TWI590253B - Non-volatile memory - Google Patents

Non-volatile memory Download PDF

Info

Publication number
TWI590253B
TWI590253B TW104112847A TW104112847A TWI590253B TW I590253 B TWI590253 B TW I590253B TW 104112847 A TW104112847 A TW 104112847A TW 104112847 A TW104112847 A TW 104112847A TW I590253 B TWI590253 B TW I590253B
Authority
TW
Taiwan
Prior art keywords
gate
dielectric layer
control gate
memory unit
memory
Prior art date
Application number
TW104112847A
Other languages
Chinese (zh)
Other versions
TW201638959A (en
Inventor
鄭育明
Original Assignee
物聯記憶體科技股份有限公司
鄭育明
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 物聯記憶體科技股份有限公司, 鄭育明 filed Critical 物聯記憶體科技股份有限公司
Priority to TW104112847A priority Critical patent/TWI590253B/en
Publication of TW201638959A publication Critical patent/TW201638959A/en
Application granted granted Critical
Publication of TWI590253B publication Critical patent/TWI590253B/en

Links

Description

非揮發性記憶體 Non-volatile memory

本發明是有關於一種半導體元件,且特別是有關於一種非揮發性記憶體。 This invention relates to a semiconductor component, and more particularly to a non-volatile memory.

非揮發性記憶體由於具有可多次進行資料的存入、讀取、抹除等動作,且存入的資料在斷電後也不會消失的優點,已廣泛採用在個人電腦和電子設備。 Non-volatile memory has been widely used in personal computers and electronic devices because it has the advantages of allowing data to be stored, read, erased, etc., and the stored data does not disappear after power-off.

典型的一種非揮發性記憶體設計成具有堆疊式閘極(Stack-Gate)結構,其中包括依序設置於基底上的穿隧氧化層、浮置閘極(Floating gate)、閘間介電層以及控制閘極(Control Gate)。對此快閃記憶體元件進行程式化或抹除操作時,係分別於源極區、汲極區與控制閘極上施加適當電壓,以使電子注入多晶矽浮置閘極中,或將電子從多晶矽浮置閘極中拉出。 A typical non-volatile memory is designed to have a stacked gate-Gate structure including a tunneling oxide layer, a floating gate, and a gate dielectric layer sequentially disposed on the substrate. And control gate (Control Gate). When programming or erasing the flash memory device, apply appropriate voltages to the source region, the drain region, and the control gate to inject electrons into the polysilicon floating gate or to remove electrons from the polysilicon. Pull out in the floating gate.

在非揮發性記憶體的操作上,通常浮置閘極與控制閘極之間的閘極耦合率(Gate-Coupling Ratio,GCR)越大,其操作所需之工作電壓將越低,而快閃記憶體的操作速度與效率就會大大的 提升。其中增加閘極耦合率的方法,包括了增加浮置閘極與控制閘極間之重疊面積(Overlap Area)、降低浮置閘極與控制閘極間之介電層的厚度、以及增加浮置閘極與控制閘極之間的閘間介電層的介電常數(Dielectric Constant;k)等。 In the operation of non-volatile memory, the larger the Gate-Coupling Ratio (GCR) between the floating gate and the control gate, the lower the operating voltage required for its operation will be. Flash memory operation speed and efficiency will be greatly Upgrade. The method for increasing the gate coupling ratio includes increasing the overlap area between the floating gate and the control gate, reducing the thickness of the dielectric layer between the floating gate and the control gate, and increasing the floating The dielectric constant (Dielectric Constant; k) of the dielectric layer between the gate and the control gate.

然而,隨著積體電路正以更高的集積度朝向小型化的元件發展,所以必須縮小非揮發性記憶體之記憶胞尺寸以增進其集積度。其中,縮小記憶胞之尺寸可藉由減小記憶胞的閘極長度與位元線的間隔等方法來達成。但是,閘極長度變小會縮短了穿隧氧化層下方的通道長度(Channel Length),容易造成汲極與源極間發生不正常的電性貫通(Punch Through),如此將嚴重影響此記憶胞的電性表現。而且,在程式化及或抹除記憶胞時,電子重複穿越過穿隧氧化層,將耗損穿隧氧化層,導致記憶體元件可靠度降低。 However, as integrated circuits are moving toward miniaturized components with higher degree of accumulation, it is necessary to reduce the memory cell size of non-volatile memory to increase its accumulation. Wherein, reducing the size of the memory cell can be achieved by reducing the gate length of the memory cell and the spacing of the bit lines. However, the smaller the gate length shortens the channel length under the tunneling oxide layer, which is likely to cause abnormal electrical penetration between the drain and the source, which will seriously affect the memory cell. Electrical performance. Moreover, when the memory cells are programmed and erased, the electrons repeatedly traverse the tunnel oxide layer, which will wear out the tunnel oxide layer, resulting in a decrease in the reliability of the memory device.

本發明提供一種非揮發性記憶體及其製造方法,可以低操作電壓操作,進而增加半導體元件的可靠度。 The present invention provides a non-volatile memory and a method of fabricating the same that can operate at a low operating voltage, thereby increasing the reliability of the semiconductor component.

本發明提供一種非揮發性記憶體及其製造方法,可以提高元件的積集度。 The present invention provides a non-volatile memory and a method of manufacturing the same, which can improve the degree of integration of components.

本發明提出一種非揮發性記憶體,具有第一記憶單元,設置於具有深井區的基底上。第一記憶單元,包括:堆疊結構、第一浮置閘極與第二浮置閘極、第一穿隧介電層與第二穿隧介電層、第一抹除介電層與第二抹除介電層、第一輔助閘介電層及第 二輔助閘介電層、第一摻雜區與第二摻雜區、第一控制閘極以及第二控制閘極以及閘間介電層。堆疊結構包括依序設置於基底上的閘介電層、閘極以及絕緣層。第一浮置閘極與第二浮置閘極分別設置於堆疊結構的兩側的側壁,且第一浮置閘極與第二浮置閘極的頂部分別具有轉角部。第一穿隧介電層與第二穿隧介電層,分別設置於第一浮置閘極與基底之間以及第二浮置閘極與基底之間。第一抹除介電層與第二抹除介電層分別設置於閘極與第一浮置閘極之間以及閘極與第二浮置閘極之間,第一抹除介電層與第二抹除介電層分別包括第一部分以及位於第一部分上的第二部分,其中第二部分的厚度小於或等於第一部分,且轉角部鄰近第二部分。第一摻雜區與第二摻雜區,分別設置於基底中,其中第一浮置閘極、堆疊結構與第二浮置閘極連接設置於第一摻雜區與第二摻雜區之間的基底上。第一控制閘極以及第二控制閘極分別設置於第一浮置閘極與第二浮置閘極上。閘間介電層設置於第一控制閘極與第一浮置閘極之間以及第二控制閘極與第二浮置閘極之間。 The present invention provides a non-volatile memory having a first memory unit disposed on a substrate having a deep well region. The first memory unit includes: a stacked structure, a first floating gate and a second floating gate, a first tunneling dielectric layer and a second tunneling dielectric layer, a first erase dielectric layer and a second Wiping off dielectric layer, first auxiliary gate dielectric layer and The second auxiliary gate dielectric layer, the first doped region and the second doped region, the first control gate and the second control gate, and the inter-gate dielectric layer. The stacked structure includes a gate dielectric layer, a gate, and an insulating layer sequentially disposed on the substrate. The first floating gate and the second floating gate are respectively disposed on sidewalls of the two sides of the stacked structure, and the tops of the first floating gate and the second floating gate respectively have corner portions. The first tunneling dielectric layer and the second tunneling dielectric layer are respectively disposed between the first floating gate and the substrate and between the second floating gate and the substrate. The first erase dielectric layer and the second erase dielectric layer are respectively disposed between the gate and the first floating gate and between the gate and the second floating gate, and the first erase dielectric layer and The second erase dielectric layer respectively includes a first portion and a second portion on the first portion, wherein the second portion has a thickness less than or equal to the first portion, and the corner portion is adjacent to the second portion. The first doped region and the second doped region are respectively disposed in the substrate, wherein the first floating gate, the stacked structure and the second floating gate are connected to the first doped region and the second doped region On the base. The first control gate and the second control gate are respectively disposed on the first floating gate and the second floating gate. The inter-gate dielectric layer is disposed between the first control gate and the first floating gate and between the second control gate and the second floating gate.

在本發明的一實施例中,上述非揮發性記憶體具有第一位元線與第二位元線。第一位元線與第二位元線平行設置於基底上,其中第一摻雜區電性連接至第一位元線,第二摻雜區電性連接至第二位元線。 In an embodiment of the invention, the non-volatile memory has a first bit line and a second bit line. The first bit line is electrically connected to the second bit line in parallel with the second bit line, wherein the first doped region is electrically connected to the first bit line, and the second doped region is electrically connected to the second bit line.

在本發明的一實施例中,上述非揮發性記憶體在行方向上更包括第二記憶單元,第二記憶單元設置於基底上,第二記憶 單元的結構與第一記憶單元的結構相同,共用第二摻雜區。 In an embodiment of the invention, the non-volatile memory further includes a second memory unit in the row direction, and the second memory unit is disposed on the substrate, the second memory The structure of the unit is the same as that of the first memory unit, sharing the second doped region.

在本發明的一實施例中,上述非揮發性記憶體具有第一位元線與第二位元線。第一位元線與第二位元線平行設置於基底上,其中第一記憶單元與第二記憶單元共用的第二摻雜區電性連接至第一位元線,第一記憶單元的第一摻雜區與第二記憶單元的第三摻雜區分別電性連接至第二位元線。 In an embodiment of the invention, the non-volatile memory has a first bit line and a second bit line. The first bit line and the second bit line are disposed on the substrate in parallel, wherein the second doping region shared by the first memory unit and the second memory unit is electrically connected to the first bit line, and the first memory unit is A doped region and a third doped region of the second memory cell are electrically connected to the second bit line, respectively.

在本發明的一實施例中,上述第一記憶單元與第二記憶單元共用第一控制閘極或第二控制閘極,且第一控制閘極或第二控制閘極填滿第一記憶單元與第二記憶單元之間的開口。 In an embodiment of the invention, the first memory unit and the second memory unit share the first control gate or the second control gate, and the first control gate or the second control gate fills the first memory unit. An opening between the second memory unit.

在本發明的一實施例中,上述非揮發性記憶體在列方向上更包括第三記憶單元,第三記憶單元設置於基底上,第三記憶單元的結構與第一記憶單元的結構相同,第三記憶單元與第一記憶單元由第一摻雜區串接在一起,共用閘極、第一控制閘極及第二控制閘極,且第一控制閘極及第二控制閘極填滿第一記憶單元與第三記憶單元之間。 In an embodiment of the invention, the non-volatile memory further includes a third memory unit in the column direction, the third memory unit is disposed on the substrate, and the structure of the third memory unit is the same as the structure of the first memory unit. The third memory unit and the first memory unit are serially connected by the first doping region, sharing the gate, the first control gate and the second control gate, and the first control gate and the second control gate are filled Between the first memory unit and the third memory unit.

在本發明的一實施例中,上述非揮發性記憶體具有第一位元線、第二位元線與第三位元線。第一位元線、第二位元線與第三位元線,平行設置於基底上,其中串接第一記憶單元與第三記憶單元的第一摻雜區電性連接至第二位元線,第一記憶單元的第二摻雜區電性連接至第一位元線,第三記憶單元的第三摻雜區電性連接至第三位元線。 In an embodiment of the invention, the non-volatile memory has a first bit line, a second bit line, and a third bit line. The first bit line, the second bit line and the third bit line are disposed in parallel on the substrate, wherein the first doping region connected in series with the first memory unit and the third memory unit is electrically connected to the second bit The second doped region of the first memory unit is electrically connected to the first bit line, and the third doped region of the third memory cell is electrically connected to the third bit line.

在本發明的一實施例中,上述第一穿隧介電層更設置於 第一控制閘極與第一摻雜區之間;第二穿隧介電層更設置於第二控制閘極與第二摻雜區之間。 In an embodiment of the invention, the first tunneling dielectric layer is further disposed on The first control gate is disposed between the first control gate and the first doped region; and the second tunneling dielectric layer is disposed between the second control gate and the second doped region.

在本發明的一實施例中,第一抹除介電層與第二抹除介電層的第一部分的高度為第一浮置閘極與第二浮置閘極的高度的0.8倍至小於1倍。 In an embodiment of the invention, the height of the first portion of the first erase dielectric layer and the second erase dielectric layer is 0.8 times to less than the height of the first floating gate and the second floating gate 1 times.

在本發明的一實施例中,上述第一抹除介電層與第二抹除介電層的第一部分的材質包括氧化矽/氮化矽、氧化矽/氮化矽/氧化矽或氧化矽。 In an embodiment of the invention, the material of the first portion of the first erase dielectric layer and the second erase dielectric layer comprises hafnium oxide/tantalum nitride, hafnium oxide/tantalum nitride/yttria or hafnium oxide. .

在本發明的一實施例中,上述絕緣層的材質包括氧化矽。 In an embodiment of the invention, the material of the insulating layer comprises yttrium oxide.

在本發明的一實施例中,上述閘間介電層的材質包括氧化矽/氮化矽/氧化矽或氮化矽/氧化矽或其他高介電常數的材質(k>4)。 In an embodiment of the invention, the material of the inter-gate dielectric layer comprises yttrium oxide/tantalum nitride/yttria or tantalum nitride/yttria or other high dielectric constant material (k>4).

