TWI589004B - Method for preparing nano-vacuum tube field effect transistor - Google Patents

Method for preparing nano-vacuum tube field effect transistor Download PDF

Info

Publication number
TWI589004B
TWI589004B TW105131360A TW105131360A TWI589004B TW I589004 B TWI589004 B TW I589004B TW 105131360 A TW105131360 A TW 105131360A TW 105131360 A TW105131360 A TW 105131360A TW I589004 B TWI589004 B TW I589004B
Authority
TW
Taiwan
Prior art keywords
vacuum
dielectric layer
field effect
effect transistor
nanotube field
Prior art date
Application number
TW105131360A
Other languages
Chinese (zh)
Other versions
TW201740572A (en
Inventor
肖德元
Original Assignee
上海新昇半導體科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海新昇半導體科技有限公司 filed Critical 上海新昇半導體科技有限公司
Application granted granted Critical
Publication of TWI589004B publication Critical patent/TWI589004B/en
Publication of TW201740572A publication Critical patent/TW201740572A/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • H10K10/472Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising only inorganic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/491Vertical transistors, e.g. vertical carbon nanotube field effect transistors [CNT-FETs]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/231Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Thin Film Transistor (AREA)

Description

真空奈米管場效電晶體及其製造方法 Vacuum nano tube field effect transistor and manufacturing method thereof

本發明涉及半導體製造領域,尤其涉及一種真空奈米管場效電晶體及其製造方法。 The present invention relates to the field of semiconductor manufacturing, and in particular to a vacuum nanotube field effect transistor and a method of fabricating the same.

為了達到更快的運算速度、更大的資料存儲量以及更多的功能,半導體晶片向更高集成度方向發展。各種半導體元件,包括電晶體的尺寸都不斷縮小。通過縮小電晶體的尺寸,增加電晶體密度,提高晶片的集成度,同時降低功耗,使得晶片性能不斷提升。 In order to achieve faster computing speed, greater data storage and more functions, semiconductor wafers are moving toward higher integration. The size of various semiconductor components, including transistors, continues to shrink. By reducing the size of the transistor, increasing the transistor density, increasing the integration of the wafer, and reducing power consumption, the performance of the wafer is continuously improved.

然而,按照現有的製造技術水準,電晶體已經不能被製造得更小。可見,電晶體的物理尺寸已到極限,通過縮小物理尺寸來提高性能已經非常困難。為此,業內設計開發了各種新型的電晶體以適應市場需求,例如奈米碳管場效電晶體。奈米碳管場效電晶體通過採用單個奈米碳管或者奈米碳管陣列代替傳統MOSFET結構的通道材料,可以在一定程度上克服製造條件的限制並且進一步縮小元件尺寸度。目前,具有自對準閘極的奈米碳管場效電晶體(Carbon Nano Tube Field Effect Transistor,簡稱CNTFET)的尺寸已經降到了20nm,包圍奈米碳管通道的閘極的均勻性也得到了鞏固。 However, according to the current state of the art, the transistor has not been made smaller. It can be seen that the physical size of the transistor has reached its limit, and it has been very difficult to improve the performance by reducing the physical size. To this end, the industry has designed and developed a variety of new types of transistors to meet market demand, such as nano carbon tube field effect transistors. The carbon nanotube field effect transistor can overcome the limitation of manufacturing conditions and further reduce the size of the component by replacing the channel material of the conventional MOSFET structure by using a single carbon nanotube or a carbon nanotube array. At present, the size of the Carbon Nano Tube Field Effect Transistor (CNTFET) with self-aligned gate has been reduced to 20 nm, and the uniformity of the gate surrounding the carbon nanotube channel has also been obtained. Consolidation.

然而,在實際的製造和使用過程中發現,現有的奈米碳管場效電晶體的尺寸和性能還不能滿足市場要求。如何進一步縮小真空奈米管 場效電晶體的尺寸並提高元件的性能,仍是本領域技術人員亟待解決的技術問題。 However, in actual manufacturing and use, it has been found that the size and performance of the existing carbon nanotube field effect transistors cannot meet the market requirements. How to further reduce the vacuum tube The size of the field effect transistor and the improvement of the performance of the component are still technical problems to be solved by those skilled in the art.

本發明的目的在於提供一種真空奈米管場效電晶體及其製造方法,以解決現有技術中真空奈米管場效電晶體的尺寸和性能無法滿足市場要求的問題。 The object of the present invention is to provide a vacuum nanotube field effect transistor and a manufacturing method thereof, so as to solve the problem that the size and performance of the vacuum nanotube field effect transistor in the prior art cannot meet the market requirements.

為解決上述問題,本發明提供一種真空奈米管場效電晶體的製造方法,所述真空奈米管場效電晶體的製造方法包括:提供一半導體基板;在所述半導體基板上依次形成第一介電層、源極、第二介電層和鋁層;對所述鋁層進行陽極化處理以形成陽極氧化鋁結構,所述陽極氧化鋁結構具有多個均勻排布的第一通孔,所述第一通孔的底部暴露出所述第二介電層,所述陽極氧化鋁結構包括閘極以及包圍所述閘極的閘極介電層;對第二介電層進行蝕刻以形成多個第二通孔,所述第二通孔與所述第一通孔連通,且所述第二通孔的底部暴露出所述源極;以及在真空條件下形成汲極,所述汲極覆蓋於所述陽極氧化鋁結構上,以形成多個奈米真空管。 In order to solve the above problems, the present invention provides a method for manufacturing a vacuum nanotube field effect transistor, the method for manufacturing the vacuum nanotube field effect transistor, comprising: providing a semiconductor substrate; forming a first layer on the semiconductor substrate a dielectric layer, a source, a second dielectric layer, and an aluminum layer; anodizing the aluminum layer to form an anodized aluminum structure, the anodized aluminum structure having a plurality of uniformly arranged first via holes The bottom of the first via exposes the second dielectric layer, the anodized aluminum structure includes a gate and a gate dielectric layer surrounding the gate; etching the second dielectric layer to Forming a plurality of second through holes, the second through holes communicating with the first through holes, and a bottom of the second through holes exposing the source; and forming a drain under vacuum conditions, A drain is overlaid on the anodized aluminum structure to form a plurality of nano vacuum tubes.

