TW201721921A - Three dimensional memory device - Google Patents

Three dimensional memory device Download PDF

Info

Publication number
TW201721921A
TW201721921A TW104142185A TW104142185A TW201721921A TW 201721921 A TW201721921 A TW 201721921A TW 104142185 A TW104142185 A TW 104142185A TW 104142185 A TW104142185 A TW 104142185A TW 201721921 A TW201721921 A TW 201721921A
Authority
TW
Taiwan
Prior art keywords
switch
stack
select line
ridge
line switch
Prior art date
Application number
TW104142185A
Other languages
Chinese (zh)
Other versions
TWI611607B (en
Inventor
胡志瑋
葉騰豪
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW104142185A priority Critical patent/TWI611607B/en
Publication of TW201721921A publication Critical patent/TW201721921A/en
Application granted granted Critical
Publication of TWI611607B publication Critical patent/TWI611607B/en

Links

Abstract

A 3D memory device includes a multi-layer stacks structure having a plurality of conductive strips and a first, a second, a third and a fourth ridge stack; a first SSL switch, a first GSL switch, a second SSL switch and a second GSL switch respectively disposed on the first, the second the third and the fourth ridge stack; a first U-shaped memory cells string connecting the first SSL switch with the first GSL switch; a second U-shaped memory cells string connecting the second SSL switch with the second GSL switch; a first word lines contact in contact with the conductive strips disposed in the first ridge stack; a second word lines contact in contact with the conductive strips disposed in the second ridge stack; and a third word lines contact in contact with the conductive strips disposed in the third ridge stack and the fourth ridge stack.

Description

三維記憶體元件Three-dimensional memory component

本發明是有關於一種高密度記憶體元件。特別是一種三維(Three Dimemsional,3D)記憶體元件。This invention relates to a high density memory component. In particular, a three-dimensional (Three Dimemsional, 3D) memory component.

非揮發性記憶體元件,例如快閃記憶體,具有在移除電源時亦不丟失儲存於記憶單元中之資訊的特性。已廣泛運用於用於可擕式音樂播放器、移動電話、數位相機等的固態大容量存儲應用。為了達到具有更高密度儲存容量的需求,目前已經有各種不同結構的三維記憶體元件,例如具有單閘極(single-gate)記憶胞、雙閘極(double gate)記憶胞,和環繞式閘極(surrounding gate)記憶胞的三維快閃記憶體元件,被提出。Non-volatile memory components, such as flash memory, have the property of not losing information stored in the memory unit when the power source is removed. It has been widely used in solid-state mass storage applications for portable music players, mobile phones, digital cameras, and the like. In order to meet the demand for higher density storage capacity, there are various three-dimensional memory components of different structures, such as single-gate memory cells, double gate memory cells, and wraparound gates. A three-dimensional flash memory component of a surrounding cell is proposed.

典型的三維非揮發性記憶體元件包含複數個建構於多層堆疊結構(multi-layer stacks)之中具有垂直通道的記憶胞立體陣列。以具有U形記憶胞串列結構的單閘極垂直通道(Single-Gate Vertical Channel,SGVC) NAND記憶體元件為例,一般係採用多晶矽材質的堆疊導電條帶來作為記憶胞的閘極。由於多晶矽的阻值較大,因此在建構記憶胞陣列時,需要將導電條帶跟隔成多個區段,並過階梯狀的字元線接觸結構字元線接觸結構,將位於同一階層的導電條與位於記憶胞陣列上方的金屬字元線電性連接。A typical three-dimensional non-volatile memory component includes a plurality of memory cell stereoscopic arrays having vertical channels constructed in multi-layer stacks. Taking a Single-Gate Vertical Channel (SGVC) NAND memory device having a U-shaped memory cell string structure as an example, a stacked conductive strip of polycrystalline germanium material is generally used as a gate of a memory cell. Since the resistance of the polysilicon is large, when constructing the memory cell array, the conductive strips need to be separated into a plurality of segments, and the stepped word line contacts the structural word line contact structure, which will be located in the same layer. The conductive strips are electrically connected to the metal word lines located above the memory cell array.

由於,字元線接觸結構佔據記憶體元件相當大的面積,加上記憶胞陣列上方容納金屬字元線的佈線空間有限。隨著記憶體元件記憶容量的擴充,使得多層堆疊層結構中導電條帶階層的數量相對增加,需要設置更多字元線和字元線接觸結構。目前只能藉由縮小字元線的線徑和間距(pitch),或者增加記憶區塊的面積尺寸,來加以因應。Since the word line contact structure occupies a relatively large area of the memory element, the wiring space for accommodating the metal word line above the memory cell array is limited. With the expansion of the memory capacity of the memory element, the number of conductive stripe layers in the multi-layer stacked layer structure is relatively increased, and more word line and word line contact structures need to be set. At present, it can only be adapted by reducing the line diameter and pitch of the word line, or increasing the area size of the memory block.

然而,縮小字元線的線徑和間距會導致製程裕度(process window)減少、良率降低而大幅增加製程成本,甚至因導致氧化層擊穿(oxide breakdown)現象產生。增加記憶區塊的面積尺寸並不符合目前元件微縮的趨勢。However, reducing the line diameter and spacing of the word lines can result in reduced process window, reduced yield, and significantly increased process cost, even due to oxide breakdown. Increasing the area size of the memory block does not match the current trend of component shrinkage.

因此,有需要提供一種先進的記憶體元件,以解決上述襲之技術所面臨的問題。Therefore, there is a need to provide an advanced memory component to solve the problems faced by the above-mentioned techniques.

本說明書的一實施例是提供一種三維記憶體元件。此三維記憶體元件包括:多層堆疊結構(multi-layer stacks)、第一串列選擇線(String Select Line,SSL)開關、第一接地選擇線(Ground Selection Line,GSL)開關、第二串列選擇線開關、第二接地選擇線開關、第一U形記憶胞串列、第二U形記憶胞串列、第一字元線接觸結構、第二字元線接觸結構以及第三字元線接觸結構。多層堆疊結構包括彼此隔離的複數個導電條帶以及複數條溝槽(trench),用以至少定義出第一脊狀堆疊 (ridge stacks)、第二脊狀堆疊、第三脊狀堆疊以及第四脊狀堆疊。第一串列選擇線開關位於第一脊狀堆疊之上。第一接地選擇線開關位於第二脊狀堆疊之上。第一U形記憶胞串列串接第一串列選擇線開關和第一接地選擇線開關。第二串列選擇線開關位於第三脊狀堆疊之上。第二接地選擇線開關位於第四脊狀堆疊之上。第二U形記憶胞串列串接第二串列選擇線開關和第二接地選擇線開關。第一字元線接觸結構與位於第一脊狀堆疊上的導電條帶接觸。第二字元線接觸結構與位於第二脊狀堆疊上的導電條帶接觸;第三字元線接觸結構與位於第三脊狀堆疊和第四脊狀堆疊上的導電條帶接觸。An embodiment of the present specification provides a three-dimensional memory element. The three-dimensional memory component comprises: a multi-layer stacks, a first String Select Line (SSL) switch, a first Ground Selection Line (GSL) switch, and a second serial a select line switch, a second ground select line switch, a first U-shaped memory cell string, a second U-shaped memory cell string, a first word line contact structure, a second word line contact structure, and a third word line Contact structure. The multilayer stack structure includes a plurality of conductive strips isolated from each other and a plurality of trenches for defining at least a first ridge stack, a second ridge stack, a third ridge stack, and a fourth Ridge stacking. The first tandem select line switch is located above the first ridge stack. The first ground select line switch is located above the second ridge stack. The first U-shaped memory cell string is serially connected to the first string select line switch and the first ground select line switch. The second series of select line switches are located above the third ridge stack. A second ground select line switch is located above the fourth ridge stack. The second U-shaped memory cell is serially connected in series with the second serial selection line switch and the second ground selection line switch. The first word line contact structure is in contact with the conductive strips on the first ridge stack. The second word line contact structure is in contact with the conductive strips on the second ridge stack; the third word line contact structure is in contact with the conductive strips on the third ridge stack and the fourth ridge stack.

根據上述實施例,本說明書是提供一種具有多個脊狀堆疊的三維記憶體元件,其中每一個脊狀堆疊包含,分別具有位於頂部的一個串列選擇線開關或一個接地選擇線開關以及位於該串列選擇線開關或該接地選擇線開關下方的複數個記憶胞。藉由串接位於兩個脊狀堆疊上的第一串列選擇線開關和第一接地選擇線開關,以及位於第一串列選擇線開關和第一接地選擇線開關下方的記憶胞來形成第一U形記憶胞串列;同時藉由串接位於另外兩個不同脊狀堆疊上的第二串列選擇線開關和第二接地選擇線開關,以及位於第二串列選擇線開關和第二接地選擇線開關下方的記憶胞來形成第二U形記憶胞串列。According to the above embodiment, the present specification provides a three-dimensional memory element having a plurality of ridge stacks, wherein each ridge stack includes, respectively, a tandem select line switch or a ground select line switch at the top and The serial selection line switch or a plurality of memory cells below the ground selection line switch. Forming the first string select line switch and the first ground select line switch located on the two ridge stacks, and the memory cells located under the first tandem select line switch and the first ground select line switch a U-shaped memory cell string; at the same time by serially connecting the second string selection line switch and the second ground selection line switch on the other two different ridge stacks, and the second series selection line switch and the second The memory cell below the ground selection line switch forms a second U-shaped memory cell string.