在本發明的一實施例中,上述第一穿隧介電層與第二穿隧介電層的材質包括氧化矽,第一穿隧介電層與第二穿隧介電層的厚度介於60埃至200埃之間。 In an embodiment of the invention, the material of the first tunneling dielectric layer and the second tunneling dielectric layer comprises yttrium oxide, and the thickness of the first tunneling dielectric layer and the second tunneling dielectric layer is between Between 60 and 200 angstroms.

在本發明的一實施例中,上述閘介電層的材質包括氧化矽,閘介電層的厚度小於或等於第一穿隧介電層與第二穿隧介電層的厚度。 In an embodiment of the invention, the material of the gate dielectric layer comprises hafnium oxide, and the thickness of the gate dielectric layer is less than or equal to the thickness of the first tunneling dielectric layer and the second tunneling dielectric layer.

在本發明的一實施例中,上述第一抹除介電層與第二抹除介電層的第二部分的材質包括氧化矽,第二部分的厚度介於100埃至180埃之間。 In an embodiment of the invention, the material of the second portion of the first erase dielectric layer and the second erase dielectric layer comprises ruthenium oxide, and the thickness of the second portion is between 100 angstroms and 180 angstroms.

在本發明的一實施例中,上述轉角部角度小於或等於90 度。 In an embodiment of the invention, the angle of the corner portion is less than or equal to 90 degree.

在本發明的一實施例中,上述轉角部角度小於或等於90度。第一記憶單元經程式化後的閾值電壓是介於Vcc與0之間:第一記憶單元經抹除後的閾值電壓是小於0。 In an embodiment of the invention, the angle of the corner portion is less than or equal to 90 degrees. The threshold voltage of the first memory cell after stylization is between Vcc and 0: the threshold voltage after the erase of the first memory cell is less than zero.

本發明的非揮發性記憶體中,在X方向(行方向)相鄰的兩記憶單元結構相同,共用第一摻雜區或第二摻雜區。而在Y方向(列方向)相鄰的兩記憶單元結構相同,共用第一摻雜區或第二摻雜區、閘極(字元線)以及控制閘極。因此能提高元件的積集度。 In the non-volatile memory of the present invention, the two memory cells adjacent in the X direction (row direction) have the same structure and share the first doped region or the second doped region. The two memory cells adjacent in the Y direction (column direction) have the same structure, sharing the first doped region or the second doped region, the gate (word line), and the control gate. Therefore, the degree of integration of components can be improved.

本發明的非揮發性記憶體中,閘極下方的閘介電層的厚度較薄,在操作記憶單元時,可以使用較小的電壓打開/關閉閘極下方的通道區,亦即可以降低操作電壓。 In the non-volatile memory of the present invention, the thickness of the gate dielectric layer under the gate is relatively thin, and when the memory unit is operated, a smaller voltage can be used to open/close the channel region under the gate, that is, the operation can be reduced. Voltage.

本發明的非揮發性記憶體中,控制閘極包覆浮置閘極,能夠增加控制閘極與浮置閘極之間所夾的面積,而提高了記憶體元件的耦合率。 In the non-volatile memory of the present invention, the control gate covers the floating gate, which can increase the area sandwiched between the control gate and the floating gate, and improve the coupling ratio of the memory element.

本發明的非揮發性記憶體中,由於抹除介電層的第一部分的高度為浮置閘極的高度的0.8倍至小於1倍,浮置閘極設置有轉角部,且此轉角部的角度小於或等於90度,藉由轉角部使電場集中,可降低抹除電壓,有效率的將電子從浮置閘極拉出,提高抹除資料的速度。 In the non-volatile memory of the present invention, since the height of the first portion of the erase dielectric layer is 0.8 times to less than 1 times the height of the floating gate, the floating gate is provided with a corner portion, and the corner portion is When the angle is less than or equal to 90 degrees, the electric field is concentrated by the corner portion, the erase voltage can be reduced, and the electrons can be efficiently pulled out from the floating gate to increase the speed of erasing the data.

本發明之非揮發性記憶體,由於在第一浮置閘極、堆疊 結構與第二浮置閘極之間沒有間隙,因此可以提升記憶單元之積集度。而且,在第一浮置閘極與第二浮置閘極都可以儲存電荷,因此可在單一記憶單元中儲存二位元的資料,而能夠提升儲存容量。 The non-volatile memory of the present invention, due to the first floating gate, stacked There is no gap between the structure and the second floating gate, so the accumulation of memory cells can be improved. Moreover, the first floating gate and the second floating gate can store the electric charge, so that the two-bit data can be stored in a single memory unit, and the storage capacity can be improved.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

100‧‧‧基底 100‧‧‧Base

102‧‧‧隔離結構 102‧‧‧Isolation structure

104‧‧‧主動區 104‧‧‧Active Area

120‧‧‧堆疊結構 120‧‧‧Stack structure

122‧‧‧閘介電層 122‧‧‧gate dielectric layer

124‧‧‧閘極 124‧‧‧ gate

126‧‧‧絕緣層 126‧‧‧Insulation

128、DW‧‧‧深井區 128, DW‧‧‧Shenjing District

118a、118b‧‧‧抹除介電層 118a, 118b‧‧‧wipe the dielectric layer

130a、130b‧‧‧第一部分 130a, 130b‧‧‧ part one

132a、132b‧‧‧第二部分 132a, 132b‧‧‧ part two

140a、140b、FGa、FGb‧‧‧浮置 閘極 140a, 140b, FGa, FGb‧‧‧ floating Gate

141‧‧‧轉角部 141‧‧‧ Corner

142a、142b‧‧‧穿隧介電層 142a, 142b‧‧‧ tunneling dielectric layer

146、148‧‧‧摻雜區 146, 148‧‧‧ doped area

150a、150b‧‧‧控制閘極 150a, 150b‧‧‧ control gate

152‧‧‧閘間介電層 152‧‧‧Interruptor dielectric layer

162‧‧‧插塞 162‧‧‧ plug

164‧‧‧開口 164‧‧‧ openings

BL0~BL3‧‧‧位元線 BL0~BL3‧‧‧ bit line

CG0~CG5‧‧‧控制閘極線 CG0~CG5‧‧‧Control gate line

M、M11~M33‧‧‧記憶單元 M, M11~M33‧‧‧ memory unit

WL0~WL2‧‧‧字元線 WL0~WL2‧‧‧ character line

圖1A為依照本發明之實施例所繪示的一種非揮發性記憶體的上視圖。 1A is a top view of a non-volatile memory in accordance with an embodiment of the present invention.

圖1B為依照本發明之實施例所繪示的一種非揮發性記憶體的剖面示意圖。 FIG. 1B is a schematic cross-sectional view of a non-volatile memory according to an embodiment of the invention.

圖1C為依照本發明之實施例所繪示的一種非揮發性記憶體的電路簡圖。 FIG. 1C is a schematic circuit diagram of a non-volatile memory according to an embodiment of the invention.

圖2A及圖2B為對記憶單元進行程式化操作之一實例的示意圖。 2A and 2B are schematic diagrams showing an example of a program operation of a memory unit.

圖2C及圖2D為對記憶單元進行抹除操作之一實例的示意圖。 2C and 2D are schematic views showing an example of erasing a memory cell.

圖2E及圖2F為對記憶單元進行讀取操作之一實例的示意圖。 2E and 2F are schematic diagrams showing an example of a reading operation on a memory cell.

圖3A為依照本發明之實施例所繪示的一種非揮發性記憶體 的上視圖。 FIG. 3A illustrates a non-volatile memory according to an embodiment of the invention. Upper view.

圖3B為依照本發明之實施例所繪示的一種非揮發性記憶體的剖面示意圖。 FIG. 3B is a schematic cross-sectional view of a non-volatile memory according to an embodiment of the invention.

圖3C為依照本發明之實施例所繪示的一種非揮發性記憶體的電路簡圖。 FIG. 3C is a schematic circuit diagram of a non-volatile memory according to an embodiment of the invention.

圖4A及圖4B為對記憶單元進行程式化操作之一實例的示意圖。 4A and 4B are schematic diagrams showing an example of a program operation of a memory unit.

圖4C及圖4D為對記憶單元進行抹除操作之一實例的示意圖。 4C and 4D are schematic views showing an example of an erase operation of a memory cell.

圖4E及圖4F為對記憶單元進行讀取操作之一實例的示意圖。 4E and 4F are schematic diagrams showing an example of a reading operation on a memory cell.

圖1A為依照本發明之實施例所繪示的一種非揮發性記憶體的上視圖。圖1B為依照本發明之實施例所繪示的一種非揮發性記憶體的剖面示意圖。圖1B所繪示為沿著圖1A中A-A'線的剖面圖。圖1C為依照本發明之實施例所繪示的一種非揮發性記憶體的電路簡圖。 1A is a top view of a non-volatile memory in accordance with an embodiment of the present invention. FIG. 1B is a schematic cross-sectional view of a non-volatile memory according to an embodiment of the invention. FIG. 1B is a cross-sectional view taken along line AA' of FIG. 1A. FIG. 1C is a schematic circuit diagram of a non-volatile memory according to an embodiment of the invention.

請參照圖1A、圖1B及圖1C,非揮發性記憶體包括多個記憶單元M11~M33、字元線WL0~WL2、位元線BL0~BL3、控制閘極線CG0~CG5。記憶單元M11~M33排列成行/列陣列。 1A, 1B, and 1C, the non-volatile memory includes a plurality of memory cells M11 to M33, word lines WL0 to WL2, bit lines BL0 to BL3, and control gate lines CG0 to CG5. The memory cells M11 to M33 are arranged in a row/column array.

非揮發性記憶體設置於基底100上。在基底100中例如 設置有隔離結構102,以定義出主動區104。隔離結構102例如是淺溝渠隔離結構。在基底100中具有深井區128。深井區128例如是含有N型或P型摻質的摻雜區,端視元件的設計而定。 The non-volatile memory is disposed on the substrate 100. In the substrate 100, for example An isolation structure 102 is provided to define the active area 104. The isolation structure 102 is, for example, a shallow trench isolation structure. There is a deep well region 128 in the substrate 100. The deep well region 128 is, for example, a doped region containing an N-type or P-type dopant, depending on the design of the terminal element.

如圖1A所示,記憶單元M包括堆疊結構120、抹除介電層118a(118b)、浮置閘極140a(140b)、穿隧介電層142a(142b)、摻雜區146、摻雜區148、控制閘極150a(150b)以及閘間介電層152。 As shown in FIG. 1A, the memory cell M includes a stacked structure 120, an erase dielectric layer 118a (118b), a floating gate 140a (140b), a tunneling dielectric layer 142a (142b), a doped region 146, and doping. A region 148, a control gate 150a (150b), and a gate dielectric layer 152.

堆疊結構120從基底100起依序由閘介電層122、閘極124以及絕緣層126。閘介電層122例如是設置於閘極124與基底100之間。閘介電層122的材質例如是氧化矽。閘介電層122的厚度例如小於或等於穿隧介電層142的厚度。 The stacked structure 120 sequentially passes through the gate dielectric layer 122, the gate 124, and the insulating layer 126 from the substrate 100. The gate dielectric layer 122 is disposed between the gate 124 and the substrate 100, for example. The material of the gate dielectric layer 122 is, for example, hafnium oxide. The thickness of the gate dielectric layer 122 is, for example, less than or equal to the thickness of the tunnel dielectric layer 142.

閘極124例如是設置於閘介電層122與絕緣層126之間。閘極124例如是在Y方向延伸。閘極124的材質例如是摻雜多晶矽等導體材料。絕緣層126例如是設置於閘極124上。絕緣層126的材質例如是氧化矽。 The gate 124 is disposed between the gate dielectric layer 122 and the insulating layer 126, for example. The gate 124 extends, for example, in the Y direction. The material of the gate 124 is, for example, a conductor material such as doped polysilicon. The insulating layer 126 is provided, for example, on the gate 124. The material of the insulating layer 126 is, for example, cerium oxide.

抹除介電層118a(118b)例如是設置於浮置閘極140a(140b)與閘極124之間。抹除介電層118a(118b)包括第一部分130a(130b)以及位於第一部分130a(130b)上的第二部分132a(132b)。第二部分132a(132b)的厚度小於或等於第一部分130a(130b)。抹除介電層118a(118b)的第一部分130a(130b)的材質例如是氧化矽/氮化矽/氧化矽或氮化矽/氧化矽或氧化矽。抹除介電層118a(118b)的第二部分132a(132b)的材質例如是氧化矽。抹除介電層118a(118b)的第二部分132a(132b)的厚度例如介於100埃至180埃之間。 The erase dielectric layer 118a (118b) is disposed, for example, between the floating gate 140a (140b) and the gate 124. The erase dielectric layer 118a (118b) includes a first portion 130a (130b) and a second portion 132a (132b) on the first portion 130a (130b). The thickness of the second portion 132a (132b) is less than or equal to the first portion 130a (130b). The material of the first portion 130a (130b) of the erase dielectric layer 118a (118b) is, for example, hafnium oxide/tantalum nitride/yttria or tantalum nitride/yttria or hafnium oxide. The material of the second portion 132a (132b) of the erase dielectric layer 118a (118b) is, for example, ruthenium oxide. The thickness of the second portion 132a (132b) of the erase dielectric layer 118a (118b) is, for example, between 100 angstroms and 180 angstroms.

