:缺少骨架序列
亦進行南方墨點分析法,以證實大豆品件pDAB9582.816.15.1中,缺少奇黴素抗性基因(specR)、Ori Rep元素以及複製起始蛋白trfA(trf A元素)。在南方分析法 中包括適當的陽性(pDAB9582加至Maverick基因組DNA)以及陰性(Maverick基因組DNA)對照組時,預測無專一性雜交至奇黴素抗性、Ori Rep元素或trf A元素。在NsiI消化以及用specR專一性探針雜交後,吾人預測在陽性對照樣本(pDAB9582加至Maverick基因組DNA中)中可觀察到15320bp尺寸之帶。該specR探針不會雜交至陰性對照組以及大豆品件pDAB9582.816.15.1之樣本。相似地,吾人預測在NsiI消化以及用trfA探針雜交後,在陽性對照樣本(pDAB9582加上maverick)中可檢測到15320bp尺寸之帶,但在陰性對照組以及大豆品件pDAB9582.816.15.1而來之樣本中沒有檢測到。在NdeI消化以及用OriRep專一性探針雜交後,於陽性對照樣本(pDAB9582加至Maverick基因組DNA)中,檢測到另一預測的5329bp尺寸帶,但在陰性對照組以及大豆品件pDAB9582.816.15.1而來之樣本中沒有檢測到。此等數據指出,大豆品件pDAB9582.816.15.1中缺少奇黴素抗性基因、Ori Rep元素以及複製起始蛋白trfA。
範例5:田野試驗之農業產率以及除草劑耐受性
重覆進行農業試驗,比較大豆品件pDAB9582.816.15.1與空等值株(null isoline)-Maverick之農業效益。主要的田野試驗種植在美國之不同的地理位置,在此培養含有大豆品件pDAB9582.816.15.1之大豆品種。額外的田野試驗在此等位置之外的地區完成,選擇用以使含有大豆品件pDAB9582.816.15.1之大豆品種,曝露於在非較佳位置生長下可能會發生之壓力下。由於小量田野 試驗內之環境的變異度,一些研究位址係不連續的。
實驗設定為隨機完全區組設計,每個位置二個複本。有八種包括大豆品件pDAB9582.816.15.1之參試品(entries)。各地塊(plot)包含二排,12.5呎長,30吋間隔種植。整個季節,田野地塊維持在正常農業實務下,且保持沒有雜草。
冬天,在Puerto Rico之苗圃產生供研究之種子。令大豆品件pDAB9582.816.15.1以及Maverick之種子,在相同苗圃下生長,且以相同之方法處理,以便使任何種子來源之變異最小。其次,將種子運回北美,在此將其包裝以及分配至各個種植位置。整個季節,測量一些農業特徵。此等特徵以及收集數據時之生長階段,列在表8中。
在生長季節尾聲,結合從所有的位置收集之數據,進行跨位置之分析。使用JMP® Pro 9.0.3(SAS,Cary,NC)進行數據分析。使用混合模型進行分析,在此參試品(entry)視為固定效應,而位置,按參試品之位置以及複本效應視為隨機。分析而得之最小平方平均值記錄於表9中。在變數方面,測量顯著參試品效應,使用學生T檢定,進行之後的平均分離(mean separation),在Maverick以及大豆品件pDAB9582.816.15.1之間做比較。用於測定顯著性之機率位準設為p=0.05。
除了至開花、成熟之天數以及100顆種子之重量外,在大豆品件pDAB9582.816.15.1以及Maverick之間,所有測得之試驗展現相等。大豆品件pDAB.816.15.1開花比Maverick晚約2天。2天的延遲對生產者而言不是嚴重的延遲,且不會損害作物之性能。當地塊中50%之植物展現開花時,地塊被視為開花。在季節尾聲時,大豆品件pDAB9582.816.15之成熟亦比Maverick晚1天,但此延遲不會產生會損害作物性能之有意義的農業差異。同樣地,100顆大豆品件pDAB9582.816.15之種子之重量,在統計學上與Maverick有差異,但此在產率減少上不會產生顯著的結果。此結果指出,大豆品件pDAB9582.816.15之發展與Maverick之間有差異,但此差異係微小的,且不會超出商業生長大豆之正常範圍。
為測試大豆品件pDAB9582.816.15.1之除草劑耐受性,將該品件種在藥效試驗Santa Isabel,Puerto Rico中。將品種Maverick,其最初被用來轉形產生大豆品件pDAB9582.816.15.1,種在各苗圃中,且作為實驗之對照組。T3苗圃之種子係從在T2階段之單一植物選擇衍生而來,而T4苗圃之種子係在T3階段之單一植物選擇衍生而 來。測試該品件之四個品系之各世代。將各品系種在寬四行,長7.5呎之地塊中。行距為30吋。使地塊在光下生長約2.5周,以補償Puerto Rico之短日照。各以411g ae/ha之比率,在各苗圃上噴灑固殺草。用相同比率之固殺草噴灑一具有對照組植物,Maverick,之地塊,而第二地塊沒有噴灑,用作為品件之對照比較。大豆品件pDAB9582.816.15.1顯示出對固殺草除草劑之施用有耐受性。相反地,Maverick植株對除草劑處理沒有耐受性。