其中,位於第一U形記憶胞串列之第一串列選擇線開關下方的記憶胞與第一字元線接觸結構連接;位於第二U形記憶胞串列之第二串列選擇線開關下方的記憶胞與第二字元線接觸結構連接;而位於第一U形記憶胞串列之第一接地選擇線開關下方的記憶胞以及位於第二U形記憶胞串列之第二接地選擇線開關下方的記憶胞,則連接至相同的第三字元線接觸結構。換句話說,三維記憶體元件中,用來連接位於接地選擇開關下方之記憶胞的字元線接觸結構數量小於用來連接位於串列選擇開關下方之記憶胞的字元線接觸結構。若與先前技術中的三維記憶體元件相比,在不改變記憶容量的前提下,可以減少字元線接觸結構的設置。The memory cell located below the first string select line switch of the first U-shaped memory cell string is connected to the first word line contact structure; the second string select line switch located in the second U-shaped memory cell string The lower memory cell is connected to the second word line contact structure; and the memory cell located below the first ground select line switch of the first U-shaped memory cell string and the second ground selection located in the second U-shaped memory cell string The memory cells below the line switches are connected to the same third word line contact structure. In other words, in the three-dimensional memory element, the number of word line contact structures used to connect the memory cells under the ground selection switch is smaller than the word line contact structure used to connect the memory cells located below the serial selection switch. If the memory capacity is not changed, the setting of the word line contact structure can be reduced as compared with the three-dimensional memory element of the prior art.

藉由減少字元線接觸結構的設置,可以減少記憶體元件的面積尺寸;更可在不影響製程裕度的前提下,擴充記憶體元件的記憶容量,大幅降低製程成本,並防止氧化層擊穿現象產生,增加垂直通道記憶體元件的製程良率。By reducing the setting of the word line contact structure, the area size of the memory element can be reduced; the memory capacity of the memory element can be expanded without affecting the process margin, the process cost can be greatly reduced, and the oxide layer can be prevented from being struck. The wear phenomenon occurs, increasing the process yield of the vertical channel memory components.

本發明是提供一種記憶體元件,可解決習知記憶體元件製程裕度不足的問題,並且同時節省製造成本提高製程良率。為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉數個較佳實施例,並配合所附圖式,作詳細說明如下。The invention provides a memory component, which can solve the problem of insufficient processing margin of the conventional memory component, and at the same time save manufacturing cost and improve process yield. The above and other objects, features and advantages of the present invention will become more <RTIgt;

但必須注意的是,這些特定的實施案例,並非用以限定本發明。本發明仍可採用其他特徵、元件、方法及參數來加以實施。較佳實施例的提出,僅係用以例示本發明的技術特徵,並非用以限定本發明的申請專利範圍。該技術領域中具有通常知識者,將可根據以下說明書的描述,在不脫離本發明的精神範圍內,作均等的修飾與變化。在不同實施例與圖式之中,相同的元件,將以相同的元件符號加以表示。However, it must be noted that these specific embodiments are not intended to limit the invention. The invention may be practiced with other features, elements, methods and parameters. The preferred embodiments are merely illustrative of the technical features of the present invention and are not intended to limit the scope of the invention. Equivalent modifications and variations will be made without departing from the spirit and scope of the invention. In the different embodiments and the drawings, the same elements will be denoted by the same reference numerals.

請參照第1A圖至第1C圖,第1A圖至第1C圖係根據本發明的一實施例所繪示製作單閘極垂直通道NAND記憶體元件100的製程結構透視圖。製作單閘極垂直通道NAND記憶體元件100的方法,包括下述步驟:首先在基材101的表面上形成多層堆疊結構104(如第1A圖所繪示)。在本實施例中,多層堆疊結構104包括沿著第1A圖所繪示的Z軸方向,在基材101上彼此交錯堆疊的複數個導電層102以及複數個絕緣層103。Referring to FIGS. 1A to 1C, FIGS. 1A to 1C are perspective views showing a process structure for fabricating a single-gate vertical channel NAND memory device 100 according to an embodiment of the present invention. A method of fabricating a single gate vertical channel NAND memory device 100 includes the steps of first forming a multilayer stack structure 104 (as depicted in FIG. 1A) on a surface of a substrate 101. In the present embodiment, the multilayer stack structure 104 includes a plurality of conductive layers 102 and a plurality of insulating layers 103 staggered on each other on the substrate 101 along the Z-axis direction depicted in FIG. 1A.

本發明的一些實施例中,導電層102的材質,可以包含摻雜有磷或砷的n型多晶矽(或n型磊晶單晶矽)、摻雜有硼的p型多晶矽(或p型磊晶單晶矽)、無摻雜的的多晶矽、金屬矽化物(silicides),例如矽化鈦(TiSi)、矽化鈷(CoSi)或矽鍺(SiGe)、氧化物半導體(oxide semiconductors),例如氧化銦鋅(InZnO)或氧化銦鎵鋅(InGaZnO)、金屬,例如鋁(Al)、銅(Cu)、鎢(W)、鈦(Ti)、鈷(Co)、鎳(Ni)、氮化鈦(TiN)、氮化鉭(TaN)或氮化鉭鋁(TaAlN),或兩種或多種上述材質之組合物所構成。絕緣層103可以由介電材料,例如矽氧化物(oxide)、矽氮化物(nitride)、矽氮氧化物(oxynitride)、矽酸鹽(silicate)或其他材料,所構成。In some embodiments of the present invention, the material of the conductive layer 102 may include n-type polycrystalline germanium (or n-type epitaxial single crystal germanium) doped with phosphorus or arsenic, and p-type polycrystalline germanium doped with boron (or p-type germanium). Crystal single crystal germanium), undoped polycrystalline germanium, metal silicides such as titanium telluride (TiSi), cobalt telluride (CoSi) or germanium (SiGe), oxide semiconductors, such as indium oxide Zinc (InZnO) or indium gallium zinc oxide (InGaZnO), metals such as aluminum (Al), copper (Cu), tungsten (W), titanium (Ti), cobalt (Co), nickel (Ni), titanium nitride ( TiN), tantalum nitride (TaN) or tantalum aluminum nitride (TaAlN), or a combination of two or more of the above materials. The insulating layer 103 may be composed of a dielectric material such as an oxide, a nitride, an oxynitride, a silicate or the like.

接著,對多層堆疊結構104進行一圖案化製程,以形成複數個脊狀堆疊104A、104B、104C和104D。在本發明的一些實施例中,係採用非等向蝕刻製程(anisotropic etching process),例如反應離子蝕刻(Reactive Ion Etching,RIE)製程,對多層堆疊結構104進行蝕刻。藉以在多層堆疊結構104之中形成沿著X橫向延伸且沿Z軸縱向延伸的溝槽105,將多層堆疊結構104分割成複數個脊狀堆疊104A、104B、104C和104D,並將基材101的部分區域經由溝槽105曝露於外(如第1B圖所繪示)。Next, a patterning process is performed on the multilayer stack structure 104 to form a plurality of ridge stacks 104A, 104B, 104C, and 104D. In some embodiments of the invention, the multilayer stack structure 104 is etched using an anisotropic etching process, such as a reactive ion etch (RIE) process. The multilayer stack structure 104 is divided into a plurality of ridge stacks 104A, 104B, 104C, and 104D by forming trenches 105 extending laterally along X and extending longitudinally along the Z axis among the multilayer stack structure 104, and the substrate 101 is formed. A portion of the area is exposed through the trench 105 (as depicted in FIG. 1B).

每一個脊狀堆疊104A、104B、104C和104D都包含複數個條狀的導電條帶。例如在本實施例中,脊狀堆疊104A具有沿著Z軸方向向上堆疊的導電條帶104A1、104A2、104A3、104A4、104A5和104A6;脊狀堆疊104B具有沿著Z軸方向向上堆疊的導電條帶104B1、104B2、104B3、104B4、104B5和104B6;脊狀堆疊104C具有沿著Z軸方向向上堆疊的導電條帶104C1、104C2、104B3、104C4、104C5和104C6;以及脊狀堆疊104D具有沿著Z軸方向向上堆疊的導電條帶104D1、104D2、104D3、104D4、104D5和104D6。其中,位於脊狀堆疊104A、104B、104C和104D之頂部平面的導電條帶104A6、104B6、104C6和104D6具有比位於相同脊狀堆疊104A、104B、104C和104D的其他平面之導電條帶104A1-104A5、104B1-104B5、104C1-104C5和104D1-104D5還大的厚度。Each of the ridge stacks 104A, 104B, 104C, and 104D includes a plurality of strips of conductive strips. For example, in the present embodiment, the ridge stack 104A has the conductive strips 104A1, 104A2, 104A3, 104A4, 104A5, and 104A6 stacked upward along the Z-axis direction; the ridge stack 104B has the conductive strips stacked upward along the Z-axis direction. Strips 104B1, 104B2, 104B3, 104B4, 104B5, and 104B6; ridge stack 104C having conductive strips 104C1, 104C2, 104B3, 104C4, 104C5, and 104C6 stacked upward along the Z-axis direction; and ridge stack 104D having along Z Conductive strips 104D1, 104D2, 104D3, 104D4, 104D5, and 104D6 stacked in the axial direction. Wherein, the conductive strips 104A6, 104B6, 104C6, and 104D6 located at the top plane of the ridge stacks 104A, 104B, 104C, and 104D have conductive strips 104A1- than other planes located in the same ridge stacks 104A, 104B, 104C, and 104D. 104A5, 104B1-104B5, 104C1-104C5 and 104D1-104D5 are also of large thickness.