浮置閘極140a及浮置閘極140b例如是設置於堆疊結構120兩側的側壁,且此浮置閘極140a及浮置閘極140b的頂部分別具有轉角部141。抹除介電層118a(118b)的第一部分130a(130b)的高度為浮置閘極140a(140b)的高度的0.8倍至小於1倍。此轉角部141鄰近抹除介電層118a(118b)的第二部分132a(132b)。此轉角部141角度小於或等於90度。浮置閘極140a及浮置閘極140b的材質例如是摻雜多晶矽等導體材料。浮置閘極140a及浮置閘極140b分別可由一層或多層導體層構成。 The floating gate 140a and the floating gate 140b are, for example, sidewalls disposed on both sides of the stacked structure 120, and the tops of the floating gate 140a and the floating gate 140b respectively have corner portions 141. The height of the first portion 130a (130b) of the erase dielectric layer 118a (118b) is 0.8 times to less than 1 times the height of the floating gate 140a (140b). This corner portion 141 is adjacent to the second portion 132a (132b) of the erase dielectric layer 118a (118b). The angle of the corner portion 141 is less than or equal to 90 degrees. The material of the floating gate 140a and the floating gate 140b is, for example, a conductor material such as doped polysilicon. The floating gate 140a and the floating gate 140b may each be composed of one or more conductor layers.

穿隧介電層142a例如是設置於浮置閘極140a與基底100之間;穿隧介電層142b例如是設置於浮置閘極140b與基底100之間。穿隧介電層142a例如是更設置於控制閘極150a與摻雜區146之間;穿隧介電層142b例如是更設置於控制閘極150b與摻雜區148之間。穿隧介電層142a及穿隧介電層142b的材質例如是氧化矽。穿隧介電層142a及穿隧介電層142b的厚度介於60埃至200埃之間。 The tunneling dielectric layer 142a is disposed between the floating gate 140a and the substrate 100, for example, and the tunneling dielectric layer 142b is disposed between the floating gate 140b and the substrate 100, for example. The tunneling dielectric layer 142a is disposed, for example, between the control gate 150a and the doping region 146; the tunneling dielectric layer 142b is disposed, for example, between the control gate 150b and the doping region 148. The material of the tunneling dielectric layer 142a and the tunneling dielectric layer 142b is, for example, hafnium oxide. The thickness of the tunneling dielectric layer 142a and the tunneling dielectric layer 142b is between 60 angstroms and 200 angstroms.

摻雜區146例如是設置於浮置閘極140a旁的基底100中。摻雜區148例如是設置於浮置閘極140b旁的基底100中。浮置閘極140a、堆疊結構120與浮置閘極140b連接設置於摻雜區146與摻雜區148之間的基底100上。摻雜區146、摻雜區148例如是含有N型或P型摻質的摻雜區,端視元件的設計而定。 The doped region 146 is, for example, disposed in the substrate 100 beside the floating gate 140a. The doped region 148 is, for example, disposed in the substrate 100 beside the floating gate 140b. The floating gate 140a, the stacked structure 120 and the floating gate 140b are connected to the substrate 100 disposed between the doping region 146 and the doping region 148. The doped region 146 and the doped region 148 are, for example, doped regions containing N-type or P-type dopants, depending on the design of the device.

控制閘極150a例如是設置於浮置閘極140a上;控制閘 極150b例如是設置於浮置閘極140b上。控制閘極150a及控制閘極150b例如是在Y方向(列方向)延伸。控制閘極150a及控制閘極150b的材質例如是摻雜多晶矽等導體材料。閘間介電層152例如是設置於控制閘極150a與浮置閘極140a之間以及控制閘極150b與浮置閘極140b之間。閘間介電層152的材質例如是氧化矽/氮化矽/氧化矽或氮化矽/氧化矽或其他高介電常數的材質(k>4)。 The control gate 150a is, for example, disposed on the floating gate 140a; the control gate The pole 150b is, for example, disposed on the floating gate 140b. The control gate 150a and the control gate 150b extend, for example, in the Y direction (column direction). The material of the control gate 150a and the control gate 150b is, for example, a conductor material such as doped polysilicon. The inter-gate dielectric layer 152 is disposed, for example, between the control gate 150a and the floating gate 140a and between the control gate 150b and the floating gate 140b. The material of the inter-gate dielectric layer 152 is, for example, tantalum oxide/tantalum nitride/yttria or tantalum nitride/yttria or other high dielectric constant material (k>4).

層間絕緣層(未繪示)例如是設置於基底100上,並且覆蓋記憶單元M。層間絕緣層的材質例如是氧化矽、磷矽玻璃、硼磷矽玻璃或其他適合之介電材料。多個插塞162例如是設置於層間絕緣層中。插塞162的材質例如是鋁、鎢等導體材料。多個位元線BL0~BL3例如是設置於層間絕緣層上,位元線BL0~BL3分別藉由插塞162與各記憶單元M的摻雜區146或摻雜區148電性連接。位元線BL0~BL3的材質例如是鋁、鎢、銅等導體材料。如圖1C所示,記憶單元M11~M33具有如圖1A及圖1B所示的結構。在下述說明中,圖1B中的記憶單元M分為左側位元以及右側位元。 An interlayer insulating layer (not shown) is disposed on the substrate 100, for example, and covers the memory unit M. The material of the interlayer insulating layer is, for example, cerium oxide, phosphoric glass, borophosphon glass or other suitable dielectric material. The plurality of plugs 162 are, for example, disposed in the interlayer insulating layer. The material of the plug 162 is, for example, a conductor material such as aluminum or tungsten. The plurality of bit lines BL0 BLBL3 are disposed on the interlayer insulating layer, for example, and the bit lines BL0 BLBL3 are electrically connected to the doping regions 146 or the doping regions 148 of the memory cells M by the plugs 162, respectively. The material of the bit lines BL0 to BL3 is, for example, a conductor material such as aluminum, tungsten or copper. As shown in FIG. 1C, the memory cells M11 to M33 have a structure as shown in FIGS. 1A and 1B. In the following description, the memory unit M in FIG. 1B is divided into a left bit and a right bit.

在X方向(行方向)上,多個記憶單元M藉由摻雜區(摻雜區146或摻雜區148)串接在一起。舉例來說,記憶單元M11的結構與記憶單元M12的結構相同,共用一個摻雜區(摻雜區146或摻雜區148);記憶單元M12的結構與記憶單元M13的結構相同,共用一個摻雜區(摻雜區146或摻雜區148);...;記憶單元M31的結構與記憶單元M32的結構相同,共用一個摻雜區(摻雜區146或摻 雜區148);記憶單元M32的結構與記憶單元M33的結構相同,共用一個摻雜區(摻雜區146或摻雜區148)。 In the X direction (row direction), a plurality of memory cells M are connected in series by doped regions (doped regions 146 or doped regions 148). For example, the structure of the memory cell M11 is the same as that of the memory cell M12, sharing a doped region (doped region 146 or doped region 148); the structure of the memory cell M12 is the same as that of the memory cell M13, sharing a blend The impurity region (doped region 146 or doped region 148);...; the memory cell M31 has the same structure as the memory cell M32, sharing a doped region (doped region 146 or doped The impurity cell 148) has the same structure as the memory cell M33 and shares a doped region (doped region 146 or doped region 148).

在Y方向(列方向)上,多個記憶單元M藉由摻雜區(摻雜區146或摻雜區148)串接在一起,且共用閘極124、控制閘極150a以及控制閘極150b。控制閘極150a及控制閘極150b填滿記憶單元M(例如:記憶單元M11、記憶單元M21以及記憶單元M31)之間。舉例來說,記憶單元M11的結構與記憶單元M21的結構相同,共用一個摻雜區(摻雜區146或摻雜區148),記憶單元M21的結構與記憶單元M31的結構相同共用一個摻雜區(摻雜區146或摻雜區148);...;記憶單元M13的結構與記憶單元M23的結構相同,共用一個摻雜區(摻雜區146或摻雜區148),記憶單元M23的結構與記憶單元M33的結構相同共用一個摻雜區(摻雜區146或摻雜區148)。 In the Y direction (column direction), a plurality of memory cells M are connected in series by doped regions (doped regions 146 or doped regions 148), and the common gate 124, the control gate 150a, and the control gate 150b are shared. . The control gate 150a and the control gate 150b fill between the memory unit M (for example, the memory unit M11, the memory unit M21, and the memory unit M31). For example, the structure of the memory cell M11 is the same as that of the memory cell M21, sharing a doped region (doped region 146 or doped region 148). The structure of the memory cell M21 is the same as the structure of the memory cell M31. a region (doped region 146 or doped region 148);...; memory cell M13 has the same structure as memory cell M23, sharing a doped region (doped region 146 or doped region 148), memory cell M23 The structure shares the same doping region (doped region 146 or doped region 148) as the memory cell M33.

位元線BL0~BL3例如是分別設置於基底上,這些位元線BL0~BL3在行方向上平行排列。兩相鄰位元線之中係配置一記憶單元行,且此記憶單元行所包含之摻雜區係以交錯之方式,分別連接至與其對應之兩相鄰之位元線(摻雜區146或摻雜區148)。舉例來說,記憶單元M11、記憶單元M12、記憶單元M13串接而成記憶胞行,從記憶單元M11開始算起,第1、3個摻雜區電性連接至位元線BL0,第2、4個摻雜區電性連接至位元線BL1。記憶單元M21、記憶單元M22、記憶單元M23串接而成記憶胞行,第1、3個摻雜區電性連接至位元線BL2,第2、4個摻雜區電性 連接至第3條位元線BL1。記憶單元M31、記憶單元M32、記憶單元M33串接而成記憶胞行,第1、3個摻雜區電性連接至位元線BL2,第2、4個摻雜區電性連接至第3條位元線BL3。 The bit lines BL0 to BL3 are respectively disposed on the substrate, and the bit lines BL0 to BL3 are arranged in parallel in the row direction. A memory cell row is disposed in two adjacent bit lines, and the doped regions included in the memory cell row are respectively connected to two adjacent bit lines corresponding thereto (doped regions 146). Or doped region 148). For example, the memory unit M11, the memory unit M12, and the memory unit M13 are connected in series to form a memory cell row. The first and third doped regions are electrically connected to the bit line BL0, starting from the memory unit M11. The four doped regions are electrically connected to the bit line BL1. The memory unit M21, the memory unit M22, and the memory unit M23 are connected in series to form a memory cell row, and the first and third doped regions are electrically connected to the bit line BL2, and the second and fourth doped regions are electrically connected. Connect to the 3rd bit line BL1. The memory unit M31, the memory unit M32, and the memory unit M33 are connected in series to form a memory cell row, the first and third doped regions are electrically connected to the bit line BL2, and the second and fourth doped regions are electrically connected to the third row. Strip bit line BL3.

而且,在行方向上,舉例來說,串接的記憶單元M11、記憶單元M12共用的摻雜區電性連接至位元線BL1,記憶單元M11與記憶單元M12未共用的摻雜區則分別電性連接至位元線BL0。在列方向上,舉例來說,串接的記憶單元M11、記憶單元M21共用的摻雜區電性連接至位元線BL1,記憶單元M11的另一摻雜區電性連接至位元線BL0,記憶單元M21的另一摻雜區電性連接至位元線BL2。 Moreover, in the row direction, for example, the doped regions shared by the memory cells M11 and the memory cells M12 connected in series are electrically connected to the bit line BL1, and the doped regions not shared by the memory cell M11 and the memory cell M12 are respectively electrically connected. Connected to bit line BL0. In the column direction, for example, the doped regions shared by the memory cells M11 and the memory cells M21 connected in series are electrically connected to the bit line BL1, and the other doped region of the memory cell M11 is electrically connected to the bit line BL0. The other doped region of the memory cell M21 is electrically connected to the bit line BL2.

字元線WL0~WL2例如是分別設置於基底上,這些字元線WL0~WL2在列的方向上平行排列,分別連接同一列之記憶單元的閘極124。舉例來說,字元線WL0連接記憶單元M11~M31的閘極124。字元線WL1連接記憶單元M12~M32的閘極124。字元線WL2連接記憶單元M13~M33的閘極124。 The word lines WL0 to WL2 are respectively disposed on the substrate, and the word lines WL0 to WL2 are arranged in parallel in the column direction, and are respectively connected to the gates 124 of the memory cells of the same column. For example, the word line WL0 is connected to the gate 124 of the memory cells M11 to M31. The word line WL1 is connected to the gate 124 of the memory cells M12 to M32. The word line WL2 is connected to the gate 124 of the memory cells M13 to M33.

控制閘極線CG0~CG5分別設置於基底上,這些控制閘極線CG0~CG5在列的方向上平行排列,分別連接同一列之記憶單元的控制閘極150a或控制閘極150b。在本實施例中,控制閘極線CG0、CG2、CG4連接同一列之記憶單元的控制閘極150a。控制閘極線CG1、CG3、CG5連接同一列之記憶單元的控制閘極150b。 The control gate lines CG0 CG CG5 are respectively disposed on the substrate, and the control gate lines CG0 CG CG5 are arranged in parallel in the column direction, and respectively connected to the control gate 150a or the control gate 150b of the memory cell of the same column. In the present embodiment, the control gate lines CG0, CG2, CG4 are connected to the control gates 150a of the memory cells of the same column. The control gate lines CG1, CG3, CG5 are connected to the control gates 150b of the memory cells of the same column.