範例6:大豆品件pDAB9582.816.15.1之殺蟲活性之特徵化
進行田野以及溫室評估,以便特徵化由大豆品件pDAB9582.816.15.1中之Cry1Ac以及Cry1F蛋白提供對抗大豆害蟲之植物保護的程度,害蟲包括下列:鱗翅類(Lepidopteran)昆蟲,包括大豆夜娥(Anticarsia gemmatalis;絨毛豆毛蟲)、大豆尺夜娥(Pseudoplusia includens;大豆尺蠖)、草地貪夜娥(Spodoptera frugiperda;秋天行軍蟲)以及煙芽夜娥(Heliothis virescens;煙草蚜蟲)。
溫室試驗在約四周大的植株上進行。使用15株來評估大豆品件pDAB9582.816.15.1以及Maverick對照組。針對各測試的昆蟲物種(大豆夜娥、大豆尺夜娥以及草地貪夜娥之新生幼蟲),從各植株上切下3片葉子圓盤,總共有45片葉子圓盤/每一個植株/每一個昆蟲物種。將1.4cm葉子穿孔置於2%水凝膠上之測試區上,用一種新生幼蟲感染,然後用有孔的塑膠蓋封住。
感染後,測量死亡率以及葉子消耗之速度。對溫 和的刺探沒有反應之幼蟲視為死亡。置於含有大豆品件pDAB9582.816.15.1之植物材料上之昆蟲的死亡率(草地貪夜娥之死亡率為86%、大豆夜娥之死亡率為100%以及大豆尺夜娥之死亡率為100%),顯著地比置於Maverick對照組上之昆蟲的死亡率高。表10,目視評分被昆蟲吃掉之葉子圓盤之百分比,評詁葉子之損害。從溫室實驗獲得之結果指出,在大豆夜娥、大豆尺夜娥以及草地貪夜娥之感染實驗中,大豆品件pDAB9582.816.15.1之葉子損害持續顯著地低於Maverick對照組,而昆蟲死亡率高於Maverick對照組。
從Santa Isabel,Puerto Rico之種子繁殖苗圃地塊上,收集葉子樣本,進行田野生長的大豆品件pDAB9582.816.15.1之效率評估,然後將此等葉子送至Indianapolis,IN,進行生物分析。用於T3大豆品件pDAB9582.816.15.1植株之苗圃地塊,包含約180株,排成四排。各排長2.3m,距隔76.2cm;各排內之個別的植株間隔5.1cm。生物分析在完全展開,位在約分生組織下四個結節之主幹三出複葉上進行。從10株個別帶有品件pDAB9582.816.15.1之大豆植物以及10株個別的Maverick植物上,切下三出複葉組織。將葉子包好並送至實驗室。在實驗室中,從各三出複葉上打出一或二個直徑3.33cm之葉子圓盤,共提供16個葉子圓盤。將各葉子圓盤置於2%瓊脂上之測試區上,用一種新生草地貪夜娥幼蟲感染,然後用有孔的塑膠蓋子封住。使葉子圓盤保持在控制的環境槽中7天,此時評估死亡率以及葉子消耗率。對溫和的刺探沒有 反應的幼蟲視為死亡。目視評分被昆蟲吃掉之葉子穿孔的百分比,評估葉子損害。
感染後,評估死亡率以及葉子消耗率。對溫和刺探沒有反應的幼蟲視為死亡。置於含有大豆品件pDAB9582.816.15.1之植物材料上之昆蟲的死亡率(草地貪夜娥之死亡率為86%),顯著地比置於Maverick對照組上之昆蟲的死亡率高(草地貪夜娥具之死亡率為0%)。表10。目視評分被昆蟲吃掉之葉子圓盤之百分比,評估葉子損害。從此葉子生物分析獲得之結果指出,曝露於大豆品件pDAB9582.816.15.1之草地貪夜娥幼蟲,葉子損害以及昆蟲存活(亦即較高的昆蟲死亡率)持續顯著地低於曝露於Maverick對照植物之草地貪夜娥幼蟲。
評估第一田野試驗中之大豆品件pDAB9582.816.15.1之效率(表10中之第一田野試驗)。將含有大豆品件pDAB9582.816.15.1之T4世代之大豆種子,以及未轉形之大豆品種Maverick之種子,依隨機完全區組設計種植,二個複本。各複本地塊包含2排,長2.3m間隔0.76m。每排種40顆種子,一排內間隔5.7cm。種下試驗品,一複本以411g ae/ha之比率噴灑上固殺草除草劑,另一複本沒有,在生物分析方面,僅Maverick植株之未噴灑的複本存活。
