TWI593090B - Pixel structure, method for manufacturing the same, and thin film transistor - Google Patents
Pixel structure, method for manufacturing the same, and thin film transistor Download PDFInfo
- Publication number
- TWI593090B TWI593090B TW104143580A TW104143580A TWI593090B TW I593090 B TWI593090 B TW I593090B TW 104143580 A TW104143580 A TW 104143580A TW 104143580 A TW104143580 A TW 104143580A TW I593090 B TWI593090 B TW I593090B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- insulating layer
- gate
- drain
- source
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 48
- 239000010409 thin film Substances 0.000 title claims description 19
- 238000004519 manufacturing process Methods 0.000 title description 16
- 239000000758 substrate Substances 0.000 claims description 87
- 238000002161 passivation Methods 0.000 claims description 80
- 229920002120 photoresistant polymer Polymers 0.000 claims description 43
- 239000004065 semiconductor Substances 0.000 claims description 32
- 229910052751 metal Inorganic materials 0.000 claims description 22
- 239000002184 metal Substances 0.000 claims description 22
- 238000000059 patterning Methods 0.000 claims description 18
- 239000003990 capacitor Substances 0.000 claims description 13
- 238000005530 etching Methods 0.000 claims description 8
- 239000010410 layer Substances 0.000 description 503
- 239000011241 protective layer Substances 0.000 description 30
- 230000003071 parasitic effect Effects 0.000 description 18
- 230000002829 reductive effect Effects 0.000 description 12
- 230000036961 partial effect Effects 0.000 description 8
- 230000000873 masking effect Effects 0.000 description 7
- 238000009413 insulation Methods 0.000 description 6
- 239000004973 liquid crystal related substance Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 3
- OFIYHXOOOISSDN-UHFFFAOYSA-N tellanylidenegallium Chemical compound [Te]=[Ga] OFIYHXOOOISSDN-UHFFFAOYSA-N 0.000 description 2
- 238000004380 ashing Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 108091008695 photoreceptors Proteins 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78606—Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/136213—Storage capacitors associated with the pixel electrode
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/136227—Through-hole connection of the pixel electrode to the active element through an insulation layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1214—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66742—Thin film unipolar transistors
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Mathematical Physics (AREA)
- Optics & Photonics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Thin Film Transistor (AREA)
- Liquid Crystal (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Description
本發明是有關於一種畫素結構、其製作方法與薄膜電晶體。 The present invention relates to a pixel structure, a method of fabricating the same, and a thin film transistor.
家用電器設備的各式電子產品之中。其中,應用薄膜電晶體(thin film transistor;TFT)的液晶顯示器已經被廣泛地使用。薄膜電晶體式的液晶顯示器主要是由薄膜電晶體陣列基板、彩色濾光陣列基板和液晶層所構成,其中薄膜電晶體陣列基板上設置有多個以陣列排列的薄膜電晶體,以及,與每一個薄膜電晶體對應配置的畫素電極(pixel electrode),以構成畫素結構。對於所設置的薄膜電晶體中,薄膜電晶體包含閘極、汲極、源極與通道層,以構成畫素結構中的開關元件。 Among the various electronic products of household appliances and equipment. Among them, a liquid crystal display using a thin film transistor (TFT) has been widely used. The thin film transistor type liquid crystal display is mainly composed of a thin film transistor array substrate, a color filter array substrate and a liquid crystal layer, wherein the thin film transistor array substrate is provided with a plurality of thin film transistors arranged in an array, and A thin film transistor corresponds to a configured pixel electrode to form a pixel structure. In the provided thin film transistor, the thin film transistor includes a gate, a drain, a source and a channel layer to constitute a switching element in the pixel structure.
然而,於薄膜電晶體的結構之中,由於會有寄生電容產生於其中的問題,畫素結構的效能將可能會受到此寄生電容的影響。進一步而言,當薄膜電晶體結構中有寄生電容產生時,液晶顯示器的畫面品質將可能會受影響,例如,寄生電容將可能造成液晶顯示畫面有亮暗不均的問題。 However, among the structures of thin film transistors, the performance of the pixel structure may be affected by this parasitic capacitance due to the problem that parasitic capacitance is generated therein. Further, when parasitic capacitance is generated in the thin film transistor structure, the picture quality of the liquid crystal display may be affected. For example, the parasitic capacitance may cause a problem of uneven brightness and darkness of the liquid crystal display.
本發明之一實施方式提供一種畫素結構,於此畫素結構中,可透過第二絕緣層的設置而降低源極與汲極的其中一者與閘極之間所產生的寄生電容,藉以降低饋通電壓與閘極負載,以使應用畫素結構的顯示面板可以有更佳的品質。 An embodiment of the present invention provides a pixel structure in which a parasitic capacitance generated between one of a source and a drain and a gate is reduced by a second insulating layer. Reduce the feedthrough voltage and gate load so that the display panel with pixel structure can have better quality.
本發明之一實施方式提供一種畫素結構,包含基板、閘極、通道層、第一絕緣層、源極、汲極與第二絕緣層。閘極設置於基板上。通道層設置於基板上。第一絕緣層設置於閘極與通道層之間。源極電性連接於通道層。汲極電性連接於通道層。第二絕緣層設置於垂直投影落於通道層內之源極與汲極的其中一者之一部分與閘極之間,其中垂直投影落於通道層內之源極與汲極的其中一者之一部分與閘極之間的垂直距離為第一距離,而垂直投影落於通道層內之源極與汲極的其中另一者之一部分與閘極之間的垂直距離為第二距離,其中第一距離至少包含第二絕緣層的厚度,且第一距離大於第二距離。 One embodiment of the present invention provides a pixel structure including a substrate, a gate, a channel layer, a first insulating layer, a source, a drain, and a second insulating layer. The gate is disposed on the substrate. The channel layer is disposed on the substrate. The first insulating layer is disposed between the gate and the channel layer. The source is electrically connected to the channel layer. The drain is electrically connected to the channel layer. The second insulating layer is disposed between the portion of one of the source and the drain which is perpendicularly projected in the channel layer and the gate, wherein the vertical projection falls on one of the source and the drain of the channel layer. The vertical distance between a portion and the gate is a first distance, and the vertical distance between the source and the drain of one of the source and the drain in the channel layer is a second distance, wherein A distance includes at least a thickness of the second insulating layer, and the first distance is greater than the second distance.
於部分實施方式中,通道層至閘極的垂直投影落於閘極之內。 In some embodiments, the vertical projection of the channel layer to the gate falls within the gate.
於部分實施方式中,第一絕緣層覆蓋閘極背向基板之表面,且第二絕緣層設置於垂直投影落於通道層內之源極與汲極的其中一者之一部分與部分通道層之間。 In some embodiments, the first insulating layer covers the surface of the gate facing away from the substrate, and the second insulating layer is disposed on a portion of the source and the drain and a portion of the channel layer that are vertically projected in the channel layer. between.
於部分實施方式中,第二絕緣層設置於部分汲極與部分通道層之間,且第二絕緣層之相對兩表面分別被部分汲極與部分通道層完全覆蓋。 In some embodiments, the second insulating layer is disposed between the partial drain and the partial channel layer, and the opposite surfaces of the second insulating layer are completely covered by the partial drain and the partial channel layer, respectively.
於部分實施方式中,通道層、源極、汲極與第二絕緣層位於基板與第一絕緣層之間,且閘極設置於第一絕緣層背向基板之表面。 In some embodiments, the channel layer, the source, the drain, and the second insulating layer are located between the substrate and the first insulating layer, and the gate is disposed on a surface of the first insulating layer facing away from the substrate.
於部分實施方式中,畫素結構更包含遮蔽層。遮蔽層位於基板與通道層之間,其中通道層至遮蔽層的垂直投影落於遮蔽層之內。 In some embodiments, the pixel structure further comprises a masking layer. The shielding layer is located between the substrate and the channel layer, wherein a vertical projection of the channel layer to the shielding layer falls within the shielding layer.
於部分實施方式中,第二絕緣層設置於第一絕緣層朝向源極與汲極的其中一者與朝向通道層的表面上,且第二絕緣層至通道層的垂直投影落於源極與汲極的其中一者至通道層的垂直投影內。 In some embodiments, the second insulating layer is disposed on the first insulating layer toward one of the source and the drain and the surface facing the channel layer, and the vertical projection of the second insulating layer to the channel layer falls on the source and One of the bungee poles is within the vertical projection of the channel layer.
於部分實施方式中,第二絕緣層設置於第一絕緣層背向源極與汲極的其中一者與背向通道層的表面上,且第二絕緣層至通道層的垂直投影落於源極與汲極的其中一者至通道層的垂直投影內。 In some embodiments, the second insulating layer is disposed on a surface of the first insulating layer facing away from the source and the drain and the back channel layer, and the vertical projection of the second insulating layer to the channel layer falls on the source One of the pole and the bungee is within the vertical projection of the channel layer.
於部分實施方式中,第二絕緣層之厚度為300奈米(nm)至400奈米(nm)。 In some embodiments, the second insulating layer has a thickness of from 300 nanometers (nm) to 400 nanometers (nm).
於部分實施方式中,畫素結構更包含閘極驅動電路(gate on array;GOA)單元。閘極驅動電路包含第一導電單元與第二導電單元。第一導電單元設置於基板上,並電性連接至閘極。第二導電單元設置於第一導電單元之上。 In some embodiments, the pixel structure further includes a gate on array (GOA) unit. The gate driving circuit includes a first conductive unit and a second conductive unit. The first conductive unit is disposed on the substrate and electrically connected to the gate. The second conductive unit is disposed above the first conductive unit.
於部分實施方式中,畫素結構更包含鈍化層與畫素電極。鈍化層位於第一絕緣層、通道層、第二絕緣層、源極與汲極之上。鈍化層具有通孔,以至少暴露部分汲極。畫素電極位於鈍化層上,並透過通孔與汲極電性連接。畫素電極、汲 極、鈍化層與閘極於基板的垂直投影至少部分重疊。 In some embodiments, the pixel structure further includes a passivation layer and a pixel electrode. The passivation layer is located on the first insulating layer, the channel layer, the second insulating layer, the source and the drain. The passivation layer has via holes to expose at least a portion of the drain. The pixel electrode is located on the passivation layer and is electrically connected to the drain through the through hole. Pixel electrode, 汲 The vertical projection of the passivation layer and the gate on the substrate at least partially overlaps.
本發明之一實施方式提供一種畫素結構的製作方法,包含以下步驟。形成閘極於基板上。形成第一絕緣層於基板與閘極上。形成半導體層於第一絕緣層上,並圖案化半導體層成通道層,其中通道層具有源極連接部與汲極連接部。形成第二絕緣層,並圖案化第二絕緣層,以使圖案化的第二絕緣層至通道層的垂直投影落於源極連接部與汲極連接部的其中一者之內。形成金屬層於第一絕緣層、通道層與第二絕緣層上,並將金屬層圖案化為源極與汲極,其中源極電性連接源極連接部,汲極電性連接汲極連接部,且第二絕緣層位於源極與汲極之其中一者與閘極之間。 One embodiment of the present invention provides a method of fabricating a pixel structure, comprising the following steps. A gate is formed on the substrate. A first insulating layer is formed on the substrate and the gate. Forming a semiconductor layer on the first insulating layer and patterning the semiconductor layer into a channel layer, wherein the channel layer has a source connection portion and a drain connection portion. A second insulating layer is formed and the second insulating layer is patterned such that a vertical projection of the patterned second insulating layer to the channel layer falls within one of the source connection and the drain connection. Forming a metal layer on the first insulating layer, the channel layer and the second insulating layer, and patterning the metal layer into a source and a drain, wherein the source is electrically connected to the source connecting portion, and the drain is electrically connected to the drain And a second insulating layer is located between one of the source and the drain and the gate.