在上述的非揮發性記憶體中,在X方向(行方向)相鄰的兩記憶單元M結構相同,共用第一摻雜區146或第二摻雜區148。 而在Y方向(列方向)相鄰的兩記憶單元M結構相同,共用第一摻雜區146或第二摻雜區148、閘極(字元線)124以及控制閘極150a(150b)。因此能提高元件的積集度。在上述的非揮發性記憶體中,閘介電層122的厚度較薄,在操作記憶單元時,可以使用較小的電壓打開/關閉閘極124下方的通道區,亦即可以降低操作電壓。控制閘極150a(150b)包覆浮置閘極140a(140b),能夠增加控制閘極150a(150b)與浮置閘極140a(140b)之間所夾的面積,而提高了記憶體元件的的耦合率。抹除介電層118a(118b)的第一部分130a(130b)的高度為浮置閘極140a(140b)的高度的0.8倍至小於1倍。浮置閘極140a(140b)設置有轉角部141,且此轉角部141的角度小於或等於90度,藉由轉角部141使電場集中,可降低抹除電壓有效率的將電子從浮置閘極140a(140b)拉出,提高抹除資料的速度。而且,此轉角部141鄰近抹除介電層118a(118b)的第二部分132a(132b),抹除介電層118a(118b)的第二部分132a(132b)的厚度較薄也可以提高抹除速率。 In the above non-volatile memory, the two memory cells M adjacent in the X direction (row direction) have the same structure, sharing the first doping region 146 or the second doping region 148. The two memory cells M adjacent in the Y direction (column direction) have the same structure, sharing the first doping region 146 or the second doping region 148, the gate (word line) 124, and the control gate 150a (150b). Therefore, the degree of integration of components can be improved. In the above non-volatile memory, the thickness of the gate dielectric layer 122 is relatively thin. When the memory cell is operated, a smaller voltage can be used to open/close the channel region under the gate 124, that is, the operating voltage can be lowered. The control gate 150a (150b) covers the floating gate 140a (140b), and can increase the area sandwiched between the control gate 150a (150b) and the floating gate 140a (140b), thereby improving the memory component. Coupling rate. The height of the first portion 130a (130b) of the erase dielectric layer 118a (118b) is 0.8 times to less than 1 times the height of the floating gate 140a (140b). The floating gate 140a (140b) is provided with a corner portion 141, and the angle of the corner portion 141 is less than or equal to 90 degrees, and the electric field is concentrated by the corner portion 141, thereby reducing the erasing voltage and efficiently discharging electrons from the floating gate The pole 140a (140b) is pulled out to increase the speed of erasing the data. Moreover, the corner portion 141 is adjacent to the second portion 132a (132b) of the erase dielectric layer 118a (118b), and the thin portion of the second portion 132a (132b) of the erase dielectric layer 118a (118b) can also be improved. In addition to the rate.

本發明之非揮發性記憶體,由於在浮置閘極140a、堆疊結構120與浮置閘極140b之間沒有間隙,因此可以提升記憶單元之積集度。而且,在浮置閘極140a與浮置閘極140b都可以儲存電荷,因此可在單一記憶單元中儲存二位元的資料,而能夠提升儲存容量。 In the non-volatile memory of the present invention, since there is no gap between the floating gate 140a, the stacked structure 120 and the floating gate 140b, the degree of accumulation of the memory cells can be improved. Moreover, the charge can be stored in both the floating gate 140a and the floating gate 140b, so that the data of the two bits can be stored in a single memory unit, and the storage capacity can be improved.

接著,說明本發明的非揮發性記憶體的操作模式,包括程式化、抹除與資料讀取等操作模式。圖2A及圖2B為對記憶單 元進行程式化操作之一實例的示意圖。圖2C及圖2D為對記憶單元進行抹除操作之一實例的示意圖。圖2E及圖2F為對記憶單元進行讀取操作之一實例的示意圖。 Next, the operation mode of the non-volatile memory of the present invention will be described, including operation modes such as stylization, erasing, and data reading. Figure 2A and Figure 2B show the memory list A schematic diagram of an instance of a stylized operation. 2C and 2D are schematic views showing an example of erasing a memory cell. 2E and 2F are schematic diagrams showing an example of a reading operation on a memory cell.

請參照圖2A,在對選定記憶單元M22的浮置閘極FGa(左側位元)進行程式化操作時,於深井區DW施加電壓Vcc,電壓Vcc例如是電源電壓。於基底sub施加0伏特之電壓。於選定記憶單元M22的閘極(字元線WL1)施加電壓Vwlp,以於閘極下方的基底中形成通道,電壓Vwlp例如是0.6~1.2伏特。非選定記憶單元的閘極(字元線WL0、WL2)施加0伏特之電壓。於選定記憶單元M22的摻雜區(位元線BL1)施加電壓Vblp;摻雜區(位元線BL2)施加電壓Vbli;於控制閘極(控制閘極線CG2)施加電壓Vcgp;於控制閘極(控制閘極線CG3)施加電壓Vcc。電壓Vblp例如是3~7伏特;電壓Vbli例如是0.3~0.8伏特;電壓Vcgp例如是5~9伏特。在此種偏壓下,使電子由汲極(位元線BL2)往源極(位元線BL1)移動,以源極側熱電子注入的模式,注入選定記憶單元M22的浮置閘極FGa(左側位元)。由於非選定記憶單元的閘極(字元線WL0、WL2)施加0伏特之電壓,無法形成通道區,電子無法注入非選定記憶單元的浮置閘極,因此非選定記憶單元不會被程式化。 Referring to FIG. 2A, when the floating gate FGa (left bit) of the selected memory cell M22 is programmed, a voltage Vcc is applied to the deep well region DW, and the voltage Vcc is, for example, a power supply voltage. A voltage of 0 volts is applied to the substrate sub. A voltage Vwlp is applied to the gate (word line WL1) of the selected memory cell M22 to form a channel in the substrate under the gate, and the voltage Vwlp is, for example, 0.6 to 1.2 volts. The gate of the unselected memory cell (word lines WL0, WL2) applies a voltage of 0 volts. Applying a voltage Vblp to the doped region (bit line BL1) of the selected memory cell M22; applying a voltage Vbli to the doped region (bit line BL2); applying a voltage Vcgp to the control gate (control gate line CG2); The pole (control gate line CG3) applies a voltage Vcc. The voltage Vblp is, for example, 3 to 7 volts; the voltage Vbli is, for example, 0.3 to 0.8 volts; and the voltage Vcgp is, for example, 5 to 9 volts. Under such a bias voltage, electrons are moved from the drain (bit line BL2) to the source (bit line BL1), and the floating gate FGa of the selected memory cell M22 is injected in the mode of source-side hot electron injection. (left bit). Since the gate of the unselected memory cell (word lines WL0, WL2) is applied with a voltage of 0 volts, the channel region cannot be formed, and electrons cannot be injected into the floating gate of the unselected memory cell, so the unselected memory cells are not programmed. .

請參照圖2B,在對選定記憶單元M22的浮置閘極FGb(右側位元)進行程式化操作時,於深井區DW施加電壓Vcc,電壓Vcc例如是電源電壓。於基底sub施加0伏特之電壓。於選定記憶單元M22的閘極(字元線WL1)施加電壓Vwlp,以於閘極下方的基底 中形成通道,電壓Vwlp例如是0.6~1.2伏特。非選定記憶單元的閘極(字元線WL0、WL2)施加0伏特之電壓。於選定記憶單元M22的摻雜區(位元線BL2)施加電壓Vblp;摻雜區(位元線BL1)施加電壓Vbli;於控制閘極(控制閘極線CG3)施加電壓Vcgp;於控制閘極(控制閘極線CG2)施加電壓Vcc。電壓Vblp例如是3~7伏特;電壓Vbli例如是0.3~0.8伏特;電壓Vcgp例如是5~9伏特;電壓Vegp例如是3~7伏特。在此種偏壓下,使電子由汲極(位元線BL1)往源極(位元線BL2)移動,以源極側熱電子注入的模式,注入選定記憶單元M22的浮置閘極FGb(右側位元)。由於非選定記憶單元的閘極(字元線WL0、WL2)施加0伏特之電壓,無法形成通道區,電子無法注入非選定記憶單元的浮置閘極,因此非選定記憶單元不會被程式化。 Referring to FIG. 2B, when the floating gate FGb (right bit) of the selected memory cell M22 is programmed, a voltage Vcc is applied to the deep well region DW, and the voltage Vcc is, for example, a power supply voltage. A voltage of 0 volts is applied to the substrate sub. Applying a voltage Vwlp to the gate (word line WL1) of the selected memory cell M22 for the substrate under the gate The channel is formed in the middle, and the voltage Vwlp is, for example, 0.6 to 1.2 volts. The gate of the unselected memory cell (word lines WL0, WL2) applies a voltage of 0 volts. Applying a voltage Vblp to the doped region (bit line BL2) of the selected memory cell M22; applying a voltage Vbli to the doped region (bit line BL1); applying a voltage Vcgp to the control gate (control gate line CG3); The pole (control gate line CG2) applies a voltage Vcc. The voltage Vblp is, for example, 3 to 7 volts; the voltage Vbli is, for example, 0.3 to 0.8 volts; the voltage Vcgp is, for example, 5 to 9 volts; and the voltage Vegp is, for example, 3 to 7 volts. Under such a bias voltage, electrons are moved from the drain (bit line BL1) to the source (bit line BL2), and the floating gate FGb of the selected memory cell M22 is injected in the source-side hot electron injection mode. (right bit). Since the gate of the unselected memory cell (word lines WL0, WL2) is applied with a voltage of 0 volts, the channel region cannot be formed, and electrons cannot be injected into the floating gate of the unselected memory cell, so the unselected memory cells are not programmed. .

請參照圖2C,在對選定記憶單元M22的浮置閘極FGa(左側位元)進行抹除操作時,於選定記憶單元M22的控制閘極(控制閘極線CG2)施加電壓Vcge;於選定記憶單元M22的控制閘極(控制閘極線CG3)施加0伏特之電壓。於選定記憶單元M22的閘極(字元線WL1)施加2倍Vcc的電壓;於非選定記憶單元的閘極(字元線WL0、WL2)施加0伏特之電壓;於摻雜區(位元線BL1)、摻雜區(位元線BL2)、深井區DW、基底sub施加Vcc的電壓。電壓Vcge例如是-8~0伏特。電壓Vcc例如是電源電壓。利用控制閘極(控制閘極線CG2)與閘極(字元線WL1)的電壓差,引發FN穿隧效應,將儲存於記憶單元的浮置閘極FGa(左側位元)電子拉出並移 除。 Referring to FIG. 2C, when the floating gate FGa (left bit) of the selected memory cell M22 is erased, a voltage Vcge is applied to the control gate (control gate line CG2) of the selected memory cell M22; The control gate of the memory unit M22 (control gate line CG3) applies a voltage of 0 volts. Applying a voltage of 2 times Vcc to the gate (word line WL1) of the selected memory cell M22; applying a voltage of 0 volt to the gate of the unselected memory cell (word lines WL0, WL2); in the doped region (bit) The voltage of Vcc is applied to the line BL1), the doped region (bit line BL2), the deep well region DW, and the substrate sub. The voltage Vcge is, for example, -8 to 0 volts. The voltage Vcc is, for example, a power supply voltage. Using the voltage difference between the control gate (control gate line CG2) and the gate (word line WL1), the FN tunneling effect is induced, and the floating gate FGa (left bit) stored in the memory unit is electronically pulled out and shift except.

請參照圖2D,在對選定記憶單元M22的浮置閘極FGb(右側位元)進行抹除操作時,於選定記憶單元M22的控制閘極(控制閘極線CG3)施加電壓Vcge;於選定記憶單元M22的控制閘極(控制閘極線CG2)施加0伏特之電壓;於選定記憶單元M22的閘極(字元線WL1)施加2倍Vcc的電壓;於非選定記憶單元的閘極(字元線WL0、WL2)施加0伏特之電壓;於摻雜區(位元線BL1)、摻雜區(位元線BL2)、深井區DW、基底sub施加Vcc的電壓。電壓Vcge例如是-8~0伏特。電壓Vcc例如是電源電壓。利用控制閘極(控制閘極線CG3)與閘極(字元線WL1)的電壓差,引發FN穿隧效應,將儲存於記憶單元的浮置閘極FGb(右側位元)電子拉出並移除。 Referring to FIG. 2D, when the floating gate FGb (right bit) of the selected memory cell M22 is erased, a voltage Vcge is applied to the control gate (control gate line CG3) of the selected memory cell M22; The control gate of the memory unit M22 (control gate line CG2) applies a voltage of 0 volts; the gate of the selected memory cell M22 (word line WL1) applies a voltage of 2 times Vcc; the gate of the unselected memory cell ( The word lines WL0, WL2) apply a voltage of 0 volts; a voltage of Vcc is applied to the doped region (bit line BL1), the doped region (bit line BL2), the deep well region DW, and the substrate sub. The voltage Vcge is, for example, -8 to 0 volts. The voltage Vcc is, for example, a power supply voltage. Using the voltage difference between the control gate (control gate line CG3) and the gate (word line WL1), the FN tunneling effect is induced, and the floating gate FGb (right bit) stored in the memory unit is electronically pulled out and Remove.