採集在R2生長階段之大豆植株之葉子供生物分析。在採集葉子供生物分析前數天,在相同植株之一結節下之葉子(較老的葉子)上打洞,然後使用與範例2中所述之相似的ELISA方法,分析Cry 1Ac以及Cry 1F蛋白之表達( 12)。切下顯示出沒有損害或變色以及在分生組織下四個結節處之完全展開的主幹三出複葉,供生物分析。從每一個複本之15個植株之每一個上,切下單一三出複葉。將該等葉子貯存在15℃下以及進行生物分析。切下各三出複葉之小葉,且從各大豆品件pDAB9582.816.15.1之小葉之中心切下單一個3.33cm直徑之圓盤,以及從各Maverick之小葉中切下二個3.33cm直徑之圓盤。將此等葉子圓盤個別置於32孔塑膠生物分析盤上分開且標籤的孔中;各孔含有瓊脂薄層。將單一隻新生大豆尺夜娥幼蟲、新生大豆夜娥幼蟲或新生草地貪夜娥幼蟲置於各葉子圓盤上。用具有穿孔以提供換氣之黏著性塑膠板封住該生物分析盤。針對各物種,使30隻幼蟲曝露於從大豆品件pDAB9582.816.15.1而來之葉子組織中,以及30隻幼蟲曝露於從Maverick而來之葉子組織中。令帶有感染的葉子圓盤之塑膠盤保持在25℃以及40%相對濕度(RH)下。7天後,測定幼蟲是死亡的(當用尖銳探針刺激時沒有移動)、發育不良(比保持在Maverick葉子上之幼蟲尺寸小)或存活的(尺寸正常且對刺激有反應)。
評估感染後之死亡率。置於含有大豆品件pDAB9582.816.15.1之植物材料上之昆蟲的死亡率(草地貪夜娥之死亡率為97%、大豆夜娥之死亡率為100%,而大豆尺夜娥之死亡率為100%),顯著地大於置於Maverick對照組之昆蟲。表10。從此葉子生物分析獲得之結果指出,曝露出大豆品件pDAB9582.816.15.1之草地貪夜娥、大豆夜娥以及大豆尺夜娥幼蟲之昆蟲存活率(亦稱作較高的昆蟲死亡 率),持續顯著地低於曝露於Maverick對照植株之草地貪夜娥、大豆夜娥以及大豆尺夜娥幼蟲。
評估在第二分開的田野試驗(表10中之第二田野試驗)中之大豆品件pDAB9582.816.15.1之效率。將含有大豆品件pDAB9582.816.15.1之T4世代之大豆種子,以及未轉形之大豆品種Maverick之種子,依隨機完全區組設計種植,四個複本。各複本地塊包含4排,長6.1m,間隔1.02m。每排種有160顆種子,一排內間隔3.8cm。在試驗地塊之間以及周圍,種上額外的排,以吸引天然昆蟲害蟲族群。
採集在R2生長階段之大豆植株之葉子供生物分析。從相同植株上採集在R5生長階段之大豆植株之葉子供額外的生物分析。在採集葉子供各生物分析之前幾天,在相同植株上一結節下之葉子上打洞,然後使用與範例2中所述相似之ELISA方法,分析Cry 1Ac以及Cry 1F蛋白(表12)。切下顯示出沒有損害或變色以及在分生組織下四個結節處之完全展開的主幹三出複葉,供生物分析。從每一個複本之15個植株之每一個上,切下單一三出複葉;每複本4個三出複葉用於大豆尺夜娥之生物分析,每複本4個三出複葉用於草地貪夜娥之生物分析,每複本4個三出複葉用於煙芽夜娥之生物分析以及每複本3個三出複葉用於大豆夜娥之生物分析。切下各三出複葉之二側的小葉,置於分開標籤,含有薄瓊脂層之培養皿中。將二個第二齡期的大豆尺夜娥、大豆夜娥、草地貪夜娥或煙芽夜娥功蟲,置於每一個小葉上。在大豆尺夜娥、草地貪夜娥以及煙芽夜娥方面, 64隻幼蟲曝露於從大豆品件pDAB9582.816.15.1以及Maverick植株而來之葉子組織。在大豆夜娥方面,48隻幼蟲曝露於從大豆品件pDAB9582.816.15.1以及Maverick對照植株而來之葉子組織。用蓋子蓋住帶有感染的小葉之培養皿,且保持在25℃以及40% RH下。4天後,測定幼蟲是死亡(用尖銳的探針刺激時不會移動)、垂死(對刺激有反應,但放置成側躺時,無法自己扶正)、發育不良(尺寸比保持在Maverick葉子上的幼蟲小)或存活(尺寸正常且對刺激有反應)。
除了草地貪夜娥以及煙芽夜娥外,在R5階段之生物分析程序與在R2階段之程序相同,從各三出複葉中切下全部三個小葉,在各小葉上放置單一、第二齡期幼蟲。此產生48隻草地貪夜娥以及煙芽夜娥幼蟲曝露於從大豆品件pDAB9582.816.15.1以及Maverick而來之小葉。
評估進行R2以及R5二者之葉子生物分析時,感染後之死亡率。置於含有大豆品件pDAB9582.816.15.1之植物材料上之昆蟲的死亡率(草地貪夜娥R2葉子生物分析之死亡率為69%,R5葉子生物分析之死亡率為54%;大豆夜娥R2以及R5葉子生物分析二者之死亡率為100%;大豆夜娥R2葉子生物分析之死亡率為95%,R5葉子生物分析之死亡率為70%;以及大豆尺夜娥R2葉子生物分析之死亡率為100%,R5葉子生物分析之死亡率為98%),顯著地大於置於Maverick對照組上之昆蟲。表10。從此葉子生物分析獲得之結果指出,曝露於大豆品件pDAB9582.816.15.1之草地貪夜娥、大豆夜娥、大豆尺夜娥以及煙芽夜娥幼蟲之昆蟲存 活率(亦稱為較高的昆蟲死亡率),持續顯著地低於曝露於Maverick對照植株之草地貪夜娥、大豆夜娥、大豆尺夜娥以及煙芽夜娥幼蟲。