之後,於脊狀堆疊104A、104B、104C和104D的側壁上方以及溝槽105底部形成具有電荷捕捉結構(charge trapping structure),的記憶材料層106。並於記憶材料層106上形成圖案化的半導體通道層107。進而在脊狀堆疊104A、104B、104C和104D的導電條帶104A1-A6、104B1-B6、104C1-C6和104D1-D6與記憶材料層106和通道層107三者重疊的位置(cross point),分別定義出複數個記憶胞108(如第1C圖所繪示)。Thereafter, a memory material layer 106 having a charge trapping structure is formed over the sidewalls of the ridge stacks 104A, 104B, 104C, and 104D and at the bottom of the trench 105. A patterned semiconductor channel layer 107 is formed over the memory material layer 106. Further, at the cross point where the conductive strips 104A1-A6, 104B1-B6, 104C1-C6, and 104D1-D6 of the ridge stacks 104A, 104B, 104C, and 104D overlap with the memory material layer 106 and the channel layer 107, A plurality of memory cells 108 are respectively defined (as shown in FIG. 1C).

在本發明的一些實施例中,記憶材料層106的電荷捕捉結構可以是一種複合多疊層,其係選自於由矽氧化物-氮化矽-矽氧化物(oxide-nitride-oxide、ONO)結構、一矽氧化物-氮化矽-矽氧化物-氮化矽-矽氧化物(oxide-nitride-oxide-nitride-oxide,ONONO)結構、一矽-矽氧化物-氮化矽-矽氧化物-矽 (silicon-oxide-nitride-oxide-silicon,SONOS)結構、一能隙工程矽-矽氧化物-氮化矽-矽氧化物-矽(bandgap engineered silicon-oxide-nitride-oxide-silicon,BE-SONOS)結構、一氮化鉭-氧化鋁-氮化矽-矽氧化物-矽(tantalum nitride, aluminum oxide, silicon nitride, silicon oxide, silicon,TANOS)結構以及一金屬高介電係數能隙工程矽-矽氧化物-氮化矽-矽氧化物-矽(metal-high-k bandgap-engineered silicon-oxide-nitride-oxide-silicon,MA BE-SONOS)結構所組成之一族群。半導體通道層107可以由摻雜有磷或砷的n型多晶矽,或n型磊晶單晶矽所構成。此外,半導體通道層107也可以由摻雜有硼的p型多晶矽,或p型磊晶單晶矽所構成。In some embodiments of the present invention, the charge trapping structure of the memory material layer 106 may be a composite multi-layer selected from the group consisting of oxide-nitride-oxide (ONO). Structure, an oxide-nitride-oxide-nitride-oxide (ONONO) structure, a 矽-矽 oxide-tantalum nitride-矽 structure Silicon-oxide-nitride-oxide-silicon (SONOS) structure, a gap-engineered silicon-oxide-nitride-oxide-silicon (bandgap engineered silicon-oxide-nitride-oxide-silicon) , BE-SONOS) structure, tantalum nitride (aluminum oxide, silicon nitride, silicon oxide, silicon, tantalum) structure and a high dielectric constant energy of a metal A group of metal-high-k bandgap-engineered silicon-oxide-nitride-oxide-silicon (MA BE-SONOS) structures. The semiconductor channel layer 107 may be composed of an n-type polysilicon doped with phosphorus or arsenic, or an n-type epitaxial single crystal germanium. Further, the semiconductor channel layer 107 may be composed of a p-type polycrystalline germanium doped with boron or a p-type epitaxial single crystal germanium.

在本實施例中,圖案化的半導體通道層107係由n型多晶矽所構成,且圖案化的半導體通道層107至少包括彼此分離的兩個部分。其中一部分的半導體通道層107覆蓋在相鄰之脊狀堆疊104A和104B以及用來隔離脊狀堆疊104A和104B之溝槽105的底部。藉以分別在脊狀堆疊104A和104B之間形成一個U形通道薄膜,用來串接形成於脊狀堆疊104A和104B上的複數個記憶胞108,進而形成第一U形記憶胞串列109A。另一部分的半導體通道層107覆蓋在相鄰之脊狀堆疊104C和104C以及用來隔離脊狀堆疊104C和104D之溝槽105的底部。並且在脊狀堆疊104C和104D之間形成另一個U形通道薄膜,用來串接形成於脊狀堆疊104C和104D上的複數個記憶胞108,進而形成第二U形記憶胞串列109B。In the present embodiment, the patterned semiconductor channel layer 107 is composed of n-type polysilicon, and the patterned semiconductor channel layer 107 includes at least two portions separated from each other. A portion of the semiconductor channel layer 107 covers the bottom of the adjacent ridge stacks 104A and 104B and the trenches 105 used to isolate the ridge stacks 104A and 104B. A U-shaped channel film is formed between the ridge stacks 104A and 104B, respectively, for serially connecting a plurality of memory cells 108 formed on the ridge stacks 104A and 104B to form a first U-shaped memory cell train 109A. Another portion of the semiconductor channel layer 107 covers the bottom of the adjacent ridge stacks 104C and 104C and the trenches 105 used to isolate the ridge stacks 104C and 104D. And another U-shaped channel film is formed between the ridge stacks 104C and 104D for serially connecting a plurality of memory cells 108 formed on the ridge stacks 104C and 104D to form a second U-shaped memory cell string 109B.

其中,位於脊狀堆疊104A之頂部的記憶胞,可以作為第一U形記憶胞串列109A的第一接地選擇線開關110A;位於脊狀堆疊104B之頂部的記憶胞,可以作為第一U形記憶胞串列109A的第一串列選擇開關111A。位於脊狀堆疊104C之頂部的記憶胞,可以作為第二U形記憶胞串列109B的第二接地選擇線開關110B;位於脊狀堆疊104D之頂部的記憶胞,可以作為第二U形記憶胞串列109B的第二串列選擇開關111B。Wherein, the memory cell located at the top of the ridge stack 104A can serve as the first ground select line switch 110A of the first U-shaped memory cell string 109A; the memory cell located at the top of the ridge stack 104B can serve as the first U-shaped The first string selection switch 111A of the memory cell string 109A. The memory cell located at the top of the ridge stack 104C can serve as the second ground select line switch 110B of the second U-shaped memory cell string 109B; the memory cell located at the top of the ridge stack 104D can serve as the second U-shaped memory cell. The second string selection switch 111B of the series 109B.

另外值得注意的是,雖然第1C圖僅繪示由四個脊狀堆疊(脊狀堆疊104A、104B、104C和104D)所形成的二條U形記憶胞串列(第一U形記憶胞串列109A和第二U形記憶胞串列109B)。但其僅係為了清楚描述起見而繪示,並非用以限定本發明。在本發明的一些實施例之中,單閘極垂直通道NAND記憶體元件100可以包括更多的脊狀堆疊以及更多的U形記憶胞串列,進而形成一個立體記憶胞陣列。It is also worth noting that although FIG. 1C only shows two U-shaped memory cell strings formed by four ridge stacks (ridge stacks 104A, 104B, 104C, and 104D) (the first U-shaped memory cell string) 109A and second U-shaped memory cell string 109B). However, it is merely for the purpose of clarity of description and is not intended to limit the invention. In some embodiments of the invention, the single-gate vertical channel NAND memory element 100 can include more ridge stacks and more U-shaped memory cell strings to form a three-dimensional memory cell array.

之後,在溝槽105中填充介電材質層112。在本發明的一些實施例中,形成介電材質層112的材質可以包含二氧化矽、氮化矽、氮氧化矽、高介電係數(high-k)材料或上述材料的任意組合。在本實施例中,較佳還包含在溝槽105中形成空氣間隙(air gap)113,用來降低位於不同脊狀堆疊104A、104B、104C和104D側壁上記憶胞108相互之間的干擾。Thereafter, the dielectric material layer 112 is filled in the trenches 105. In some embodiments of the present invention, the material forming the dielectric material layer 112 may include ceria, tantalum nitride, hafnium oxynitride, a high-k material, or any combination of the above. In this embodiment, it is preferred to also include forming an air gap 113 in the trench 105 for reducing interference between the memory cells 108 on the sidewalls of the different ridge stacks 104A, 104B, 104C and 104D.

後續如第1D圖所繪示,在脊狀堆疊104A、104B、104C和104D頂部形成接觸插塞(contact plug)114,分別使第一串列選擇線開關111A和第二串列選擇線開關111B連接至一條位元線115;並形成接觸插塞116使第一接地選擇線開關110A和第二接地選擇線開關110B分別通過金屬導線117連接至一共同源極線118。並在立體記憶胞陣列的周邊區形成階梯狀的複數個字元線接觸結構(例如,第1D圖所繪示的119B),使位於脊狀堆疊104A、104B、104C和104D之相同階層中用來形成層記憶胞108的導電條帶104A1-D1、104A2-D2、104A3-D3、104A4-D4、104A5-D5和104A6-D6,分別連接至不同的字元線120。Subsequent to FIG. 1D, a contact plug 114 is formed on top of the ridge stacks 104A, 104B, 104C, and 104D to respectively make the first tandem select line switch 111A and the second tandem select line switch 111B. Connected to a bit line 115; and a contact plug 116 is formed to connect the first ground select line switch 110A and the second ground select line switch 110B to a common source line 118 via metal wires 117, respectively. And forming a stepped plurality of word line contact structures (for example, 119B shown in FIG. 1D) in the peripheral region of the three-dimensional memory cell array, so as to be used in the same layer of the ridge stacks 104A, 104B, 104C, and 104D. Conductive strips 104A1-D1, 104A2-D2, 104A3-D3, 104A4-D4, 104A5-D5, and 104A6-D6 to form layer memory cells 108 are connected to different word lines 120, respectively.