請參照圖2E,在進行讀取操作時,於深井區DW施加電壓Vcc,於基底sub施加0伏特之電壓;於選定記憶單元M22的閘極(字元線WL1)施加電壓Vcc;於選定記憶單元M22的控制閘極(控制閘極線CG2)施加0伏特之電壓,於控制閘極(控制閘極線CG3)施加電壓Vcc;於選定記憶單元M22的摻雜區(位元線BL2)施加電壓Vcc;摻雜區(位元線BL1)施加0伏特之電壓。其中,電壓Vcc例如是電源電壓。在上述偏壓的情況下,可藉由偵測記憶單元之通道電流大小,來判斷儲存於記憶單元的浮置閘極FGa(左側位元)中的數位資訊。 Referring to FIG. 2E, during the read operation, a voltage Vcc is applied to the deep well region DW, and a voltage of 0 volts is applied to the substrate sub; a voltage Vcc is applied to the gate of the selected memory cell M22 (the word line WL1); The control gate of the unit M22 (control gate line CG2) applies a voltage of 0 volts, applies a voltage Vcc to the control gate (control gate line CG3), and applies to the doped region (bit line BL2) of the selected memory cell M22. Voltage Vcc; the doped region (bit line BL1) applies a voltage of 0 volts. Among them, the voltage Vcc is, for example, a power supply voltage. In the case of the above bias voltage, the digital information stored in the floating gate FGa (left bit) of the memory unit can be determined by detecting the channel current of the memory unit.

請參照圖2F,在進行讀取操作時,於深井區DW施加電 壓Vcc,於基底sub施加0伏特之電壓;於選定記憶單元M22的閘極(字元線WL1)施加電壓Vcc;於選定記憶單元M22的控制閘極(控制閘極線CG3)施加0伏特之電壓,於控制閘極(控制閘極線CG2)施加電壓Vcc;於選定記憶單元M22的摻雜區(位元線BL1)施加電壓Vcc;摻雜區(位元線BL2)施加0伏特之電壓。其中,電壓Vcc例如是電源電壓。在上述偏壓的情況下,可藉由偵測記憶單元之通道電流大小,來判斷儲存於記憶單元的浮置閘極FGb(右側位元)中的數位資訊。 Please refer to FIG. 2F, when the read operation is performed, the power is applied to the deep well DW. Pressing Vcc, applying a voltage of 0 volts to the substrate sub; applying a voltage Vcc to the gate of the selected memory cell M22 (word line WL1); applying 0 volts to the control gate of the selected memory cell M22 (control gate line CG3) Voltage, a voltage Vcc is applied to the control gate (control gate line CG2); a voltage Vcc is applied to the doped region (bit line BL1) of the selected memory cell M22; and a voltage of 0 volt is applied to the doped region (bit line BL2) . Among them, the voltage Vcc is, for example, a power supply voltage. In the case of the above bias voltage, the digital information stored in the floating gate FGb (right bit) of the memory unit can be determined by detecting the channel current of the memory unit.

在本發明的非揮發性記憶體的操作方法中,在進行程式化操作時,對閘極施加低電壓,即可於閘極下方的基底中形成通道,以源極側熱電子注入的模式,將電子寫入浮置閘極。在進行抹除操作時,利用閘極來抹除資料,使電子經由抹除介電層移除,可減少電子經過穿隧介電層的次數,進而提高可靠度。此外,抹除介電層的第一部分的高度為浮置閘極的高度的0.8倍至小於1倍,浮置閘極設置有轉角部,且此轉角部的角度小於或等於90度,藉由轉角部使電場集中,可有效率的將電子從浮置閘極拉出,提高抹除資料的速度。本發明的記憶單元經程式化後的閾值電壓是介於Vcc與0之間:記憶單元經抹除後的閾值電壓是小於0。 In the method for operating a non-volatile memory of the present invention, when a stylizing operation is performed, a low voltage is applied to the gate, so that a channel can be formed in the substrate under the gate, and a source-side hot electron injection mode is adopted. Write electrons to the floating gate. When the erase operation is performed, the gate is used to erase the data, and the electrons are removed through the erase dielectric layer, thereby reducing the number of times the electrons pass through the tunnel dielectric layer, thereby improving reliability. In addition, the height of the first portion of the erase dielectric layer is 0.8 times to less than 1 times the height of the floating gate, and the floating gate is provided with a corner portion, and the angle of the corner portion is less than or equal to 90 degrees. The corner portion concentrates the electric field and efficiently pulls electrons out of the floating gate, increasing the speed at which data is erased. The threshold voltage of the memory unit of the present invention is between Vcc and 0: the threshold voltage after the memory cell is erased is less than zero.

圖3A為依照本發明之另一實施例所繪示的一種非揮發性記憶體的上視圖。圖3B為依照本發明之另一實施例所繪示的一種非揮發性記憶體的剖面示意圖。圖3B所繪示為沿著圖3A中A-A'線的剖面圖。圖3C為依照本發明之實施例所繪示的一種非揮 發性記憶體的電路簡圖。在圖3A~圖3C中,構件與圖1A~圖1C相同者,給予相同的標號,並省略其詳細說明。 3A is a top view of a non-volatile memory in accordance with another embodiment of the present invention. FIG. 3B is a schematic cross-sectional view of a non-volatile memory according to another embodiment of the invention. 3B is a cross-sectional view taken along line AA' of FIG. 3A. FIG. 3C is a non-swing according to an embodiment of the invention. A schematic diagram of the circuit of the memory. In FIGS. 3A to 3C, the same components as those in FIGS. 1A to 1C are denoted by the same reference numerals, and detailed description thereof will be omitted.

請參照圖3A、圖3B及圖3C,非揮發性記憶體包括多個記憶單元M11~M33、字元線WL0~WL2、位元線BL0~BL3、控制閘極線CG0~CG3。記憶單元M11~M33排列成行/列陣列。 Referring to FIGS. 3A, 3B, and 3C, the non-volatile memory includes a plurality of memory cells M11 to M33, word lines WL0 to WL2, bit lines BL0 to BL3, and control gate lines CG0 to CG3. The memory cells M11 to M33 are arranged in a row/column array.

非揮發性記憶體設置於基底100上。在基底100中例如設置有隔離結構102,以定義出主動區104。隔離結構102例如是淺溝渠隔離結構。 The non-volatile memory is disposed on the substrate 100. An isolation structure 102 is provided, for example, in the substrate 100 to define the active region 104. The isolation structure 102 is, for example, a shallow trench isolation structure.

如圖3A所示,記憶單元M包括堆疊結構120、輔助閘介電層130a(130b)、抹除介電層118a(118b)、浮置閘極140a(140b)、穿隧介電層142a(142b)、摻雜區146、摻雜區148、控制閘極150a(150b)以及閘間介電層152。 As shown in FIG. 3A, the memory unit M includes a stacked structure 120, an auxiliary gate dielectric layer 130a (130b), an erase dielectric layer 118a (118b), a floating gate 140a (140b), and a tunneling dielectric layer 142a ( 142b), doped region 146, doped region 148, control gate 150a (150b), and inter-gate dielectric layer 152.

堆疊結構120從基底100起依序由閘介電層122、閘極124以及絕緣層126。 The stacked structure 120 sequentially passes through the gate dielectric layer 122, the gate 124, and the insulating layer 126 from the substrate 100.

抹除介電層118a(118b)例如是設置於浮置閘極140a(140b)與閘極124之間。抹除介電層118a(118b)包括第一部分130a(130b)以及位於第一部分130a(130b)上的第二部分132a(132b)。第二部分132a(132b)的厚度小於或等於第一部分130a(130b)。抹除介電層118a(118b)的第一部分130a(130b)的材質例如是氧化矽/氮化矽/氧化矽或氮化矽/氧化矽或氧化矽。抹除介電層118a(118b)的第二部分132a(132b)的材質例如是氧化矽。抹除介電層118a(118b)的第二部分132a(132b)的厚度例如介於100埃至180埃之間。 The erase dielectric layer 118a (118b) is disposed, for example, between the floating gate 140a (140b) and the gate 124. The erase dielectric layer 118a (118b) includes a first portion 130a (130b) and a second portion 132a (132b) on the first portion 130a (130b). The thickness of the second portion 132a (132b) is less than or equal to the first portion 130a (130b). The material of the first portion 130a (130b) of the erase dielectric layer 118a (118b) is, for example, hafnium oxide/tantalum nitride/yttria or tantalum nitride/yttria or hafnium oxide. The material of the second portion 132a (132b) of the erase dielectric layer 118a (118b) is, for example, ruthenium oxide. The thickness of the second portion 132a (132b) of the erase dielectric layer 118a (118b) is, for example, between 100 angstroms and 180 angstroms.

浮置閘極140a及浮置閘極140b例如是設置於堆疊結構120兩側的側壁,且此浮置閘極140a及浮置閘極140b的頂部分別具有轉角部141。抹除介電層118a(118b)的第一部分130a(130b)的高度為浮置閘極140a(140b)的高度的0.8倍至小於1倍。此轉角部141鄰近抹除介電層118a(118b)的第二部分132a(132b)。此轉角部141角度小於或等於90度。穿隧介電層142a例如是設置於浮置閘極140a與基底100之間;穿隧介電層142b例如是設置於浮置閘極140b與基底100之間。此穿隧介電層142a例如是更設置於控制閘極150a與摻雜區146之間;此穿隧介電層142b例如是更設置於控制閘極150b與摻雜區148之間。 The floating gate 140a and the floating gate 140b are, for example, sidewalls disposed on both sides of the stacked structure 120, and the tops of the floating gate 140a and the floating gate 140b respectively have corner portions 141. The height of the first portion 130a (130b) of the erase dielectric layer 118a (118b) is 0.8 times to less than 1 times the height of the floating gate 140a (140b). This corner portion 141 is adjacent to the second portion 132a (132b) of the erase dielectric layer 118a (118b). The angle of the corner portion 141 is less than or equal to 90 degrees. The tunneling dielectric layer 142a is disposed between the floating gate 140a and the substrate 100, for example, and the tunneling dielectric layer 142b is disposed between the floating gate 140b and the substrate 100, for example. The tunneling dielectric layer 142a is disposed, for example, between the control gate 150a and the doping region 146. The tunneling dielectric layer 142b is disposed between the control gate 150b and the doping region 148, for example.

摻雜區146例如是設置於浮置閘極140a旁的基底100中。摻雜區148例如是設置於浮置閘極140b旁的基底100中。浮置閘極140a、堆疊結構120與浮置閘極140b連接設置於摻雜區146與摻雜區148之間的基底100上。摻雜區146、摻雜區148例如是含有N型或P型摻質的摻雜區,端視元件的設計而定。 The doped region 146 is, for example, disposed in the substrate 100 beside the floating gate 140a. The doped region 148 is, for example, disposed in the substrate 100 beside the floating gate 140b. The floating gate 140a, the stacked structure 120 and the floating gate 140b are connected to the substrate 100 disposed between the doping region 146 and the doping region 148. The doped region 146 and the doped region 148 are, for example, doped regions containing N-type or P-type dopants, depending on the design of the device.

控制閘極150a及控制閘極150b分別是設置於相鄰兩記憶單元的浮置閘極140a及浮置閘極140b上。控制閘極150a及控制閘極150b例如是在Y方向(列方向)延伸。相鄰的兩記憶單元共用所控制閘極150a或控制閘極150b,且控制閘極150a及控制閘極150b分別填滿相鄰兩記憶單元之間的開口。 The control gate 150a and the control gate 150b are respectively disposed on the floating gate 140a and the floating gate 140b of the adjacent two memory cells. The control gate 150a and the control gate 150b extend, for example, in the Y direction (column direction). The adjacent two memory cells share the control gate 150a or the control gate 150b, and the control gate 150a and the control gate 150b respectively fill the openings between the adjacent two memory cells.

閘間介電層152例如是設置於控制閘極150a與浮置閘極140a之間以及控制閘極150b與浮置閘極140b之間。 The inter-gate dielectric layer 152 is disposed, for example, between the control gate 150a and the floating gate 140a and between the control gate 150b and the floating gate 140b.

層間絕緣層(未繪示)例如是設置於基底100上,並且覆蓋記憶單元M。多個插塞162例如是設置於層間絕緣層中。多個位元線BL0~BL3例如是設置於層間絕緣層上,位元線BL0~BL3分別藉由插塞162與各記憶單元M的摻雜區146或摻雜區148電性連接。請參照圖3A,用以形成插塞162的開口164會貫穿層間絕緣層、控制閘極150a及控制閘極150b直到暴露出摻雜區146及摻雜區148。在插塞162與控制閘極150a之間及插塞162與控制閘極150b之間會形成有絕緣層166。位元線BL0~BL3的材質例如是鋁、鎢、銅等導體材料。 An interlayer insulating layer (not shown) is disposed on the substrate 100, for example, and covers the memory unit M. The plurality of plugs 162 are, for example, disposed in the interlayer insulating layer. The plurality of bit lines BL0 BLBL3 are disposed on the interlayer insulating layer, for example, and the bit lines BL0 BLBL3 are electrically connected to the doping regions 146 or the doping regions 148 of the memory cells M by the plugs 162, respectively. Referring to FIG. 3A, the opening 164 for forming the plug 162 extends through the interlayer insulating layer, the control gate 150a, and the control gate 150b until the doped region 146 and the doped region 148 are exposed. An insulating layer 166 is formed between the plug 162 and the control gate 150a and between the plug 162 and the control gate 150b. The material of the bit lines BL0 to BL3 is, for example, a conductor material such as aluminum, tungsten or copper.

如圖3C所示,記憶單元M11~M33具有如圖3A及圖3B所示的結構。在下述說明中,圖1B中的記憶單元M,分為左側位元a以及右側位元b。 As shown in FIG. 3C, the memory cells M11 to M33 have a structure as shown in FIGS. 3A and 3B. In the following description, the memory unit M in FIG. 1B is divided into a left bit a and a right bit b.