採集在第二田野試驗中生長之大豆品件pDAB9582.816.15.1以及Maverick大豆植株之大豆豆莢,然後用煙芽夜娥幼蟲進行生物分析。從每一個複本地塊內,六個隨機選取之植株上,切下在分生組織上最上面的二個豆莢。將每一組之豆莢置於塑膠培養皿上,然後用單一第二齡期煙芽夜娥幼蟲感染。將實驗設計成24隻幼蟲可曝露於從已經從大豆品件pDAB9582.816.15.1以及Maverick對照植株採集下來之豆莢組中。使培養皿保持在與之前所述切下的葉子之生物分析相同的條件下。2天後,使用如葉子生物分析所述之程序,觀察煙芽夜娥幼蟲之存活率。
測定感染大豆豆莢後之死亡率。置於含有大豆品件pDAB9582.816.15.1之植物材料上之昆蟲的死亡率(煙芽夜娥之大豆豆莢生物分析之死亡率為50%),顯著地大於置於Maverick對照豆莢上之昆蟲。表10。從此在田野生長之大豆豆莢上分析獲得之結果指出,曝露大豆品件pDAB9582.816.15.1之煙芽夜娥幼蟲之昆蟲存活率(亦稱為較高的昆蟲死亡率),持續顯著地低於曝露於Maverick對照植株之煙芽夜娥幼蟲。
在田野中,用煙芽夜娥卵感染大豆品件pDAB9582.816.15.1以及Maverick對照大豆植株之終端(帶有二至三個展開的三出複葉以及未成熟豆莢叢之主幹的最 上面部分)。將帶有大約20個從煙芽夜娥而來之卵之紗布之部分,置於在每一個複本地塊中隨機選取之5個植株之終端(測試植株全部有20株),然後用塑膠紙夾固定。將布製網袋置於終端上,然後用扣式扭線環將該網袋之開口固定在主幹之四周。每天監控代表網袋組中卵的孵化。所有卵已經都孵化後,計數繫在5個植株上之各網袋中活的煙芽夜娥幼蟲之數量。
置於大豆品件pDAB9582.816.15.1之大豆終端之活的昆蟲之平均數量,顯著地小於(煙芽夜娥之大豆終端生物分析之昆蟲之數量為0.00)置於Maverick對照組之終端上之昆蟲。表11。從此分析法獲得之結果指出,曝露於大豆品件pDAB9582.816.15.1之煙芽夜娥幼蟲之昆蟲存活數目,持續顯著地低於曝露於Maverick對照植株之煙芽夜娥幼蟲之昆蟲存活數目。
在4周期間,一周計數試驗地塊中原生大豆尺夜娥一次。在各地塊中間二排取樣。將91cm×91cm白布置於該中間二排之間,隨機選取之位置。將鄰近薄布一邊緣之排區中之植株折至布上,然後搖動15下,以趕出任何存在之昆蟲。在該布之對面邊緣之排上重複此方法。計數幼蟲之物種以及尺寸:幼蟲長度<6mm計數為小型幼蟲,而幼蟲長度6mm計數為大型幼蟲。在進行下一個測量之前,從布上移除所有的昆蟲。將布移至該二個中間排之間第二個隨機選擇的位置,重複該採樣方法,在各採樣日,每一地塊產生二個二次抽樣本。
在大豆品件pDAB9582.816.15.1之1.82m排上計數之昆蟲之平均數目(大豆尺夜娥之昆蟲數為0.00),顯著地低於在Maverick對照組之1.82m排上計數之昆蟲數。表11。從此分析法得到之結果指出,大豆品件pDAB9582.816.15.1上大豆尺夜娥之感染,顯著地低於曝露於Maverick對照植株之大豆尺夜娥之感染。
從此等複本實驗獲得之結果指出,針對所有測試之昆蟲物種,曝露於大豆品件pDAB9582.816.15.1之鱗翅類幼蟲之存活率,持續顯著地低於曝露於Maverick對照植株之幼蟲。因此,大豆品件pDAB9582.816.15.1對此廣範圍之害蟲具有殺蟲活性。
範例7:大豆品件pDAB9582.816.15.1之預測序列
序列辨識編號14提供大豆品件pDAB9582.816.15.1之預測序列。此序列含有5'基因組側翼序列、pDAB9582之預測的T股插入物以及3'基因組側翼序列。關於序列辨識編號14,殘基1-1273是5'基因組側翼序列、殘基1274-13658是pDAB9582 T股插入物之殘基、13659-13821是pDAB9582質體重排之殘基以及殘基13822-15170是3'側翼序列。該插入物之5'端之接合序列或轉換因此發生在序列辨識編號14之殘基1273-1274。該插入物3'端之接合序列或轉換,因此發生在序列辨識編號14之殘基13658-13659。