於部分實施方式中,圖案化半導體層與圖案化第二絕緣層為透過同一道半階式光罩(half-tone mask)製程完成,且圖案化半導體層與圖案化第二絕緣層之步驟包含以下步驟。形成第二絕緣層於半導體層上,並形成光阻層於第二絕緣層上。透過半階式光罩曝光光阻層,並對光阻層進行顯影製程。進行第一蝕刻製程,以圖案化半導體層與第二絕緣層,並移除部份光阻層,以暴露圖案化的第二絕緣層。進行第二蝕刻製程,以移除部分圖案化的第二絕緣層,並暴露部分通道層。 In some embodiments, the patterned semiconductor layer and the patterned second insulating layer are processed through a same half-tone mask process, and the step of patterning the semiconductor layer and patterning the second insulating layer includes The following steps. Forming a second insulating layer on the semiconductor layer and forming a photoresist layer on the second insulating layer. The photoresist layer is exposed through a half-step mask, and the photoresist layer is developed. A first etching process is performed to pattern the semiconductor layer and the second insulating layer, and a portion of the photoresist layer is removed to expose the patterned second insulating layer. A second etching process is performed to remove the partially patterned second insulating layer and expose a portion of the channel layer.
於部分實施方式中,畫素結構的製作方法更包含以下步驟。形成鈍化層於第一絕緣層、通道層、第二絕緣層、源極與汲極之上。形成通孔於鈍化層之中,以至少暴露部分汲極。形成畫素電極於鈍化層上,並將畫素電極透過通孔與汲極電性連接,其中畫素電極、汲極、鈍化層與閘極於基板的垂直 投影至少部分重疊。 In some embodiments, the method for fabricating the pixel structure further includes the following steps. A passivation layer is formed over the first insulating layer, the channel layer, the second insulating layer, the source and the drain. A via hole is formed in the passivation layer to expose at least a portion of the drain. Forming a pixel electrode on the passivation layer, and electrically connecting the pixel electrode to the drain electrode through the through hole, wherein the pixel electrode, the drain electrode, the passivation layer and the gate are perpendicular to the substrate The projections at least partially overlap.
於部分實施方式中,畫素結構的製作方法更包含形成閘極驅動電路單元,其中形成閘極驅動電路單元之步驟包含以下步驟。形成第一導電單元於基板上,其中第一導電單元與閘極為透過同一道光罩製程形成。形成第二導電單元於第二絕緣層上,其中第二導電單元、源極與汲極為透過同一道光罩製程形成。 In some embodiments, the method for fabricating the pixel structure further comprises forming a gate driving circuit unit, wherein the step of forming the gate driving circuit unit comprises the following steps. Forming a first conductive unit on the substrate, wherein the first conductive unit and the gate are formed through the same mask process. Forming a second conductive unit on the second insulating layer, wherein the second conductive unit, the source and the germanium are formed through the same mask process.
本發明之一實施方式提供一種畫素結構的製作方法,包含以下步驟。形成金屬層於基板上,並將金屬層圖案化為源極與汲極。形成半導體層於源極與汲極上,並圖案化半導體層成通道層。形成第一絕緣層,其中第一絕緣層至通道層的垂直投影與源極與汲極的其中一者之一部份至通道層的垂直投影重疊。形成第二絕緣層於源極、汲極、通道層與第一絕緣層上。形成閘極於第二絕緣層上。 One embodiment of the present invention provides a method of fabricating a pixel structure, comprising the following steps. A metal layer is formed on the substrate, and the metal layer is patterned into a source and a drain. A semiconductor layer is formed on the source and the drain, and the semiconductor layer is patterned into a channel layer. A first insulating layer is formed, wherein a vertical projection of the first insulating layer to the channel layer overlaps with a vertical projection of a portion of one of the source and the drain to the channel layer. A second insulating layer is formed on the source, the drain, the channel layer and the first insulating layer. Forming a gate on the second insulating layer.
於部分實施方式中,畫素結構的製作方法更包含於形成金屬層於基板上之步驟前,形成遮蔽層於基板上,其中通道層至遮蔽層的垂直投影落於遮蔽層之內。 In some embodiments, the method for fabricating the pixel structure further includes forming a shielding layer on the substrate before the step of forming the metal layer on the substrate, wherein a vertical projection of the channel layer to the shielding layer falls within the shielding layer.
本發明之一實施方式提供一種薄膜電晶體,包含基板、閘極、通道層、第一絕緣層、第一電極與第二電極。閘極設置於基板上。通道層設置於基板上。第一絕緣層設置於閘極與通道層之間。第一電極以及第二電極電性連接於通道層,其中第一電極與閘極間形成第一電容,第二電極與閘極間形成第二電容,且第一電容大於第二電容。 One embodiment of the present invention provides a thin film transistor including a substrate, a gate, a channel layer, a first insulating layer, a first electrode, and a second electrode. The gate is disposed on the substrate. The channel layer is disposed on the substrate. The first insulating layer is disposed between the gate and the channel layer. The first electrode and the second electrode are electrically connected to the channel layer, wherein a first capacitor is formed between the first electrode and the gate, a second capacitor is formed between the second electrode and the gate, and the first capacitor is greater than the second capacitor.
於部分實施方式中,第一電容與第二電容之差值 約為10pF至100pF。 In some embodiments, the difference between the first capacitor and the second capacitor It is about 10pF to 100pF.
本發明之一實施方式提供一種薄膜電晶體,包含基板、閘極、通道層、第一絕緣層、第一電極與第二電極。閘極設置於基板上。通道層設置於基板上。第一絕緣層設置於閘極與通道層之間。第一電極以及第二電極電性連接於通道層,其中第一電極與閘極間之最大垂直距離和第二電極與閘極間之最大垂直距離之差值約為300埃至約10000埃。 One embodiment of the present invention provides a thin film transistor including a substrate, a gate, a channel layer, a first insulating layer, a first electrode, and a second electrode. The gate is disposed on the substrate. The channel layer is disposed on the substrate. The first insulating layer is disposed between the gate and the channel layer. The first electrode and the second electrode are electrically connected to the channel layer, wherein a maximum vertical distance between the first electrode and the gate and a maximum vertical distance between the second electrode and the gate are about 300 angstroms to about 10,000 angstroms.
100A、100B、100C、100D、100E、100F‧‧‧畫素結構 100A, 100B, 100C, 100D, 100E, 100F‧‧‧ pixel structure
102‧‧‧基板 102‧‧‧Substrate
104‧‧‧閘極 104‧‧‧ gate
106‧‧‧第一絕緣層 106‧‧‧First insulation
107‧‧‧半導體層 107‧‧‧Semiconductor layer
108‧‧‧通道層 108‧‧‧Channel layer
108d‧‧‧汲極連接部 108d‧‧‧汲pole connection
108s‧‧‧源極連接部 108s‧‧‧Source connection
109‧‧‧輔助層 109‧‧‧Auxiliary layer
110‧‧‧源極 110‧‧‧ source
112‧‧‧汲極 112‧‧‧汲polar
113、113a、113a1、113a2、113b、113b1、113b2‧‧‧光阻層 113, 113a, 113a1, 113a2, 113b, 113b1, 113b2‧‧‧ photoresist layer
114、114a、114a1、114a2、114b、114c‧‧‧第二絕緣層 114, 114a, 114a1, 114a2, 114b, 114c‧‧‧ second insulation layer
115‧‧‧半階式光罩 115‧‧‧Half-step mask
116‧‧‧第一鈍化保護層 116‧‧‧First passivation protective layer
118‧‧‧鈍化層 118‧‧‧ Passivation layer
120‧‧‧通孔 120‧‧‧through hole
122‧‧‧共用電極 122‧‧‧Common electrode
124‧‧‧第二鈍化保護層 124‧‧‧Second passivation protective layer
126‧‧‧畫素電極 126‧‧‧ pixel electrodes
130‧‧‧閘極驅動電路單元 130‧‧‧Gate drive circuit unit
132‧‧‧第一導電單元 132‧‧‧First Conductive Unit
134‧‧‧第二導電單元 134‧‧‧Second conductive unit
140‧‧‧遮蔽層 140‧‧‧Shielding layer
D1‧‧‧第一距離 D1‧‧‧First distance
D2‧‧‧第二距離 D2‧‧‧Second distance
T1、T2‧‧‧厚度 T1, T2‧‧‧ thickness
第1圖繪示本發明第一實施方式之畫素結構的剖面圖。 Fig. 1 is a cross-sectional view showing the pixel structure of the first embodiment of the present invention.
第2A圖至第2K圖繪示第1圖的畫素結構於製作流程之不同階段的剖面圖。 2A to 2K are cross-sectional views showing the pixel structure of Fig. 1 at different stages of the fabrication flow.
第3圖繪示本發明第二實施方式之畫素結構的剖面圖。 Fig. 3 is a cross-sectional view showing the pixel structure of the second embodiment of the present invention.
第4圖繪示本發明第三實施方式之畫素結構的剖面圖。 Fig. 4 is a cross-sectional view showing the pixel structure of the third embodiment of the present invention.
第5圖繪示本發明第四實施方式之畫素結構的剖面圖。 Fig. 5 is a cross-sectional view showing the pixel structure of the fourth embodiment of the present invention.
第6圖繪示本發明第五實施方式之畫素結構的剖面圖。 Fig. 6 is a cross-sectional view showing the pixel structure of the fifth embodiment of the present invention.
第7A圖至第7G圖繪示第6圖的畫素結構於製作流程之不同階段的剖面圖。 7A to 7G are cross-sectional views showing the pixel structure of Fig. 6 at different stages of the fabrication process.
第8圖繪示本發明第六實施方式之畫素結構的剖面圖。 Fig. 8 is a cross-sectional view showing the pixel structure of the sixth embodiment of the present invention.
第9A圖至第9D圖繪示第8圖的畫素結構於製作流程之不同階段的剖面圖。 9A to 9D are cross-sectional views showing the pixel structure of Fig. 8 at different stages of the fabrication process.
以下將以圖式揭露本發明之複數個實施方式,為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本發明。也就是說,在本發明部分實施方式中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之。 The embodiments of the present invention are disclosed in the following drawings, and the details of However, it should be understood that these practical details are not intended to limit the invention. That is, in some embodiments of the invention, these practical details are not necessary. In addition, some of the conventional structures and elements are shown in the drawings in a simplified schematic manner in order to simplify the drawings.