在X方向(行方向)上,多個記憶單元M藉由摻雜區(摻雜區146或摻雜區148)串接在一起,相鄰的記憶單元M會共用控制閘極。舉例來說,記憶單元M11的結構與記憶單元M12的結構相同,共用一個摻雜區(摻雜區146或摻雜區148),並共用一個控制閘極(控制閘極150a或控制閘極150b);記憶單元M12的結構與記憶單元M13的結構相同,共用一個摻雜區(摻雜區146或摻雜區148),並共用一個控制閘極(控制閘極150a或控制閘極150b);...;記憶單元M31的結構與記憶單元M32的結構相同,共用一個摻雜區(摻雜區146或摻雜區148),並共用一個控制閘極(控制閘極150a或控制閘極150b);記憶單元M32的結構與記憶單元M33的結構 相同,共用一個摻雜區(摻雜區146或摻雜區148),並共用一個控制閘極(控制閘極150a或控制閘極150b)。 In the X direction (row direction), a plurality of memory cells M are connected in series by doped regions (doped regions 146 or doped regions 148), and adjacent memory cells M share control gates. For example, the memory cell M11 has the same structure as the memory cell M12, shares a doped region (doped region 146 or doped region 148), and shares a control gate (control gate 150a or control gate 150b). The memory cell M12 has the same structure as the memory cell M13, shares a doped region (doped region 146 or doped region 148), and shares a control gate (control gate 150a or control gate 150b); The memory cell M31 has the same structure as the memory cell M32, shares a doped region (doped region 146 or doped region 148), and shares a control gate (control gate 150a or control gate 150b). ); structure of memory unit M32 and structure of memory unit M33 Similarly, a doped region (doped region 146 or doped region 148) is shared and shares a control gate (control gate 150a or control gate 150b).

在Y方向(列方向)上,多個記憶單元M藉由摻雜區(摻雜區146或摻雜區148)串接在一起,且共用閘極124、控制閘極150a以及控制閘極150b。控制閘極150a及控制閘極150b填滿記憶單元M(例如:記憶單元M11、記憶單元M21以及記憶單元M31)之間。舉例來說,記憶單元M11的結構與記憶單元M21的結構相同,共用一個摻雜區(摻雜區146或摻雜區148),記憶單元M21的結構與記憶單元M31的結構相同共用一個摻雜區(摻雜區146或摻雜區148);...;記憶單元M13的結構與記憶單元M23的結構相同,共用一個摻雜區(摻雜區146或摻雜區148),記憶單元M23的結構與記憶單元M33的結構相同共用一個摻雜區(摻雜區146或摻雜區148)。 In the Y direction (column direction), a plurality of memory cells M are connected in series by doped regions (doped regions 146 or doped regions 148), and the common gate 124, the control gate 150a, and the control gate 150b are shared. . The control gate 150a and the control gate 150b fill between the memory unit M (for example, the memory unit M11, the memory unit M21, and the memory unit M31). For example, the structure of the memory cell M11 is the same as that of the memory cell M21, sharing a doped region (doped region 146 or doped region 148). The structure of the memory cell M21 is the same as the structure of the memory cell M31. a region (doped region 146 or doped region 148);...; memory cell M13 has the same structure as memory cell M23, sharing a doped region (doped region 146 or doped region 148), memory cell M23 The structure shares the same doping region (doped region 146 or doped region 148) as the memory cell M33.

位元線BL0~BL3例如是分別設置於基底上,這些位元線BL0~BL3在行方向上平行排列。兩相鄰位元線之中係配置一記憶單元行,且此記憶單元行所包含之摻雜區係以交錯之方式,分別連接至與其對應之兩相鄰之位元線(摻雜區146或摻雜區148)。舉例來說,記憶單元M11、記憶單元M12、記憶單元M13串接而成記憶胞行,從記憶單元M11開始算起,第1、3個摻雜區電性連接至位元線BL0,第2、4個摻雜區電性連接至位元線BL1。記憶單元M21、記憶單元M22、記憶單元M23串接而成記憶胞行,第1、3個摻雜區電性連接至位元線BL2,第2、4個摻雜區電性 連接至第3條位元線BL1。記憶單元M31、記憶單元M32、記憶單元M33串接而成記憶胞行,第1、3個摻雜區電性連接至位元線BL2,第2、4個摻雜區電性連接至第3條位元線BL3。 The bit lines BL0 to BL3 are respectively disposed on the substrate, and the bit lines BL0 to BL3 are arranged in parallel in the row direction. A memory cell row is disposed in two adjacent bit lines, and the doped regions included in the memory cell row are respectively connected to two adjacent bit lines corresponding thereto (doped regions 146). Or doped region 148). For example, the memory unit M11, the memory unit M12, and the memory unit M13 are connected in series to form a memory cell row. The first and third doped regions are electrically connected to the bit line BL0, starting from the memory unit M11. The four doped regions are electrically connected to the bit line BL1. The memory unit M21, the memory unit M22, and the memory unit M23 are connected in series to form a memory cell row, and the first and third doped regions are electrically connected to the bit line BL2, and the second and fourth doped regions are electrically connected. Connect to the 3rd bit line BL1. The memory unit M31, the memory unit M32, and the memory unit M33 are connected in series to form a memory cell row, the first and third doped regions are electrically connected to the bit line BL2, and the second and fourth doped regions are electrically connected to the third row. Strip bit line BL3.

而且,在行方向上,舉例來說,串接的記憶單元M11、記憶單元M12共用的摻雜區電性連接至位元線BL1,記憶單元M11與記憶單元M12未共用的摻雜區則分別電性連接至位元線BL0。在列方向上,舉例來說,串接的記憶單元M11、記憶單元M21共用的摻雜區電性連接至位元線BL1,記憶單元M11的另一摻雜區電性連接至位元線BL0,記憶單元M21的另一摻雜區電性連接至位元線BL2。 Moreover, in the row direction, for example, the doped regions shared by the memory cells M11 and the memory cells M12 connected in series are electrically connected to the bit line BL1, and the doped regions not shared by the memory cell M11 and the memory cell M12 are respectively electrically connected. Connected to bit line BL0. In the column direction, for example, the doped regions shared by the memory cells M11 and the memory cells M21 connected in series are electrically connected to the bit line BL1, and the other doped region of the memory cell M11 is electrically connected to the bit line BL0. The other doped region of the memory cell M21 is electrically connected to the bit line BL2.

字元線WL0~WL2例如是分別設置於基底上,這些字元線WL0~WL2在列的方向上平行排列,分別連接同一列之記憶單元的閘極124。舉例來說,字元線WL0連接記憶單元M11~M31的閘極124。字元線WL1連接記憶單元M12~M32的閘極124。字元線WL2連接記憶單元M13~M33的閘極124。 The word lines WL0 to WL2 are respectively disposed on the substrate, and the word lines WL0 to WL2 are arranged in parallel in the column direction, and are respectively connected to the gates 124 of the memory cells of the same column. For example, the word line WL0 is connected to the gate 124 of the memory cells M11 to M31. The word line WL1 is connected to the gate 124 of the memory cells M12 to M32. The word line WL2 is connected to the gate 124 of the memory cells M13 to M33.

控制閘極線CG0~CG3分別設置於基底上,這些控制閘極線CG0~CG3在列的方向上平行排列,分別連接相鄰兩列之記憶單元的控制閘極150a(150b)。在本實施例中,控制閘極線CG0連接記憶單元M11、M21、M31的左側的控制閘極150a(150b);控制閘極線CG1連接記憶單元M11、M21、M31的右側的控制閘極150a(150b)以及記憶單元M12、M22、M32的左側的控制閘極150a(150b);控制閘極線CG2連接記憶單元M12、M22、M32的 右側的控制閘極150a(150b)以及記憶單元M13、M23、M33的左側的控制閘極150a(150b);控制閘極線CG3連接記憶單元M13、M23、M33的右側的控制閘極150a(150b)。 The control gate lines CG0 to CG3 are respectively disposed on the substrate, and the control gate lines CG0 to CG3 are arranged in parallel in the column direction to respectively connect the control gates 150a (150b) of the memory cells of the adjacent two columns. In this embodiment, the control gate line CG0 is connected to the control gate 150a (150b) on the left side of the memory cells M11, M21, M31; the control gate line CG1 is connected to the control gate 150a on the right side of the memory cells M11, M21, M31. (150b) and the control gate 150a (150b) on the left side of the memory cells M12, M22, M32; the control gate line CG2 is connected to the memory cells M12, M22, M32 Control gate 150a (150b) on the right side and control gate 150a (150b) on the left side of memory cells M13, M23, M33; control gate line CG3 is connected to control gate 150a (150b) on the right side of memory cells M13, M23, M33 ).

在上述的非揮發性記憶體中,在X方向(行方向)相鄰的兩記憶單元M結構相同,共用摻雜區146或摻雜區148以及控制閘極150a(150b)。而在Y方向(列方向)相鄰的兩記憶單元M結構相同,共用摻雜區146或摻雜區148、閘極(字元線)124以及控制閘極150a(150b)。因此能提高元件的積集度。 In the above non-volatile memory, the two memory cells M adjacent in the X direction (row direction) have the same structure, and the doped region 146 or the doped region 148 and the control gate 150a (150b) are shared. The two memory cells M adjacent in the Y direction (column direction) have the same structure, and share the doped region 146 or the doped region 148, the gate (word line) 124, and the control gate 150a (150b). Therefore, the degree of integration of components can be improved.

在上述的非揮發性記憶體中,閘介電層122的厚度較薄,在操作記憶單元時,可以使用較小的電壓打開/關閉閘極124下方的通道區,亦即可以降低操作電壓。控制閘極150a(150b)包覆浮置閘極140a(140b),能夠增加控制閘極150a(150b)與浮置閘極140a(140b)之間所夾的面積,而提高了記憶體元件的的耦合率。抹除介電層118a(118b)的第一部分130a(130b)的高度為浮置閘極140a(140b)的高度的0.8倍至小於1倍。由於浮置閘極140a(140b)設置有轉角部141,且此轉角部141的角度小於或等於90度,藉由轉角部141使電場集中,可降低抹除電壓有效率的將電子從浮置閘極140a(140b)拉出,提高抹除資料的速度。而且,此轉角部141鄰近抹除介電層118a(118b)的第二部分132a(132b),抹除介電層118a(118b)的第二部分132a(132b)的厚度較薄也可以提高抹除速率。 In the above non-volatile memory, the thickness of the gate dielectric layer 122 is relatively thin. When the memory cell is operated, a smaller voltage can be used to open/close the channel region under the gate 124, that is, the operating voltage can be lowered. The control gate 150a (150b) covers the floating gate 140a (140b), and can increase the area sandwiched between the control gate 150a (150b) and the floating gate 140a (140b), thereby improving the memory component. Coupling rate. The height of the first portion 130a (130b) of the erase dielectric layer 118a (118b) is 0.8 times to less than 1 times the height of the floating gate 140a (140b). Since the floating gate 140a (140b) is provided with the corner portion 141, and the angle of the corner portion 141 is less than or equal to 90 degrees, the electric field is concentrated by the corner portion 141, and the erasing voltage can be reduced to efficiently dissipate electrons from the floating portion. The gate 140a (140b) is pulled out to increase the speed at which the data is erased. Moreover, the corner portion 141 is adjacent to the second portion 132a (132b) of the erase dielectric layer 118a (118b), and the thin portion of the second portion 132a (132b) of the erase dielectric layer 118a (118b) can also be improved. In addition to the rate.

本發明之非揮發性記憶體,由於在浮置閘極140a、堆疊 結構120與浮置閘極140b之間沒有間隙,因此可以提升記憶單元之積集度。而且,在浮置閘極140a與浮置閘極140b都可以儲存電荷,因此可在單一記憶單元中儲存二位元的資料,而能夠提升儲存容量。 The non-volatile memory of the present invention is stacked on the floating gate 140a There is no gap between the structure 120 and the floating gate 140b, so that the degree of integration of the memory cells can be improved. Moreover, the charge can be stored in both the floating gate 140a and the floating gate 140b, so that the data of the two bits can be stored in a single memory unit, and the storage capacity can be improved.

接著,說明本發明的非揮發性記憶體的操作模式,包括程式化、抹除與資料讀取等操作模式。圖4A及圖4B為對記憶單元進行程式化操作之一實例的示意圖。圖4C及圖4D為對記憶單元進行抹除操作之一實例的示意圖。圖4E及圖4F為對記憶單元進行讀取操作之一實例的示意圖。 Next, the operation mode of the non-volatile memory of the present invention will be described, including operation modes such as stylization, erasing, and data reading. 4A and 4B are schematic diagrams showing an example of a program operation of a memory unit. 4C and 4D are schematic views showing an example of an erase operation of a memory cell. 4E and 4F are schematic diagrams showing an example of a reading operation on a memory cell.

請參照圖4A,在對選定記憶單元M22的浮置閘極FGa(左側位元)進行程式化操作時,於深井區DW施加電壓Vcc,電壓Vcc例如是電源電壓。於基底sub施加0伏特之電壓。於選定記憶單元M22的閘極(字元線WL1)施加電壓Vwlp,以於閘極下方的基底中形成通道,電壓Vwlp例如是.0.6~1.2伏特。非選定記憶單元的閘極(字元線WL0、WL2)施加0伏特之電壓。於選定記憶單元M22的摻雜區(位元線BL1)施加電壓Vblp;摻雜區(位元線BL2)施加電壓Vbli;於控制閘極(控制閘極線CG1)施加電壓Vcgp;於控制閘極(控制閘極線CG2)施加電壓Vcc。電壓Vblp例如是3~7伏特;電壓Vbli例如是0.3~0.8伏特;電壓Vcgp例如是5~9伏特。在此種偏壓下,使電子由汲極(位元線BL2)往源極(位元線BL1)移動,以源極側熱電子注入的模式,注入選定記憶單元M22的浮置閘極FGa(左側位元)。由於非選定記憶單元的閘極(字元線WL0、WL2) 施加0伏特之電壓,無法形成通道區,電子無法注入非選定記憶單元的浮置閘極,因此非選定記憶單元不會被程式化。 Referring to FIG. 4A, when the floating gate FGa (left bit) of the selected memory cell M22 is programmed, a voltage Vcc is applied to the deep well region DW, and the voltage Vcc is, for example, a power supply voltage. A voltage of 0 volts is applied to the substrate sub. A voltage Vwlp is applied to the gate (word line WL1) of the selected memory cell M22 to form a channel in the substrate under the gate, and the voltage Vwlp is, for example, 0.6 to 1.2 volts. The gate of the unselected memory cell (word lines WL0, WL2) applies a voltage of 0 volts. Applying a voltage Vblp to the doped region (bit line BL1) of the selected memory cell M22; applying a voltage Vbli to the doped region (bit line BL2); applying a voltage Vcgp to the control gate (control gate line CG1); The pole (control gate line CG2) applies a voltage Vcc. The voltage Vblp is, for example, 3 to 7 volts; the voltage Vbli is, for example, 0.3 to 0.8 volts; and the voltage Vcgp is, for example, 5 to 9 volts. Under such a bias voltage, electrons are moved from the drain (bit line BL2) to the source (bit line BL1), and the floating gate FGa of the selected memory cell M22 is injected in the mode of source-side hot electron injection. (left bit). Due to the gate of the unselected memory cell (word lines WL0, WL2) With a voltage of 0 volts, the channel region cannot be formed and electrons cannot be injected into the floating gate of the unselected memory cell, so the unselected memory cells are not programmed.

請參照圖4B,在對選定記憶單元M22的浮置閘極FGb(右側位元)進行程式化操作時,於深井區DW施加電壓Vcc,電壓Vcc例如是電源電壓。於基底sub施加0伏特之電壓。於選定記憶單元M22的閘極(字元線WL1)施加電壓Vwlp,以於閘極下方的基底中形成通道,電壓Vwlp例如是0.6~1.2伏特。非選定記憶單元的閘極(字元線WL0、WL2)施加0伏特之電壓。於選定記憶單元M22的摻雜區(位元線BL2)施加電壓Vblp;摻雜區(位元線BL1)施加電壓Vbli;於控制閘極(控制閘極線CG2)施加電壓Vcgp;於控制閘極(控制閘極線CG1)施加電壓Vcc電壓Vblp例如是3~7伏特;電壓Vbli例如是0.3~0.8伏特;電壓Vcgp例如是5~9伏特。在此種偏壓下,使電子由汲極(位元線BL1)往源極(位元線BL2)移動,以源極側熱電子注入的模式,注入選定記憶單元M22的浮置閘極FGb(右側位元)。由於非選定記憶單元的閘極(字元線WL0、WL2)施加0伏特之電壓,無法形成通道區,電子無法注入非選定記憶單元的浮置閘極,因此非選定記憶單元不會被程式化。 Referring to FIG. 4B, when the floating gate FGb (right bit) of the selected memory cell M22 is programmed, a voltage Vcc is applied to the deep well region DW, and the voltage Vcc is, for example, a power supply voltage. A voltage of 0 volts is applied to the substrate sub. A voltage Vwlp is applied to the gate (word line WL1) of the selected memory cell M22 to form a channel in the substrate under the gate, and the voltage Vwlp is, for example, 0.6 to 1.2 volts. The gate of the unselected memory cell (word lines WL0, WL2) applies a voltage of 0 volts. Applying a voltage Vblp to the doped region (bit line BL2) of the selected memory cell M22; applying a voltage Vbli to the doped region (bit line BL1); applying a voltage Vcgp to the control gate (control gate line CG2); The polarity (control gate line CG1) is applied with a voltage Vcc voltage Vblp of, for example, 3 to 7 volts; the voltage Vbli is, for example, 0.3 to 0.8 volts; and the voltage Vcgp is, for example, 5 to 9 volts. Under such a bias voltage, electrons are moved from the drain (bit line BL1) to the source (bit line BL2), and the floating gate FGb of the selected memory cell M22 is injected in the source-side hot electron injection mode. (right bit). Since the gate of the unselected memory cell (word lines WL0, WL2) is applied with a voltage of 0 volts, the channel region cannot be formed, and electrons cannot be injected into the floating gate of the unselected memory cell, so the unselected memory cells are not programmed. .

請參照圖4C,在對選定記憶單元M22的浮置閘極FGa(左側位元)進行抹除操作時,於選定記憶單元M22的控制閘極(控制閘極線CG1)施加電壓Vcge;於選定記憶單元M22的控制閘極(控制閘極線CG2)施加0伏特之電壓;於選定記憶單元M22的閘極(字元線WL1)施加2倍Vcc的電壓;於非選定記憶單元的閘極(字元 線WL0、WL2)施加0伏特之電壓;於摻雜區(位元線BL1)、摻雜區(位元線BL2)、深井區DW、基底sub施加Vcc的電壓。電壓Vcge例如是-8~0伏特。利用控制閘極(控制閘極線CG1)與閘極(字元線WL1)的電壓差,引發FN穿隧效應,將儲存於記憶單元的浮置閘極FGa(左側位元)電子拉出並移除。 Referring to FIG. 4C, when the floating gate FGa (left bit) of the selected memory cell M22 is erased, a voltage Vcge is applied to the control gate (control gate line CG1) of the selected memory cell M22; The control gate of the memory unit M22 (control gate line CG2) applies a voltage of 0 volts; the gate of the selected memory cell M22 (word line WL1) applies a voltage of 2 times Vcc; the gate of the unselected memory cell ( Character Lines WL0, WL2) apply a voltage of 0 volts; a voltage of Vcc is applied to the doped region (bit line BL1), the doped region (bit line BL2), the deep well region DW, and the substrate sub. The voltage Vcge is, for example, -8 to 0 volts. Using the voltage difference between the control gate (control gate line CG1) and the gate (word line WL1), the FN tunneling effect is induced, and the floating gate FGa (left bit) stored in the memory unit is electronically pulled out and Remove.

請參照圖4D,在對選定記憶單元M22的浮置閘極FGb(右側位元)進行抹除操作時,於選定記憶單元M22的控制閘極(控制閘極線CG2)施加電壓Vcge;於選定記憶單元M22的控制閘極(控制閘極線CG1)施加0伏特之電壓;於選定記憶單元M22的閘極(字元線WL1)施加2倍Vcc的電壓;於非選定記憶單元的閘極(字元線WL0、WL2)施加0伏特之電壓;於摻雜區(位元線BL1)、摻雜區(位元線BL2)、深井區DW、基底sub施加Vcc的電壓。電壓Vcge例如是-8~0伏特。利用控制閘極(控制閘極線CG2)與閘極(字元線WL1)的電壓差,引發FN穿隧效應,將儲存於記憶單元的浮置閘極FGb(右側位元)電子拉出並移除。 Referring to FIG. 4D, when the floating gate FGb (right bit) of the selected memory cell M22 is erased, a voltage Vcge is applied to the control gate (control gate line CG2) of the selected memory cell M22; The control gate of the memory cell M22 (control gate line CG1) applies a voltage of 0 volts; the gate of the selected memory cell M22 (word line WL1) applies a voltage of 2 times Vcc; the gate of the unselected memory cell ( The word lines WL0, WL2) apply a voltage of 0 volts; a voltage of Vcc is applied to the doped region (bit line BL1), the doped region (bit line BL2), the deep well region DW, and the substrate sub. The voltage Vcge is, for example, -8 to 0 volts. Using the voltage difference between the control gate (control gate line CG2) and the gate (word line WL1), the FN tunneling effect is induced, and the floating gate FGb (right bit) stored in the memory unit is electronically pulled out and Remove.

請參照圖4E,在進行讀取操作時,於深井區DW施加電壓Vcc,於基底sub施加0伏特之電壓;於選定記憶單元M22的閘極(字元線WL1)施加電壓Vcc;於選定記憶單元M22的控制閘極(控制閘極線CG1)施加0伏特之電壓,於控制閘極(控制閘極線CG2)施加電壓Vcc;於選定記憶單元M22的摻雜區(位元線BL2)施加電壓Vcc;摻雜區(位元線BL1)施加0伏特之電壓。其中,電壓Vcc例如是電源電壓。在上述偏壓的情況下,可藉由偵測記憶 單元之通道電流大小,來判斷儲存於記憶單元的浮置閘極FGa(左側位元)中的數位資訊。 Referring to FIG. 4E, during the read operation, a voltage Vcc is applied to the deep well region DW, and a voltage of 0 volts is applied to the substrate sub; a voltage Vcc is applied to the gate of the selected memory cell M22 (the word line WL1); The control gate of the unit M22 (control gate line CG1) applies a voltage of 0 volts, a voltage Vcc is applied to the control gate (control gate line CG2); and is applied to the doped region (bit line BL2) of the selected memory cell M22. Voltage Vcc; the doped region (bit line BL1) applies a voltage of 0 volts. Among them, the voltage Vcc is, for example, a power supply voltage. In the case of the above bias, by detecting the memory The channel current of the unit is used to determine the digital information stored in the floating gate FGa (left bit) of the memory unit.

請參照圖4F,在進行讀取操作時,於深井區DW施加電壓Vcc,於基底sub施加0伏特之電壓;於選定記憶單元M22的閘極(字元線WL1)施加電壓Vcc;於選定記憶單元M22的控制閘極(控制閘極線CG1)施加電壓Vcc,於控制閘極(控制閘極線CG2)施加0伏特之電壓;於選定記憶單元M22的摻雜區(位元線BL1)施加電壓Vcc;摻雜區(位元線BL2)施加0伏特之電壓。其中,電壓Vcc例如是電源電壓。在上述偏壓的情況下,可藉由偵測記憶單元之通道電流大小,來判斷儲存於記憶單元的浮置閘極FGb(右側位元)中的數位資訊。本發明的記憶單元經程式化後的閾值電壓是介於Vcc與0之間:記憶單元經抹除後的閾值電壓是小於0。 Referring to FIG. 4F, when performing a read operation, a voltage Vcc is applied to the deep well region DW, and a voltage of 0 volts is applied to the substrate sub; a voltage Vcc is applied to the gate of the selected memory cell M22 (the word line WL1); The control gate of the unit M22 (control gate line CG1) applies a voltage Vcc, applies a voltage of 0 volts to the control gate (control gate line CG2); and applies to the doped region (bit line BL1) of the selected memory cell M22. Voltage Vcc; the doped region (bit line BL2) applies a voltage of 0 volts. Among them, the voltage Vcc is, for example, a power supply voltage. In the case of the above bias voltage, the digital information stored in the floating gate FGb (right bit) of the memory unit can be determined by detecting the channel current of the memory unit. The threshold voltage of the memory unit of the present invention is between Vcc and 0: the threshold voltage after the memory cell is erased is less than zero.

在本發明的非揮發性記憶體的操作方法中,在進行程式化操作時,對閘極施加低電壓,即可於閘極下方的基底中形成通道,以源極側熱電子注入的模式,將電子寫入浮置閘極。在進行抹除操作時,利用閘極來抹除資料,使電子經由抹除介電層移除,可減少電子經過穿隧介電層的次數,進而提高可靠度。此外,抹除介電層的第一部分的高度為浮置閘極的高度的0.8倍至小於1倍,浮置閘極設置有轉角部,且此轉角部的角度小於或等於90度,藉由轉角部使電場集中,可有效率的將電子從浮置閘極拉出,提高抹除資料的速度。雖然本發明已以實施例揭露如上,然其並非 用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 In the method for operating a non-volatile memory of the present invention, when a stylizing operation is performed, a low voltage is applied to the gate, so that a channel can be formed in the substrate under the gate, and a source-side hot electron injection mode is adopted. Write electrons to the floating gate. When the erase operation is performed, the gate is used to erase the data, and the electrons are removed through the erase dielectric layer, thereby reducing the number of times the electrons pass through the tunnel dielectric layer, thereby improving reliability. In addition, the height of the first portion of the erase dielectric layer is 0.8 times to less than 1 times the height of the floating gate, and the floating gate is provided with a corner portion, and the angle of the corner portion is less than or equal to 90 degrees. The corner portion concentrates the electric field and efficiently pulls electrons out of the floating gate, increasing the speed at which data is erased. Although the present invention has been disclosed above by way of example, it is not The scope of protection of the present invention is intended to be limited to the scope of the invention, and the scope of the invention is intended to be limited by the scope of the invention. The definition is final.