應注意,序列辨識編號14是大豆品件pDAB9582.816.15.1之預測的代表,由序列辨識編號1、序列辨識編號2以及pDAB9582之T股線性組合而得。大豆品件pDAB9582.816.15.1之T股插入物之實際序列,可能稍微偏離序列辨識編號14。在導入T股插入物至植物細胞之基因組中之轉形過程期間,常會發生一些插入物之缺失或其它改 變。此外,PCR擴增之誤差亦可能發生,其可能導致微小的序列誤差。例如,在此所列出之側翼序列之測定,係藉由從大豆基因組DNA產生擴增子,然後選殖以及定序該擴增子。以此方法產生以及測定之序列,常發現些微的差異以及微小的不相符,因為需要許多回的擴增,才能從基因組DNA中產生足夠供定序之擴增子。熟悉此技藝之人士當了解以及注意到,任何由於此類一般定序誤差或不相符所需之調整,均落在本主題揭示內容之範疇內。因此,在此提供之質體序列之相關節段,可能包含一些微小的差異。因此,包含具有與該主題插入序列一些範圍一致之多核苷酸之植物,係落在本主題揭示內容之範疇內。與序列辨識編號14之序列一致,可為具有與在此舉例或所述之序列至少90%、91%、92%、93%、94%、95%、96%、97%、98%、99%序列一致之多核苷酸序列。具有側翼序列加上插入序列之序列,可參考寄存之種子確認。因此可鑑定出序列辨識編號14與大豆品件pDAB9582.816.15.1之實際T股插入物間之一些差異。
範例8:品件專一性TaqMan®分析
品件專一性TAQMAN®分析係建立用以檢測存在大豆品件pDAB9582.816.15.1,以及用以測定育種族群中合子狀態之植物。大豆品件pDAB9582.816.15.1含有雙元載體pDAB9582之T股(圖1)。在專一性檢測大豆品件pDAB9582.816.15.1方面,依照位在5’(序列辨識編號1)或3’(序列辨識編號2)插入物至植物接合點之DNA序列(圖4),設 計專一性TAQMAN引子以及探針。一種針對大豆品件pDAB9582.816.15.1之品件專一性分析,係設計成用二個引子以及一利用在其5’端含有FAM受體之Applied Biosystems(ABI)合成之標的專一性MGB探針,專一性檢測139bp之跨越3’整合接合點之DNA片段。以此對大豆品件pDAB9582.816.15.1具專一性之TAQMAN®檢測方法,對7個含有Cry1Ac以及Cry1F PTUs之不同的品件,以及一具有呈雙股形式之大豆專一性內源性參考基因,GMFL01-25-J19(Glycine max cDNA,GenBank:AK286292.1)之對照非轉基因大豆品件(Maverick)進行測試。
範例8.1:gDNA之分離
於此研究中測試7個不同大豆品件以及非轉基因大豆品種之gDNA樣本。使用修飾的QIAGEN MAGATTRACT PLANT DNA KIT®(Qiagen,Valencia,CA),萃取基因組DNA。使用新鮮大豆葉子圓盤,每樣本8個,進行gDNA萃取。用無去氧核糖核酸酶(Dnase)之水稀釋樣本,產生濃度約10ng/μL供此研究。
範例8.2:TaqMan®分析以及結果
設計用於大豆品件pDAB9582.816.15.1專一性TAQMAN®分析之專一性TAQMAN®引子以及探針。可用以下列出之此等試劑之條件,來檢測大豆品件pDAB9582.816.15.1內之轉基因。表13列出研發用於專一性檢測大豆品件pDAB9582.816.15.1之專一性引子以及探針 序列。
用於擴增之多樣PCR之條件如下:1X Roche PCR緩衝液、0.4μM品件專一性正向引子、0.4μM品件專一性反向引子、0.4μM引子GMS116 F、0.4μM引子GMS116 R、0.2μM品件專一性探針、0.2μM GMS116探針、0.1% PVP、6-20ng gDNA,配製成全部反應物10μL。使用下列條件擴增該混合物:i)95℃,10分鐘、ii)95℃,10秒、iii)60℃,40秒、iv)重複步驟ii-iii,40個周期、v)保持在40℃。在ROCHE LIGHTCYCLER 480®上進行即時PCR。數據分析係根據由LIGHTCYCLER 480®軟體測得之跨越點(crossing point;Cp值)之測量值,其是螢光到達其最大值之速率之PCR周期數。
以此用於大豆品件pDAB9582.816.15.1之 TAQMAN®檢測方法,對7個含有Cry1Ac以及Cry1F PTUs之不同的品件,以及一具有呈雙股形式之大豆專一性內源性參考基因,GMFL01-25-J19(GenBank:AK286292.1)之非轉基因大豆品件進行測試。該分析法可專一性地檢測大豆品件pDAB9582.816.15.1,但不會從對照組(即,含有Cry1Ac以及Cry1F PTUs之不同的品件以及非轉基因大豆品種)產生或擴增任何偽陽性結果。該品件專一性引子以及探針可用於檢測大豆品件pDAB9582.816.15.1,且此等條件以及試劑可應用於合子分析。
在本揭示內容之圖例說明以及說明原理之後,對熟悉此技術之人士而言,很清楚地,可在不逸離此原理之情況下,修改該揭示內容之排列以及詳細內容。吾人請求落在所附申請專利範圍之技術思想範疇內之所有的修改物。