字元線接觸結構,例如字元線接觸結構119A、119B和119C,的詳細配置請參照第2圖,第2圖係根據第1D所繪示單閘極垂直通道NAND記憶體元件100的局部結構上視圖。字元線接觸結構119A、119B和119C係分別配置在脊狀堆疊104A、104B、104C和104D的長軸兩側。在本實施例中,字元線接觸結構119A包含階梯狀堆疊的多個接觸層,分別用來與位於脊狀堆疊104B中不同階層的導電條帶接觸;字元線接觸結構119B包含階梯狀堆疊的多個接觸層,分別用來與位於脊狀堆疊104D中不同階層的導電條帶接觸。字元線接觸結構119C包含階梯狀堆疊的多個接觸層,分別用來與脊狀堆疊104A和104C中位於相同階層的導電條帶接觸。For a detailed arrangement of word line contact structures, such as word line contact structures 119A, 119B, and 119C, refer to FIG. 2, which is a partial structure of a single gate vertical channel NAND memory device 100 according to FIG. 1D. Top view. The word line contact structures 119A, 119B, and 119C are disposed on both sides of the long axis of the ridge stacks 104A, 104B, 104C, and 104D, respectively. In the present embodiment, the word line contact structure 119A includes a plurality of contact layers stacked in a stepped manner for respectively contacting the conductive strips located at different levels in the ridge stack 104B; the word line contact structure 119B includes a stepped stack A plurality of contact layers are respectively used to contact the conductive strips at different levels in the ridge stack 104D. The word line contact structure 119C includes a plurality of contact layers stacked in a stepped manner for contacting the conductive strips of the same level in the ridge stacks 104A and 104C, respectively.

換句話說,脊狀堆疊104A和104C中位於相同平面層的導電條帶,共用一個字元線接觸結構119C。詳言之,脊狀堆疊104A和104C中位於第一平面層的導電條帶104A1和104C1,與階梯狀字元線接觸結構119C的第一接觸層(未繪示)接觸;位於第二平面層的導電條帶104A2和104C2,與階梯狀字元線接觸結構119C得第二接觸層(未繪示)接觸;位於第三平面層的導電條帶104A3和104C3,與階梯狀字元線接觸結構119C的第三接觸層(未繪示)接觸;位於第四平面層的導電條帶104A4和104C4,與階梯狀字元線接觸結構119C的第四接觸(未繪示)層接觸;位於第五平面層的導電條帶104A5和104C5,與階梯狀字元線接觸結構119C的第五接觸層(未繪示)接觸;以及位於第六平面層的導電條帶104A6和104C6,與階梯狀字元線接觸結構119C的第六接觸層(未繪示)接觸。由於字元線接觸結構已為習知,故其詳細的構造與製作方法不在此贅述。In other words, the conductive strips in the same planar layer of the ridge stacks 104A and 104C share a single word line contact structure 119C. In detail, the conductive strips 104A1 and 104C1 of the first planar layer of the ridge stacks 104A and 104C are in contact with the first contact layer (not shown) of the stepped word line contact structure 119C; The conductive strips 104A2 and 104C2 are in contact with the stepped word line contact structure 119C in a second contact layer (not shown); the conductive strips 104A3 and 104C3 in the third planar layer are in contact with the stepped word line. The third contact layer (not shown) of 119C is in contact; the conductive strips 104A4 and 104C4 located in the fourth planar layer are in contact with the fourth contact (not shown) layer of the stepped word line contact structure 119C; Conductive strips 104A5 and 104C5 of the planar layer are in contact with a fifth contact layer (not shown) of the stepped word line contact structure 119C; and conductive strips 104A6 and 104C6 in the sixth planar layer, and stepped characters The sixth contact layer (not shown) of the line contact structure 119C is in contact. Since the word line contact structure is well known, its detailed construction and fabrication method will not be described here.

但字元線接觸結構的配置方式並不以此為限,在本發明的一些實施例中,位於多於兩個以上不同U形記憶胞串列中之串列選擇線開關下方的導電條帶,會分別與不同的字元線接觸結構;位於此多於兩個以上不同U形記憶胞串列中之接地選擇線開關下方的導電條帶會共用一個字元線接觸結構。However, the configuration of the word line contact structure is not limited thereto. In some embodiments of the present invention, the conductive strips under the tandem selection line switch in more than two different U-shaped memory cell strings , respectively, with different word line contact structures; the conductive strips under the ground select line switches located in more than two different U-shaped memory cell strings share a word line contact structure.

在本發明的一些實施例之中,單閘極垂直通道NAND記憶體元件100還包括複數個串列選擇線接觸墊121和一個共用的接地選擇線接觸墊122分別用來將串列選擇線開關(例如,第一串列選擇線開關111A和第二串列選擇線開關111B)和接地選擇開關(例如,第一接地選擇線開關110A和第二接地選擇線開關110B)連接至解碼器(未繪示)。例如在本實施例中,每一個串列選擇線接觸墊121分別位於具有第一串列選擇線開關111A和第二串列選擇線開關111B之脊狀堆疊104B和104D的一端,鄰接字元線接觸結構119A和119B,並且與用來形成第一串列選擇線開關111A和第二串列選擇線開關111B的導電條帶104B6和104D6接觸。共用的接地選擇線接觸墊122則位於具有第一接地選擇線開關110A和第二接地選擇線開關110B之脊狀堆疊104A和104C的一端,鄰接字元線接觸結構119C,並且與用來形成第一接地選擇線開關110A和第二接地選擇線開關110B的導電條帶104A6和104C6接觸。In some embodiments of the invention, the single gate vertical channel NAND memory device 100 further includes a plurality of series select line contact pads 121 and a common ground select line contact pad 122 for respectively selecting the string select line switches (for example, the first tandem select line switch 111A and the second tandem select line switch 111B) and the ground selection switch (eg, the first ground select line switch 110A and the second ground select line switch 110B) are connected to the decoder (not Painted). For example, in the present embodiment, each of the tandem select line contact pads 121 is located at one end of the ridge stacks 104B and 104D having the first tandem select line switch 111A and the second tandem select line switch 111B, adjacent to the word line. Contact structures 119A and 119B are in contact with conductive strips 104B6 and 104D6 used to form first tandem select line switch 111A and second tandem select line switch 111B. A common ground select line contact pad 122 is located at one end of the ridge stacks 104A and 104C having the first ground select line switch 110A and the second ground select line switch 110B, adjacent to the word line contact structure 119C, and used to form the The conductive strips 104A6 and 104C6 of a ground select line switch 110A and a second ground select line switch 110B are in contact.

被共用的字元線接觸結構119C的形狀可以隨著單閘極垂直通道NAND記憶體元件的設計而有所不同。例如請參照第3圖,第3圖係根據本發明的另一實施例所繪示之單閘極垂直通道NAND記憶體元件300的局部結構上視圖。單閘極垂直通道NAND記憶體元件300的結構大致與單閘極垂直通道NAND記憶體元件100相同,差別僅在於,鄰接接地選擇線接觸墊122的字元線接觸結構319C的形狀不同。在本實施例之中,被位於脊狀堆疊104A和104C之第一接地選擇線開關110A和第二接地選擇線開關110B下方的導電條帶104A6和104C6所共用的字元線接觸結構319C,可以配置成縱向階梯結構。進一步節省單閘極垂直通道NAND記憶體元件300的橫向寬度。The shape of the shared word line contact structure 119C may vary with the design of the single gate vertical channel NAND memory element. For example, please refer to FIG. 3, which is a partial top view of a single-gate vertical channel NAND memory device 300 according to another embodiment of the present invention. The single gate vertical channel NAND memory device 300 is substantially identical in structure to the single gate vertical channel NAND memory device 100 except that the shape of the word line contact structure 319C adjacent the ground select line contact pads 122 is different. In the present embodiment, the word line contact structure 319C shared by the conductive strips 104A6 and 104C6 located under the first ground select line switch 110A and the second ground select line switch 110B of the ridge stacks 104A and 104C may Configured as a vertical step structure. The lateral width of the single gate vertical channel NAND memory element 300 is further saved.

為了防止具有共用字元線接觸結構119C之不同U形記憶胞串列109A和109B在寫入操作、讀取操作和抹除操作中產生訊號干擾,在本發明的一些實施例之中,單閘極垂直通道NAND記憶體元件100可以包括一個位於U形記憶胞串列109A之第一串列選擇線開關111A和第一接地選擇線開關110A之間的第一控制開關IG_1A,以及一個位於U形記憶胞串列109B之第二串列選擇線開關111B和第二接地選擇線開關110B之間的第二控制開關IG_1B。In order to prevent signal interference caused by different U-shaped memory cell series 109A and 109B having a common word line contact structure 119C in a write operation, a read operation, and an erase operation, in some embodiments of the present invention, a single gate The very vertical channel NAND memory element 100 can include a first control switch IG_1A between the first series select line switch 111A of the U-shaped memory cell string 109A and the first ground select line switch 110A, and a U-shaped The second control switch IG_1B between the second string selection line switch 111B of the memory cell string 109B and the second ground selection line switch 110B.

例如請參照第4圖,第4圖係繪示以第1C圖之單閘極垂直通道NAND記憶體元件100進行寫入操作時的等效電路圖。在本實施例中,第一控制開關IG_1A可以包括一種互補式切換電路(complementary switch circuit)123與脊裝堆疊104B的底部導電條帶104B1連接,用以控制位於脊裝堆疊104B底部之記憶胞108的啟閉。第二控制開關IG_1B與位於脊裝堆疊104D的底部導電條帶104D1連接,用以控制位於脊裝堆疊104D底部之記憶胞108的啟閉。由於,第二控制開關IG_1B的結構可以與第一控制開關IG_1A相同,故第二控制開關IG_1B的結構不再繪示於第4圖中。但在其他實施例中,第二控制開關IG_1B的結構仍可以與第一控制開關IG_1A不同。For example, please refer to FIG. 4, which is an equivalent circuit diagram when a single gate vertical channel NAND memory device 100 of FIG. 1C performs a write operation. In this embodiment, the first control switch IG_1A may include a complementary switch circuit 123 coupled to the bottom conductive strip 104B1 of the spine stack 104B for controlling the memory cells 108 located at the bottom of the spin stack 104B. Opening and closing. The second control switch IG_1B is coupled to the bottom conductive strip 104D1 located in the spine stack 104D for controlling the opening and closing of the memory cells 108 located at the bottom of the spin stack 104D. Since the structure of the second control switch IG_1B can be the same as that of the first control switch IG_1A, the structure of the second control switch IG_1B is not shown in FIG. However, in other embodiments, the structure of the second control switch IG_1B may still be different from the first control switch IG_1A.