100‧‧‧基底 100‧‧‧Base

118a、118b‧‧‧抹除介電層 118a, 118b‧‧‧wipe the dielectric layer

120‧‧‧堆疊結構 120‧‧‧Stack structure

122‧‧‧閘介電層 122‧‧‧gate dielectric layer

124‧‧‧閘極 124‧‧‧ gate

126‧‧‧絕緣層 126‧‧‧Insulation

128‧‧‧深井區 128‧‧‧Shenjing District

130a、130b‧‧‧第一部分 130a, 130b‧‧‧ part one

132a、132b‧‧‧第二部分 132a, 132b‧‧‧ part two

140a、140b‧‧‧浮置閘極 140a, 140b‧‧‧ floating gate

141‧‧‧轉角部 141‧‧‧ Corner

142a、142b‧‧‧穿隧介電層 142a, 142b‧‧‧ tunneling dielectric layer

146、148‧‧‧摻雜區 146, 148‧‧‧ doped area

150a、150b‧‧‧控制閘極 150a, 150b‧‧‧ control gate

152‧‧‧閘間介電層 152‧‧‧Interruptor dielectric layer

M‧‧‧記憶單元 M‧‧‧ memory unit

Claims (17)

一種非揮發性記憶體,包括:第一記憶單元,設置於具有深井區的基底上,所述第一記憶單元,包括:堆疊結構,包括依序設置於所述基底上的閘介電層、閘極以及絕緣層,其中所述閘極作為抹除閘極或是字元線;第一浮置閘極與第二浮置閘極,分別設置於所述堆疊結構的兩側的側壁,且所述第一浮置閘極與所述第二浮置閘極的頂部分別具有轉角部;第一穿隧介電層與第二穿隧介電層,分別設置於所述第一浮置閘極與所述基底之間以及所述第二浮置閘極與所述基底之間;第一抹除介電層與第二抹除介電層,分別設置於所述閘極與所述第一浮置閘極之間以及所述閘極與所述第二浮置閘極之間,第一抹除介電層與第二抹除介電層分別包括第一部分以及位於所述第一部分上的第二部分,其中所述第二部分的厚度小於或等於所述第一部分,且所述轉角部鄰近所述第二部分;第一摻雜區與第二摻雜區,分別設置於所述基底中,其中所述第一浮置閘極、所述堆疊結構與所述第二浮置閘極連接設置於所述第一摻雜區與所述第二摻雜區之間的所述基底上;第一控制閘極以及第二控制閘極,分別設置於所述第一浮置閘極與所述第二浮置閘極上;以及 閘間介電層,設置於所述第一控制閘極與所述第一浮置閘極之間以及所述第二控制閘極與所述第二浮置閘極之間。 A non-volatile memory, comprising: a first memory unit disposed on a substrate having a deep well region, the first memory unit comprising: a stacked structure comprising a gate dielectric layer sequentially disposed on the substrate, a gate and an insulating layer, wherein the gate serves as an erase gate or a word line; the first floating gate and the second floating gate are respectively disposed on sidewalls of the two sides of the stacked structure, and The first floating gate and the top of the second floating gate respectively have a corner portion; the first tunneling dielectric layer and the second tunneling dielectric layer are respectively disposed on the first floating gate Between the pole and the substrate and between the second floating gate and the substrate; a first erase dielectric layer and a second erase dielectric layer are respectively disposed on the gate and the first Between a floating gate and the gate and the second floating gate, the first erase dielectric layer and the second erase dielectric layer respectively comprise a first portion and are located on the first portion a second portion, wherein the thickness of the second portion is less than or equal to the first portion, and the corner portion is adjacent The second portion; the first doped region and the second doped region are respectively disposed in the substrate, wherein the first floating gate, the stacked structure is connected to the second floating gate And disposed on the substrate between the first doped region and the second doped region; a first control gate and a second control gate are respectively disposed on the first floating gate and the ground Said on the second floating gate; The inter-gate dielectric layer is disposed between the first control gate and the first floating gate and between the second control gate and the second floating gate. 如申請專利範圍第1項所述的非揮發性記憶體,更包括:第一位元線與第二位元線,平行設置於所述基底上,其中所述第一摻雜區電性連接至所述第一位元線,所述第二摻雜區電性連接至所述第二位元線。 The non-volatile memory of claim 1, further comprising: a first bit line and a second bit line disposed in parallel on the substrate, wherein the first doped region is electrically connected To the first bit line, the second doped region is electrically connected to the second bit line. 如申請專利範圍第1項所述的非揮發性記憶體,其中在行方向上更包括第二記憶單元,所述第二記憶單元設置於所述基底上,所述第二記憶單元的結構與所述第一記憶單元的結構相同,共用所述第二摻雜區。 The non-volatile memory of claim 1, wherein the second memory unit is further included in the row direction, the second memory unit is disposed on the substrate, and the structure and the second memory unit are The first memory cells have the same structure and share the second doped regions. 如申請專利範圍第3項所述的非揮發性記憶體,更包括:第一位元線與第二位元線,平行設置於所述基底上,其中所述第一記憶單元與所述第二記憶單元共用的所述第二摻雜區電性連接至所述第一位元線,所述第一記憶單元的所述第一摻雜區與所述第二記憶單元的第三摻雜區分別電性連接至所述第二位元線。 The non-volatile memory of claim 3, further comprising: a first bit line and a second bit line disposed in parallel on the substrate, wherein the first memory unit and the first The second doping region shared by the two memory cells is electrically connected to the first bit line, the first doping region of the first memory cell and the third doping of the second memory cell The regions are electrically connected to the second bit line, respectively. 如申請專利範圍第3項所述的非揮發性記憶體,其中所述第一記憶單元與所述第二記憶單元共用所述第一控制閘極或所述第二控制閘極,且所述第一控制閘極或所述第二控制閘極填滿所述第一記憶單元與所述第二記憶單元之間的開口。 The non-volatile memory of claim 3, wherein the first memory unit and the second memory unit share the first control gate or the second control gate, and The first control gate or the second control gate fills an opening between the first memory unit and the second memory unit. 如申請專利範圍第1項所述的非揮發性記憶體,其中在列方向上更包括第三記憶單元,所述第三記憶單元設置於所述基底 上,所述第三記憶單元的結構與所述第一記憶單元的結構相同,所述第三記憶單元與所述第一記憶單元由所述第一摻雜區串接在一起,共用所述閘極、所述第一控制閘極及所述第二控制閘極,且所述第一控制閘極及所述第二控制閘極填滿所述第一記憶單元與所述第三記憶單元之間。 The non-volatile memory of claim 1, wherein the third memory unit is further included in the column direction, and the third memory unit is disposed on the substrate The structure of the third memory unit is the same as the structure of the first memory unit, and the third memory unit and the first memory unit are serially connected by the first doped region, sharing the a gate, the first control gate, and the second control gate, and the first control gate and the second control gate fill the first memory unit and the third memory unit between. 如申請專利範圍第6項所述的非揮發性記憶體,更包括:第一位元線、第二位元線與第三位元線,平行設置於所述基底上,其中串接所述第一記憶單元與所述第三記憶單元的所述第一摻雜區電性連接至所述第二位元線,所述第一記憶單元的所述第二摻雜區電性連接至所述第一位元線,所述第三記憶單元的第三摻雜區電性連接至所述第三位元線。 The non-volatile memory of claim 6, further comprising: a first bit line, a second bit line and a third bit line, disposed in parallel on the substrate, wherein the series is The first doping region of the first memory unit and the third doping region are electrically connected to the second bit line, and the second doping region of the first memory cell is electrically connected to the The first bit line is electrically connected to the third bit line of the third memory cell. 如申請專利範圍第1項所述的非揮發性記憶體,其中所述第一穿隧介電層更設置於所述第一控制閘極與所述第一摻雜區之間;所述第二穿隧介電層更設置於所述第二控制閘極與所述第二摻雜區之間。 The non-volatile memory of claim 1, wherein the first tunneling dielectric layer is further disposed between the first control gate and the first doped region; The second tunneling dielectric layer is further disposed between the second control gate and the second doped region. 如申請專利範圍第1項所述的非揮發性記憶體,其中所述第一抹除介電層與所述第二抹除介電層的所述第一部分的高度為所述第一浮置閘極與所述第二浮置閘極的高度的0.8倍至小於1倍。 The non-volatile memory of claim 1, wherein a height of the first erase dielectric layer and the first portion of the second erase dielectric layer is the first floating The gate is 0.8 times to less than 1 times the height of the second floating gate. 如申請專利範圍第1項所述的非揮發性記憶體,其中所述第一抹除介電層與所述第二抹除介電層的所述第一部分的材質包括氧化矽/氮化矽、氧化矽/氮化矽/氧化矽或氧化矽。 The non-volatile memory of claim 1, wherein the material of the first erase dielectric layer and the first portion of the second erase dielectric layer comprises hafnium oxide/tantalum nitride , yttrium oxide / tantalum nitride / yttrium oxide or ytterbium oxide. 如申請專利範圍第1項所述的非揮發性記憶體,其中所述絕緣層的材質包括氧化矽。 The non-volatile memory of claim 1, wherein the material of the insulating layer comprises cerium oxide. 如申請專利範圍第1項所述的非揮發性記憶體,其中所述閘間介電層的材質包括氧化矽/氮化矽/氧化矽或氮化矽/氧化矽或其他高介電常數的材質。 The non-volatile memory according to claim 1, wherein the material of the inter-gate dielectric layer comprises yttrium oxide/yttria/yttria or tantalum nitride/yttria or other high dielectric constant. Material. 如申請專利範圍第1項所述的非揮發性記憶體,其中所述第一穿隧介電層與所述第二穿隧介電層的材質包括氧化矽,所述第一穿隧介電層與所述第二穿隧介電層的厚度介於60埃至200埃之間。 The non-volatile memory of claim 1, wherein the material of the first tunneling dielectric layer and the second tunneling dielectric layer comprises yttrium oxide, the first tunneling dielectric The thickness of the layer and the second tunneling dielectric layer is between 60 angstroms and 200 angstroms. 如申請專利範圍第1項所述的非揮發性記憶體,其中所述閘介電層的材質包括氧化矽,所述閘介電層的厚度小於或等於所述第一穿隧介電層與所述第二穿隧介電層的厚度。 The non-volatile memory of claim 1, wherein the material of the gate dielectric layer comprises ruthenium oxide, and the thickness of the gate dielectric layer is less than or equal to the first tunnel dielectric layer and The thickness of the second tunneling dielectric layer. 如申請專利範圍第1項所述的非揮發性記憶體,其中所述第一抹除介電層與所述第二抹除介電層的所述第二部分的材質包括氧化矽,所述第二部分的厚度介於100埃至180埃之間。 The non-volatile memory of claim 1, wherein the material of the first erase dielectric layer and the second portion of the second erase dielectric layer comprises ruthenium oxide, The thickness of the second portion is between 100 angstroms and 180 angstroms. 如申請專利範圍第1項所述的非揮發性記憶體,其中所述轉角部角度小於或等於90度。 The non-volatile memory of claim 1, wherein the corner portion angle is less than or equal to 90 degrees. 如申請專利範圍第1項所述的非揮發性記憶體,其中所述第一記憶單元經程式化後的閾值電壓是介於Vcc與0之間:所述第一記憶單元經抹除後的閾值電壓是小於0。 The non-volatile memory of claim 1, wherein the programmed threshold voltage of the first memory unit is between Vcc and 0: the first memory unit is erased The threshold voltage is less than zero.
TW104112847A 2015-04-22 2015-04-22 Non-volatile memory TWI590253B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104112847A TWI590253B (en) 2015-04-22 2015-04-22 Non-volatile memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104112847A TWI590253B (en) 2015-04-22 2015-04-22 Non-volatile memory

Publications (2)

Publication Number Publication Date
TW201638959A TW201638959A (en) 2016-11-01
TWI590253B true TWI590253B (en) 2017-07-01

Family

ID=57850385

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104112847A TWI590253B (en) 2015-04-22 2015-04-22 Non-volatile memory

Country Status (1)

Country Link
TW (1) TWI590253B (en)

Also Published As

Publication number Publication date
TW201638959A (en) 2016-11-01

Similar Documents

Publication Publication Date Title
US7154142B2 (en) Non-volatile memory device and manufacturing method and operating method thereof
KR100801391B1 (en) Nonvolatile semiconductor storage device
JP2007299975A (en) Semiconductor device, and its manufacturing method
JP2007193862A (en) Nonvolatile semiconductor memory device
US9859291B2 (en) Non-volatile memory and manufacturing method thereof
US8546217B2 (en) Flash memory and method for forming the same
TW201721921A (en) Three dimensional memory device
CN106328653B (en) Nonvolatile memory and method of manufacturing the same
KR20170026105A (en) Semiconductor device and semiconductor device manufacturing method
US7563676B2 (en) NOR-type flash memory cell array and method for manufacturing the same
CN100517723C (en) Nonvolatile semiconductor storage device
US9356105B1 (en) Ring gate transistor design for flash memory
US8592889B1 (en) Memory structure
KR100731076B1 (en) Vertical spilit gate structure of flash memory device, and manufacturing method thereof
JP2002368140A (en) Non-volatile semiconductor memory device
US20070108504A1 (en) Non-volatile memory and manufacturing method and operating method thereof
JP2007142468A (en) Semiconductor device
TWI594247B (en) Non-volatile memory and erasing method thereof
US10395742B2 (en) Semiconductor device
CN106206588A (en) Nonvolatile memory
TWI590253B (en) Non-volatile memory
TW201635558A (en) Non-volatile memory
TWI555180B (en) Non-volatile memory
US20060039200A1 (en) Non-volatile memory cell, fabrication method and operating method thereof
TWI584415B (en) P-type non-volatile memory