可選的,在所述的真空奈米管場效電晶體的製造方法中,對所述鋁層進行陽極化處理以形成陽極氧化鋁結構的具體過程包括:在酸性溶液中對所述鋁層進行第一次陽極化處理;去除所述第一次陽極化處理所產生的氧化物;以及在酸性溶液中對所述鋁層進行第二次陽極化處理。 Optionally, in the manufacturing method of the vacuum nanotube field effect transistor, the specific process of anodizing the aluminum layer to form an anodized aluminum structure comprises: treating the aluminum layer in an acidic solution Performing a first anodizing treatment; removing the oxide generated by the first anodizing treatment; and subjecting the aluminum layer to a second anodizing treatment in an acidic solution.

可選的,在所述的真空奈米管場效電晶體的製造方法中,所述第一次陽極化處理和第二次陽極化處理採用的酸性溶液均為草酸溶液,所述草酸溶液的濃度範圍在0.2莫耳濃度到0.5莫耳濃度之間,所述第一次陽極化處理和第二次陽極化處理的溫度均在5℃到15℃之間,所述第一次陽極化處理和第二次陽極化處理的固定電壓均在35V到45V之間。 Optionally, in the manufacturing method of the vacuum nanotube field effect transistor, the acidic solution used in the first anodizing treatment and the second anodizing treatment is an oxalic acid solution, and the oxalic acid solution is The concentration ranges from 0.2 molar to 0.5 molar, the temperature of the first anodizing treatment and the second anodizing is between 5 ° C and 15 ° C, the first anodizing treatment The fixed voltage for the second anodization is between 35V and 45V.

可選的,在所述的真空奈米管場效電晶體的製造方法中,所述草酸溶液的濃度為0.3莫耳濃度,所述第一次陽極化處理和第二次陽極化處理的溫度均為10℃,所述第一次陽極化處理和第二次陽極化處理的固定電壓均為40V。 Optionally, in the manufacturing method of the vacuum nanotube field effect transistor, the concentration of the oxalic acid solution is 0.3 molar, the temperature of the first anodizing treatment and the second anodizing treatment. Both were 10 ° C, and the fixed voltages of the first anodizing treatment and the second anodizing treatment were both 40V.

可選的,在所述的真空奈米管場效電晶體的製造方法中,在對閘介電層進行電漿處理之前,對第二介電層進行蝕刻以形成多個第二通孔之後,還包括:通過蝕刻製程去除隔離區域中的陽極氧化鋁。 Optionally, in the manufacturing method of the vacuum nanotube field effect transistor, before the gate dielectric layer is subjected to plasma treatment, the second dielectric layer is etched to form a plurality of second via holes. The method further includes: removing the anodized aluminum in the isolation region by an etching process.

可選的,在所述的真空奈米管場效電晶體的製造方法中,在真空條件下形成汲極的同時,還包括:在源極上形成源極發射端。 Optionally, in the manufacturing method of the vacuum nanotube field effect transistor, when the drain is formed under vacuum, the method further includes: forming a source emitting end on the source.

可選的,在所述的真空奈米管場效電晶體的製造方法中,在真空條件下形成汲極和源極發射端之後,還包括:通過蝕刻製程去除所述隔離區域中的源極發射端和第二介電層;以及採用退火製程對所述源極發射端進行處理,使其表面變為圓弧形。 Optionally, in the manufacturing method of the vacuum nanotube field effect transistor, after forming the drain and the source emitting end under vacuum, the method further includes: removing the source in the isolation region by an etching process a transmitting end and a second dielectric layer; and processing the source emitting end by an annealing process to make the surface into a circular arc shape.

可選的,在所述的真空奈米管場效電晶體的製造方法中,所述退火製程的反應溫度範圍在400℃到600℃之間,所述退火製程採用的氣體為氫氣、氮氣或氬氣中的任意一種或其任意組合。 Optionally, in the manufacturing method of the vacuum nanotube field effect transistor, the annealing process has a reaction temperature ranging from 400 ° C to 600 ° C, and the gas used in the annealing process is hydrogen, nitrogen or Any one of argon or any combination thereof.

可選的,在所述的真空奈米管場效電晶體的製造方法中,在 採用退火製程對所述源極發射端進行處理之後,還包括:在所述隔離區域中形成第三介電層,所述第三介電層與所述第二介電層連為一體。 Optionally, in the method for manufacturing the vacuum nanotube field effect transistor, After the source emitting end is processed by using an annealing process, the method further includes: forming a third dielectric layer in the isolation region, wherein the third dielectric layer is integrated with the second dielectric layer.

可選的,在所述的真空奈米管場效電晶體的製造方法中,所述第一介電層、第二介電層和第三介電層的材質均為氧化矽。 Optionally, in the manufacturing method of the vacuum nanotube field effect transistor, the materials of the first dielectric layer, the second dielectric layer and the third dielectric layer are all cerium oxide.