在此說明書中所引述之全部的公開案以及公開的專利文獻,均在此併入本案以為參考,就好像每一個別的公開案或專利申請案,明確地且個別地指示併入本案以為參考。
<110> 陶氏農業科學公司
<120> 大豆品件pDAB9582.816.15.1檢測方法
<130> 71237
<160> 20
<170> PatentIn version 3.5
<210> 1
<211> 1577
<212> DNA
<213> 大豆(Glycine max)
<400> 1
<210> 2
<211> 1687
<212> DNA
<213> 大豆(Glycine max)
<400> 2
<210> 3
<211> 12381
<212> DNA
<213> 人工合成序列
<220>
<223> pDAB9582之質體序列
<400> 3
<210> 4
<211> 30
<212> DNA
<213> 人工合成序列
<220>
<223> 81615_FW2引子
<400> 4
<210> 5
<211> 27
<212> DNA
<213> 人工合成序列
<220>
<223> 81615_RV1引子
<400> 5
<210> 6
<211> 25
<212> DNA
<213> 人工合成序列
<220>
<223> 81615_RV2引子
<400> 6
<210> 7
<211> 28
<212> DNA
<213> 人工合成序列
<220>
<223> 81615_RV3引子
<400> 7
<210> 8
<211> 29
<212> DNA
<213> 人工合成序列
<220>
<223> 5'IREnd-01引子
<400> 8
<210> 9
<211> 30
<212> DNA
<213> 人工合成序列
<220>
<223> 5'IREnd-01引子
<400> 9
<210> 10
<211> 29
<212> DNA
<213> 人工合成序列
<220>
<223> AtUbi10RV1引子
<400> 10
<210> 11
<211> 28
<212> DNA
<213> 人工合成序列
<220>
<223> AtUbi10RV2引子
<400> 11
<210> 12
<211> 20
<212> DNA
<213> 人工合成序列
<220>
<223> 3'PATEnd05引子
<400> 12
<210> 13
<211> 20
<212> DNA
<213> 人工合成序列
<220>
<223> 3'PATEnd06引子
<400> 13
<210> 14
<211> 15170
<212> DNA
<213> 人工合成序列
<220>
<223> 大豆品件9582.814.15.1之預期序列
<400> 14
<210> 15
<211> 19
<212> DNA
<213> 人工合成序列
<220>
<223> 81615_3'F引子
<400> 15
<210> 16
<211> 26
<212> DNA
<213> 人工合成序列
<220>
<223> 81615_3'R引子
<400> 16
<210> 17
<211> 17
<212> DNA
<213> 人工合成序列
<220>
<223> 81615_3'P探針
<400> 17
<210> 18
<211> 24
<212> DNA
<213> 人工合成序列
<220>
<223> GMS116 F引子
<400> 18
<210> 19
<211> 23
<212> DNA
<213> 人工合成序列
<220>
<223> GMS116 R引子
<400> 19
<210> 20
<211> 23
<212> DNA
<213> 人工合成序列
<220>
<223> GMS116探針
<400> 20

Claims (8)

  1. 一種在包含大豆DNA之樣本中檢測大豆品件pDAB9582.816.15.1之方法,該方法包含:(a)使該樣本與一長度至少20個鹼基對之第一引子及一長度至少20個鹼基對之第二引子接觸,該第一引子會選擇性地結合至在序列辨識編號1之鹼基對1-1273內的側翼序列或其互補序列,而該第二引子會選擇性地結合至在序列辨識編號1之鹼基對1274-1577內的插入序列或其互補序列;並且分析在該等引子間產生的擴增子;以及(b)使該樣本與一長度至少20個鹼基對之第一引子以及一長度至少20個鹼基對之第二引子接觸,該第一引子會選擇性地結合至在序列辨識編號2之鹼基對1-175內的插入序列或其互補序列,而該第二引子會選擇性地結合至在序列辨識編號2之鹼基對316-1687內的側翼序列或其互補序列;並且分析在該等引子間產生之擴增子。