另外在一些較佳的實施例中,單閘極垂直通道NAND記憶體元件100還可以包括一個位於第一接地選擇線開關110A和第一控制開關IG_1A之間的第一輔助開關IG_0A,以及一個位於第二接地選擇線開關110B和第二控制開關IG_1B之間的第二輔助開關IG_0B。同樣的,第一輔助開關IG_0A和第二輔助開關IG_0B的結構可以與第一控制開關IG_1A相同或不同。In addition, in some preferred embodiments, the single-gate vertical channel NAND memory device 100 may further include a first auxiliary switch IG_0A between the first ground selection line switch 110A and the first control switch IG_1A, and a The second auxiliary switch IG_0B between the second ground selection line switch 110B and the second control switch IG_1B. Similarly, the structures of the first auxiliary switch IG_0A and the second auxiliary switch IG_0B may be the same as or different from the first control switch IG_1A.

在本實施例中,第一輔助開關IG_0A係與脊裝堆疊104A的底部導電條帶104A1連接,用以控制位於脊裝堆疊104A底部之記憶胞108的啟閉;第二輔助開關IG_0B係與脊裝堆疊104C底部的導電條帶104C1連接,用以控制位於脊裝堆疊104C底部之記憶胞108的啟閉。In the present embodiment, the first auxiliary switch IG_0A is connected to the bottom conductive strip 104A1 of the spin-on stack 104A for controlling the opening and closing of the memory cell 108 located at the bottom of the spin-pack stack 104A; the second auxiliary switch IG_0B is connected to the ridge The conductive strips 104C1 at the bottom of the stack 104C are connected to control the opening and closing of the memory cells 108 at the bottom of the spin stack 104C.

當以第一串列選擇開關111A選擇第一U形記憶胞串列109A中的記憶胞108P進行寫入操作時,會開啟第一串列選擇線開關111A、第一控制開關IG_1A和第一輔助開關IG_0A;並關閉第一接地選擇線開關110A。以位元線115和共同源極線118同時對第一串列選擇線開關111A和第一接地選擇線開關110A施加0伏電壓(0V);再藉由字元線120對被選取記憶胞108P施加一閘極寫入電壓Vpgm;以及對位於第一U型記憶胞串列109A上的其他記憶胞108施加一閘極通過電壓Vpass。其中,閘極寫入電壓Vpgm大於閘極通過電壓Vpass,藉以引發電子e-產生Fowler–Nordheim穿隧效應,將資料寫入記憶胞108P之中。When the first cell select switch 111A selects the memory cell 108P in the first U-shaped memory cell string 109A to perform a write operation, the first string select line switch 111A, the first control switch IG_1A, and the first auxiliary are turned on. Switch IG_0A; and turn off the first ground select line switch 110A. The first string selection line switch 111A and the first ground selection line switch 110A are simultaneously applied with a voltage of 0 volts (0 V) by the bit line 115 and the common source line 118; and the selected memory cell 108P is further selected by the word line 120. A gate write voltage Vpgm is applied; and a gate pass voltage Vpass is applied to the other memory cells 108 located on the first U-type memory cell string 109A. Wherein, the gate write voltage Vpgm is greater than the gate pass voltage Vpass, thereby inducing electrons to generate Fowler–Nordheim tunneling effect, and writing data into the memory cell 108P.

未被選擇的第二U形記憶胞串列109B在進行寫入操作時,使位於脊狀堆疊104D上之第二串列選擇線開關111B和其下方的記憶胞的閘極保持浮置(floating)。由於脊狀堆疊104A和104C中的導電條帶共用一個字元線接觸結構119C;且第一接地選擇線開關110A和第二接地選擇線開關110B也共用接地選擇線接觸墊122。因此,施加在脊狀堆疊104C上之第二接地選擇線開關110B以及其下方之記憶胞108(包含記憶胞108P’)的閘極電壓,會和施加在脊狀堆疊104A上之第一接地選擇線開關110A以及其下方之記憶胞108(包含記憶胞108P)的閘極電壓完全相同。關閉第二控制開關IG_1B,可使第二U形記憶胞串列109B內之104C形成局部自我電位抬升(local self-boosting)以維持足夠的電位,防止位於脊狀堆疊104C上之記憶胞108P’受到寫入電壓Vpgm的影響而被寫入。The second U-shaped memory cell string 109B, which is not selected, keeps the second series-selected line switch 111B located on the ridge stack 104D and the gate of the memory cell below it floating while the write operation is being performed (floating ). Since the conductive strips in the ridge stacks 104A and 104C share one word line contact structure 119C; and the first ground select line switch 110A and the second ground select line switch 110B also share the ground select line contact pads 122. Thus, the gate voltage applied to the second ground select line switch 110B on the ridge stack 104C and the memory cell 108 (including the memory cell 108P') below it, and the first ground selection applied to the ridge stack 104A The gate voltage of the line switch 110A and the memory cell 108 (including the memory cell 108P) therebelow is identical. Turning off the second control switch IG_1B causes local self-boosting of 104C in the second U-shaped memory cell string 109B to maintain a sufficient potential to prevent the memory cell 108P' located on the ridge stack 104C. It is written by the influence of the write voltage Vpgm.

請參照第5圖,第5圖係繪示以第1C圖之單閘極垂直通道NAND記憶體元件100進行讀取操作時的等效電路圖。在本實施例中,當以第一串列選擇線開關111A選擇位於第一U形記憶胞串列109A上的記憶胞108R進行讀取操作時,會開啟第一串列選擇線開關111A、第一接地選擇線開關110A、第一控制開關IG_1A和第一輔助開關IG_0A。使位元線115和共同源極線118同時對第一串列選擇線開關111A和第一接地選擇線開關110A分別施加1伏特(1V)及0伏電壓(0V);再藉由字元線120對被選取的記憶胞108R施加一閘極讀取電壓Vref;以及對位於第一U型記憶胞串列109A上的其他記憶胞108施加一閘極通過電壓Vpass。即可由被選取的記憶胞108R中讀取資料。Referring to FIG. 5, FIG. 5 is an equivalent circuit diagram when the single gate vertical channel NAND memory device 100 of FIG. 1C performs a read operation. In this embodiment, when the first cell select line switch 111A selects the memory cell 108R located on the first U-shaped memory cell string 109A to perform a read operation, the first string select line switch 111A is turned on. A ground selection line switch 110A, a first control switch IG_1A, and a first auxiliary switch IG_0A. The bit line 115 and the common source line 118 are simultaneously applied with 1 volt (1 V) and 0 volt (0 V) to the first string selection line switch 111A and the first ground selection line switch 110A, respectively, and further by word lines. 120 applies a gate read voltage Vref to the selected memory cell 108R; and applies a gate pass voltage Vpass to the other memory cells 108 located on the first U-shaped memory cell series 109A. The data can be read from the selected memory cell 108R.

未被選擇的第二U形記憶胞串列109B在進行讀取操作時,位於脊狀堆疊104D上的第二串列選擇線開關111B和其下方的記憶胞108閘極保持浮置。由於脊狀堆疊104A和104C中的導電條帶共用一個字元線接觸結構119C;且第一接地選擇線開關110A和第二接地選擇線開關110B也共用接地選擇線接觸墊122。因此,施加在脊狀堆疊104C上之第二接地選擇線開關110B以及其下方之記憶胞108(包含記憶胞108R’)的閘極電壓,會和施加在脊狀堆疊104A上之第一接地選擇線開關110A以及其下方之記憶胞108(包含記憶胞108R)的閘極電壓完全相同。關閉第二控制開關IG_1B,並且使第二U形記憶胞串列109B中的第二串列選擇線開關111B和其下方的記憶胞108之閘極保持浮置,可防止未被選取之第二U形記憶胞串列109B中的記憶胞108R’被閘極讀取電壓Vref所讀取。When the second U-shaped memory cell string 109B that is not selected is in the read operation, the second string select line switch 111B located on the ridge stack 104D and the memory cell 108 gate below it remain floating. Since the conductive strips in the ridge stacks 104A and 104C share one word line contact structure 119C; and the first ground select line switch 110A and the second ground select line switch 110B also share the ground select line contact pads 122. Thus, the gate voltage applied to the second ground select line switch 110B on the ridge stack 104C and the memory cell 108 (including the memory cell 108R') below it, and the first ground selection applied to the ridge stack 104A The gate voltages of line switch 110A and memory cell 108 (including memory cell 108R) below it are identical. Turning off the second control switch IG_1B, and keeping the second string selection line switch 111B in the second U-shaped memory cell string 109B and the gate of the memory cell 108 below it floating, preventing the second unselected The memory cell 108R' in the U-shaped memory cell string 109B is read by the gate read voltage Vref.