有鑑於寄生電容將可能造成液晶顯示畫面有亮暗不均的問題。有鑑於此,於本發明之畫素結構中,可透過第二絕緣層的設置而降低源極與汲極的其中一者與閘極之間所產生的寄生電容,藉以降低饋通電壓與閘極負載,以使應用畫素結構的顯示面板可以有更佳的品質,並改善亮暗不均的問題。 In view of the parasitic capacitance, there may be a problem of uneven brightness and darkness on the liquid crystal display. In view of the above, in the pixel structure of the present invention, the parasitic capacitance generated between one of the source and the drain and the gate can be reduced by the arrangement of the second insulating layer, thereby reducing the feedthrough voltage and the gate. Extremely loaded, so that the display panel with the pixel structure can have better quality and improve the problem of uneven brightness.
第1圖繪示本發明第一實施方式之畫素結構100A的剖面圖。畫素結構100A包含基板102、閘極104、第一絕緣層106、通道層108、源極110、汲極112、第二絕緣層114b、第一鈍化保護層116、鈍化層118、共用電極122、第二鈍化保護層124與畫素電極126。此外,基板102、閘極104、通道層108、第一絕緣層106、源極110、汲極112與第二絕緣層114b的組合至少可視為構成一個薄膜電晶體。 Fig. 1 is a cross-sectional view showing a pixel structure 100A according to a first embodiment of the present invention. The pixel structure 100A includes a substrate 102, a gate 104, a first insulating layer 106, a channel layer 108, a source 110, a drain 112, a second insulating layer 114b, a first passivation protective layer 116, a passivation layer 118, and a common electrode 122. The second passivation protective layer 124 and the pixel electrode 126. Further, the combination of the substrate 102, the gate 104, the channel layer 108, the first insulating layer 106, the source 110, the drain 112, and the second insulating layer 114b may be considered to constitute at least one thin film transistor.
閘極104設置於基板102上。通道層108設置於基板102上。第一絕緣層106設置於閘極104與通道層108之間。第1圖中,自基板102向上層疊的元件依序為閘極104、第一絕緣層106與通道層108,其中第一絕緣層106覆蓋閘極104背向基板102之表面(即閘極104的上表面)。亦即,第1圖所繪的畫 素結構100A顯示了底閘極(bottom gate)薄膜電晶體結構。此外,源極110電性連接於通道層108,且汲極112也電性連接於通道層108。 The gate 104 is disposed on the substrate 102. The channel layer 108 is disposed on the substrate 102. The first insulating layer 106 is disposed between the gate 104 and the channel layer 108. In FIG. 1 , the components stacked upward from the substrate 102 are sequentially the gate 104 , the first insulating layer 106 and the channel layer 108 , wherein the first insulating layer 106 covers the surface of the gate 104 facing away from the substrate 102 (ie, the gate 104 ). Upper surface). That is, the painting depicted in Figure 1 The prime structure 100A shows a bottom gate thin film transistor structure. In addition, the source 110 is electrically connected to the channel layer 108 , and the drain 112 is also electrically connected to the channel layer 108 .
本實施方式中,第二絕緣層114b設置於垂直投影落於通道層108內之汲極112與閘極104之間。於其他的實施方式中,第二絕緣層114b為設置於垂直投影落於通道層108內之源極110與閘極104之一部分之間。 In the present embodiment, the second insulating layer 114b is disposed between the drain 112 and the gate 104 that are vertically projected in the channel layer 108. In other embodiments, the second insulating layer 114b is disposed between the source 110 and one of the gates 104 that are disposed in the channel layer 108 in a vertical projection.
換言之,第二絕緣層114b可設置於垂直投影落於通道層108內之源極110與汲極112的其中一者之一部分與閘極104之間。此外,於第二絕緣層114b設置於汲極112與閘極104之間的實施方式中,源極110與閘極104之間可以不設置第二絕緣層114b。同樣地,於第二絕緣層114b設置於源極110與閘極104之間的實施方式中,汲極112與閘極104之間可以不設置第二絕緣層114b。 In other words, the second insulating layer 114b may be disposed between the one of the source 110 and the drain 112 and the gate 104 which are vertically projected in the channel layer 108. In addition, in the embodiment in which the second insulating layer 114b is disposed between the drain 112 and the gate 104, the second insulating layer 114b may not be disposed between the source 110 and the gate 104. Similarly, in the embodiment in which the second insulating layer 114b is disposed between the source 110 and the gate 104, the second insulating layer 114b may not be disposed between the drain 112 and the gate 104.
進一步而言,第二絕緣層114b設置於垂直投影落於通道層108內之部分汲極112之一部分與部分通道層108之間。亦即,對汲極112朝向閘極104的表面而言,其一部分為連接通道層108,而其另一部分為連接第二絕緣層114b。換言之,第二絕緣層114b設置於部分汲極112與部分通道層108之間,且第二絕緣層114b之相對兩表面分別被部分汲極112與部分通道層108完全覆蓋。 Further, the second insulating layer 114b is disposed between a portion of the portion of the drain 112 and a portion of the channel layer 108 that is vertically projected within the channel layer 108. That is, for the surface of the drain 112 facing the gate 104, a portion thereof is the connection channel layer 108, and the other portion is connected to the second insulating layer 114b. In other words, the second insulating layer 114b is disposed between the partial drain 112 and the partial channel layer 108, and the opposite surfaces of the second insulating layer 114b are completely covered by the partial drain 112 and the partial channel layer 108, respectively.
於此配置下,垂直投影落於通道層108內之汲極112之一部分與閘極104之間的垂直距離為第一距離D1,而垂直投影落於通道層108內之源極110之一部分與閘極104之間 的垂直距離為第二距離D2,其中第一距離D1至少包含第二絕緣層114b的厚度,第二距離D2舉例係不包含第二絕緣層114b的厚度。以上所述的「第一距離D1至少包含第二絕緣層114b的厚度」之意思為,第二絕緣層114b的厚度會被列入第一距離D1的範圍之中。例如,本實施方式中,第一距離D1至少包含第二絕緣層114b的厚度、通道層108的厚度與第一絕緣層106的厚度。此外,第二距離D2至少包含通道層108的厚度與第一絕緣層106的厚度。進一步而言,第1圖中,第一距離D1為汲極112朝向閘極104與第二絕緣層114b的表面與閘極104朝向汲極112與第二絕緣層114b的表面之間的垂直距離,第二距離D2為源極110朝向閘極104與通道層108的表面與閘極104朝向通道層108與源極110的表面之間的垂直距離。 In this configuration, the vertical distance between a portion of the drain 112 that is vertically projected in the channel layer 108 and the gate 104 is a first distance D1, and a vertical projection of a portion of the source 110 that falls within the channel layer 108 is Between gates 104 The vertical distance is the second distance D2, wherein the first distance D1 includes at least the thickness of the second insulating layer 114b, and the second distance D2 is exemplified by the thickness of the second insulating layer 114b. The above description "the first distance D1 includes at least the thickness of the second insulating layer 114b" means that the thickness of the second insulating layer 114b is included in the range of the first distance D1. For example, in the present embodiment, the first distance D1 includes at least the thickness of the second insulating layer 114b, the thickness of the channel layer 108, and the thickness of the first insulating layer 106. Further, the second distance D2 includes at least the thickness of the channel layer 108 and the thickness of the first insulating layer 106. Further, in FIG. 1, the first distance D1 is the vertical distance between the surface of the drain 112 facing the gate 104 and the second insulating layer 114b and the surface of the gate 104 facing the drain 112 and the second insulating layer 114b. The second distance D2 is the vertical distance between the source 110 toward the surface of the gate 104 and the channel layer 108 and the surface of the gate 104 toward the channel layer 108 and the source 110.
由於第一距離D1相對第二距離D2更進一步將第二絕緣層114b的厚度列入其中,因此第一距離D1會大於第二距離D2。藉由此第一距離D1大於第二距離D2的配置,可以降低汲極112與閘極104之間所產生的寄生電容,藉以降低饋通(feed through)電壓與閘極負載(gate loading)。因此,透過此配置降低汲極112與閘極104之間所產生的饋通電壓與閘極負載後,應用此畫素結構100A的顯示面板可以有更佳的品質。 Since the first distance D1 further includes the thickness of the second insulating layer 114b with respect to the second distance D2, the first distance D1 may be greater than the second distance D2. By the configuration in which the first distance D1 is greater than the second distance D2, the parasitic capacitance generated between the drain 112 and the gate 104 can be reduced, thereby reducing the feed through voltage and the gate loading. Therefore, after the feedthrough voltage and the gate load generated between the drain 112 and the gate 104 are reduced by this configuration, the display panel to which the pixel structure 100A is applied can have better quality.
換言之,若源極110與閘極104間形成第一電容,汲極112與閘極104間形成第二電容,其中第一電容例如是閘極/源極電容(CGS),而第二電容例如是閘極/汲極電容(CGD),藉由設置於汲極112與閘極104之間的第二絕緣層114b,可以降低第二電容,使得第一電容大於第二電容,進 而降低饋通電壓與閘極負載。另一方面,於部分實施方式中,第二絕緣層114b之厚度舉例為300奈米(nm)至400奈米(nm)。透過調整第二絕緣層114b的厚度,可以調整第一距離D1的大小,使得第二電容(閘極/汲極電容)具有可調性。 In other words, if a first capacitance is formed between the source 110 and the gate 104, a second capacitance is formed between the drain 112 and the gate 104, wherein the first capacitance is, for example, a gate/source capacitance (CGS), and the second capacitance is, for example, It is a gate/drain capacitance (CGD). By the second insulating layer 114b disposed between the drain 112 and the gate 104, the second capacitance can be lowered, so that the first capacitance is greater than the second capacitance. The feedthrough voltage and gate load are reduced. On the other hand, in some embodiments, the thickness of the second insulating layer 114b is exemplified by 300 nanometers (nm) to 400 nanometers (nm). By adjusting the thickness of the second insulating layer 114b, the magnitude of the first distance D1 can be adjusted such that the second capacitance (gate/drain capacitance) is adjustable.
除此之外,通道層108至閘極104的垂直投影落於閘極104之內。換言之,通道層108至基板102的垂直投影面積小於或等於閘極104至基板102的垂直投影面積,且通道層108至基板102的垂直投影落於閘極104至基板102的垂直投影的範圍內或與其一致。於此配置下,由於閘極104可遮蔽自基板102背向通道層108之一側射向通道層108的光線,因此,可避免通道層108因光照而產生的光電流,進而防止有漏電產生。 In addition to this, the vertical projection of channel layer 108 to gate 104 falls within gate 104. In other words, the vertical projected area of the channel layer 108 to the substrate 102 is less than or equal to the vertical projected area of the gate 104 to the substrate 102, and the vertical projection of the channel layer 108 to the substrate 102 falls within the range of the vertical projection of the gate 104 to the substrate 102. Or consistent with it. In this configuration, since the gate 104 can shield the light from the substrate 102 toward the channel layer 108 from the side of the channel layer 108, the photocurrent generated by the channel layer 108 due to illumination can be avoided, thereby preventing leakage. .