可選的,在所述的真空奈米管場效電晶體的製造方法中,所述源極和汲極的材質均為低功函數金屬。 Optionally, in the manufacturing method of the vacuum nanotube field effect transistor, the materials of the source and the drain are low work function metals.

相應的,本發明提供一種真空奈米管場效電晶體,所述真空奈米管場效電晶體包括:半導體基板;形成於所述半導體基板上的第一介電層;形成於所述第一介電層上的源極;形成於所述源極上的第二介電層;形成於所述第二介電層上的陽極氧化鋁結構;形成於所述陽極氧化鋁結構上的汲極; 其中,所述陽極氧化鋁結構包括閘極以及包圍所述閘極的閘極介電層,所述汲極覆蓋於所述陽極氧化鋁結構上,形成多個奈米真空管。 Correspondingly, the present invention provides a vacuum nanotube field effect transistor, the vacuum nanotube field effect transistor comprising: a semiconductor substrate; a first dielectric layer formed on the semiconductor substrate; a source on a dielectric layer; a second dielectric layer formed on the source; an anodized aluminum structure formed on the second dielectric layer; and a bungee formed on the anodized aluminum structure ; Wherein, the anodized aluminum structure comprises a gate and a gate dielectric layer surrounding the gate, and the drain covers the anodized aluminum structure to form a plurality of nano vacuum tubes.

可選的,在所述的真空奈米管場效電晶體中,還包括:第三介電層,所述第三介電層位於隔離區域並與所述第二介電層連為一體。 Optionally, in the vacuum nanotube field effect transistor, the method further includes: a third dielectric layer, wherein the third dielectric layer is located in the isolation region and is integrated with the second dielectric layer.

可選的,在所述的真空奈米管場效電晶體中,所述奈米真空管的長度範圍在1nm到100nm之間,所述奈米真空管的直徑範圍在1nm到50nm之間,所述奈米真空管內的真空度範圍在0.01Torr到50Torr之間。 Optionally, in the vacuum nanotube field effect transistor, the nano vacuum tube has a length ranging from 1 nm to 100 nm, and the nano vacuum tube has a diameter ranging between 1 nm and 50 nm. The vacuum in the vacuum tube of the nanometer ranges from 0.01 Torr to 50 Torr.

綜上所述,在本發明提供的真空奈米管場效電晶體及其製造方法中,通過製作陽極氧化鋁結構以形成垂直結構的真空奈米管電晶體,從而縮小元件尺寸,並提升了元件的性能。 In summary, in the vacuum nanotube field effect transistor provided by the present invention and the manufacturing method thereof, the anode nano tube structure is formed by forming an anodized aluminum oxide structure, thereby reducing the component size and improving the size. The performance of the component.

100‧‧‧真空奈米管場效電晶體 100‧‧‧vacuum nano tube field effect transistor

110‧‧‧半導體基板 110‧‧‧Semiconductor substrate

120‧‧‧第一介電層 120‧‧‧First dielectric layer

130‧‧‧源極層 130‧‧‧Source layer

140‧‧‧第二介電層 140‧‧‧Second dielectric layer

140a‧‧‧第二通孔 140a‧‧‧second through hole

150‧‧‧鋁層 150‧‧‧Aluminum layer

150a‧‧‧第一通孔 150a‧‧‧first through hole

151‧‧‧閘極 151‧‧‧ gate

152‧‧‧閘介電層 152‧‧‧gate dielectric layer

160‧‧‧汲極層 160‧‧‧汲pole

162‧‧‧源極發射端 162‧‧‧Source emitter

170‧‧‧第三介電層 170‧‧‧ Third dielectric layer

180‧‧‧奈米真空管 180‧‧‧Nano vacuum tube

第1圖是本發明實施例的真空奈米管場效電晶體的製作方法的流程圖;第2圖至第9圖是本發明實施例的真空奈米管場效電晶體的製作過程的結構示意圖;第10圖是本發明實施例的真空奈米管場效電晶體的能帶示意圖。 1 is a flow chart showing a method of fabricating a vacuum nanotube field effect transistor according to an embodiment of the present invention; and FIGS. 2 to 9 are structures of a process for fabricating a vacuum nanotube field effect transistor according to an embodiment of the present invention; Fig. 10 is a schematic view showing the energy band of a vacuum nanotube field effect transistor according to an embodiment of the present invention.

以下結合附圖和具體實施例對本發明提出的真空奈米管場效電晶體及其製造方法作進一步詳細說明。根據下面說明和權利要求書,本發明的優點和特徵將更清楚。需說明的是,附圖均採用非常簡化的形式且均使用非精準的比例,僅用以方便、明晰地輔助說明本發明實施例的目的。 The vacuum nanotube field effect transistor and the manufacturing method thereof according to the present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments. Advantages and features of the present invention will be apparent from the description and appended claims. It should be noted that the drawings are in a very simplified form and all use non-precise proportions, and are only for convenience and clarity to assist the purpose of the embodiments of the present invention.