請參照第6圖,第6圖係繪示以第1C圖之單閘極垂直通道NAND記憶體元件100進行抹除操作時的等效電路圖。在本實施例中,當選擇第一U形記憶胞串列109A進行抹除操作時,會對第一串列選擇線開關111A、第一控制開關IG_1A和第一輔助開關IG_0A的閘極施加7伏電壓(7V),藉以將其開啟;以共同源極線118對第一接地選擇線開關110A施加0伏電壓(0V),將第一接地選擇線開關110A的閘極保持浮置;對位於第一U型記憶胞串列109A上的所有記憶胞108的閘極施加0伏電壓(0V);再以位元線115對第一串列選擇線開關111A施加20伏特(20V)的抹除電壓。藉以使位於第一U型記憶胞串列109A上的記憶胞108產生閘極誘發汲極漏電流(Gated-Induce Drain Leakage,GIDL) GIDL。Please refer to FIG. 6. FIG. 6 is an equivalent circuit diagram when the single gate vertical channel NAND memory device 100 of FIG. 1C is erased. In this embodiment, when the first U-shaped memory cell string 109A is selected for the erase operation, 7 is applied to the gates of the first string selection line switch 111A, the first control switch IG_1A, and the first auxiliary switch IG_0A. Volt voltage (7V), thereby turning it on; applying 0 volt (0 V) to the first ground select line switch 110A with the common source line 118, keeping the gate of the first ground select line switch 110A floating; The gate of all the memory cells 108 on the first U-shaped memory cell series 109A applies a voltage of 0 volts (0 V); and a 20 volt (20 V) erase is applied to the first string select line switch 111A by the bit line 115. Voltage. The memory cell 108 located on the first U-shaped memory cell string 109A generates a Gate-Induce Drain Leakage (GIDL) GIDL.

未被選擇的第二U形記憶胞串列109B在進行抹除操作時,位於脊狀堆疊104D上的第二串列選擇線開關111B和其下方的記憶胞108以及第二控制開關IG_1B和第二接地選擇開關110B的閘極都保持浮置。由於脊狀堆疊104A和104C中的導電條帶共用一個字元線接觸結構119C;且第一接地選擇線開關110A和第二接地選擇線開關110B也共用接地選擇線接觸墊122。因此,施加在脊狀堆疊104C上之第二接地選擇線開關110B以及其下方之記憶胞108的閘極電壓,會和施加在脊狀堆疊104A上之第一接地選擇線開關110A以及其下方之記憶胞108的閘極電壓完全相同。使位於脊狀堆疊104D上的第二串列選擇線開關111B和其下方的記憶胞108以及第二控制開關IG_1B的閘極都保持浮置,可延遲抹除時間,防止第二U形記憶胞串列109B中的記憶胞108在奈秒抹除時間內被抹除。The second U-shaped memory cell string 109B, which is not selected, performs the erase operation, the second string selection line switch 111B on the ridge stack 104D and the memory cell 108 and the second control switch IG_1B and the The gates of the two ground selection switches 110B are kept floating. Since the conductive strips in the ridge stacks 104A and 104C share one word line contact structure 119C; and the first ground select line switch 110A and the second ground select line switch 110B also share the ground select line contact pads 122. Therefore, the gate voltage of the second ground select line switch 110B applied to the ridge stack 104C and the memory cell 108 thereunder will be the same as the first ground select line switch 110A applied to the ridge stack 104A and below it. The gate voltage of the memory cell 108 is exactly the same. The second string selection line switch 111B located on the ridge stack 104D and the memory cells 108 below it and the gates of the second control switch IG_1B are kept floating, which can delay the erasing time and prevent the second U-shaped memory cell The memory cell 108 in the string 109B is erased during the nanosecond erase time.

根據上述實施例,本說明書是提供一種具有多個脊狀堆疊的三維記憶體元件,其中每一個脊狀堆疊包含,分別具有位於頂部的一個串列選擇線開關或一個接地選擇線開關以及位於串列選擇線開關或接地選擇線開關下方的複數個記憶胞。藉由串接位於兩個脊狀堆疊上的第一串列選擇線開關和第一接地選擇線開關,以及位於第一串列選擇線開關和第一接地選擇線開關下方的記憶胞來形成第一U形記憶胞串列;同時藉由串接位於另外兩個不同脊狀堆疊上的第二串列選擇線開關和第二接地選擇線開關,以及位於第二串列選擇線開關和第二接地選擇線開關下方的記憶胞來形成第二U形記憶胞串列。According to the above embodiment, the present specification provides a three-dimensional memory element having a plurality of ridge stacks, wherein each ridge stack includes, respectively, a tandem select line switch or a ground select line switch at the top and a string A plurality of memory cells below the column select line switch or the ground select line switch. Forming the first string select line switch and the first ground select line switch located on the two ridge stacks, and the memory cells located under the first tandem select line switch and the first ground select line switch a U-shaped memory cell string; at the same time by serially connecting the second string selection line switch and the second ground selection line switch on the other two different ridge stacks, and the second series selection line switch and the second The memory cell below the ground selection line switch forms a second U-shaped memory cell string.

其中,位於第一U形記憶胞串列之第一串列選擇線開關下方的記憶胞與第一字元線接觸結構連接;位於第二U形記憶胞串列之第二串列選擇線開關下方的記憶胞與第二字元線接觸結構連接;而位於第一U形記憶胞串列之第一接地選擇線開關下方的記憶胞以及位於第二U形記憶胞串列之第二接地選擇線開關下方的記憶胞,則連接至相同的第三字元線接觸結構。換句話說,三維記憶體元件中,用來連接位於接地選擇開關下方之記憶胞的字元線接觸結構數量小於用來連接位於串列選擇開關下方之記憶胞的字元線接觸結構。若與先前技術中的三維記憶體元件相比,在不改變記憶容量的前提下,可以減少字元線接觸結構的設置。The memory cell located below the first string select line switch of the first U-shaped memory cell string is connected to the first word line contact structure; the second string select line switch located in the second U-shaped memory cell string The lower memory cell is connected to the second word line contact structure; and the memory cell located below the first ground select line switch of the first U-shaped memory cell string and the second ground selection located in the second U-shaped memory cell string The memory cells below the line switches are connected to the same third word line contact structure. In other words, in the three-dimensional memory element, the number of word line contact structures used to connect the memory cells under the ground selection switch is smaller than the word line contact structure used to connect the memory cells located below the serial selection switch. If the memory capacity is not changed, the setting of the word line contact structure can be reduced as compared with the three-dimensional memory element of the prior art.

藉由減少字元線接觸結構的設置,可以減少記憶體元件的面積尺寸;更可在不影響製程裕度的前提下,擴充記憶體元件的記憶容量,大幅降低製程成本,並防止氧化層擊穿現象產生,增加垂直通道記憶體元件的製程良率。By reducing the setting of the word line contact structure, the area size of the memory element can be reduced; the memory capacity of the memory element can be expanded without affecting the process margin, the process cost can be greatly reduced, and the oxide layer can be prevented from being struck. The wear phenomenon occurs, increasing the process yield of the vertical channel memory components.

100、300‧‧‧記憶體元件
101‧‧‧基材
102‧‧‧導電層
103‧‧‧絕緣層
104‧‧‧多層堆疊結構
104A、104B、104C、104D‧‧‧脊狀堆疊
104A1-104A6、104B1-104B6、104C1-104C6、104D1-104D6‧‧‧導電條帶
105‧‧‧溝槽
106‧‧‧記憶材料層
107‧‧‧半導體通道層
108、108P、108R‧‧‧記憶胞
109A、109B‧‧‧U形記憶胞串列
110A、110B‧‧‧接地選擇線開關
111A、111B‧‧‧串列選擇開關
112‧‧‧介電材質層
113‧‧‧空氣間隙
114‧‧‧接觸插塞
115‧‧‧位元線
116‧‧‧接觸插塞
117‧‧‧金屬導線
118‧‧‧共同源極線
119A、119B、119C、319C‧‧‧字元線接觸結構
120‧‧‧字元線
121、122‧‧‧接觸墊
IG_1A、IG_1B控制開關
IG_0A、IG_0B‧‧‧輔助開關
Vpgm‧‧‧寫入電壓
Vpass‧‧‧閘極通過電壓
Vref‧‧‧閘極讀取電壓
floating‧‧‧浮置
GIDL‧‧‧閘極誘發汲極漏電流
100, 300‧‧‧ memory components
101‧‧‧Substrate
102‧‧‧ Conductive layer
103‧‧‧Insulation
104‧‧‧Multilayer stacking structure
104A, 104B, 104C, 104D‧‧‧ ridge stacking
104A1-104A6, 104B1-104B6, 104C1-104C6, 104D1-104D6‧‧‧ Conductive strip
105‧‧‧ trench
106‧‧‧ memory material layer
107‧‧‧Semiconductor channel layer
108, 108P, 108R‧‧‧ memory cells
109A, 109B‧‧‧U-shaped memory cell series
110A, 110B‧‧‧ Grounding selection line switch
111A, 111B‧‧‧ tandem selector switch
112‧‧‧ dielectric material layer
113‧‧‧Air gap
114‧‧‧Contact plug
115‧‧‧ bit line
116‧‧‧Contact plug
117‧‧‧Metal wire
118‧‧‧Common source line
119A, 119B, 119C, 319C‧‧‧ character line contact structure
120‧‧‧ character line
121, 122‧‧‧ contact pads
IG_1A, IG_1B control switch
IG_0A, IG_0B‧‧‧ auxiliary switch
Vpgm‧‧‧ write voltage
Vpass‧‧‧ gate pass voltage
Vref‧‧‧ gate reading voltage
Floating‧‧‧ floating
GIDL‧‧‧ gate induced buckling leakage current