另一方面,第一鈍化保護層116與鈍化層118位於第一絕緣層106、通道層108、第二絕緣層114b、源極110與汲極112之上,其中鈍化層118位於第一鈍化保護層116上表面並覆蓋第一鈍化保護層116。第一鈍化保護層116與鈍化層118具有通孔120,以至少暴露部分汲極112。第二鈍化保護層124位於鈍化層118上,且共用電極122位於第二鈍化保護層124與鈍化層118之間。 On the other hand, the first passivation protective layer 116 and the passivation layer 118 are located on the first insulating layer 106, the channel layer 108, the second insulating layer 114b, the source 110 and the drain 112, wherein the passivation layer 118 is located in the first passivation protection. The upper surface of layer 116 covers the first passivation protective layer 116. The first passivation protective layer 116 and the passivation layer 118 have via holes 120 to expose at least a portion of the drain 112. The second passivation protection layer 124 is on the passivation layer 118, and the common electrode 122 is located between the second passivation protection layer 124 and the passivation layer 118.
畫素電極126位於鈍化層118、共用電極122與第二鈍化保護層124上,其中畫素電極126透過通孔120與汲極112電性連接。畫素電極126、汲極112、鈍化層118與閘極104於基板102的垂直投影至少部分重疊。同樣地,由於畫素電極126、汲極112、鈍化層118與閘極104於基板102的垂直投影至少部分重疊,閘極104可用以遮蔽來自基板102背向通道層 108之一側射向畫素電極126的光線,以避免畫素電極126產生光電流而產生漏電。 The pixel electrode 126 is disposed on the passivation layer 118, the common electrode 122, and the second passivation protection layer 124. The pixel electrode 126 is electrically connected to the drain electrode 112 through the through hole 120. The vertical projections of the pixel electrode 126, the drain 112, the passivation layer 118, and the gate 104 on the substrate 102 at least partially overlap. Similarly, since the pixel electrode 126, the drain 112, the passivation layer 118 and the vertical projection of the gate 104 on the substrate 102 at least partially overlap, the gate 104 can be used to shield the back channel layer from the substrate 102. One side of the light 108 is directed to the light of the pixel electrode 126 to prevent the photoreceptor electrode 126 from generating a photocurrent to generate electric leakage.
綜上所述,畫素結構100A中,透過設置第二絕緣層114b,可以降低汲極112與閘極104之間所產生的寄生電容,藉以降低饋通電壓與閘極負載,以使應用此畫素結構100A的顯示面板可以有更佳的品質,並改善亮暗不均的問題。另一方面,畫素結構100A中的閘極104可用以作為遮蔽自基板102背向通道層108之一側射入畫素結構100A的光線,以避免通道層108產生光電流而產生漏電。 In summary, in the pixel structure 100A, by providing the second insulating layer 114b, the parasitic capacitance generated between the drain 112 and the gate 104 can be reduced, thereby reducing the feedthrough voltage and the gate load, so that the application is performed. The display panel of the pixel structure 100A can have better quality and improve the problem of uneven brightness and darkness. On the other hand, the gate 104 in the pixel structure 100A can be used as a light that is incident on the pixel structure 100A from the side of the substrate 102 facing away from the channel layer 108 to prevent the channel layer 108 from generating a photocurrent to cause leakage.
此外,第1圖所繪之畫素結構100A可透過第2A圖至第2K圖所繪示的製作流程完成,其中第2A圖至第2K圖繪示第1圖的畫素結構100A於製作流程之不同階段的剖面圖。以下將對畫素結構的製作方法的各流程作說明。 In addition, the pixel structure 100A depicted in FIG. 1 can be completed through the manufacturing process illustrated in FIGS. 2A to 2K, wherein the 2A to 2K drawings illustrate the pixel structure 100A of FIG. 1 in the production process. A cross-sectional view of the different stages. The flow of the method of fabricating the pixel structure will be described below.
第2A圖中,形成閘極104於基板102上。於此步驟中,可以先形成金屬層(未繪示)於基板102上,接著,圖案化此金屬層,以形成閘極104。 In FIG. 2A, the gate 104 is formed on the substrate 102. In this step, a metal layer (not shown) may be formed on the substrate 102, and then the metal layer is patterned to form the gate 104.
第2B圖中,依序形成第一絕緣層106、半導體層107與第二絕緣層114,其中,第一絕緣層106形成於基板102與閘極104上,半導體層107形成於第一絕緣層106上,第二絕緣層114形成於半導體層107上。當依序形成第一絕緣層106、半導體層107與第二絕緣層114之後,再形成光阻層113於第二絕緣層114上,其中光阻層113舉例為正型光阻。 In FIG. 2B, the first insulating layer 106, the semiconductor layer 107 and the second insulating layer 114 are sequentially formed, wherein the first insulating layer 106 is formed on the substrate 102 and the gate 104, and the semiconductor layer 107 is formed on the first insulating layer. On the 106, a second insulating layer 114 is formed on the semiconductor layer 107. After the first insulating layer 106, the semiconductor layer 107 and the second insulating layer 114 are sequentially formed, the photoresist layer 113 is further formed on the second insulating layer 114, wherein the photoresist layer 113 is exemplified by a positive photoresist.
第2C圖中,使用半階式光罩115對光阻層113進行曝光。於曝光結束後,再接著對光阻層113進行顯影製程。 由於對光阻層113所進行的曝光製程是透過半階式光罩115完成,因此位於第二絕緣層114a上的光阻層113a會有兩種厚度(如第2D圖所示)。 In FIG. 2C, the photoresist layer 113 is exposed using a half-step mask 115. After the exposure is completed, the photoresist layer 113 is further subjected to a development process. Since the exposure process to the photoresist layer 113 is performed through the half-step mask 115, the photoresist layer 113a on the second insulating layer 114a has two thicknesses (as shown in FIG. 2D).
第2D圖中,以光阻層113a為遮罩,進行第一蝕刻製程,以圖案化半導體層107與第二絕緣層114b,其中半導體層107於圖案化之後形成通道層108,並具有源極連接部108s與汲極連接部108d,其中第二絕緣層114於圖案化之後形成第二絕緣層114a。源極連接部108s與汲極連接部108d分別為通道層108的相對兩端部,其用於連接後續製程中所形成的源極與汲極(如第1圖的源極110與汲極112)。 In FIG. 2D, a first etching process is performed with the photoresist layer 113a as a mask to pattern the semiconductor layer 107 and the second insulating layer 114b, wherein the semiconductor layer 107 forms a channel layer 108 after patterning, and has a source. The connecting portion 108s and the drain connecting portion 108d, wherein the second insulating layer 114 forms the second insulating layer 114a after patterning. The source connection portion 108s and the drain connection portion 108d are opposite end portions of the channel layer 108, respectively, for connecting the source and the drain formed in the subsequent process (such as the source 110 and the drain 112 of FIG. 1). ).
第2E圖中,移除光阻層113a中較薄的部分而形成光阻層113b,以暴露部分圖案化的第二絕緣層114a,其中移除光阻層113a中較薄的部分的步驟包含減薄光阻層113a的厚度,例如透過灰化(ashing)製程。由於第二絕緣層114a上的光阻層113a具有兩種厚度,因此,光阻層113a中較薄的部分會先被移除,而光阻層113a中較厚的部分可以於減薄後留存於第二絕緣層114a上。 In FIG. 2E, the thinner portion of the photoresist layer 113a is removed to form the photoresist layer 113b to expose the partially patterned second insulating layer 114a, wherein the step of removing the thinner portion of the photoresist layer 113a includes The thickness of the photoresist layer 113a is thinned, for example, by an ashing process. Since the photoresist layer 113a on the second insulating layer 114a has two thicknesses, the thinner portion of the photoresist layer 113a is removed first, and the thicker portion of the photoresist layer 113a can be retained after thinning. On the second insulating layer 114a.
請參考第2E圖至第2F圖,透過留存於第二絕緣層114a上的光阻層113b(請見第2E圖)來進行第二蝕刻製程,以移除部分圖案化的第二絕緣層114a,並暴露部分通道層108。接著,於移除部分圖案化的第二絕緣層114a後形成第二絕緣層114b,再將光阻層113b移除。此外,圖案化的第二絕緣層114b至通道層108的垂直投影落於汲極連接部108d之內。亦即,圖案化的第二絕緣層114b至通道層108的垂直投影落於預 計形成汲極的範圍內,以使第二絕緣層114b可位於閘極104與後續製程中所形成的汲極之間。然而,於其他實施方式中,圖案化的第二絕緣層114b至通道層108的垂直投影可落於源極連接部108s之內,即落於預計形成源極的範圍內,以使第二絕緣層114b可位於閘極104與後續製程中所形成的源極之間。 Referring to FIGS. 2E to 2F, a second etching process is performed through the photoresist layer 113b (see FIG. 2E) remaining on the second insulating layer 114a to remove the partially patterned second insulating layer 114a. And exposing a portion of the channel layer 108. Next, after removing the partially patterned second insulating layer 114a, the second insulating layer 114b is formed, and the photoresist layer 113b is removed. In addition, the vertical projection of the patterned second insulating layer 114b to the channel layer 108 falls within the drain connection portion 108d. That is, the vertical projection of the patterned second insulating layer 114b to the channel layer 108 falls on the pre- The range of the drain is formed such that the second insulating layer 114b can be located between the gate 104 and the drain formed in the subsequent process. However, in other embodiments, the vertical projection of the patterned second insulating layer 114b to the channel layer 108 may fall within the source connection portion 108s, that is, fall within a range in which the source is expected to be formed, so that the second insulation Layer 114b can be between gate 104 and the source formed in subsequent processes.
第2G圖中,形成金屬層(未繪示)於第一絕緣層106、通道層108與第二絕緣層114b上,接著,將金屬層圖案化為源極110與汲極112。源極110與汲極112電性連接於通道層108,其中源極110位於源極連接部108s上,汲極112位於汲極連接部108d上,且第二絕緣層114b位於汲極112與閘極104之間。 In FIG. 2G, a metal layer (not shown) is formed on the first insulating layer 106, the channel layer 108, and the second insulating layer 114b, and then the metal layer is patterned into the source 110 and the drain 112. The source 110 and the drain 112 are electrically connected to the channel layer 108, wherein the source 110 is located on the source connection portion 108s, the drain 112 is located on the gate connection portion 108d, and the second insulation layer 114b is located at the gate 112 and the gate. Between poles 104.
第2H圖中,形成第一鈍化保護層116與鈍化層118於第一絕緣層106、通道層108、第二絕緣層114b、源極110與汲極112之上,其中鈍化層118位於第一鈍化保護層116上表面並覆蓋第一鈍化保護層116。接著,於鈍化層118形成通孔120,並暴露部分第一鈍化保護層116。 In FIG. 2H, a first passivation protective layer 116 and a passivation layer 118 are formed over the first insulating layer 106, the channel layer 108, the second insulating layer 114b, the source 110 and the drain 112, wherein the passivation layer 118 is located first. The upper surface of the protective layer 116 is passivated and covers the first passivation protective layer 116. Next, a via hole 120 is formed in the passivation layer 118, and a portion of the first passivation protective layer 116 is exposed.