請參考第1圖,其為本發明實施例的真空奈米管場效電晶體的製作方法的流程圖。如第1圖所示,所述真空奈米管場效電晶體的製造方法包括:步驟一:提供一半導體基板110;步驟二:在所述半導體基板110上依次形成第一介電層120、源極130、第二介電層140和鋁層150;步驟三:對所述鋁層150進行陽極化處理以形成陽極氧化鋁(AAO)結構,所述陽極氧化鋁結構具有多個均勻排布的第一通孔150a,所述第一通孔150a的底部暴露出所述第二介電層140,所述陽極氧化鋁結構包括閘極 151以及包圍所述閘極151的閘極介電層152;步驟四:對第二介電層140進行蝕刻以形成多個第二通孔140a,所述第二通孔140a與所述第一通孔150a連通,且所述第二通孔140a的底部暴露出所述源極130;步驟五:在真空條件下形成汲極160,所述汲極160覆蓋於所述陽極氧化鋁結構上,以形成多個奈米真空管180。 Please refer to FIG. 1 , which is a flow chart of a method for fabricating a vacuum nanotube field effect transistor according to an embodiment of the invention. As shown in FIG. 1 , the method for manufacturing the vacuum nanotube field effect transistor includes: Step 1: providing a semiconductor substrate 110; Step 2: sequentially forming a first dielectric layer 120 on the semiconductor substrate 110, a source 130, a second dielectric layer 140, and an aluminum layer 150; Step 3: anodizing the aluminum layer 150 to form an anodized aluminum (AAO) structure having a plurality of uniform arrangements a first through hole 150a, a bottom of the first through hole 150a exposing the second dielectric layer 140, and the anodized aluminum structure includes a gate 151 and a gate dielectric layer 152 surrounding the gate 151; Step 4: etching the second dielectric layer 140 to form a plurality of second via holes 140a, the second via holes 140a and the first The through hole 150a is connected, and the bottom of the second through hole 140a exposes the source 130; Step 5: forming a drain 160 under vacuum, the drain 160 covering the anodized aluminum structure, To form a plurality of nano vacuum tubes 180.

具體的,首先,提供一半導體基板110,所述半導體基板110可以是矽基板、鍺矽基板、Ⅲ-Ⅴ族元素化合物基板或本領域技術人員所熟知的其他半導體材料基板,本實施例中採用的是矽基板。 Specifically, first, a semiconductor substrate 110 is provided. The semiconductor substrate 110 may be a germanium substrate, a germanium substrate, a III-V element compound substrate, or other semiconductor material substrate well known to those skilled in the art, and is used in this embodiment. It is a germanium substrate.

接著,如第2圖所示,在所述半導體基板110上依次形成第一介電層120、源極130、第二介電層140和鋁層150。 Next, as shown in FIG. 2, a first dielectric layer 120, a source 130, a second dielectric layer 140, and an aluminum layer 150 are sequentially formed on the semiconductor substrate 110.

然後,對所述鋁層150進行陽極化處理以形成陽極氧化鋁結構。形成陽極氧化鋁(AAO)結構的具體過程包括:首先,在酸性溶液中對所述鋁層150進行第一次陽極化處理;接著,去除所述第一次陽極化處理所產生的氧化物;然後,在酸性溶液中對所述鋁層150進行第二次陽極化處理。 The aluminum layer 150 is then anodized to form an anodized aluminum structure. The specific process for forming an anodized aluminum oxide (AAO) structure includes: first, performing the first anodization treatment on the aluminum layer 150 in an acidic solution; then, removing the oxide generated by the first anodizing treatment; Then, the aluminum layer 150 is subjected to a second anodization treatment in an acidic solution.

本實施例中,所述第一次陽極化處理和第二次陽極化處理的製程條件相同。所述第一次陽極化處理和第二次陽極化處理採用的酸性溶液均為草酸溶液,所述草酸溶液的濃度範圍在0.2莫耳濃度到0.5莫耳濃度之間,所述第一次陽極化處理和第二次陽極化處理的溫度均在5℃~15℃之間,所述第一次陽極化處理和第二次陽極化處理的固定電壓均在35V~45V之間。 In this embodiment, the process conditions of the first anodizing treatment and the second anodizing treatment are the same. The acidic solution used in the first anodizing treatment and the second anodizing treatment is an oxalic acid solution, and the concentration of the oxalic acid solution ranges from 0.2 molar to 0.5 molar, the first anode The temperature of the second anodizing treatment is between 5 ° C and 15 ° C, and the fixed voltages of the first anodizing treatment and the second anodizing treatment are both between 35 V and 45 V.

優選的,草酸溶液的濃度為0.3莫耳濃度,陽極化處理的溫 度為10℃,陽極化處理的電壓為40V固定電壓。 Preferably, the concentration of the oxalic acid solution is 0.3 molar, and the temperature of the anodizing treatment The degree is 10 ° C, and the anodized voltage is a fixed voltage of 40 V.

如第3圖所示,第二次陽極化處理之後,所述第二介電層140上形成了陽極氧化鋁結構,所述陽極氧化鋁結構具有多個均勻排布的第一通孔150a,所述第一通孔150a的底部暴露出所述第二介電層140,所述陽極氧化鋁結構包括材質為鋁的閘極151和材質為氧化鋁的閘介電層152,所述閘介電層152包圍所述閘極151。 As shown in FIG. 3, after the second anodizing treatment, an anodized aluminum structure is formed on the second dielectric layer 140, and the anodized aluminum structure has a plurality of uniformly arranged first through holes 150a. The bottom of the first through hole 150a exposes the second dielectric layer 140. The anodized aluminum structure includes a gate 151 made of aluminum and a gate dielectric layer 152 made of aluminum oxide. Electrical layer 152 surrounds gate 151.

形成陽極氧化鋁結構之後,對所述第一通孔150a暴露出的第二介電層140進行蝕刻,以形成多個第二通孔140a。如第4圖所示,所述第二通孔140a與所述第一通孔150a連通,且所述第二通孔140a的底部暴露出所述源極130。 After the anodized aluminum structure is formed, the second dielectric layer 140 exposed by the first via hole 150a is etched to form a plurality of second via holes 140a. As shown in FIG. 4, the second through hole 140a communicates with the first through hole 150a, and the bottom of the second through hole 140a exposes the source 130.