本發明的其他目的、特徵和優點可見於下述實施例和申請專利範圍,並配合所附圖式,作詳細說明如下: 第1A圖至1D圖係根據習知技術所繪示的一種單閘極垂直通道NAND記憶體元件的局部結構透視圖; 第2圖係根據第1D圖所繪示之單閘極垂直通道NAND記憶體元件的局部結構上視圖; 第3圖係根據本發明的另一實施例所繪示之單閘極垂直通道NAND記憶體元件的局部結構上視圖; 第4圖係繪示以第1C圖之單閘極垂直通道NAND記憶體元件進行寫入操作(program operation)時的等效電路圖; 第5圖係繪示以第1C圖之單閘極垂直通道NAND記憶體元件進行讀取操作(read operation)時的等效電路圖;以及 第6圖係繪示以第1C圖之單閘極垂直通道NAND記憶體元件進行抹除操作(erase operation)時的等效電路圖。Other objects, features, and advantages of the present invention will be described in the following embodiments and claims, which are described in detail below with reference to the accompanying drawings: Figures 1A through 1D are a single brake according to the prior art. A perspective view of a partial structure of a very vertical channel NAND memory device; FIG. 2 is a partial top view of a single gate vertical channel NAND memory device according to FIG. 1D; FIG. 3 is another view of the present invention. A top view of a partial gate vertical channel NAND memory device shown in the embodiment; FIG. 4 is a diagram showing a single gate vertical channel NAND memory device for a program operation of FIG. Equivalent circuit diagram; Figure 5 is an equivalent circuit diagram when a single gate vertical channel NAND memory device of FIG. 1C is read operation; and FIG. 6 is a diagram 1C An equivalent circuit diagram for a single gate vertical channel NAND memory device for an erase operation.

100‧‧‧記憶體元件 100‧‧‧ memory components

101‧‧‧基材 101‧‧‧Substrate

102‧‧‧導電層 102‧‧‧ Conductive layer

103‧‧‧絕緣層 103‧‧‧Insulation

104‧‧‧多層堆疊結構 104‧‧‧Multilayer stacking structure

104A、104B、104C、104D‧‧‧脊狀堆疊 104A, 104B, 104C, 104D‧‧‧ ridge stacking

106‧‧‧記憶材料層 106‧‧‧ memory material layer

107‧‧‧半導體通道層 107‧‧‧Semiconductor channel layer

108‧‧‧記憶胞 108‧‧‧ memory cells

109A、109B‧‧‧U形記憶胞串列 109A, 109B‧‧‧U-shaped memory cell series

110A、110B‧‧‧接地選擇線開關 110A, 110B‧‧‧ Grounding selection line switch

111A、111B‧‧‧串列選擇開關 111A, 111B‧‧‧ tandem selector switch

112‧‧‧介電材質層 112‧‧‧ dielectric material layer

113‧‧‧空氣間隙 113‧‧‧Air gap

114、116‧‧‧接觸插塞 114, 116‧‧‧ contact plug

115‧‧‧位元線 115‧‧‧ bit line

117‧‧‧金屬導線 117‧‧‧Metal wire

118‧‧‧共同源極線 118‧‧‧Common source line

119B‧‧‧字元線接觸結構 119B‧‧‧ character line contact structure

120‧‧‧字元線 120‧‧‧ character line

Claims (10)

一種三維(Three Dimemsional,3D)記憶體元件,包括: 一多層堆疊結構(multi-layer stacks),包括彼此隔離的複數個導電條帶(conductive strips)以及複數條溝槽(trench),用以至少定義出一第一脊狀堆疊 (ridge stacks)、一第二脊狀堆疊、一第三脊狀堆疊以及一第四脊狀堆疊; 一第一串列選擇線(String Selection Line,SSL)開關,位於該第一脊狀堆疊之上; 一第一接地選擇線(Ground Selection Line,GSL)開關,位於該第二脊狀堆疊之上; 一第一U形記憶胞串列(U-shaped cell string),串接該第一串列選擇線開關和該第一接地選擇線開關; 一第二串列選擇線開關,位於該第三脊狀堆疊之上; 一第二接地選擇線開關,位於該第四脊狀堆疊之上; 一第二U形記憶胞串列,串接該第二串列選擇線開關和該第二接地選擇線開關; 一第一字元線接觸結構,與位於該第一脊狀堆疊上的該些導電條帶接觸; 一第二字元線接觸結構,與位於該第二脊狀堆疊上的該些導電條帶接觸;以及 一第三字元線接觸結構,與位於該第三脊狀堆疊和該第四脊狀堆疊上的該些導電條帶接觸。A three-dimensional (3D) memory component, comprising: a multi-layer stacks comprising a plurality of conductive strips and a plurality of trenches isolated from each other for At least a first ridge stack, a second ridge stack, a third ridge stack, and a fourth ridge stack are defined; a first String Selection Line (SSL) switch Located on the first ridge stack; a first Ground Selection Line (GSL) switch located on the second ridge stack; a first U-shaped memory cell string (U-shaped cell String), serially connecting the first serial select line switch and the first ground select line switch; a second serial select line switch located on the third ridge stack; a second ground select line switch located a second U-shaped memory cell string, serially connecting the second string selection line switch and the second ground selection line switch; a first word line contact structure, and the The conductive strip contacts on the first ridge stack a second word line contact structure in contact with the plurality of conductive strips on the second ridge stack; and a third word line contact structure, and the third ridge stack and the fourth ridge The conductive strips on the stack are in contact. 如申請專利範圍第1項所述之三維記憶體元件,更包括 一第一串列選擇線接觸墊,與位於該第一脊裝堆疊的一頂部導電條帶接觸; 一第二串列選擇線接觸墊,與位於該第三脊裝堆疊的一頂部導電條帶接觸;以及 一接地選擇線接觸墊,與位於該第二脊裝堆疊和該的四脊裝堆疊的二頂部導電條帶接觸。The three-dimensional memory component of claim 1, further comprising a first tandem select line contact pad in contact with a top conductive strip on the first spine stack; a second tandem select line Contact pads are in contact with a top conductive strip on the third spin stack; and a ground select line contact pad is in contact with the two top conductive strips on the second spin stack and the four spin stack. 如申請專利範圍第1項所述之三維記憶體元件,更包括: 一記憶材料層,位於該些溝槽的複數個側壁上; 一圖案化通道膜,覆蓋於該記憶材料層以及該些溝槽的複數個底部上;以及 複數個記憶胞,形成於該記憶材料層和該圖案化通道膜與該些導電條帶三者重疊的複數個位置(cross point)。The three-dimensional memory component of claim 1, further comprising: a memory material layer on a plurality of sidewalls of the trenches; a patterned channel film covering the memory material layer and the trenches And a plurality of memory cells formed at a plurality of cross points of the memory material layer and the patterned channel film and the conductive strips. 如申請專利範圍第3項所述之三維記憶體元件,其中: 該第一U形記憶胞串列係藉由一部分該圖案化通道膜串接該第一串列選擇線開關、位於該第一脊狀堆疊和該第二脊狀堆疊上的該些記憶胞以及該第一接地選擇線開關所形成;以及 該第二U形記憶胞串列係藉由另一部分該圖案化通道膜串接該第二串列選擇線開關、位於該第三脊狀堆疊和該第四脊狀堆疊上的該些記憶胞以及該第二接地選擇線開關所形成。The three-dimensional memory device of claim 3, wherein: the first U-shaped memory cell string is connected to the first serial-selective line switch by a portion of the patterned channel film, located at the first a ridge stack and the memory cells on the second ridge stack and the first ground select line switch; and the second U-shaped memory cell string is connected in series by another portion of the patterned channel film A second string select line switch, the memory cells on the third ridge stack and the fourth ridge stack, and the second ground select line switch are formed. 如申請專利範圍第3項所述之三維記憶體元件,更包括: 一第一控制開關,位於該第一串列選擇線開關和該第一接地選擇線開關之間;以及 一第二控制開關,位於該第二串列選擇線開關和該第二接地選擇線開關之間。The three-dimensional memory component of claim 3, further comprising: a first control switch located between the first tandem select line switch and the first ground select line switch; and a second control switch Located between the second tandem select line switch and the second ground select line switch. 如申請專利範圍第5項所述之三維記憶體元件,其中: 該第一控制開關與該第一脊裝堆疊的一底部導電條帶連接;以及 該第二控制開關與該第三脊裝堆疊的一底部導電條帶連接。The three-dimensional memory component of claim 5, wherein: the first control switch is coupled to a bottom conductive strip of the first spine stack; and the second control switch is stacked with the third spine A bottom conductive strip is connected. 如申請專利範圍第6項所述之三維記憶體元件,更包括: 一第一輔助開關,位於該第一控制開關和該第一接地選擇線開關之間;以及 一第二輔助開關,位於該第二控制開關和該第二接地選擇線開關之間。The three-dimensional memory component of claim 6, further comprising: a first auxiliary switch located between the first control switch and the first ground selection line switch; and a second auxiliary switch located at the Between the second control switch and the second ground selection line switch. 如申請專利範圍第7項所述之三維記憶體元件,其中: 該第一輔助開關與該第二脊裝堆疊的一底部導電條帶接觸;以及 該第二輔助開關與該第四脊裝堆疊的一底部導電條帶接觸。The three-dimensional memory component of claim 7, wherein: the first auxiliary switch is in contact with a bottom conductive strip of the second spine stack; and the second auxiliary switch is stacked with the fourth spine A bottom conductive strip contacts. 如申請專利範圍第5項所述之三維記憶體元件,其中當選擇該第一U形記憶胞串列進行一寫入操作(program operation)時,該寫入操作包括: 開啟該第一串列選擇線開關和該第一控制開關; 關閉該第一接地選擇線開關、第二接地選擇線開關和該第二控制開關;以及 對位於該第一U型記憶胞串列上的該些記憶胞之一者施加一寫入電壓(Vpgm);以及 對位於該第一U型記憶胞串列上的其他該些記憶胞施加一通過電壓(Vpass),其中該寫入電壓大於該導通電壓。The three-dimensional memory component of claim 5, wherein when the first U-shaped memory cell string is selected for a program operation, the writing operation comprises: turning on the first serial port Selecting a line switch and the first control switch; turning off the first ground select line switch, the second ground select line switch, and the second control switch; and pairing the memory cells on the first U-shaped memory cell string One of them applies a write voltage (Vpgm); and applies a pass voltage (Vpass) to the other of the memory cells located on the first U-shaped memory cell string, wherein the write voltage is greater than the turn-on voltage. 如申請專利範圍第9項所述之三維記憶體元件,其中在進行該寫入操作時,該第二串列選擇線開關的一閘極係保持浮置(floating)。The three-dimensional memory component of claim 9, wherein a gate of the second tandem select line switch remains floating while the write operation is being performed.
TW104142185A 2015-12-15 2015-12-15 Three dimensional memory device TWI611607B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104142185A TWI611607B (en) 2015-12-15 2015-12-15 Three dimensional memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104142185A TWI611607B (en) 2015-12-15 2015-12-15 Three dimensional memory device