第2I圖中,形成共用電極122於鈍化層118上。其中共用電極122的材料包含透明金屬氧化物,例如銦錫氧化物(Indium Tin Oxide;ITO)。 In FIG. 2I, the common electrode 122 is formed on the passivation layer 118. The material of the common electrode 122 includes a transparent metal oxide such as Indium Tin Oxide (ITO).
第2J圖中,形成第二鈍化保護層124於鈍化層118上,其中共用電極122位於第二鈍化保護層124與鈍化層118之間。接著,移除部份第一鈍化保護層116與部分第二鈍化保護層124,使得通孔120至少貫穿第一鈍化保護層116與鈍化層 118,以暴露部分汲極112。 In FIG. 2J, a second passivation protection layer 124 is formed on the passivation layer 118, wherein the common electrode 122 is located between the second passivation protection layer 124 and the passivation layer 118. Then, a portion of the first passivation protective layer 116 and a portion of the second passivation protective layer 124 are removed, such that the via 120 extends through at least the first passivation protective layer 116 and the passivation layer. 118 to expose a portion of the drain 112.
第2K圖中,形成畫素電極126於鈍化層118、共用電極122與第二鈍化保護層124上,其中畫素電極126透過通孔120與汲極112電性連接。此外,同前所述,畫素電極126、汲極112、鈍化層118與閘極104於基板102的垂直投影至少部分重疊。當畫素電極126形成後,即可得到如第1圖所示的畫素結構100A。 In the second embodiment, the pixel electrode 126 is formed on the passivation layer 118, the common electrode 122 and the second passivation protection layer 124. The pixel electrode 126 is electrically connected to the drain electrode 112 through the via 120. In addition, as previously described, the vertical projections of the pixel electrode 126, the drain 112, the passivation layer 118, and the gate 104 on the substrate 102 at least partially overlap. When the pixel electrode 126 is formed, the pixel structure 100A as shown in Fig. 1 can be obtained.
綜合以上,透過使用半階式光罩製程,可以在不增加光罩製程數量的情況下,於同一道光罩製程中形成通道層108與第二絕緣層114b。然而,於其他的實施方式中,通道層108與第二絕緣層114b也可以分別透過兩道光罩製程形成。 In summary, by using a half-step mask process, the channel layer 108 and the second insulating layer 114b can be formed in the same mask process without increasing the number of mask processes. However, in other embodiments, the channel layer 108 and the second insulating layer 114b may also be formed through two mask processes, respectively.
此外,由於半階式光罩製程可使所形成的絕緣層具有多個厚度。於部分實施方式中,所形成的第一絕緣層可透過半階式光罩製程圖案化,以使其具有至少兩個厚度,藉以使源極與閘極之間的垂直距離與汲極與閘極之間的垂直距離不相同。 In addition, the insulating layer formed may have a plurality of thicknesses due to the half-step mask process. In some embodiments, the formed first insulating layer can be patterned through a half-step mask process to have at least two thicknesses such that the vertical distance between the source and the gate and the drain and gate are The vertical distance between the poles is different.
例如,請看到第3圖,其中第3圖繪示本發明第二實施方式之畫素結構100B的剖面圖。為了不使圖式過於複雜,第3圖無繪示第一鈍化保護層、鈍化層、共用電極、第二鈍化保護層與畫素電極,然而,本實施方式可參照第一實施方式配置第一鈍化保護層、鈍化層、共用電極、第二鈍化保護層與畫素電極。 For example, please refer to FIG. 3, wherein FIG. 3 is a cross-sectional view showing the pixel structure 100B of the second embodiment of the present invention. In order not to make the drawing too complicated, the first passivation protective layer, the passivation layer, the common electrode, the second passivation protective layer and the pixel electrode are not shown in FIG. 3 . However, the first embodiment can be configured with reference to the first embodiment. A passivation protective layer, a passivation layer, a common electrode, a second passivation protective layer, and a pixel electrode.
本實施方式與第一實施方式的差異在於,本實施方式的第一絕緣層106具有至少兩個厚度,以使得源極110與 閘極104之間的垂直距離與汲極112與閘極104之間的垂直距離不相同。具體而言,垂直投影落於通道層108內之源極110與閘極104之間的垂直距離和垂直投影落於通道層108內之汲極112與閘極104之間的垂直距離不相同。 The difference between this embodiment and the first embodiment is that the first insulating layer 106 of the present embodiment has at least two thicknesses such that the source 110 and The vertical distance between the gates 104 is different from the vertical distance between the gates 112 and the gates 104. Specifically, the vertical distance between the source 110 and the gate 104 that is vertically projected in the channel layer 108 and the vertical distance between the drain 112 and the gate 104 that fall perpendicularly within the channel layer 108 are different.
換言之,透過半階式光罩製程,第一絕緣層106位於閘極104與源極110之間的厚度T1可小於第一絕緣層106位於閘極104與汲極112之間的厚度T2。進一步而言,源極110與閘極104之間的最大垂直距離小於汲極112與閘極104之間的最大垂直距離,其中源極110與閘極104之間的最大垂直距離為源極110朝向閘極104的表面與閘極104朝向源極110的表面之間的垂直距離中的最大者,而汲極112與閘極104之間的最大垂直距離為汲極112朝向閘極104的表面與閘極104朝向汲極112的表面之間的垂直距離中的最大者。此外,源極110與閘極104之間的最大垂直距離和汲極112與閘極104之間的最大垂直距離之差值約為300埃至約10000埃。 In other words, through the half-step mask process, the thickness T1 of the first insulating layer 106 between the gate 104 and the source 110 may be smaller than the thickness T2 of the first insulating layer 106 between the gate 104 and the drain 112. Further, the maximum vertical distance between the source 110 and the gate 104 is less than the maximum vertical distance between the drain 112 and the gate 104, wherein the maximum vertical distance between the source 110 and the gate 104 is the source 110. The largest of the vertical distances between the surface of the gate 104 and the surface of the gate 104 facing the source 110, and the maximum vertical distance between the drain 112 and the gate 104 is the surface of the drain 112 facing the gate 104. The largest of the vertical distances from the surface of the gate 104 toward the drain 112. Moreover, the maximum vertical distance between source 110 and gate 104 and the maximum vertical distance between drain 112 and gate 104 are between about 300 angstroms and about 10,000 angstroms.
於此配置下,當源極110與閘極104間形成第一電容,汲極112與閘極104間形成第二電容,其中第一電容例如是閘極/源極電容(CGS),而第二電容例如是閘極/汲極電容(CGD),藉由源極110與閘極104之間的最大垂直距離小於汲極112與閘極104之間的最大垂直距離,可以降低第二電容,使得第一電容可大於第二電容。例如,第一電容與第二電容之差值約為10pF至100pF。同前所述,透過降低第二電容,可以降低饋通電壓與閘極負載。 In this configuration, a first capacitor is formed between the source 110 and the gate 104, and a second capacitor is formed between the gate 112 and the gate 104. The first capacitor is, for example, a gate/source capacitor (CGS). The second capacitor is, for example, a gate/drain capacitance (CGD), and the second vertical capacitance can be reduced by the maximum vertical distance between the source 110 and the gate 104 being less than the maximum vertical distance between the drain 112 and the gate 104. The first capacitance can be made larger than the second capacitance. For example, the difference between the first capacitance and the second capacitance is about 10 pF to 100 pF. As described above, by reducing the second capacitance, the feedthrough voltage and the gate load can be reduced.
也就是說,於本實施方式的畫素結構100B中,省 略了第一實施方式中的第二絕緣層,而基板102、閘極104、第一絕緣層106、通道層108、源極110與汲極112所成的薄膜電晶體可透過具有兩種厚度的第一絕緣層106達到降低閘極/汲極電容的效果。 That is, in the pixel structure 100B of the present embodiment, the province The second insulating layer in the first embodiment is omitted, and the thin film transistor formed by the substrate 102, the gate 104, the first insulating layer 106, the channel layer 108, the source 110 and the drain 112 is permeable to have two thicknesses. The first insulating layer 106 achieves the effect of reducing the gate/drain capacitance.
此外,本實施方式的畫素結構100B是以第一絕緣層106位於閘極104與源極110之間的厚度小於第一絕緣層106位於閘極104與汲極112之間的厚度為例,於其他實施方式中,也可以是第一絕緣層106位於閘極104與汲極112之間的厚度小於第一絕緣層106位於閘極104與源極110之間的厚度,使得源極110與閘極104之間的最大垂直距離會大於汲極112與閘極104之間的最大垂直距離。 In addition, the pixel structure 100B of the present embodiment is an example in which the thickness of the first insulating layer 106 between the gate 104 and the source 110 is smaller than the thickness of the first insulating layer 106 between the gate 104 and the drain 112. In other embodiments, the thickness of the first insulating layer 106 between the gate 104 and the drain 112 may be smaller than the thickness of the first insulating layer 106 between the gate 104 and the source 110, such that the source 110 and The maximum vertical distance between the gates 104 will be greater than the maximum vertical distance between the drains 112 and the gates 104.
第4圖繪示本發明第三實施方式之畫素結構100C的剖面圖。為了不使圖式過於複雜,第4圖無繪示第一鈍化保護層、鈍化層、共用電極、第二鈍化保護層與畫素電極,然而,本實施方式可參照第一實施方式配置第一鈍化保護層、鈍化層、共用電極、第二鈍化保護層與畫素電極。 Fig. 4 is a cross-sectional view showing a pixel structure 100C according to a third embodiment of the present invention. In order not to make the drawing too complicated, the first passivation protective layer, the passivation layer, the common electrode, the second passivation protective layer and the pixel electrode are not shown in FIG. 4 . However, the first embodiment can be configured with reference to the first embodiment. A passivation protective layer, a passivation layer, a common electrode, a second passivation protective layer, and a pixel electrode.
請參照第4圖,本實施方式與第一實施方式的差異在於,本實施方式的第二絕緣層114b設置於第一絕緣層106朝向汲極112與通道層108的表面上,且第二絕緣層114b至通道層108的垂直投影例如落於汲極112至通道層108的垂直投影內。具體而言,第二絕緣層114b為設置於通道層108與第一絕緣層106之間。第4圖中,第一距離D1為汲極112朝向閘極104與第二絕緣層114b的表面與閘極104朝向汲極112與第二絕緣層114的表面之間的最大垂直距離,第二距離D2為源極 110朝向閘極104與通道層108的表面與閘極104朝向通道層108與源極110的表面之間的最大垂直距離,其中第一距離D1大於第二距離D2。於此配置下,由於第一距離D1透過第二絕緣層114b的設置而增加,因此可降低汲極112與閘極104之間所產生的寄生電容,藉以降低饋通電壓與閘極負載,以使應用此畫素結構100C的顯示面板可以有更佳的品質。 Referring to FIG. 4 , the difference between the present embodiment and the first embodiment is that the second insulating layer 114 b of the present embodiment is disposed on the surface of the first insulating layer 106 facing the drain 112 and the channel layer 108 , and the second insulating layer The vertical projection of layer 114b to channel layer 108, for example, falls within the vertical projection of drain 112 to channel layer 108. Specifically, the second insulating layer 114b is disposed between the channel layer 108 and the first insulating layer 106. In FIG. 4, the first distance D1 is the maximum vertical distance between the surface of the drain 112 facing the gate 104 and the second insulating layer 114b and the surface of the gate 104 facing the drain 112 and the second insulating layer 114, and second Distance D2 is the source 110 faces the surface of the gate 104 and the channel layer 108 and the maximum vertical distance between the gate 104 and the surface of the channel layer 108 and the source 110, wherein the first distance D1 is greater than the second distance D2. In this configuration, since the first distance D1 is increased through the arrangement of the second insulating layer 114b, the parasitic capacitance generated between the drain 112 and the gate 104 can be reduced, thereby reducing the feedthrough voltage and the gate load. The display panel to which the pixel structure 100C is applied can have better quality.