之後,如第5圖所示,通過蝕刻製程去除隔離區域中的陽極氧化鋁材料。 Thereafter, as shown in FIG. 5, the anodized aluminum material in the isolation region is removed by an etching process.

接著,如第6圖所示,在真空條件下同時形成汲極160和源極發射端162,由於所述汲極160完全覆蓋所述多個第一通孔150a的頂部,因此形成了多個奈米真空管180,所述奈米真空管180的一端為圓弧形結構(即汲極160的表面),所述奈米真空管180的另一端為尖刺結構(即源極發射端162的表面)。 Next, as shown in FIG. 6, the drain 160 and the source emitting end 162 are simultaneously formed under vacuum conditions, and since the drain 160 completely covers the top of the plurality of first via holes 150a, a plurality of layers are formed. The nano vacuum tube 180 has one end of a circular arc structure (ie, the surface of the drain 160), and the other end of the nano vacuum tube 180 has a spiked structure (ie, the surface of the source emitting end 162). .

本實施例中,所述奈米真空管180的長度範圍在1nm到100nm之間,所述奈米真空管180的直徑範圍在1nm到50nm之間,所述奈米真空管180內的真空度範圍在0.01Torr到50Torr之間。優選的,所述奈米真空管180的長度為10nm、20nm或50nm,所述奈米真空管180的直徑為3nm、5nm或10nm,所述奈米真空管180內的真空度為0.05Torr、1Torr、10Torr、20Torr、 30Torr或40Torr。 In this embodiment, the length of the nano vacuum tube 180 ranges from 1 nm to 100 nm, the diameter of the nano vacuum tube 180 ranges from 1 nm to 50 nm, and the vacuum degree in the nano vacuum tube 180 ranges from 0.01 to 0.01 nm. Torr to 50 Torr. Preferably, the length of the nano vacuum tube 180 is 10 nm, 20 nm or 50 nm, the diameter of the nano vacuum tube 180 is 3 nm, 5 nm or 10 nm, and the degree of vacuum in the nano vacuum tube 180 is 0.05 Torr, 1 Torr, 10 Torr. 20 Torr, 30 Torr or 40 Torr.

本實施例中,所述源極130和汲極160的材質為低功函數金屬,例如是鋯(Zr)、釩(V)、鈮(Nb)、鉭(Ta)、鉻(Cr)、鉬(Mo)、鎢(W)、鐵(Fe)、鈷(Co)、釩(Pd)、銅(Cu)、鋁(Al)、鎵(Ga)、銦(In)、鈦(Ti)、氮化鈦(TiN)、氮化鉭(TaN)、金剛石任意一種或其任意組合。 In this embodiment, the source 130 and the drain 160 are made of a low work function metal, such as zirconium (Zr), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), molybdenum. (Mo), tungsten (W), iron (Fe), cobalt (Co), vanadium (Pd), copper (Cu), aluminum (Al), gallium (Ga), indium (In), titanium (Ti), nitrogen Titanium (TiN), tantalum nitride (TaN), diamond, or any combination thereof.

此後,如第7圖所示,通過蝕刻製程去除所述隔離區域中的源極發射端162和第二介電層140,蝕刻停止於所述源極130。 Thereafter, as shown in FIG. 7, the source emitting end 162 and the second dielectric layer 140 in the isolation region are removed by an etching process, and etching stops at the source 130.

之後,如第8圖所示,進行退火處理,使所述奈米真空管180的另一端(即源極發射端162的表面)也變成圓弧結構。通過退火處理,能夠提高元件的可靠性和使用壽命。 Thereafter, as shown in Fig. 8, annealing treatment is performed so that the other end of the nano vacuum tube 180 (i.e., the surface of the source emitting end 162) also has a circular arc structure. Through the annealing process, the reliability and service life of the component can be improved.

本實施例中,所述退火製程的反應溫度範圍為400攝氏度~600攝氏度。所述高溫退火製程採用的氣體為氫氣(H2)、氮氣(N2)、氬氣(Ar)中的任意一種或其任意組合。 In this embodiment, the annealing process has a reaction temperature ranging from 400 degrees Celsius to 600 degrees Celsius. The gas used in the high temperature annealing process is any one of hydrogen (H 2 ), nitrogen (N 2 ), and argon (Ar), or any combination thereof.

最後,如第9圖所示,在所述隔離區域中形成第三介電層170,所述第三介電層170與所述第二介電層140連為一體。 Finally, as shown in FIG. 9, a third dielectric layer 170 is formed in the isolation region, and the third dielectric layer 170 is integrated with the second dielectric layer 140.

本實施例中,所述第一介電層120、第二介電層140和第三介電層170的材質相同,均為氧化矽。 In this embodiment, the first dielectric layer 120, the second dielectric layer 140, and the third dielectric layer 170 are made of the same material and are all yttrium oxide.

至此,形成真空奈米管場效電晶體100。所述真空奈米管場效電晶體100的閘極垂直排布於所述源極和汲極之間,採用這種結構不但能夠提升元件的性能,而且能夠進一步縮小元件尺寸。 So far, a vacuum nanotube field effect transistor 100 is formed. The gate of the vacuum nanotube field effect transistor 100 is vertically arranged between the source and the drain. This structure can not only improve the performance of the device, but also further reduce the component size.

所述真空奈米管場效電晶體100在工作時的能帶示意圖可參 考第10圖。如第10圖所示,在閘極電壓(Vg)大於閾值電壓(Vt)時,電晶體開啟,由於電子或電洞從源極遷移到汲極的能帶遷移距離較短,因此整個元件的性能更佳。其中,閾值電壓(Vt)也稱為開啟電壓。 The energy band diagram of the vacuum nanotube field effect transistor 100 during operation can be referred to Take the picture in Figure 10. As shown in Fig. 10, when the gate voltage (Vg) is greater than the threshold voltage (Vt), the transistor is turned on, and since the migration distance of the electron or hole from the source to the drain is shorter, the entire component is Better performance. Among them, the threshold voltage (Vt) is also called the turn-on voltage.