Publications (2)

Publication Number Publication Date
TW201721921A true TW201721921A (en) 2017-06-16
TWI611607B TWI611607B (en) 2018-01-11

Family

ID=59687741

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104142185A TWI611607B (en) 2015-12-15 2015-12-15 Three dimensional memory device

Country Status (1)

Country Link
TW (1) TWI611607B (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10446681B2 (en) * 2017-07-10 2019-10-15 Micron Technology, Inc. NAND memory arrays, and devices comprising semiconductor channel material and nitrogen
US10515799B2 (en) 2018-05-24 2019-12-24 Yangtze Memory Technologies Co., Ltd. Methods for repairing substrate lattice and selective epitaxy processing
TWI681545B (en) * 2018-03-22 2020-01-01 日商東芝記憶體股份有限公司 Semiconductor memory device
US10559466B2 (en) 2017-12-27 2020-02-11 Micron Technology, Inc. Methods of forming a channel region of a transistor and methods used in forming a memory array
TWI689048B (en) * 2018-04-19 2020-03-21 大陸商長江存儲科技有限責任公司 Memory device and method of fomring the same
TWI689047B (en) * 2018-05-03 2020-03-21 大陸商長江存儲科技有限責任公司 Through-array contact for three-dimensional memory device
CN112420710A (en) * 2019-08-21 2021-02-26 铠侠股份有限公司 Semiconductor memory device with a plurality of memory cells
US11011538B2 (en) 2017-12-27 2021-05-18 Micron Technology, Inc. Transistors and arrays of elevationally-extending strings of memory cells
TWI744954B (en) * 2020-06-18 2021-11-01 華邦電子股份有限公司 Nand-type flash memory and manufacturing method thereof
TWI757626B (en) * 2018-12-18 2022-03-11 大陸商長江存儲科技有限責任公司 Three-dimensional (3d) memory element and method of forming the same
US11367737B2 (en) 2018-12-18 2022-06-21 Yangtze Memory Technologies Co., Ltd. Multi-stack three-dimensional memory devices and methods for forming the same
TWI779693B (en) * 2021-05-07 2022-10-01 旺宏電子股份有限公司 Semiconductor device and method of forming the same
US11538919B2 (en) 2021-02-23 2022-12-27 Micron Technology, Inc. Transistors and arrays of elevationally-extending strings of memory cells
US11778819B2 (en) 2020-07-22 2023-10-03 Winbond Electronics Corp. NAND flash memory with reduced planar size

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101884296B1 (en) * 2010-05-14 2018-08-01 고쿠리츠다이가쿠호진 도호쿠다이가쿠 Semiconductor integrated circuit and method of producing same
US20120327714A1 (en) * 2011-06-23 2012-12-27 Macronix International Co., Ltd. Memory Architecture of 3D Array With Diode in Memory String
US8916924B2 (en) * 2012-12-28 2014-12-23 Macronix International Co., Ltd. Method for manufacturing semiconductor device using thin hard mask and structure manufactured by the same
TWI496249B (en) * 2013-01-09 2015-08-11 Macronix Int Co Ltd 3d nand flash memory
US9419010B2 (en) * 2014-02-24 2016-08-16 Macronix International Co., Ltd. High aspect ratio etching method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10446681B2 (en) * 2017-07-10 2019-10-15 Micron Technology, Inc. NAND memory arrays, and devices comprising semiconductor channel material and nitrogen
US11404571B2 (en) 2017-07-10 2022-08-02 Micron Technology, Inc. Methods of forming NAND memory arrays
TWI681546B (en) * 2017-07-10 2020-01-01 美商美光科技公司 Nand memory arrays, devices comprising semiconductor channel material and nitrogen, and methods of forming nand memory arrays
CN110892529A (en) * 2017-07-10 2020-03-17 美光科技公司 NAND memory array, device including semiconductor channel material and nitrogen, and method of forming a NAND memory array
US11011538B2 (en) 2017-12-27 2021-05-18 Micron Technology, Inc. Transistors and arrays of elevationally-extending strings of memory cells
US10559466B2 (en) 2017-12-27 2020-02-11 Micron Technology, Inc. Methods of forming a channel region of a transistor and methods used in forming a memory array
US10868029B2 (en) 2018-03-22 2020-12-15 Toshiba Memory Corporation Staggered semiconductor memory device
TWI681545B (en) * 2018-03-22 2020-01-01 日商東芝記憶體股份有限公司 Semiconductor memory device
TWI689048B (en) * 2018-04-19 2020-03-21 大陸商長江存儲科技有限責任公司 Memory device and method of fomring the same
US10658378B2 (en) 2018-05-03 2020-05-19 Yangtze Memory Technologies Co., Ltd. Through array contact (TAC) for three-dimensional memory devices
TWI689047B (en) * 2018-05-03 2020-03-21 大陸商長江存儲科技有限責任公司 Through-array contact for three-dimensional memory device
US10937806B2 (en) 2018-05-03 2021-03-02 Yangtze Memory Technologies Co., Ltd. Through array contact (TAC) for three-dimensional memory devices
US10854450B2 (en) 2018-05-24 2020-12-01 Yangtze Memory Technologies Co., Ltd. Methods for repairing substrate lattice and selective epitaxy processing
US10515799B2 (en) 2018-05-24 2019-12-24 Yangtze Memory Technologies Co., Ltd. Methods for repairing substrate lattice and selective epitaxy processing
US11367737B2 (en) 2018-12-18 2022-06-21 Yangtze Memory Technologies Co., Ltd. Multi-stack three-dimensional memory devices and methods for forming the same
TWI757626B (en) * 2018-12-18 2022-03-11 大陸商長江存儲科技有限責任公司 Three-dimensional (3d) memory element and method of forming the same
CN112420710A (en) * 2019-08-21 2021-02-26 铠侠股份有限公司 Semiconductor memory device with a plurality of memory cells
CN112420710B (en) * 2019-08-21 2024-03-19 铠侠股份有限公司 Semiconductor memory device with a memory cell having a memory cell with a memory cell having a memory cell
TWI744954B (en) * 2020-06-18 2021-11-01 華邦電子股份有限公司 Nand-type flash memory and manufacturing method thereof
US11778819B2 (en) 2020-07-22 2023-10-03 Winbond Electronics Corp. NAND flash memory with reduced planar size
US11538919B2 (en) 2021-02-23 2022-12-27 Micron Technology, Inc. Transistors and arrays of elevationally-extending strings of memory cells
TWI779693B (en) * 2021-05-07 2022-10-01 旺宏電子股份有限公司 Semiconductor device and method of forming the same
US11917828B2 (en) 2021-05-07 2024-02-27 Macronix International Co., Ltd. Memory devices with multiple string select line cuts

Also Published As

Publication number Publication date
TWI611607B (en) 2018-01-11

Similar Documents

Publication Publication Date Title
TWI611607B (en) Three dimensional memory device
US10825865B2 (en) Three-dimensional semiconductor device
US8877591B2 (en) Methods of manufacturing vertical structure nonvolatile memory devices
US11201168B2 (en) Semiconductor devices including flared source structures
JP4601287B2 (en) Nonvolatile semiconductor memory device
US8432719B2 (en) Three-dimensional stacked and-type flash memory structure and methods of manufacturing and operating the same hydride
US20160260732A1 (en) Vertical thin-channel memory
US9698154B2 (en) Semiconductor device
US11444098B2 (en) Vertical non-volatile memory devices and methods of programming the same
TWI591831B (en) Nonvolatile memory device and method for fabricating the same
US20110303958A1 (en) Nonvolatile semiconductor memory
US9171855B2 (en) Three-dimensional non-volatile memory
JP2008160113A (en) Non-volatile memory device and method of operating the same
US9048137B2 (en) Scalable gate logic non-volatile memory cells and arrays
TWI453897B (en) Memory device, manufacturing method and operating method of the same
TW201913963A (en) Reverse or flash memory
US11812609B2 (en) Three-dimensional semiconductor device having a first main separation structure and a second main separation structure on a lower structure
JP5238208B2 (en) Nonvolatile semiconductor memory device driving method and nonvolatile semiconductor memory device
US9356105B1 (en) Ring gate transistor design for flash memory
US9576976B1 (en) Three dimensional memory device
CN110808252B (en) 3D memory device and method of manufacturing the same
KR101362219B1 (en) Memory cell string stack with common body and memory array using the same
US10395742B2 (en) Semiconductor device
CN102655152A (en) Storage device, manufacturing method and operating method thereof
TWI447900B (en) Nonvolatile stacked nand memory