此外,本實施方式是以第二絕緣層114b至通道層108的垂直投影落於汲極112至通道層108的垂直投影內為例,然而,於其他實施方式中,第二絕緣層114b至通道層108的垂直投影也可以是落於源極110至通道層108的垂直投影內,以降低源極110與閘極104之間所產生的寄生電容。 In addition, the present embodiment is exemplified by a vertical projection of the second insulating layer 114b to the channel layer 108 falling within the vertical projection of the drain 112 to the channel layer 108. However, in other embodiments, the second insulating layer 114b to the channel The vertical projection of layer 108 may also fall within the vertical projection of source 110 to channel layer 108 to reduce parasitic capacitance generated between source 110 and gate 104.
第5圖繪示本發明第四實施方式之畫素結構100D的剖面圖。為了不使圖式過於複雜,第5圖無繪示第一鈍化保護層、鈍化層、共用電極、第二鈍化保護層與畫素電極,然而,本實施方式可參照第一實施方式配置第一鈍化保護層、鈍化層、共用電極、第二鈍化保護層與畫素電極。 Fig. 5 is a cross-sectional view showing a pixel structure 100D according to a fourth embodiment of the present invention. In order not to make the drawing too complicated, the first passivation protective layer, the passivation layer, the common electrode, the second passivation protective layer and the pixel electrode are not shown in FIG. 5 . However, the first embodiment can be configured with reference to the first embodiment. A passivation protective layer, a passivation layer, a common electrode, a second passivation protective layer, and a pixel electrode.
請參照第5圖,本實施方式與第一實施方式的差異在於,本實施方式的第二絕緣層114b設置於第一絕緣層106背向汲極112與通道層108的表面上,且第二絕緣層114b至通道層108的垂直投影落於汲極112至通道層108的垂直投影內。具體而言,第二絕緣層114b是設置於第一絕緣層106與閘極104之間,且第一絕緣層106覆蓋於第二絕緣層114b之上。第5圖中,第一距離D1為汲極112朝向閘極104與第二絕緣層114b的表面與閘極104朝向汲極112與第二絕緣層114b的表 面之間的最大垂直距離,第二距離D2為源極110朝向閘極104與通道層108的表面與閘極104朝向通道層108與源極110的表面之間的最大垂直距離,其中第一距離D1大於第二距離D2。於此配置下,由於第一距離D1透過第二絕緣層114b的設置而增加,因此可降低汲極112與閘極104之間所產生的寄生電容,藉以降低饋通電壓與閘極負載,以使應用此畫素結構100D的顯示面板可以有更佳的品質。 Referring to FIG. 5 , the difference between the present embodiment and the first embodiment is that the second insulating layer 114 b of the present embodiment is disposed on the surface of the first insulating layer 106 facing away from the drain 112 and the channel layer 108 , and the second The vertical projection of insulating layer 114b to channel layer 108 falls within the vertical projection of drain 112 to channel layer 108. Specifically, the second insulating layer 114b is disposed between the first insulating layer 106 and the gate 104, and the first insulating layer 106 covers the second insulating layer 114b. In FIG. 5, the first distance D1 is a table in which the drain 112 faces the surface of the gate 104 and the second insulating layer 114b and the gate 104 faces the drain 112 and the second insulating layer 114b. The maximum vertical distance between the faces, the second distance D2 being the maximum vertical distance between the source 110 toward the surface of the gate 104 and the channel layer 108 and the surface of the gate 104 toward the channel layer 108 and the source 110, wherein The distance D1 is greater than the second distance D2. In this configuration, since the first distance D1 is increased through the arrangement of the second insulating layer 114b, the parasitic capacitance generated between the drain 112 and the gate 104 can be reduced, thereby reducing the feedthrough voltage and the gate load. The display panel to which the pixel structure 100D is applied can have better quality.
此外,本實施方式是以第二絕緣層114b至通道層108的垂直投影落於汲極112至通道層108的垂直投影內為例,然而,於其他實施方式中,第二絕緣層114b至通道層108的垂直投影也可以是落於源極110至通道層108的垂直投影內,以降低源極110與閘極104之間所產生的寄生電容。 In addition, the present embodiment is exemplified by a vertical projection of the second insulating layer 114b to the channel layer 108 falling within the vertical projection of the drain 112 to the channel layer 108. However, in other embodiments, the second insulating layer 114b to the channel The vertical projection of layer 108 may also fall within the vertical projection of source 110 to channel layer 108 to reduce parasitic capacitance generated between source 110 and gate 104.
第6圖繪示本發明第五實施方式之畫素結構100E的剖面圖。本實施方式與第一實施方式的差異在於,本實施方式的畫素結構100E更包含閘極驅動電路(gate on array;GOA)單元130。閘極驅動電路單元130包含第一導電單元132與第二導電單元134。第一導電單元132設置於基板102上,並電性連接至閘極104。第二導電單元134設置於第一導電單元132之上,其中第一絕緣層106、半導體層107與第二絕緣層114c位於第一導電單元132與第二導電單元134之間。 Fig. 6 is a cross-sectional view showing a pixel structure 100E according to a fifth embodiment of the present invention. The difference between this embodiment and the first embodiment is that the pixel structure 100E of the present embodiment further includes a gate on array (GOA) unit 130. The gate driving circuit unit 130 includes a first conductive unit 132 and a second conductive unit 134. The first conductive unit 132 is disposed on the substrate 102 and electrically connected to the gate 104 . The second conductive unit 134 is disposed on the first conductive unit 132 , wherein the first insulating layer 106 , the semiconductor layer 107 , and the second insulating layer 114 c are located between the first conductive unit 132 and the second conductive unit 134 .
由於第一絕緣層106與第二絕緣層114c可增加閘極驅動電路單元130的第一導電單元132與第二導電單元134之間的距離,因此可以降低第一導電單元132與第二導電單元134之間的寄生電容。 Since the first insulating layer 106 and the second insulating layer 114c can increase the distance between the first conductive unit 132 and the second conductive unit 134 of the gate driving circuit unit 130, the first conductive unit 132 and the second conductive unit can be lowered. Parasitic capacitance between 134.
另一方面,透過第二絕緣層114b,閘極104與汲極112之間的第一距離D1仍大於閘極104與源極110之間的第二距離D2。此外,於本實施方式的畫素結構100E中,汲極112與通道層108之間的第二絕緣層114b和第一導電單元132與第二導電單元134之間的第二絕緣層114c可透過同一道製程完成,請見以下說明。 On the other hand, through the second insulating layer 114b, the first distance D1 between the gate 104 and the drain 112 is still greater than the second distance D2 between the gate 104 and the source 110. In addition, in the pixel structure 100E of the present embodiment, the second insulating layer 114b between the drain 112 and the channel layer 108 and the second insulating layer 114c between the first conductive unit 132 and the second conductive unit 134 are permeable. The same process is completed, please see the instructions below.
第7A圖至第7G圖繪示第6圖的畫素結構100E於製作流程之不同階段的剖面圖。本實施方式與第2A圖至第2K圖所繪示的製作流程剖面圖的差異在於,畫素結構100E的製作方法更包含形成閘極驅動電路單元130(請見第6圖)。 7A to 7G are cross-sectional views showing the pixel structure 100E of Fig. 6 at different stages of the fabrication process. The difference between the embodiment and the manufacturing process cross-sectional views shown in FIGS. 2A to 2K is that the method of fabricating the pixel structure 100E further includes forming the gate driving circuit unit 130 (see FIG. 6).
第7A圖中,形成閘極104與第一導電單元132於基板102上。於此步驟中,可以先形成金屬層(未繪示)於基板102上,接著圖案化此金屬層成閘極104與第一導電單元132。亦即,閘極104與第一導電單元132可透過同一道光罩製程圖案化同一金屬層而形成。 In FIG. 7A, the gate 104 and the first conductive unit 132 are formed on the substrate 102. In this step, a metal layer (not shown) may be formed on the substrate 102, and then the metal layer is patterned into the gate 104 and the first conductive unit 132. That is, the gate 104 and the first conductive unit 132 can be formed by patterning the same metal layer through the same mask process.
第7B圖中,依序形成第一絕緣層106、半導體層107與第二絕緣層114,其中,第一絕緣層106形成於基板102、閘極104與第一導電單元132上,半導體層107形成於第一絕緣層106上,第二絕緣層114形成於半導體層107上。當依序形成第一絕緣層106、半導體層107與第二絕緣層114之後,再形成光阻層113於第二絕緣層114上。 In FIG. 7B, the first insulating layer 106, the semiconductor layer 107 and the second insulating layer 114 are sequentially formed, wherein the first insulating layer 106 is formed on the substrate 102, the gate 104 and the first conductive unit 132, and the semiconductor layer 107 The second insulating layer 114 is formed on the first insulating layer 106, and the second insulating layer 114 is formed on the semiconductor layer 107. After the first insulating layer 106, the semiconductor layer 107, and the second insulating layer 114 are sequentially formed, the photoresist layer 113 is further formed on the second insulating layer 114.
第7C圖中,同第2C圖所述,圖案化半導體層107與圖案化第二絕緣層114可透過半階式光罩製程完成。此外,由於光阻層113舉例為正型光阻,因此半階式光罩115遮蔽第 一導電單元132上方的光線,以使第一導電單元132上方的光阻層113可於顯影之後留存於第一導電單元132上方的第二絕緣層114上。此時便形成位於閘極104上方的光阻層113a1及位於第一導電單元132上方的光阻層113a2(如第7D圖所示)。 In FIG. 7C, as described in FIG. 2C, the patterned semiconductor layer 107 and the patterned second insulating layer 114 can be completed by a half-step mask process. In addition, since the photoresist layer 113 is exemplified as a positive photoresist, the half-step mask 115 is shielded. The light above the conductive unit 132 is such that the photoresist layer 113 above the first conductive unit 132 can remain on the second insulating layer 114 above the first conductive unit 132 after development. At this time, a photoresist layer 113a1 above the gate 104 and a photoresist layer 113a2 above the first conductive unit 132 are formed (as shown in FIG. 7D).