  2. 一種在一大豆樣本中檢測大豆品件pDAB9582.816.15.1之方法,該方法包含:a.從該大豆樣本獲得DNA;b.使該DNA與長度為至少20個鹼基對的一對引子接觸;該第一引子結合在序列辨識編號1之鹼基對1-1273內的一片段或其互補序列,或是結合在序列辨識編號2 之鹼基對316-1687內的一片段或其互補序列;該第二引子結合在序列辨識編號1之鹼基對1274-1577內的一片段或其互補序列,或是結合在序列辨識編號2之鹼基對1-175內一片段或其互補序列;c.以該對引子對該基因組進行聚合酶鏈反應;以及d.分析在該等引子間產生之擴增子。
  3. 如請求項1或2之方法,其中該第一引子及該第二引子係選自於由序列辨識編號4-13所組成之群組。
  4. 如請求項1或2之方法,其中該擴增子包含一選自於由下列所組成之群組的一核酸序列:序列辨識編號1之鹼基對1258-1288、序列辨識編號1之鹼基對1223-1323、序列辨識編號1之鹼基對1173-1373、序列辨識編號1之鹼基對1073-1473、序列辨識編號2之鹼基對160-190、序列辨識編號2之鹼基對125-225及序列辨識編號2之鹼基對75-275。
  5. 一種在一大豆樣本中鑑定品件pDAB9582.816.15.1之方法,該方法包含以一品件探針檢測品件pDAB9582.816.15.1之一接合序列,該品件探針與該接合序列專一性地結合,該接合序列包含序列辨識編號1之殘基1263-1284,或序列辨識編號2之殘基165-186。
  6. 如請求項5之方法,該方法進一步包含以至少二個品件引子,利用聚合酶鏈反應擴增來自存在於該樣本之一核酸的一DNA片段;其中一第一品件引子專一性地結合在序列辨識編號14內的一插入序列或其互補序列,以及一 第二品件引子專一性地結合在一側翼序列內的一序列,該側翼序列選自於由序列辨識編號1及2所組成之群組。
  7. 如請求項6之方法,其中該等品件引子包含序列辨識編號15及16,且該品件探針包含序列辨識編號17。
  8. 如請求項6之方法,進一步包含以一對含有序列辨識編號18及19的參考引子,利用聚合酶鏈反應擴增來自該樣本之一參考基因;以一含有序列辨識編號20的參考探針檢測該參考基因;以及藉由比較該品件探針及該參考探針的螢光比例,來測定該品件pDAB9582.816.15.1之合子。
TW102122533A 2012-06-25 2013-06-25 大豆品件pDAB9582.816.15.1檢測方法 TWI597365B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201261663687P 2012-06-25 2012-06-25

Publications (2)

Publication Number Publication Date
TW201404887A TW201404887A (zh) 2014-02-01
TWI597365B true TWI597365B (zh) 2017-09-01

Family

ID=49783787

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102122533A TWI597365B (zh) 2012-06-25 2013-06-25 大豆品件pDAB9582.816.15.1檢測方法

Country Status (10)

Country Link
US (1) US9863008B2 (zh)
CN (1) CN104718293B (zh)
AR (1) AR091549A1 (zh)
BR (1) BR112014032442B8 (zh)
CA (1) CA2874821C (zh)
CL (1) CL2014003504A1 (zh)
TW (1) TWI597365B (zh)
UY (1) UY34878A (zh)
WO (1) WO2014004472A1 (zh)
ZA (1) ZA201409170B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106086010B (zh) * 2016-06-18 2019-10-18 北京大北农科技集团股份有限公司 用于检测除草剂耐受性大豆植物dbn9008的核酸序列及其检测方法
CN106119245B (zh) * 2016-06-18 2019-10-18 北京大北农科技集团股份有限公司 用于检测除草剂耐受性大豆植物dbn9001的核酸序列及其检测方法