相應的,本發明還提供一種採用如上文所述的真空奈米管場效電晶體的製造方法製備而成的真空奈米管場效電晶體。 Accordingly, the present invention also provides a vacuum nanotube field effect transistor prepared by the method of manufacturing a vacuum nanotube field effect transistor as described above.

請繼續參考第9圖所述真空奈米管場效電晶體100包括:半導體基板110;形成於所述半導體基板110上的第一介電層120;形成於所述第一介電層120上的源極130;形成於所述源極130上的第二介電層140;形成於所述第二介電層140上的陽極氧化鋁結構;形成於所述陽極氧化鋁結構上的汲極160;其中,所述陽極氧化鋁結構包括閘極151以及包圍所述閘極151的閘極介電層152,所述汲極160覆蓋於所述陽極氧化鋁結構上,形成多個奈米真空管180。 The vacuum nanotube field effect transistor 100 described in FIG. 9 further includes: a semiconductor substrate 110; a first dielectric layer 120 formed on the semiconductor substrate 110; formed on the first dielectric layer 120 a source 130; a second dielectric layer 140 formed on the source 130; an anodized aluminum structure formed on the second dielectric layer 140; a bungee formed on the anodized aluminum structure 160; wherein the anodized aluminum structure comprises a gate 151 and a gate dielectric layer 152 surrounding the gate 151, the gate 160 covering the anodized aluminum structure to form a plurality of nano vacuum tubes 180.

具體的,所述真空奈米管場效電晶體100還包括第三介電層170,所述第三介電層170位於隔離區域中並與所述第二介電層140連為一體。所述奈米真空管180的長度範圍是1nm~100nm,所述奈米真空管180的直徑範圍在1nm到50nm之間,所述奈米真空管180內的真空度範圍在0.01Torr到50Torr之間。 Specifically, the vacuum nanotube field effect transistor 100 further includes a third dielectric layer 170, and the third dielectric layer 170 is located in the isolation region and integrated with the second dielectric layer 140. The nano vacuum tube 180 has a length ranging from 1 nm to 100 nm, the nano vacuum tube 180 has a diameter ranging from 1 nm to 50 nm, and the vacuum inside the nano vacuum tube 180 has a vacuum ranging from 0.01 Torr to 50 Torr.

綜上所述,在本發明實施例提供的真空奈米管場效電晶體及其製造方法中,通過製作陽極氧化鋁結構以形成垂直結構的真空奈米管電晶體,從而進一步縮小元件尺寸,並提升了元件的性能。 In summary, in the vacuum nanotube field effect transistor and the manufacturing method thereof provided by the embodiments of the present invention, the anode nano tube structure is formed by the anode alumina structure to form a vertical structure vacuum nano tube transistor, thereby further reducing the component size. And improve the performance of the components.

上述僅為本發明的較佳實施例而已,並非用來限制本發明。任何所屬技術领域的人士,在不脫離本發明的技術方案的範圍內,對本發 明揭露的技術方案和技術內容做任何形式的均等替换或修改等變動,均屬於不脫離本發明的技術方案的內容,仍屬於本發明的保護範圍之內。 The above are only the preferred embodiments of the present invention and are not intended to limit the present invention. Any person skilled in the art can, within the scope of the technical solution of the present invention, It is to be understood that the technical solutions and the technical contents disclosed in the disclosure are all changes in the form of equivalents, modifications, and the like, which are within the scope of the present invention.

真空奈米管場效電晶體之製造方法的流程步驟 Process steps for manufacturing a vacuum nanotube field effect transistor

Claims (15)

一種真空奈米管場效電晶體的製造方法,包括:提供一半導體基板;在所述半導體基板上依次形成第一介電層、源極、第二介電層和鋁層;對所述鋁層進行陽極化處理以形成陽極氧化鋁結構,所述陽極氧化鋁結構具有多個均勻排布的第一通孔,所述第一通孔的底部暴露出所述第二介電層,所述陽極氧化鋁結構包括閘極以及包圍所述閘極的閘極介電層;對第二介電層進行蝕刻以形成多個第二通孔,所述第二通孔與所述第一通孔連通,且所述第二通孔的底部暴露出所述源極;以及在真空條件下形成汲極,所述汲極覆蓋於所述陽極氧化鋁結構上,以形成多個奈米真空管。 A method for manufacturing a vacuum nanotube field effect transistor, comprising: providing a semiconductor substrate; sequentially forming a first dielectric layer, a source, a second dielectric layer and an aluminum layer on the semiconductor substrate; The layer is anodized to form an anodized aluminum structure having a plurality of uniformly arranged first vias, the bottom of the first via exposing the second dielectric layer, The anodized aluminum structure includes a gate and a gate dielectric layer surrounding the gate; etching the second dielectric layer to form a plurality of second vias, the second via and the first via Connected, and the bottom of the second via exposes the source; and a drain is formed under vacuum, the drain covering the anodized aluminum structure to form a plurality of nano vacuum tubes. 如請求項1所述的真空奈米管場效電晶體的製造方法,其中對所述鋁層進行陽極化處理以形成陽極氧化鋁結構之步驟包括:在酸性溶液中對所述鋁層進行第一次陽極化處理;去除所述第一次陽極化處理所產生的氧化物;以及在酸性溶液中對所述鋁層進行第二次陽極化處理。 The method for producing a vacuum nanotube field effect transistor according to claim 1, wherein the step of anodizing the aluminum layer to form an anodized aluminum structure comprises: performing the aluminum layer in an acidic solution Anodizing treatment; removing the oxide generated by the first anodizing treatment; and subjecting the aluminum layer to a second anodizing treatment in an acidic solution. 如請求項2所述的真空奈米管場效電晶體的製造方法,其中所述第一次陽極化處理和第二次陽極化處理採用的酸性溶液均為草酸溶液,所述草酸溶液的濃度範圍在0.2莫耳濃度到0.5莫耳濃度之間,所述第一次陽極化處理和第二次陽極化處理的溫度均在5℃到15℃之間,所述第一次陽極化處理和第二次陽極化處理的固定電壓均在35V到45V之間。 The method for producing a vacuum nanotube field effect transistor according to claim 2, wherein the acidic solution used in the first anodizing treatment and the second anodizing treatment is an oxalic acid solution, and the concentration of the oxalic acid solution The range is between 0.2 molar concentration and 0.5 molar concentration, and the temperatures of the first anodizing treatment and the second anodizing treatment are both between 5 ° C and 15 ° C, the first anodizing treatment and The fixed voltage for the second anodization is between 35V and 45V. 如請求項3所述的真空奈米管場效電晶體的製造方法,其中所述草 酸溶液的濃度為0.3莫耳濃度,所述第一次陽極化處理和第二次陽極化處理的溫度均為10℃,所述第一次陽極化處理和第二次陽極化處理的固定電壓均為40V。 A method of manufacturing a vacuum nanotube field effect transistor according to claim 3, wherein the grass The concentration of the acid solution is 0.3 mol, the temperature of the first anodizing treatment and the second anodizing treatment are both 10 ° C, and the fixed voltage of the first anodizing treatment and the second anodizing treatment Both are 40V. 如請求項1所述的真空奈米管場效電晶體的製造方法,其中在真空條件下形成汲極之前,對第二介電層進行蝕刻以形成多個第二通孔之後,還包括:通過蝕刻製程去除隔離區域中的陽極氧化鋁。 The method for manufacturing a vacuum nanotube field effect transistor according to claim 1, wherein after the second dielectric layer is etched to form the plurality of second via holes before forming the drain under vacuum conditions, the method further includes: The anodized aluminum in the isolated region is removed by an etching process. 如請求項5所述的真空奈米管場效電晶體的製造方法,其中在真空條件下形成汲極的同時,還包括:在源極上形成源極發射端。 The method for manufacturing a vacuum nanotube field effect transistor according to claim 5, wherein, while forming the drain under vacuum, the method further comprises: forming a source emitting end on the source. 如請求項6所述的真空奈米管場效電晶體的製造方法,其中在真空條件下形成汲極和源極發射端之後,還包括:通過蝕刻製程去除所述隔離區域中的源極發射端和第二介電層。 The method for fabricating a vacuum nanotube field effect transistor according to claim 6, wherein after forming the drain and the source emitting end under vacuum, the method further comprises: removing the source emission in the isolation region by an etching process End and second dielectric layer. 如請求項7所述的真空奈米管場效電晶體的製造方法,其中在通過蝕刻製程去除所述隔離區域中的源極發射端和第二介電層之後,還包括:採用退火製程對所述源極發射端進行處理,使其表面變為圓弧形。 The method for fabricating a vacuum nanotube field effect transistor according to claim 7, wherein after removing the source emitting end and the second dielectric layer in the isolation region by an etching process, the method further comprises: using an annealing process pair The source emitting end is processed to have its surface become a circular arc shape. 如請求項8所述的真空奈米管場效電晶體的製造方法,其中所述退火製程的反應溫度範圍在400℃到600℃之間,所述退火製程採用的氣體為氫氣、氮氣或氬氣中的任意一種或其任意組合。 The method for manufacturing a vacuum nanotube field effect transistor according to claim 8, wherein the annealing process has a reaction temperature ranging from 400 ° C to 600 ° C, and the gas used in the annealing process is hydrogen, nitrogen or argon. Any one of the gases or any combination thereof. 如請求項8所述的真空奈米管場效電晶體的製造方法,其中在採用退火製程對所述源極發射端進行處理之後,還包括:在所述隔離區域中形成第三介電層,所述第三介電層與所述第二介電層連為一體。 The method for manufacturing a vacuum nanotube field effect transistor according to claim 8, wherein after the source emitting end is processed by using an annealing process, the method further comprises: forming a third dielectric layer in the isolation region The third dielectric layer is integrated with the second dielectric layer. 如請求項10所述的真空奈米管場效電晶體的製造方法,其中所述第一介電層、第二介電層和第三介電層的材質均為氧化矽。 The method for manufacturing a vacuum nanotube field effect transistor according to claim 10, wherein the materials of the first dielectric layer, the second dielectric layer and the third dielectric layer are all cerium oxide. 如請求項1所述的真空奈米管場效電晶體的製造方法,其中所述源極和汲極的材質均為低功函數金屬。 The method for manufacturing a vacuum nanotube field effect transistor according to claim 1, wherein the source and the drain are made of a low work function metal. 一種真空奈米管場效電晶體,採用如請求項1至12中任一種所述的真空奈米管場效電晶體的製造方法製備而成,包括:半導體基板;形成於所述半導體基板上的第一介電層;形成於所述第一介電層上的源極;形成於所述源極上的第二介電層;形成於所述第二介電層上的陽極氧化鋁結構;形成於所述陽極氧化鋁結構上的汲極;其中,所述陽極氧化鋁結構包括閘極以及包圍所述閘極的閘極介電層,所述汲極覆蓋於所述陽極氧化鋁結構上,形成多個奈米真空管。 A vacuum nanotube field effect transistor produced by the method for manufacturing a vacuum nanotube field effect transistor according to any one of claims 1 to 12, comprising: a semiconductor substrate; formed on the semiconductor substrate a first dielectric layer; a source formed on the first dielectric layer; a second dielectric layer formed on the source; an anodized aluminum structure formed on the second dielectric layer; a drain formed on the anodized aluminum structure; wherein the anodized aluminum structure includes a gate and a gate dielectric layer surrounding the gate, the drain covering the anodized aluminum structure Forming a plurality of nano vacuum tubes. 如請求項13所述的真空奈米管場效電晶體,還包括:第三介電層,所述第三介電層位於隔離區域並與所述第二介電層連為一體。 The vacuum nanotube field effect transistor of claim 13, further comprising: a third dielectric layer, the third dielectric layer being located in the isolation region and integrated with the second dielectric layer. 如請求項13所述的真空奈米管場效電晶體,其中所述奈米真空管的長度範圍在1nm到100nm之間,所述奈米真空管的直徑範圍在1nm到50nm之間,所述奈米真空管內的真空度範圍在0.01Torr到50Torr之間。 The vacuum nanotube field effect transistor according to claim 13, wherein the nano vacuum tube has a length ranging from 1 nm to 100 nm, and the nano vacuum tube has a diameter ranging from 1 nm to 50 nm. The vacuum in the meter vacuum tube ranges from 0.01 Torr to 50 Torr.
TW105131360A 2016-05-10 2016-09-29 Method for preparing nano-vacuum tube field effect transistor TWI589004B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610307101.2A CN107359241B (en) 2016-05-10 2016-05-10 Vacuum nano pipe field effect transistor and its manufacturing method

Publications (2)

Publication Number Publication Date
TWI589004B true TWI589004B (en) 2017-06-21
TW201740572A TW201740572A (en) 2017-11-16

Family

ID=59687933

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105131360A TWI589004B (en) 2016-05-10 2016-09-29 Method for preparing nano-vacuum tube field effect transistor

Country Status (2)

Country Link
CN (1) CN107359241B (en)
TW (1) TWI589004B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200826290A (en) * 2006-12-01 2008-06-16 Univ Nat Chiao Tung Vertical organic transistor and manufacturing method thereof
US20140145143A1 (en) * 2004-09-16 2014-05-29 Atomate Corporation Carbon Nanotube Transistor Voltage Converter Circuit
US20140353576A1 (en) * 2013-05-31 2014-12-04 Stmicroelectronics S.R.L. Integrated vacuum microelectronic device and fabrication method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6572425B2 (en) * 2001-03-28 2003-06-03 Intel Corporation Methods for forming microtips in a field emission device
CN105529356B (en) * 2016-02-24 2019-02-05 西安交通大学 A kind of Flied emission transistor with vertical structure cylindrical conductive channel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140145143A1 (en) * 2004-09-16 2014-05-29 Atomate Corporation Carbon Nanotube Transistor Voltage Converter Circuit
TW200826290A (en) * 2006-12-01 2008-06-16 Univ Nat Chiao Tung Vertical organic transistor and manufacturing method thereof
US20140353576A1 (en) * 2013-05-31 2014-12-04 Stmicroelectronics S.R.L. Integrated vacuum microelectronic device and fabrication method thereof

Also Published As

Publication number Publication date
CN107359241B (en) 2019-07-23
CN107359241A (en) 2017-11-17
TW201740572A (en) 2017-11-16

Similar Documents

Publication Publication Date Title
CN102810564B (en) A kind of radio-frequency devices and preparation method thereof
TW201545315A (en) Semiconductor device and manufacturing method thereof
TWI598963B (en) Method for preparing nano-vacuum tube field effect transistor
JP4151560B2 (en) Manufacturing method of semiconductor device
WO2014034748A1 (en) Semiconductor device, and method for producing same
US9741578B2 (en) Manufacturing method of semiconductor device
JP5030172B2 (en) Insulating film, manufacturing method thereof, and electronic device provided with insulating film
TWI589004B (en) Method for preparing nano-vacuum tube field effect transistor
TW201735363A (en) Nanowire semiconductor device and method for preparing the same
CN106571387A (en) High K material-based stacked-gate AlGaN/GaN high-electron mobility MOS device
JP6089235B2 (en) Method for manufacturing silicon carbide semiconductor element
JP3923400B2 (en) Field effect transistor and manufacturing method thereof
CN107154338A (en) A kind of raising GaN HEMT passivation effects, the process for treating surface for reducing current collapse
JP2008109162A (en) Photoelectrochemical etching apparatus
JP2017152644A (en) Electronic apparatus and method for manufacturing the same
JP4450719B2 (en) Manufacturing method of semiconductor device
CN106024712B (en) A kind of production method of autoregistration GaAs PMOS device
TWI608116B (en) A graphene field effect transistor and the manufacturing method thereof
CN110676172A (en) Method for realizing low-on-resistance enhanced gallium nitride transistor
CN103745922A (en) Method for manufacturing GaN high electron mobility transistor composite medium insulated gate
CN216311791U (en) GaN-based HEMT device structure
CN216773248U (en) Phase inverter and ring oscillator on gallium nitride substrate
CN113628963B (en) III-nitride enhanced HEMT device and manufacturing method thereof
JP4408787B2 (en) Insulating film, manufacturing method thereof, and electronic device provided with insulating film
TWI685970B (en) Semiconductor structrue