第7D圖中,進行第一蝕刻製程,以圖案化半導體層107與第二絕緣層114,其中半導體層107於圖案化之後形成位於閘極104上方的通道層108以及位於第一導電單元132上方的輔助層109,第二絕緣層114於圖案化之後形成位於閘極104上方的第二絕緣層114a1以及位於第一導電單元132上方的第二絕緣層114a2,而第一導電單元132上方的輔助層109仍位於第一絕緣層106與第二絕緣層114a2之間。此外,由於第7C圖對光阻層所進行的曝光製程是透過半階式光罩115完成,因此位於通道層108上方之第二絕緣層114a1上的光阻層113a1會有兩種厚度,其中第二絕緣層114a1上的光阻層113a1之厚度較大的一者與第一導電單元132上方的第二絕緣層114a2舉例具有相同厚度。 In FIG. 7D, a first etching process is performed to pattern the semiconductor layer 107 and the second insulating layer 114, wherein the semiconductor layer 107 forms a channel layer 108 above the gate 104 after patterning and is located above the first conductive unit 132. The auxiliary layer 109, the second insulating layer 114 forms a second insulating layer 114a1 above the gate 104 and a second insulating layer 114a2 above the first conductive unit 132 after patterning, and the auxiliary above the first conductive unit 132 Layer 109 is still between first insulating layer 106 and second insulating layer 114a2. In addition, since the exposure process performed on the photoresist layer in FIG. 7C is performed through the half-step mask 115, the photoresist layer 113a1 on the second insulating layer 114a1 above the channel layer 108 has two thicknesses, wherein One of the larger thicknesses of the photoresist layer 113a1 on the second insulating layer 114a1 and the second insulating layer 114a2 over the first conductive unit 132 have the same thickness.
第7E圖中,減薄光阻層113a1及光阻層113a2,以移除光阻層113a1中較薄的部分,以形成位於第二絕緣層114a1上的光阻層113b1及位於輔助層109上的光阻層113b2,並暴露部分的第二絕緣層114a1。另一方面,請同時參照第7D圖及第7E圖,第一導電單元132上方的光阻層113b2的厚度小於光阻層113a2的厚度。 In FIG. 7E, the photoresist layer 113a1 and the photoresist layer 113a2 are thinned to remove the thinner portion of the photoresist layer 113a1 to form the photoresist layer 113b1 on the second insulating layer 114a1 and the light on the auxiliary layer 109. The resist layer 113b2 is exposed to a portion of the second insulating layer 114a1. On the other hand, referring to FIGS. 7D and 7E simultaneously, the thickness of the photoresist layer 113b2 above the first conductive unit 132 is smaller than the thickness of the photoresist layer 113a2.
第7F圖中,透過留存的光阻層113b1(請見第7E圖)進行第二蝕刻製程,以移除通道層108上方的部分的第二絕 緣層114a1,並暴露部分通道層108。接著,於移除第二絕緣層114a1的一部分以形成第二絕緣層114b後,再移除光阻層113b1及光阻層113b2。 In FIG. 7F, a second etching process is performed through the remaining photoresist layer 113b1 (see FIG. 7E) to remove the second portion of the portion above the channel layer 108. The edge layer 114a1 exposes a portion of the channel layer 108. Next, after removing a portion of the second insulating layer 114a1 to form the second insulating layer 114b, the photoresist layer 113b1 and the photoresist layer 113b2 are removed.
第7G圖中,形成金屬層(未繪示)於第一絕緣層106、通道層108、通道層108上方的第二絕緣層114b與第一導電單元132上方的第二絕緣層114a2上,接著,將金屬層圖案化為源極110、汲極112與第二導電單元134,其中第二導電單元134、源極110與汲極112為可透過同一道光罩製程形成。 In FIG. 7G, a metal layer (not shown) is formed on the first insulating layer 106, the channel layer 108, the second insulating layer 114b above the channel layer 108, and the second insulating layer 114a2 above the first conductive unit 132, and then The metal layer is patterned into a source 110, a drain 112, and a second conductive unit 134, wherein the second conductive unit 134, the source 110, and the drain 112 are formed through the same mask process.
所形成的源極110與汲極112連接於通道層108,且第二絕緣層114b位於汲極112與閘極104之間。另一方面,於閘極驅動電路單元130中,第二導電單元134位於第一導電單元132上方,且第二絕緣層114a2至少位於第一導電單元132與第二導電單元134之間。 The formed source 110 and drain 112 are connected to the channel layer 108, and the second insulating layer 114b is located between the drain 112 and the gate 104. On the other hand, in the gate driving circuit unit 130, the second conductive unit 134 is located above the first conductive unit 132, and the second insulating layer 114a2 is located at least between the first conductive unit 132 and the second conductive unit 134.
當第二導電單元134形成後,形成閘極驅動電路單元130的步驟也隨之完成。接著,後續所進行的製程可如第2H圖至第2K圖所繪的流程完成。亦即,第6圖所繪的第一鈍化保護層116、鈍化層118、通孔120、共用電極122、第二鈍化保護層124與畫素電極126可透過第2H圖至第2K圖所繪的流程形成,以完成第6圖所示的畫素結構100E。 After the second conductive unit 134 is formed, the step of forming the gate driving circuit unit 130 is also completed. Then, the subsequent processes can be completed as shown in the processes of FIGS. 2H to 2K. That is, the first passivation protective layer 116, the passivation layer 118, the via 120, the common electrode 122, the second passivation protective layer 124, and the pixel electrode 126 depicted in FIG. 6 can be drawn through the 2H to 2K drawings. The flow is formed to complete the pixel structure 100E shown in FIG.
第8圖繪示本發明第六實施方式之畫素結構100F的剖面圖。本實施方式與第一實施方式的差異在於,本實施方式的畫素結構100F包含頂閘極(top gate)薄膜電晶體結構,其中閘極104與汲極112之間的第一距離D1仍大於閘極104與源極110之間的第二距離D2。 Fig. 8 is a cross-sectional view showing a pixel structure 100F according to a sixth embodiment of the present invention. The difference between this embodiment and the first embodiment is that the pixel structure 100F of the present embodiment includes a top gate thin film transistor structure, wherein the first distance D1 between the gate 104 and the drain 112 is still greater than A second distance D2 between the gate 104 and the source 110.
於本實施方式中,通道層108、源極110、汲極112與第二絕緣層114b位於基板102與第一絕緣層106之間,且閘極104設置於第一絕緣層106背向基板102之表面。換言之,位於基板102上的通道層108、源極110、汲極112與第二絕緣層114b被第一絕緣層106覆蓋。第二絕緣層114b位於汲極112上方並位於通道層108與第一絕緣層106之間,且第二絕緣層114b於基板102的垂直投影舉例係落於汲極112於基板102的垂直投影之中。 In the present embodiment, the channel layer 108, the source 110, the drain 112 and the second insulating layer 114b are located between the substrate 102 and the first insulating layer 106, and the gate 104 is disposed on the first insulating layer 106 facing away from the substrate 102. The surface. In other words, the channel layer 108, the source 110, the drain 112, and the second insulating layer 114b on the substrate 102 are covered by the first insulating layer 106. The second insulating layer 114b is located above the drain 112 and between the channel layer 108 and the first insulating layer 106, and the vertical projection of the second insulating layer 114b on the substrate 102 is exemplified by the vertical projection of the drain 112 on the substrate 102. in.
第8圖中,第一距離D1為汲極112朝向閘極104與第二絕緣層114b的表面與閘極104朝向汲極112與第二絕緣層114b的表面之間的最大垂直距離,第二距離D2為源極110朝向閘極104與通道層108的表面與閘極104朝向通道層108與源極110的表面之間的最大垂直距離,其中第一距離D1大於第二距離D2。藉由第二絕緣層114b的設置,由於第一距離D1可大於第二距離D2,因此降低了汲極112與閘極104之間所產生的寄生電容,並也降低饋通電壓與閘極負載。也因此,應用畫素結構100F的顯示面板也可以有較佳的品質。 In Fig. 8, the first distance D1 is the maximum vertical distance between the surface of the drain 112 facing the gate 104 and the second insulating layer 114b and the surface of the gate 104 facing the drain 112 and the second insulating layer 114b, and second The distance D2 is the maximum vertical distance between the source 110 toward the surface of the gate 104 and the channel layer 108 and the gate 104 toward the surface of the channel layer 108 and the source 110, wherein the first distance D1 is greater than the second distance D2. By the arrangement of the second insulating layer 114b, since the first distance D1 can be greater than the second distance D2, the parasitic capacitance generated between the drain 112 and the gate 104 is reduced, and the feedthrough voltage and the gate load are also reduced. . Therefore, the display panel to which the pixel structure 100F is applied can also have better quality.
除此之外,畫素結構100F更包含遮蔽層140。遮蔽層140位於基板102與通道層108之間,其中通道層108至遮蔽層140的垂直投影落於遮蔽層140之內。換言之,通道層108至遮蔽層140的垂直投影落於遮蔽層140至基板102的垂直投影內。於此配置下,由於遮蔽層140可遮蔽自基板102背向通道層108之一側射入畫素結構100F的光線,因此可以避免通道層108因照射而產生光電流,進而防止漏電產生。遮蔽層140 的材料舉例係為金屬或黑色樹脂等等遮光材料。 In addition to this, the pixel structure 100F further includes a masking layer 140. The shielding layer 140 is located between the substrate 102 and the channel layer 108, wherein a vertical projection of the channel layer 108 to the shielding layer 140 falls within the shielding layer 140. In other words, the vertical projection of channel layer 108 to masking layer 140 falls within the vertical projection of masking layer 140 to substrate 102. In this configuration, since the shielding layer 140 can shield the light entering the pixel structure 100F from the side of the substrate 102 facing away from the channel layer 108, the channel layer 108 can be prevented from generating photocurrent due to the irradiation, thereby preventing leakage. Masking layer 140 The material is exemplified by a light-shielding material such as a metal or a black resin.
除此之外,第8圖所繪的畫素結構100F是以將第二絕緣層114b設置於通道層108與於第一絕緣層106之間,且第二絕緣層114b於基板102的垂直投影是落於汲極112於基板102的垂直投影之中為例。然而,在其他的實施方式中,第二絕緣層114b也可以設置於通道層108與汲極112之間,且第二絕緣層114於基板102的垂直投影是落於源極110於基板102的垂直投影之中,以至少增加閘極104與源極110的距離,進而降低閘極104與源極110之間的寄生電容。此外,在其他的實施方式中,兩個第二絕緣層114b也可以分別設置於通道層108與汲極112之間和通道層108與於第一絕緣層106之間,進一步增加閘極104與源極110的距離。 In addition, the pixel structure 100F depicted in FIG. 8 is such that the second insulating layer 114b is disposed between the channel layer 108 and the first insulating layer 106, and the vertical projection of the second insulating layer 114b on the substrate 102. It is an example of falling in the vertical projection of the drain 112 on the substrate 102. However, in other embodiments, the second insulating layer 114b may also be disposed between the channel layer 108 and the drain 112, and the vertical projection of the second insulating layer 114 on the substrate 102 falls on the source 110 on the substrate 102. In the vertical projection, at least the distance between the gate 104 and the source 110 is increased, thereby reducing the parasitic capacitance between the gate 104 and the source 110. In addition, in other embodiments, the two second insulating layers 114b may also be disposed between the channel layer 108 and the drain 112 and between the channel layer 108 and the first insulating layer 106, further increasing the gate 104 and The distance of the source 110.