CN106086011B (zh) * 2016-06-18 2019-10-18 北京大北农科技集团股份有限公司 用于检测除草剂耐受性大豆植物dbn9004的核酸序列及其检测方法
US20220198360A1 (en) * 2019-04-16 2022-06-23 Kao Corporation Method of predicting soybean yield

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7179965B2 (en) 2004-03-26 2007-02-20 Dow Agrosciences Llc Cry1F and Cry1Ac transgenic cotton lines and event-specific identification thereof
WO2006029076A2 (en) * 2004-09-08 2006-03-16 J.R. Simplot Company Plant-specific genetic elements and transfer cassettes for plant transformation
PT1885176T (pt) * 2005-05-27 2016-11-28 Monsanto Technology Llc Evento mon89788 de soja e métodos para a sua deteção
MX369292B (es) 2010-12-03 2019-11-04 Dow Agrosciences Llc Caso de tolerancia a herbicida 8264.44.06.1 agrupado, lineas de frijol de soya transgenicas relacionadas y deteccion de las mismas.
BR102012019436B8 (pt) 2011-07-26 2022-10-11 Dow Agrosciences Llc Método de detecção do evento de soja pdab9582.814.19.1
US9551024B2 (en) * 2012-01-23 2017-01-24 Dow Agrosciences Llc Cotton event pDAB4468.18.07.1 detection method
KR102085131B1 (ko) 2012-06-25 2020-03-05 다우 아그로사이언시즈 엘엘씨 곤충 저항성 및 제초제 내성 대두 이벤트 pDAB9582.816.15.1

Also Published As

Publication number Publication date
CA2874821A1 (en) 2014-01-03
US20150337394A1 (en) 2015-11-26
CA2874821C (en) 2021-09-07
BR112014032442B8 (pt) 2023-05-16
CN104718293B (zh) 2022-04-12
TW201404887A (zh) 2014-02-01
US9863008B2 (en) 2018-01-09
AR091549A1 (es) 2015-02-11
ZA201409170B (en) 2016-08-31
BR112014032442B1 (pt) 2022-05-10
CL2014003504A1 (es) 2015-02-27
UY34878A (es) 2014-01-31
WO2014004472A1 (en) 2014-01-03
BR112014032442A2 (pt) 2017-08-01
CN104718293A (zh) 2015-06-17

Similar Documents

Publication Publication Date Title
RU2627161C2 (ru) УСТОЙЧИВЫЙ К НАСЕКОМЫМ-ВРЕДИТЕЛЯМ И ТОЛЕРАНТНЫЙ К ГЕРБИЦИДАМ СЕЛЕКЦИОННЫЙ ГИБРИД ТРАНСФОРМАНТА СОИ pDAB9582.814.19.1 и pDAB4468.04.16.1
CA2843172C (en) Soybean event pdab9582.814.19.1 detection method
JP6778235B2 (ja) 昆虫抵抗性および除草剤耐性ダイズイベントpDAB9582.816.15.1
TWI597365B (zh) 大豆品件pDAB9582.816.15.1檢測方法