第8圖所繪之畫素結構100F可透過第9A圖至第9D圖所繪示的製作流程完成,其中第9A圖至第9D圖繪示第8圖的畫素結構100F於製作流程之不同階段的剖面圖。以下將對第8圖的畫素結構100F的製作方法的各流程作說明。 The pixel structure 100F depicted in FIG. 8 can be completed through the manufacturing process illustrated in FIG. 9A to FIG. 9D, wherein the 9A to 9D drawings illustrate the difference in the production process of the pixel structure 100F of FIG. 8 . Sectional view of the stage. Hereinafter, each flow of the method of manufacturing the pixel structure 100F of Fig. 8 will be described.
第9A圖中,形成遮蔽層140於基板102上,接著,形成金屬層(未繪示)於基板102上,並將金屬層圖案化為源極110與汲極112。 In FIG. 9A, the shielding layer 140 is formed on the substrate 102. Then, a metal layer (not shown) is formed on the substrate 102, and the metal layer is patterned into the source 110 and the drain 112.
第9B圖中,形成半導體層(未繪示)於遮蔽層140、源極110與汲極112上,並圖案化半導體層成通道層108,其中所形成的通道層108電性連接源極110與汲極112,且通道層108至遮蔽層140的垂直投影落於遮蔽層140之內。 In FIG. 9B, a semiconductor layer (not shown) is formed on the shielding layer 140, the source 110 and the drain 112, and the semiconductor layer is patterned into a channel layer 108, wherein the formed channel layer 108 is electrically connected to the source 110. With the drain 112, the vertical projection of the channel layer 108 to the masking layer 140 falls within the masking layer 140.
第9C圖中,形成第二絕緣層114b於通道層108 上,其中第二絕緣層114b至通道層108的垂直投影舉例係落於汲極112至通道層108的垂直投影內。亦即,部分的通道層108會位於第二絕緣層114b與部分的汲極112之間。 In FIG. 9C, the second insulating layer 114b is formed on the channel layer 108. The vertical projection of the second insulating layer 114b to the channel layer 108 is exemplified by a vertical projection of the drain 112 to the channel layer 108. That is, a portion of the channel layer 108 will be located between the second insulating layer 114b and a portion of the drain 112.
第9D圖中,形成第一絕緣層106,並覆蓋源極110、汲極112、通道層108與第二絕緣層114b,接著,形成閘極104於第一絕緣層106上。由於第9C圖所形成的第二絕緣層114b的垂直投影是落於汲極112至通道層108的垂直投影內,因此,所形成的閘極104與汲極112的垂直距離會大於其與源極110的垂直距離,藉以降低閘極104與汲極112之間的寄生電容。 In FIG. 9D, the first insulating layer 106 is formed and covers the source 110, the drain 112, the channel layer 108 and the second insulating layer 114b, and then the gate 104 is formed on the first insulating layer 106. Since the vertical projection of the second insulating layer 114b formed in FIG. 9C falls within the vertical projection of the drain 112 to the channel layer 108, the vertical distance between the gate 104 and the drain 112 formed is greater than the source and source. The vertical distance of the pole 110 is used to reduce the parasitic capacitance between the gate 104 and the drain 112.
綜上所述,本發明之畫素結構透過第二絕緣層的設置,降低源極與汲極的其中一者與閘極之間所產生的寄生電容,藉以降低饋通電壓與閘極負載,以使應用畫素結構的顯示面板可以有更佳的品質,並改善亮暗不均的問題。另一方面,畫素結構的閘極可用以作為遮蔽射入畫素結構內的光線,以避免畫素結構中的通道層因產生光電流而導致漏電產生。 In summary, the pixel structure of the present invention reduces the parasitic capacitance generated between one of the source and the drain and the gate through the arrangement of the second insulating layer, thereby reducing the feedthrough voltage and the gate load. In order to make the display panel of the pixel structure have better quality and improve the problem of uneven brightness and darkness. On the other hand, the gate of the pixel structure can be used as a mask to inject light into the pixel structure to prevent leakage of the channel layer in the pixel structure due to the generation of photocurrent.
雖然本發明已以多種實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 While the invention has been described above in terms of various embodiments, it is not intended to limit the invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application attached.
100A‧‧‧畫素結構 100A‧‧‧ pixel structure
102‧‧‧基板 102‧‧‧Substrate
104‧‧‧閘極 104‧‧‧ gate
106‧‧‧第一絕緣層 106‧‧‧First insulation
108‧‧‧通道層 108‧‧‧Channel layer
110‧‧‧源極 110‧‧‧ source
112‧‧‧汲極 112‧‧‧汲polar
116‧‧‧第一鈍化保護層 116‧‧‧First passivation protective layer
118‧‧‧鈍化層 118‧‧‧ Passivation layer
120‧‧‧通孔 120‧‧‧through hole
122‧‧‧共用電極 122‧‧‧Common electrode
124‧‧‧第二鈍化保護層 124‧‧‧Second passivation protective layer
126‧‧‧畫素電極 126‧‧‧ pixel electrodes
D1‧‧‧第一距離 D1‧‧‧First distance
114b‧‧‧第二絕緣層 114b‧‧‧Second insulation
D2‧‧‧第二距離 D2‧‧‧Second distance
Claims (20)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104143580A TWI593090B (en) | 2015-12-24 | 2015-12-24 | Pixel structure, method for manufacturing the same, and thin film transistor |
CN201610081525.1A CN105655405B (en) | 2015-12-24 | 2016-02-05 | Pixel structure, manufacturing method thereof and thin film transistor |
CN201810436247.6A CN108598173A (en) | 2015-12-24 | 2016-02-05 | Pixel structure, manufacturing method thereof and thin film transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104143580A TWI593090B (en) | 2015-12-24 | 2015-12-24 | Pixel structure, method for manufacturing the same, and thin film transistor |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201724475A TW201724475A (en) | 2017-07-01 |
TWI593090B true TWI593090B (en) | 2017-07-21 |
Family
ID=56488415
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104143580A TWI593090B (en) | 2015-12-24 | 2015-12-24 | Pixel structure, method for manufacturing the same, and thin film transistor |
Country Status (2)
Country | Link |
---|---|
CN (2) | CN108598173A (en) |
TW (1) | TWI593090B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102484185B1 (en) * | 2016-10-31 | 2023-01-04 | 엘지디스플레이 주식회사 | Gate driving circuit and display device using the same |
CN107342050B (en) * | 2017-08-30 | 2019-08-30 | 上海天马有机发光显示技术有限公司 | A kind of display base plate and display device |
CN108663863B (en) * | 2018-06-25 | 2021-01-26 | Tcl华星光电技术有限公司 | Array substrate |
CN109560085A (en) * | 2018-12-10 | 2019-04-02 | 武汉华星光电半导体显示技术有限公司 | Display panel and display module |
CN110262145A (en) * | 2019-06-11 | 2019-09-20 | 惠科股份有限公司 | Array substrate, manufacturing method of array substrate and display panel |
TWI743899B (en) * | 2020-07-22 | 2021-10-21 | 友達光電股份有限公司 | Device array substrate and manufacturing method thereof |
US20230317633A1 (en) * | 2022-03-30 | 2023-10-05 | Win Semiconductors Corp. | Semiconductor chip |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW471182B (en) * | 2001-01-20 | 2002-01-01 | Unipac Optoelectronics Corp | Thin film transistor having light guide material |
JP2009180981A (en) * | 2008-01-31 | 2009-08-13 | Mitsubishi Electric Corp | Active matrix substrate, and manufacturing method therefor |
KR101600879B1 (en) * | 2010-03-16 | 2016-03-09 | 삼성디스플레이 주식회사 | Thin film transistor, manufacturing method thereof and display substrate using the thin film transistor |
US9799773B2 (en) * | 2011-02-02 | 2017-10-24 | Semiconductor Energy Laboratory Co., Ltd. | Transistor and semiconductor device |
CN103035734A (en) * | 2011-10-07 | 2013-04-10 | 元太科技工业股份有限公司 | Metal oxide thin film transistor |
US20130207102A1 (en) * | 2012-02-15 | 2013-08-15 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
CN203850306U (en) * | 2014-05-13 | 2014-09-24 | 华映视讯(吴江)有限公司 | Film transistor and pixel structure |
-
2015
- 2015-12-24 TW TW104143580A patent/TWI593090B/en not_active IP Right Cessation
-
2016
- 2016-02-05 CN CN201810436247.6A patent/CN108598173A/en active Pending
- 2016-02-05 CN CN201610081525.1A patent/CN105655405B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
TW201724475A (en) | 2017-07-01 |
CN108598173A (en) | 2018-09-28 |
CN105655405B (en) | 2018-06-08 |
CN105655405A (en) | 2016-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI593090B (en) | Pixel structure, method for manufacturing the same, and thin film transistor | |
KR101517528B1 (en) | Method for manufacturing semiconductor device | |
US9958747B2 (en) | Array substrate and manufacturing method thereof, display panel and display device | |
US10056414B2 (en) | Thin film transistor array substrate having black matrix formed in non-display zone and common electrode formed in display zone | |
WO2017028455A1 (en) | Thin film transistor and manufacturing method thereof, array substrate and manufacturing method thereof, and display device | |
TWI464787B (en) | Array substrate of fringe field switching mode liquid crystal display panel and method of manufacturing the same | |
WO2013143321A1 (en) | Array substrate and manufacturing method thereof, and display device | |
JP2016527692A (en) | Method for avoiding short circuit of metal wiring in organic light emitting diode display | |
WO2015021712A1 (en) | Array substrate, manufacturing method thereof and display device | |
US9494837B2 (en) | Manufacturing method of TFT array substrate, TFT array substrate and display device | |
US8212987B2 (en) | Liquid crystal display device and the manufacturing method thereof | |
WO2019061751A1 (en) | Manufacturing method of tft array substrate and structure of tft array substrate | |
KR20070115370A (en) | Display device having enhanced aperture ratio and manufacturing method thereof | |
CN111446264A (en) | Array substrate and manufacturing method thereof | |
WO2012176702A1 (en) | Tft substrate, method for producing same, and display device | |
JP4722538B2 (en) | Display device | |
JP6138501B2 (en) | Liquid crystal display device manufacturing method and liquid crystal display device | |
KR102223900B1 (en) | Organic light emitting diode display device and method for fabricating the same | |
JP2009130016A (en) | Manufacturing method for semiconductor device, and electronic apparatus | |
US20130207115A1 (en) | Semiconductor device and process for production thereof | |
US8664703B2 (en) | Display device having a shield | |
TWI805346B (en) | Array substrate and manufacturing method thereof | |
KR101888429B1 (en) | Method for Manufacturing Thin Film Transistor and Electrode Substrate Used in Display Device | |
US10170504B2 (en) | Manufacturing method of TFT array substrate, TFT array substrate and display device | |
TWI657270B (en) | Manufacturing method of color filter device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |