TWI588886B - Method of fabricating a semiconductor device - Google Patents

Method of fabricating a semiconductor device Download PDF

Info

Publication number
TWI588886B
TWI588886B TW102106329A TW102106329A TWI588886B TW I588886 B TWI588886 B TW I588886B TW 102106329 A TW102106329 A TW 102106329A TW 102106329 A TW102106329 A TW 102106329A TW I588886 B TWI588886 B TW I588886B
Authority
TW
Taiwan
Prior art keywords
layer
crystalline germanium
metal
germanium layer
consisting essentially
Prior art date
Application number
TW102106329A
Other languages
Chinese (zh)
Other versions
TW201347033A (en
Inventor
馬瑞姆 山達卡
伊歐納特 朗度
Original Assignee
梭意泰科公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/402,464 external-priority patent/US9136134B2/en
Priority claimed from FR1252148A external-priority patent/FR2987936B1/en
Application filed by 梭意泰科公司 filed Critical 梭意泰科公司
Publication of TW201347033A publication Critical patent/TW201347033A/en
Application granted granted Critical
Publication of TWI588886B publication Critical patent/TWI588886B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32134Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by liquid etching only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Recrystallisation Techniques (AREA)
  • Thin Film Transistor (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Weting (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

製造半導體裝置之方法 Method of manufacturing a semiconductor device

本發明係關於在用於半導體裝置製造之製程中的接受結構上提供半導體材料薄層的方法,且係關於使用該等方法製造之結構及裝置。 The present invention relates to a method of providing a thin layer of semiconductor material on a receiving structure for use in a process for fabricating a semiconductor device, and is directed to structures and devices fabricated using such methods.

在半導體裝置製造製程中,在用於各種目的(包括例如製造絕緣體上半導體(SeOI)型基板及在所謂「三維(3D)整合」製程中垂直堆疊半導體材料及裝置)之接受結構上提供半導體材料薄層。 In a semiconductor device fabrication process, a semiconductor material is provided on an acceptor structure for various purposes including, for example, fabrication of a semiconductor-on-insulator (SeOI) type substrate and vertical stacking of semiconductor materials and devices in a so-called "three-dimensional (3D) integration process) Thin layer.

在該等製程中,可能需要在接受結構上提供半導體材料層,其平均層厚度小至數百奈米或數百奈米以下,且在一些應用中甚至為一百奈米(100nm)或100nm以下。此外,半導體材料層宜具有均一厚度(例如不均一性小於半導體材料層厚度之5%)。另外,可能需要半導體材料層極其平滑。舉例而言,可能需要形成半導體材料層以使半導體材料層之主要暴露表面的表面粗糙度(Ra)低至五奈米(5nm)或5nm以下。 In such processes, it may be desirable to provide a layer of semiconductor material on the receiving structure with an average layer thickness as small as hundreds of nanometers or hundreds of nanometers or less, and in some applications even 100 nanometers (100 nm) or 100 nm. the following. Furthermore, the layer of semiconductor material preferably has a uniform thickness (e.g., the heterogeneity is less than 5% of the thickness of the layer of semiconductor material). In addition, it may be desirable for the layer of semiconductor material to be extremely smooth. For example, it may be desirable to form a layer of semiconductor material such that the surface roughness (Ra) of the predominantly exposed surface of the layer of semiconductor material is as low as five nanometers (5 nm) or less.

此項技術中已提出在接受結構上提供該薄且平滑半導體材料層的各種方法。然而,此項技術中仍需要可在接受結構上提供薄、均一且平滑半導體材料層之改良方法。 Various methods of providing this thin and smooth layer of semiconductor material on the receiving structure have been proposed in the art. However, there remains a need in the art for improved methods of providing a thin, uniform, and smooth layer of semiconductor material on the receiving structure.

提供此發明內容以便以簡化形式引入所選構思。此等構思更詳細描述於以下本發明之例示性實施例之詳細描述中。此發明內容既不欲鑑別所主張標的物之關鍵特徵或基本特徵,亦不欲用於限制所主張標的物之範疇。 This Summary is provided to introduce selected concepts in a simplified form. These concepts are described in more detail in the following detailed description of the exemplary embodiments of the invention. This Summary is not intended to identify key features or essential features of the claimed subject matter, and is not intended to limit the scope of the claimed subject matter.

在一些實施例中,本發明包括製造半導體裝置之方法。根據該等方法,在接受結構上提供結晶矽層,在結晶矽中鄰近結晶矽層之主要暴露表面的一部分中形成金屬矽化物,且使用相對於結晶矽對金屬矽化物具選擇性之蝕刻劑蝕刻金屬矽化物。 In some embodiments, the invention includes a method of fabricating a semiconductor device. According to the methods, a crystalline germanium layer is provided on the receiving structure, a metal germanide is formed in a portion of the main exposed surface of the crystalline germanium layer adjacent to the crystalline germanium layer, and an etchant selective to the metal germanide is used with respect to the crystalline germanium. Etching metal halides.

在其他實施例中,本發明包括形成絕緣體上矽(SOI)基板之方法。在該等方法中,可在基礎基板上提供結晶矽層,其中結晶聚矽氧層與基礎基板之間具有介電材料,且可使結晶矽層變薄至厚度為約500nm或500nm以下。為使結晶矽層變薄,在結晶矽層中鄰近結晶矽層之主要暴露表面的部分中形成大體上平坦之金屬矽化物層,且使用相對於結晶矽對金屬矽化物層具選擇性之蝕刻劑蝕刻金屬矽化物層。 In other embodiments, the invention includes a method of forming a substrate-on-insulator (SOI) substrate. In such methods, a crystalline germanium layer can be provided on the base substrate, wherein the crystalline germanium oxide layer has a dielectric material between the base substrate and the crystalline germanium layer can be thinned to a thickness of about 500 nm or less. In order to thin the crystalline germanium layer, a substantially flat metal germanide layer is formed in a portion of the crystalline germanium layer adjacent to the main exposed surface of the crystalline germanium layer, and a selective etching of the metal germanide layer relative to the crystalline germanium is used. The agent etches the metal halide layer.

本發明之其他實施例包括使用該等方法製造之半導體結構及裝置。 Other embodiments of the invention include semiconductor structures and devices fabricated using such methods.

100‧‧‧半導體結構 100‧‧‧Semiconductor structure

102‧‧‧結晶矽層/結晶矽 102‧‧‧ Crystallization layer/crystallization

102'‧‧‧部分 102'‧‧‧ Section

103‧‧‧暴露表面/主要暴露表面 103‧‧‧ exposed surface/main exposed surface

104‧‧‧基板 104‧‧‧Substrate

106‧‧‧中間層 106‧‧‧Intermediate

108‧‧‧指向箭頭 108‧‧‧ pointing arrow

109‧‧‧平面 109‧‧‧ plane

110‧‧‧半導體結構 110‧‧‧Semiconductor structure

112‧‧‧金屬矽化物/金屬矽化物層 112‧‧‧Metal Telluride/Metal Telluride Layer

114‧‧‧金屬層 114‧‧‧metal layer

120‧‧‧半導體結構 120‧‧‧Semiconductor structure

122‧‧‧主動裝置結構 122‧‧‧Active device structure

124A‧‧‧額外層 124A‧‧‧Additional layer

124B‧‧‧額外層 124B‧‧‧Additional layer

124C‧‧‧額外層 124C‧‧‧Additional layer

130‧‧‧半導體結構 130‧‧‧Semiconductor structure

140‧‧‧半導體結構 140‧‧‧Semiconductor structure

200‧‧‧供體結構 200‧‧‧donor structure

202‧‧‧離子植入平面 202‧‧‧Ion implantation plane

204‧‧‧指向箭頭 204‧‧‧ pointing arrow

300‧‧‧半導體結構 300‧‧‧Semiconductor structure

310‧‧‧半導體結構 310‧‧‧Semiconductor structure

320‧‧‧半導體結構 320‧‧‧Semiconductor structure

D‧‧‧所選深度 D‧‧‧Selected depth

TF‧‧‧最終平均層厚度 T F ‧‧‧final average layer thickness

TI‧‧‧初始平均層厚度 T I ‧‧‧ initial average layer thickness

儘管本說明書用尤其指出且明確主張何者被視為本發明實施例的申請專利範圍結束,但本發明實施例之優點可由本發明實施例之某些實例的描述在結合隨附圖式閱讀時更容易地確定,其中:圖1至4說明在半導體裝置製造中可用於使結晶矽層變薄之方法的例示性實施例;圖1為基板上結晶矽層之簡化橫截面圖,其中結晶矽層與基板之間具有介電材料;圖2為說明使結晶矽層之主要暴露表面變平滑後圖1之結構的簡 化橫截面圖;圖3為說明在結晶矽層之一部分中形成金屬矽化物材料後圖2之結構的簡化橫截面圖;圖4為說明在移除圖3中所示之金屬矽化物材料後結晶矽之剩餘部分的簡化橫截面圖;圖5為說明可在圖4之變薄結晶矽層中及/或變薄結晶矽層上製造之主動裝置結構的簡化橫截面圖;圖6為說明在3D整合製程中在圖5之結構上形成之其他主動裝置結構層的簡化橫截面圖;圖7為類似於圖2之橫截面圖且說明向結晶矽層中植入金屬離子以說明可用於在圖3中所示之結晶矽層部分中形成金屬矽化物材料之方法的一個實施例;圖8為類似於圖2之橫截面圖且說明在退火製程前沈積在結晶矽層上之金屬層以說明可用於在圖3中所示之結晶矽層部分中形成金屬矽化物材料之方法的另一實施例;圖9及圖10說明可用於提供圖1中所示之結構之方法的一例示性實施例,該結構包括在基板上之結晶矽層;圖9為說明向包含塊狀結晶矽之供體結構中植入離子以在其中界定薄弱離子植入平面之簡化橫截面圖;圖10說明黏合至包含圖1之基板的接受結構的圖9之供體結構;圖11至15說明類似於參考圖1至10所描述內容之方法的其他例示性實施例,但其中結晶矽層中包括先前製造之主動裝置結構;圖11為基板上結晶矽層之簡化橫截面圖,其中該半導體材料與基板之間具有介電材料,該結晶矽層中包括至少部分形成之主動裝置結構;圖12為說明使結晶矽層之主要暴露表面變平滑後圖11之結構的簡 化橫截面圖;圖13為說明在結晶矽層之一部分中形成金屬矽化物材料後圖12之結構的簡化橫截面圖;圖14為說明在移除圖13中所示之金屬矽化物材料後結晶矽之剩餘部分的簡化橫截面圖;且圖15為說明在3D整合製程中在圖14之結構上形成之其他主動裝置結構層的簡化橫截面圖。 While the specification has been described with particular reference to the scope of the claims of the embodiments of the invention, the advantages of the embodiments of the invention may be described by the accompanying drawings. It is easy to determine, wherein: Figures 1 to 4 illustrate an exemplary embodiment of a method that can be used to thin a crystalline germanium layer in the fabrication of a semiconductor device; Figure 1 is a simplified cross-sectional view of a crystalline germanium layer on a substrate, wherein the crystalline germanium layer There is a dielectric material between the substrate and the substrate; FIG. 2 is a simplified view of the structure of FIG. 1 after smoothing the main exposed surface of the crystalline germanium layer. 3 is a simplified cross-sectional view showing the structure of FIG. 2 after forming a metal telluride material in a portion of the crystalline germanium layer; FIG. 4 is a view illustrating the removal of the metal telluride material shown in FIG. A simplified cross-sectional view of the remainder of the crystallization crucible; FIG. 5 is a simplified cross-sectional view showing the structure of the active device that can be fabricated in the thinned crystalline germanium layer of FIG. 4 and/or thinned crystalline germanium layer; FIG. 6 is an illustration A simplified cross-sectional view of other active device structural layers formed on the structure of FIG. 5 in a 3D integration process; FIG. 7 is a cross-sectional view similar to FIG. 2 and illustrating the implantation of metal ions into the crystalline germanium layer to illustrate that One embodiment of a method of forming a metal telluride material in the portion of the crystalline germanium layer shown in FIG. 3; FIG. 8 is a cross-sectional view similar to FIG. 2 and illustrating a metal layer deposited on the crystalline germanium layer prior to the annealing process To illustrate another embodiment of a method that can be used to form a metal telluride material in the portion of the crystalline germanium layer shown in FIG. 3; FIGS. 9 and 10 illustrate an example of a method that can be used to provide the structure shown in FIG. Embodiment, the structure is included on the substrate FIG. 9 is a simplified cross-sectional view illustrating the implantation of ions into a donor structure comprising bulk crystalline germanium to define a weak ion implantation plane therein; FIG. 10 illustrates the acceptance of bonding to a substrate comprising FIG. The donor structure of Figure 9 of the structure; Figures 11 through 15 illustrate other exemplary embodiments of the method similar to that described with reference to Figures 1 through 10, but wherein the crystalline germanium layer includes a previously fabricated active device structure; A simplified cross-sectional view of a crystalline germanium layer on a substrate having a dielectric material between the semiconductor material and the substrate, the crystalline germanium layer including at least partially formed active device structures; and FIG. 12 is a view illustrating a major exposed surface of the crystalline germanium layer Simplified structure of Figure 11 after smoothing FIG. 13 is a simplified cross-sectional view showing the structure of FIG. 12 after forming a metal halide material in a portion of the crystalline germanium layer; FIG. 14 is a view illustrating the removal of the metal germanide material shown in FIG. A simplified cross-sectional view of the remainder of the crystallization crucible; and FIG. 15 is a simplified cross-sectional view illustrating other active device structural layers formed on the structure of FIG. 14 in a 3D integration process.

本文所提供之說明不欲為任何特定半導體材料、結構、裝置或方法的實際視圖,而僅為用於描述本發明實施例之理想化呈現。 The illustrations provided herein are not intended to be an actual view of any particular semiconductor material, structure, device, or method, but are merely idealized for describing embodiments of the present invention.

本文所用之任何標題不應認為限制由以下申請專利範圍及其合法等效物界定之本發明實施例的範疇。任何特定標題中所述之構思一般適用於整個說明書中之其他部分。 Any headings used herein are not to be construed as limiting the scope of the embodiments of the invention as defined by the scope of the following claims. The concepts described in any particular heading generally apply to the rest of the specification.

本文引用諸多參考文獻,與本文中如何表徵無關,所引用之參考文獻均不應視為關於本文所主張標的物之發明的先前技術。 A number of references are cited herein, and are not related to how the representations are made herein, and the cited references are not to be considered as prior art to the invention of the subject matter claimed herein.

如本文所用之術語「第III-V族半導體材料」意謂且包括至少主要包含一或多種來自週期表第IIIA族(B、Al、Ga、In及Ti)之元素及一或多種來自週期表第VA族(N、P、As、Sb及Bi)之元素的任何半導體材料。舉例而言,第III-V族半導體材料包括(但不限於)GaN、GaP、GaAs、InN、InP、InAs、AlN、AlP、AlAs、InGaN、InGaP、GaInN、InGaNP、GaInNAs等。 The term "Group III-V semiconductor material" as used herein means and includes at least one or more elements from Groups IIIA (B, Al, Ga, In, and Ti) of the Periodic Table and one or more from the periodic table. Any semiconductor material of the elements of Group VA (N, P, As, Sb, and Bi). For example, Group III-V semiconductor materials include, but are not limited to, GaN, GaP, GaAs, InN, InP, InAs, AlN, AlP, AlAs, InGaN, InGaP, GaInN, InGaNP, GaInNAs, and the like.

本文所揭示方法之實施例可用於在半導體裝置製造中使材料層變薄以提供具有所選適宜平均層厚度之結晶矽層。 Embodiments of the methods disclosed herein can be used to thin a layer of material in the fabrication of a semiconductor device to provide a layer of crystalline germanium having a selected suitable average layer thickness.

圖1說明半導體結構100,其包括包含結晶矽之結晶矽層102、基板104及在結晶矽層102與基板104之間的中間層106。在此組態中,半導體結構100可包含絕緣體上矽(SOI)型基板。基板104可包含上面提 供結晶矽層102之接受結構。 1 illustrates a semiconductor structure 100 comprising a crystalline germanium layer 102 comprising crystalline germanium, a substrate 104, and an intermediate layer 106 between the crystalline germanium layer 102 and the substrate 104. In this configuration, the semiconductor structure 100 can comprise a silicon-on-insulator (SOI) type substrate. The substrate 104 can include the above The accepting structure for the crystalline germanium layer 102.

結晶矽層102包含結晶矽。在一些實施例中,結晶矽層102可包含單晶矽。換言之,結晶矽可包含單晶矽。結晶矽層102中上面及/或內部欲製造(或已製造)主動裝置結構的部分可稱作「主動」部分,且結晶矽層102中不欲包括該等主動裝置結構的另一部分可構成犧牲部分。舉例而言,結晶矽層102中在平面109(圖1之透視圖)下方的部分可構成結晶矽層102之主動部分,且結晶矽層102中在平面109(圖1之透視圖)上方的部分可構成結晶矽層102之犧牲部分。 The crystalline germanium layer 102 contains crystalline germanium. In some embodiments, the crystalline germanium layer 102 can comprise a single crystal germanium. In other words, the crystalline germanium may comprise single crystal germanium. The portion of the crystalline germanium layer 102 above and/or within which the active device structure is to be fabricated (or fabricated) may be referred to as the "active" portion, and another portion of the crystalline germanium layer 102 that is not intended to include such active device structures may constitute a sacrifice. section. For example, a portion of the crystalline germanium layer 102 below the plane 109 (perspective view of FIG. 1) may constitute the active portion of the crystalline germanium layer 102, and the crystalline germanium layer 102 is above the plane 109 (perspective view of FIG. 1). Portions may form a sacrificial portion of the crystalline germanium layer 102.

上面安置結晶矽層102之基板104可包含半導體材料(例如矽、鍺、第III-V族半導體材料等);陶瓷材料,諸如氧化物(例如氧化鋁、氧化矽、氧化鋯等)、氮化物(例如氮化矽)或碳化物(例如碳化矽)。在其他實施例中,基板104可包含金屬基板。舉例而言,基板104可包含一或多種金屬或金屬合金,諸如銅、鉬或不鏽鋼。在其他實施例中,基板104可包含石墨烯基板或鑽石基板。在一些實施例中,基板104可包含多層基板(例如絕緣體上半導體(SeOI)型基板,諸如絕緣體上矽(SOI)基板或絕緣體上鍺(GeOI)基板)。其他適合基板為此項技術中已知且可用於本發明之實施例中。在一些實施例中,基板104可包含至少部分製造之半導體裝置(例如晶粒或晶圓),且可包括一或多個積體電路(例如電子信號處理器電路、記憶體裝置電路等)。舉例而言(但不限制),基板104可比結晶矽層102厚,且平均層厚度可為例如約一微米(1μm)或1μm以上、約十微米(10μm)或10μm以上或甚至約一百微米(100μm)或100μm以上。 The substrate 104 on which the crystalline germanium layer 102 is disposed may comprise a semiconductor material (eg, germanium, antimony, a III-V semiconductor material, etc.); a ceramic material such as an oxide (eg, aluminum oxide, hafnium oxide, zirconium oxide, etc.), a nitride (such as tantalum nitride) or carbide (such as tantalum carbide). In other embodiments, the substrate 104 can comprise a metal substrate. For example, substrate 104 can comprise one or more metals or metal alloys such as copper, molybdenum or stainless steel. In other embodiments, the substrate 104 can comprise a graphene plate or a diamond substrate. In some embodiments, substrate 104 can comprise a multilayer substrate (eg, a semiconductor-on-insulator (SeOI) type substrate, such as a germanium-on-insulator (SOI) substrate or a germanium-on-insulator (GeOI) substrate). Other suitable substrates are known in the art and can be used in embodiments of the invention. In some embodiments, substrate 104 can comprise at least partially fabricated semiconductor devices (eg, dies or wafers), and can include one or more integrated circuits (eg, electronic signal processor circuits, memory device circuits, etc.). By way of example and not limitation, substrate 104 may be thicker than crystalline germanium layer 102, and the average layer thickness may be, for example, about one micron (1 μm) or more, about ten micrometers (10 μm) or more, or even about one hundred micrometers. (100 μm) or 100 μm or more.

中間層106可包含例如氧化物,諸如氧化矽(SiO2)。在該等實施例中,中間層106可包含此項技術中通常稱為「內埋氧化物」層者。可用於中間層106中之其他適合介電材料包括氮化物(例如氮化矽(Si3N4))及氮氧化物(例如氮氧化矽(SiOxNy))。在一些實施例中,中間 層106可包含用於將結晶矽層102黏合於基板104之黏合層。在該等實施例中,中間層106可包含介電材料,諸如上述介電材料、金屬層(例如銅、銀、鋁、鈦、鎢等之層)或不同於結晶矽層102之半導體材料層。中間層106可包含沈積在基板104及結晶矽層102中之一者或兩者上的材料層之連續層。在其他實施例中,中間層106可能不連續,且可經圖案化從而在中間層106之不同位置上包括在其中之凹陷或穿過其中之孔隙。 The intermediate layer 106 may comprise, for example, an oxide such as yttrium oxide (SiO 2 ). In such embodiments, the intermediate layer 106 can comprise what is commonly referred to in the art as a "buried oxide" layer. May be used for other suitable dielectric material of the intermediate layer 106 comprises a nitride (e.g., silicon nitride (Si 3 N 4)) and nitrogen oxides (e.g., silicon oxynitride (SiO x N y)). In some embodiments, the intermediate layer 106 can include an adhesive layer for bonding the crystalline germanium layer 102 to the substrate 104. In such embodiments, the intermediate layer 106 may comprise a dielectric material such as the dielectric material described above, a metal layer (eg, a layer of copper, silver, aluminum, titanium, tungsten, etc.) or a layer of semiconductor material different from the crystalline germanium layer 102. . The intermediate layer 106 can comprise a continuous layer of material layers deposited on one or both of the substrate 104 and the crystalline germanium layer 102. In other embodiments, the intermediate layer 106 may be discontinuous and may be patterned to include voids therein or through the voids at different locations of the intermediate layer 106.

舉例而言(但不限制),中間層106可比結晶矽層102薄,且平均層厚度可為例如約一百奈米(100nm)或100nm以下、約五十奈米(50nm)或50nm以下或甚至約十奈米(10nm)或10nm以下。 By way of example and not limitation, the intermediate layer 106 can be thinner than the crystalline germanium layer 102, and the average layer thickness can be, for example, about one hundred nanometers (100 nm) or less, about fifty nanometers (50 nm) or less. Even about ten nanometers (10 nm) or less.

根據本發明之實施例,結晶矽層102可如下文更詳細論述變薄以具有所選最終厚度。在一些實施例中,結晶矽層102之暴露表面103可相對粗糙(如圖1以放大方式所示)。因此,在使結晶矽層102變薄前,可視情況如圖2所示使結晶矽層102之主要暴露表面103變平滑,隨後使結晶矽層102變薄。可使用例如機械研磨或拋光製程、化學蝕刻製程、化學-機械拋光(CMP)製程或離子修整製程(例如使用簇離子束)中之一或多者使主要暴露表面103變平滑。 In accordance with an embodiment of the present invention, the crystalline germanium layer 102 can be thinned to have a selected final thickness as discussed in more detail below. In some embodiments, the exposed surface 103 of the crystalline germanium layer 102 can be relatively rough (as shown in enlarged view in FIG. 1). Therefore, before the crystallization layer 102 is thinned, the main exposed surface 103 of the crystallization layer 102 can be smoothed as shown in FIG. 2, and then the crystallization layer 102 is thinned. The primary exposed surface 103 can be smoothed using one or more of, for example, a mechanical grinding or polishing process, a chemical etching process, a chemical-mechanical polishing (CMP) process, or an ion conditioning process (eg, using a cluster ion beam).

在一些實施例中,結晶矽層102在變薄(如下所述)前可具有初始平均層厚度TI,其可為約五百奈米(500nm)或500nm以下、約兩百奈米(200nm)或200nm以下或甚至約一百奈米(100nm)或100nm以下。 In some embodiments, the crystalline germanium layer 102 can have an initial average layer thickness T I prior to thinning (as described below), which can be about five hundred nanometers (500 nm) or less, about two hundred nanometers (200 nm). Or below 200 nm or even about 100 nanometers (100 nm) or less.

根據本發明之實施例,可藉由在結晶矽層102之一部分102'中形成金屬矽化物材料且隨後自結晶矽層102移除金屬矽化物材料而使結晶矽層102自初始平均層厚度TI(圖2)變薄至最終平均層厚度TF(圖4)。舉例而言,參看圖3,可使結晶矽中鄰近結晶矽層102之主要暴露表面103的一部分102'轉化為金屬矽化物112(圖3中藉由點刻法呈現)而形成半導體結構110。金屬矽化物112可構成平均層厚度為約二奈米(2nm) 至約九十奈米(90nm)之金屬矽化物層112。更特定言之,金屬矽化物層112之平均層厚度可為約五奈米(5nm)至約七十奈米(70nm)。此外,更特定言之,金屬矽化物層112之平均層厚度可為約十奈米(10nm)至約五十奈米(50nm)。 In accordance with an embodiment of the present invention, the crystalline germanium layer 102 can be self-initial average layer thickness T by forming a metal telluride material in a portion 102' of the crystalline germanium layer 102 and subsequently removing the metal germanide material from the crystalline germanium layer 102. I (Fig. 2) is thinned to the final average layer thickness T F (Fig. 4). For example, referring to FIG. 3, a portion 102' of the predominantly exposed surface 103 of the crystalline germanium adjacent to the crystalline germanium layer 102 can be converted to a metal germanide 112 (presented by stippling in FIG. 3) to form the semiconductor structure 110. The metal telluride 112 can constitute a metal telluride layer 112 having an average layer thickness of from about two nanometers (2 nm) to about ninety nanometers (90 nm). More specifically, the metal halide layer 112 may have an average layer thickness of from about five nanometers (5 nm) to about seventy nanometers (70 nm). Moreover, more specifically, the metal telluride layer 112 may have an average layer thickness of from about ten nanometers (10 nm) to about fifty nanometers (50 nm).

下文參考圖7及圖8描述可用於形成金屬矽化物層112之方法的實例。一般而言,可將金屬離子引入結晶矽層中,在結晶矽層中,金屬離子可與矽離子反應形成金屬矽化物112化合物。 An example of a method that can be used to form the metal telluride layer 112 is described below with reference to FIGS. 7 and 8. In general, metal ions can be introduced into the crystalline germanium layer, and in the crystalline germanium layer, the metal ions can react with the phosphonium ions to form a metal telluride 112 compound.

參看圖7,在一些實施例中,如由指向箭頭108所呈現,可將金屬離子穿過主要表面103植入結晶矽層102之部分102'中以將部分102'中之結晶矽轉化為金屬矽化物112。金屬離子之能量可經選擇性設定以使金屬離子自主要表面103植入結晶矽層102中達所選深度D。深度D可經選擇以定位於結晶矽層102之結晶矽內所期望主動層之邊界上方但接近該邊界。此外,結晶矽層102之部分102'所經受之所植入金屬離子之能量以及所植入金屬離子之劑量可經選擇以降低或最小化結晶矽層102中之所謂「範圍末端」或「EOR」缺陷。因此,可在結晶矽層102內鄰近其主要表面103形成所選層厚度小於結晶矽層102之初始層厚度TI(圖2)的金屬矽化物層112。 Referring to Figure 7, in some embodiments, as represented by the pointing arrow 108, metal ions can be implanted through the major surface 103 into the portion 102' of the crystalline germanium layer 102 to convert the crystalline germanium in the portion 102' to metal. Telluride 112. The energy of the metal ions can be selectively set such that metal ions are implanted from the primary surface 103 into the crystalline germanium layer 102 for a selected depth D. The depth D can be selected to be positioned above, but close to, the boundary of the desired active layer within the crystalline germanium of the crystalline germanium layer 102. In addition, the energy of the implanted metal ions and the dose of implanted metal ions experienced by portion 102' of crystalline germanium layer 102 can be selected to reduce or minimize the so-called "range end" or "EOR" in crystalline germanium layer 102. "defect. Thus, a metal telluride layer 112 having a selected layer thickness less than the initial layer thickness T I (FIG. 2) of the crystalline germanium layer 102 can be formed adjacent to its major surface 103 within the crystalline germanium layer 102.

植入結晶矽層102中之金屬離子可包含元素金屬離子。該等元素金屬離子可包含與結晶矽層102中之矽原子一起形成金屬矽化物112之元素。舉例而言,若金屬矽化物112包含矽化鎳(例如Ni2Si),則金屬離子可包含鎳離子。若金屬矽化物112包含矽化鈦(例如TiSi2),則金屬離子可包含鈦離子。若金屬矽化物112包含矽化鎢(例如WSi2),則金屬離子可包含鎢離子。作為另一實例,若金屬矽化物112包含矽化鈷(例如CoSi2),則金屬離子可包含鈷離子。金屬矽化物112可在將金屬離子植入結晶矽層102中時形成,無需進一步處理來形成金屬矽化物112。在其他實施例中,在將金屬離子植入半導體材料層102之部分 102'中後,可對該結構進行退火製程(例如高溫)以形成金屬矽化物112。 The metal ions implanted in the crystalline germanium layer 102 may contain elemental metal ions. The elemental metal ions may comprise an element that forms a metal telluride 112 together with the germanium atoms in the crystalline germanium layer 102. For example, if the metal telluride 112 comprises nickel telluride (eg, Ni 2 Si), the metal ion can comprise nickel ions. If the metal silicide 112 comprises a titanium silicide (e.g. TiSi 2), the metal ions comprise titanium ions. If the metal telluride 112 comprises tungsten telluride (eg, WSi 2 ), the metal ion may comprise tungsten ions. ] As another example, if the metal silicide comprises COSI 112 (e.g., CoSi 2), the metal ion may comprise cobalt ions. Metal telluride 112 can be formed when metal ions are implanted into crystalline germanium layer 102 without further processing to form metal germanide 112. In other embodiments, after metal ions are implanted into portion 102' of semiconductor material layer 102, the structure can be annealed (eg, at a high temperature) to form metal telluride 112.

參看圖8,在其他實施例中,可在結晶矽層102上沈積金屬層114以形成結構116,隨後在高溫下使結構116退火以使金屬114之金屬元素或元素擴散至結晶矽層102中且形成金屬矽化物112,藉此在結晶矽層102之部分102'中形成金屬矽化物112(圖3)。 Referring to FIG. 8, in other embodiments, a metal layer 114 may be deposited over the crystalline germanium layer 102 to form the structure 116, followed by annealing the structure 116 at elevated temperatures to diffuse metal elements or elements of the metal 114 into the crystalline germanium layer 102. A metal halide 112 is formed whereby metal halide 112 (Fig. 3) is formed in portion 102' of crystalline germanium layer 102.

舉例而言,金屬層114可包含鈦、鎳、鎢及鈷中之一或多者的層。金屬層114之平均層厚度可為例如約十奈米(10nm)至數微米或數微米以上。 For example, metal layer 114 can comprise a layer of one or more of titanium, nickel, tungsten, and cobalt. The average layer thickness of the metal layer 114 may be, for example, about ten nanometers (10 nm) to several micrometers or more.

退火製程可在熔爐中進行。在一些實施例中,退火製程可包含快速熱退火(RTA)製程、快速退火製程或雷射退火製程。退火製程可在所選溫度下進行所選時間以控制金屬元素在結晶矽層102中之擴散深度及由此控制其中形成之所得金屬矽化物層112之厚度。應注意,矽化可藉由高度摻雜矽而變慢。因此,在一些實施例中,結晶矽層102之一部分可高度摻雜(例如N摻雜或P摻雜)且摻雜部分可充當矽化製程之障壁。可選擇性控制摻雜部分之厚度,或至少結晶矽層102內摻雜矽區之位置,以選擇性控制金屬矽化物112在結晶矽層102中之形成深度。 The annealing process can be carried out in a furnace. In some embodiments, the annealing process can include a rapid thermal annealing (RTA) process, a rapid annealing process, or a laser annealing process. The annealing process can be performed at a selected temperature for a selected time to control the diffusion depth of the metal element in the crystalline germanium layer 102 and thereby control the thickness of the resulting metal germanide layer 112 formed therein. It should be noted that deuteration can be slowed by highly doped enthalpy. Thus, in some embodiments, a portion of the crystalline germanium layer 102 can be highly doped (eg, N-doped or P-doped) and the doped portion can act as a barrier to the deuteration process. The thickness of the doped portion, or at least the location of the doped germanium region in the crystalline germanium layer 102, can be selectively controlled to selectively control the depth of formation of the metal germanide 112 in the crystalline germanium layer 102.

若退火製程後仍剩餘任何金屬層114,則金屬層114之剩餘部分可使用例如拋光製程、蝕刻製程、離子修整製程或該等製程之組合加以移除,隨後進行進一步處理。 If any metal layer 114 remains after the annealing process, the remainder of the metal layer 114 can be removed using, for example, a polishing process, an etching process, an ion trim process, or a combination of such processes, followed by further processing.

在一些實施例中,用於形成金屬矽化物112之製程可在相對低溫下進行以避免無意破壞結晶矽層102之其他部分及/或其中任何主動裝置結構。舉例而言,可在約攝氏七百度(700℃)或700℃以下、約攝氏五百度(500℃)或500℃以下或甚至約攝氏三百度(300℃)或300℃以下之溫度下在部分102'中形成金屬矽化物112。舉例而言,可在約300℃ 之溫度下形成矽化鎳(例如Ni2Si),且可在約400℃與約500℃之間之溫度下形成矽化鈦(例如TiSi2)。 In some embodiments, the process for forming the metal telluride 112 can be performed at relatively low temperatures to avoid unintentional destruction of other portions of the crystalline germanium layer 102 and/or any active device structure therein. For example, it may be in a portion of about seven degrees Celsius (700 ° C) or less than 700 ° C, about five degrees Celsius (500 ° C) or less than 500 ° C or even about three degrees Celsius (300 ° C) or less than 300 ° C. Metal halide 112 is formed in 102'. For example, nickel telluride (e.g., Ni 2 Si) can be formed at a temperature of about 300 ° C, and titanium telluride (e.g., TiSi 2 ) can be formed at a temperature between about 400 ° C and about 500 ° C.

參看圖4,在於結晶矽層102之部分102'(圖2)中形成金屬矽化物112(圖3)後,可使用相對於結晶矽對金屬矽化物112具選擇性之蝕刻劑蝕刻且移除金屬矽化物112而形成半導體結構120。換言之,可選擇將以第一蝕刻速率蝕刻部分102'中之金屬矽化物112的蝕刻劑,該第一蝕刻速率高於該蝕刻劑將蝕刻結晶矽層102之第二蝕刻速率。第一蝕刻速率可為第二蝕刻速率之至少約十(10)倍、第二蝕刻速率之至少約一百(100)倍或在一些實施例中甚至為第二蝕刻速率之至少約一千(1,000)倍。在此組態中,結晶矽層102可在用於移除上覆金屬矽化物112之蝕刻製程中充當蝕刻終止層。換言之,隨著金屬矽化物112以第一蝕刻速率自主要暴露表面103逐漸經移除,當金屬矽化物112至少實質上經移除且下伏結晶矽表面暴露時,蝕刻製程將有效地停止,因為蝕刻速率將顯著降至較慢第二蝕刻速率。 Referring to FIG. 4, after the metal halide 112 (FIG. 3) is formed in the portion 102' (FIG. 2) of the crystalline germanium layer 102, it can be etched and removed using an etchant selective to the metal germanide 112 relative to the crystalline germanium. The metal halide 112 forms a semiconductor structure 120. In other words, an etchant that etches the metal germanide 112 in the portion 102' at a first etch rate may be selected that is higher than a second etch rate at which the etchant will etch the crystalline germanium layer 102. The first etch rate can be at least about ten (10) times the second etch rate, at least about one hundred (100) times the second etch rate, or in some embodiments at least about one thousand of the second etch rate ( 1,000) times. In this configuration, the crystalline germanium layer 102 can serve as an etch stop layer in an etch process for removing the overlying metal germanide 112. In other words, as the metal telluride 112 is gradually removed from the primary exposed surface 103 at a first etch rate, the etch process will effectively stop when the metal telluride 112 is at least substantially removed and the underlying crystalline ruthenium surface is exposed. Because the etch rate will drop significantly to the slower second etch rate.

用於蝕刻金屬矽化物112之蝕刻製程可包含濕式蝕刻製程、乾式蝕刻製程(例如電漿蝕刻製程)或電化蝕刻製程。 The etching process for etching the metal germanide 112 may include a wet etching process, a dry etching process (such as a plasma etching process), or an electrochemical etching process.

蝕刻製程中所用之蝕刻劑的組成將取決於金屬矽化物112及結晶矽之組成。此項技術中已知用於結晶矽之多種適合蝕刻劑且該等蝕刻劑可用於本發明之實施例中。作為一個非限制性實例,蝕刻劑可包含氫氟酸(HF)。在該等實施例中,HF可能經稀釋或可能不經稀釋,且可呈液態或氣態。在一些實施例中,蝕刻劑可包含經緩衝氫氟酸(BHF)。 The composition of the etchant used in the etching process will depend on the composition of the metal halide 112 and the crystalline germanium. A wide variety of suitable etchants for crystallizing ruthenium are known in the art and such etchants can be used in embodiments of the present invention. As a non-limiting example, the etchant can comprise hydrofluoric acid (HF). In such embodiments, HF may or may not be diluted and may be in a liquid or gaseous state. In some embodiments, the etchant can comprise buffered hydrofluoric acid (BHF).

在一些實施例中,用於移除金屬矽化物112之蝕刻製程可在約攝氏一百度(100℃)或100℃以下、約攝氏五十度(50℃)或50℃以下或甚至約攝氏二十五度(25℃)或25℃以下之溫度下進行。因此,蝕刻製程可在室溫或在一些實施例中甚至低於室溫下進行。該等實施例可特別 用於結晶矽層102包括預先製造之主動裝置結構之情況,如下文參考圖11至圖15更詳細論述。 In some embodiments, the etching process for removing the metal telluride 112 can be at about one hundred degrees Celsius (100 ° C) or below, below about fifty degrees (50 ° C) or below 50 ° C or even about two degrees Celsius It is carried out at a temperature of fifteen degrees (25 ° C) or below 25 ° C. Thus, the etching process can be performed at room temperature or in some embodiments even below room temperature. These embodiments may be special The case where the crystalline germanium layer 102 comprises a pre-fabricated active device structure is discussed in more detail below with reference to Figures 11-15.

繼續參考圖4,在藉由將結晶矽層102之一部分102'(圖2)轉化為金屬矽化物112(圖3)且隨後移除金屬矽化物112使結晶矽層102變薄後,結晶矽層102之最終平均層厚度TF將小於結晶矽層102之初始平均層厚度TI(圖2)。在一些實施例中,移除金屬矽化物112後可形成結晶矽層102,其最終平均層厚度TF為約五百奈米(500nm)或500nm以下、約一百奈米(100nm)或100nm以下或甚至約五十奈米(50nm)或50nm以下。 With continued reference to FIG. 4, after the crystalline germanium layer 102 is thinned by converting a portion 102' of the crystalline germanium layer 102 (FIG. 2) to the metal germanide 112 (FIG. 3) and subsequently removing the metal germanide 112, the germanium is crystallized. The final average layer thickness T F of layer 102 will be less than the initial average layer thickness T I of crystalline germanium layer 102 (Fig. 2). In some embodiments, the removal of the metal telluride 112 may form a crystalline germanium layer 102 having a final average layer thickness T F of about five hundred nanometers (500 nm) or less, about one hundred nanometers (100 nm) or 100 nm. Below or even about 50 nm (50 nm) or below 50 nm.

在一些實施例中,移除金屬矽化物112後,結晶矽層102之主要暴露表面103的平均表面粗糙度(Ra)可為約五奈米(5nm)或5nm以下或甚至約二奈米(2nm)或2nm以下。視情況,在使結晶矽層102變薄後,可使結晶矽層102之主要暴露表面103變平滑而使主要暴露表面103之表面粗糙度降至所需或所要之該等值。 In some embodiments, after removal of the metal halide 112, the average exposed surface roughness (Ra) of the predominantly exposed surface 103 of the crystalline germanium layer 102 can be about five nanometers (5 nm) or less, or even about two nanometers ( 2 nm) or less. Optionally, after thinning the crystalline germanium layer 102, the major exposed surface 103 of the crystalline germanium layer 102 can be smoothed to reduce the surface roughness of the primary exposed surface 103 to the desired or desired value.

舉例而言,可使用濕式清洗製程、化學-機械拋光(CMP)製程、電漿清洗製程及離子修整製程中之一或多者使主要暴露表面103變平滑。作為一非限制性實例,主要暴露表面103可經歷此項技術中稱為「SC-1」清洗製程之清洗製程及/或此項技術中稱為「SC-2」清洗製程之清洗製程。在SC-1製程中,可在約攝氏七十五度(75℃)至約攝氏八十度(80℃)之溫度下用氫氧化銨(NH4OH)、過氧化氫(H2O2)及水(H2O)之1:1:5溶液清洗半導體結構120,繼而在約攝氏二十五度(25℃)之溫度下用氫氟酸(HF)與水(H2O)之1:50溶液清洗。可在各清洗步驟之前及之後用去離子水沖洗半導體結構120。在SC-2製程中,可在約攝氏七十五度(75℃)至約攝氏八十度(80℃)之溫度下用鹽酸(HCl)、過氧化氫(H2O2)及水(H2O)之1:1:6溶液清洗半導體結構120。同樣,可在各清洗步驟之前及之後用去離子水沖洗半導體結構120。在其他實施 例中,可使用臭氧清洗結晶矽層102之主要表面103。 For example, the primary exposed surface 103 can be smoothed using one or more of a wet cleaning process, a chemical-mechanical polishing (CMP) process, a plasma cleaning process, and an ion conditioning process. As a non-limiting example, the primary exposed surface 103 may undergo a cleaning process known in the art as the "SC-1" cleaning process and/or a cleaning process referred to in the art as the "SC-2" cleaning process. In the SC-1 process, ammonium hydroxide (NH 4 OH), hydrogen peroxide (H 2 O 2 ) can be used at temperatures ranging from about 75 degrees Celsius (75 ° C) to about 80 degrees Celsius (80 ° C). And the water (H 2 O) 1:1:5 solution cleans the semiconductor structure 120, and then uses hydrofluoric acid (HF) and water (H 2 O) at a temperature of about 25 degrees Celsius (25 ° C) 1:50 solution cleaning. The semiconductor structure 120 can be rinsed with deionized water before and after each cleaning step. In the SC-2 process, hydrochloric acid (HCl), hydrogen peroxide (H 2 O 2 ) and water can be used at temperatures ranging from about 75 degrees Celsius (75 ° C) to about 80 degrees Celsius (80 ° C). The semiconductor structure 120 is cleaned by a 1:1:6 solution of H 2 O). Likewise, the semiconductor structure 120 can be rinsed with deionized water before and after each cleaning step. In other embodiments, the major surface 103 of the crystalline germanium layer 102 can be cleaned using ozone.

如先前所述,圖4中所示之半導體結構120可包含絕緣體上矽(SOI)型基板。半導體結構120可用於製造多個各種不同類型半導體裝置(包含結晶矽層102之一或多個部分)中之任一者。該等半導體裝置包括例如電子信號處理器、記憶體裝置、發光二極體、雷射二極體、光電池等。 As previously described, the semiconductor structure 120 shown in FIG. 4 can comprise a silicon-on-insulator (SOI) type substrate. The semiconductor structure 120 can be used to fabricate any of a variety of different types of semiconductor devices, including one or more portions of the crystalline germanium layer 102. Such semiconductor devices include, for example, electronic signal processors, memory devices, light emitting diodes, laser diodes, photovoltaic cells, and the like.

參看圖5,為製造該等半導體裝置,可在結晶矽層102上及/或結晶矽層102中製造主動裝置結構122以形成半導體結構130。該等主動裝置結構122可包含例如PN結、電晶體、導線及傳導通道中之一或多者。 Referring to FIG. 5, to fabricate the semiconductor devices, an active device structure 122 can be fabricated on the crystalline germanium layer 102 and/or the crystalline germanium layer 102 to form the semiconductor structure 130. The active device structures 122 can include one or more of, for example, a PN junction, a transistor, a wire, and a conductive channel.

視情況,可在結晶矽層102中及/或結晶矽層102上形成之主動裝置結構122上提供主動裝置結構122的各種額外層。舉例而言,圖6說明另一半導體結構140,其包括在結晶矽層102中及/或結晶矽層102上形成之主動裝置結構122上提供的兩個額外層124A、124B。該等額外層124A、124B可藉由沈積或磊晶生長結晶矽之額外層且在各個別結晶矽層中形成額外主動裝置結構122而形成。在其他實施例中,該等額外層124A、124B可分別製造且隨後使用3D整合製程轉移且黏合在結晶矽層102上。 Various additional layers of the active device structure 122 may be provided on the active device structure 122 formed in the crystalline germanium layer 102 and/or the crystalline germanium layer 102, as appropriate. For example, FIG. 6 illustrates another semiconductor structure 140 that includes two additional layers 124A, 124B provided on the active device structure 122 formed in the crystalline germanium layer 102 and/or the crystalline germanium layer 102. The additional layers 124A, 124B may be formed by depositing or epitaxially growing additional layers of crystalline germanium and forming additional active device structures 122 in the respective crystalline germanium layers. In other embodiments, the additional layers 124A, 124B can be separately fabricated and subsequently transferred and bonded to the crystalline germanium layer 102 using a 3D integrated process.

再參看圖1,在一些實施例中,初始半導體結構100可藉由將結晶矽層102自供體結構轉移至包含基板104之接受結構而提供。舉例而言(但不限制),可使用此項技術中稱為SMART-CUT®製程之製程將結晶矽層102自供體結構轉移至基板104。SMART-CUT®製程描述於例如Bruel之美國專利第RE39,484號(2007年2月6日頒佈)、Aspar等人之美國專利第6,303,468號(2001年10月16日頒佈)、Aspar等人之美國專利第6,335,258號(2002年1月1日頒佈)、Moriceau等人之美國專利第6,756,286號(2004年6月29日頒佈)、Aspar等人之美國專利第6,809,044 號(2004年10月26日頒佈)及Aspar等人之美國專利第6,946,365號(2005年9月20日)中。 Referring again to FIG. 1, in some embodiments, the initial semiconductor structure 100 can be provided by transferring the crystalline germanium layer 102 from the donor structure to a receiving structure comprising the substrate 104. By way of example and not limitation, the crystalline germanium layer 102 can be transferred from the donor structure to the substrate 104 using a process known in the art as the SMART-CUT® process. The SMART-CUT® process is described in, for example, U.S. Patent No. RE39, 484, issued to Bruel, issued on Feb. 6, 2007, issued to U.S. Patent No. 6,303,468, issued to Aspar et al. U.S. Patent No. 6,335,258 (issued Jan. 1, 2002), U.S. Patent No. 6,756,286 to Moriceau et al. (issued on June 29, 2004), and U.S. Patent No. 6,809,044 to Aspar et al. No. 6,946,365 (September 20, 2005) to Aspar et al.

下文參考圖9及圖10簡單描述SMART-CUT®製程。參看圖9,可將複數種離子(例如氫、氦或惰性氣體離子中之一或多者)沿離子植入平面202植入供體結構200中。供體結構200可包含塊狀結晶矽(例如單晶矽)。圖9中藉由指向箭頭204呈現離子植入。沿離子植入平面202植入之離子在供體結構200內界定薄弱平面,供體結構200隨後可沿該平面破裂或以其他方式斷裂。如此項技術中已知,離子在供體結構200中之植入深度至少部分隨離子植入供體結構200中所用之能量變化。一般而言,用較小能量植入之離子將植入相對較淺之深度,而用較高能量植入之離子將植入相對較深之深度。 The SMART-CUT® process is briefly described below with reference to FIGS. 9 and 10. Referring to FIG. 9, a plurality of ions (eg, one or more of hydrogen, helium or inert gas ions) can be implanted into the donor structure 200 along the ion implantation plane 202. The donor structure 200 can comprise bulk crystalline germanium (eg, single crystal germanium). Ion implantation is presented in Figure 9 by pointing arrow 204. Ions implanted along the ion implantation plane 202 define a weak plane within the donor structure 200 along which the donor structure 200 can then rupture or otherwise break. As is known in the art, the depth of implantation of ions in the donor structure 200 varies, at least in part, with the energy used in ion implantation of the donor structure 200. In general, ions implanted with less energy will be implanted at a relatively shallow depth, while ions implanted with higher energy will be implanted at a relatively deeper depth.

參看圖10,將供體結構200黏合至包含基板104之另一接受結構,之後供體結構200沿離子植入平面202破裂或以其他方式斷裂。為將供體結構200黏合至基板104,可氧化供體結構200及基板104之黏合表面以在其上提供氧化物材料層,且可使氧化物層直接實體接觸從而在基板104與供體結構200之間建立氧化物-氧化物直接分子鍵。如圖10所示,黏合之氧化物層一起形成中間層106。在其他實施例中,中間層106可包含藉由在該等材料之兩個層之間建立直接分子鍵而形成之金屬或半導體材料。 Referring to Figure 10, the donor structure 200 is bonded to another receiving structure comprising the substrate 104, after which the donor structure 200 is broken or otherwise broken along the ion implantation plane 202. To bond the donor structure 200 to the substrate 104, the bonding surface of the donor structure 200 and the substrate 104 can be oxidized to provide an oxide material layer thereon, and the oxide layer can be directly in physical contact between the substrate 104 and the donor structure. An oxide-oxide direct molecular bond is established between 200. As shown in FIG. 10, the bonded oxide layers together form an intermediate layer 106. In other embodiments, the intermediate layer 106 can comprise a metal or semiconductor material formed by establishing a direct molecular bond between two layers of the materials.

黏合製程後,黏合之供體結構200可沿離子植入平面202破裂或以其他方式斷裂而形成圖1中所示之結構。舉例而言,可加熱供體結構200及接受結構而使供體結構200沿離子植入平面202斷裂。視情況,可向供體結構200施加機械力以有助於供體結構200沿離子植入平面202破裂。 After the bonding process, the bonded donor structure 200 can be broken or otherwise broken along the ion implantation plane 202 to form the structure shown in FIG. For example, the donor structure 200 and the receiving structure can be heated to break the donor structure 200 along the ion implantation plane 202. Mechanical forces may be applied to the donor structure 200 to assist in rupturing the donor structure 200 along the ion implantation plane 202, as appropriate.

在供體結構200已沿離子植入平面202破裂或以其他方式斷裂後,供體結構200之一部分仍黏合於接受結構之基板104,該部分界定 圖1中所示之結晶矽層102。供體結構200之其餘部分可再用於其他SMART-CUT®製程中以將供體結構200之其他部分轉移至接受結構。 After the donor structure 200 has been broken or otherwise broken along the ion implantation plane 202, a portion of the donor structure 200 remains bonded to the substrate 104 of the receiving structure, which portion defines The crystalline germanium layer 102 shown in FIG. The remainder of the donor structure 200 can be reused in other SMART-CUT® processes to transfer other portions of the donor structure 200 to the receiving structure.

斷裂製程後,結晶矽層102之主要暴露表面103包含供體結構200之斷裂表面且可在結晶矽層102之晶格中包括離子雜質及缺陷。結晶矽層102可經處理以試圖在結晶矽層102中降低雜質含量且改良晶格品質(亦即降低接近主要暴露表面103之晶格中的缺陷數)。該等處理可包括研磨、拋光、蝕刻及熱退火中之一或多者。 After the rupture process, the major exposed surface 103 of the crystallization layer 102 includes the fracture surface of the donor structure 200 and may include ionic impurities and defects in the crystal lattice of the crystallization layer 102. The crystalline germanium layer 102 can be treated to attempt to reduce the impurity content in the crystalline germanium layer 102 and to improve the lattice quality (i.e., reduce the number of defects in the crystal lattice near the primary exposed surface 103). Such treatments may include one or more of grinding, polishing, etching, and thermal annealing.

在其他實施例中,可藉由在基板104及中間層106上磊晶生長或以其他方式沈積結晶矽層102、或藉由在基板104及中間層106上黏合塊狀結晶矽且隨後使用研磨製程、拋光製程及蝕刻製程(例如化學-機械拋光製程)中之一或多者使塊狀結晶矽變薄至初始平均層厚度TI而在基板104上提供結晶矽層102。 In other embodiments, the crystalline germanium layer 102 can be epitaxially grown or otherwise deposited on the substrate 104 and the intermediate layer 106, or by blocking the bulk crystalline germanium on the substrate 104 and the intermediate layer 106 and then using abrading. One or more of the process, the polishing process, and the etching process (eg, a chemical-mechanical polishing process) thin the bulk crystalline germanium to an initial average layer thickness T I to provide a crystalline germanium layer 102 on the substrate 104.

在一些實施例中,結晶矽層102可經選擇以在其中包含主動裝置結構122,隨後參考圖3及圖4執行上述變薄製程。下文參考圖11至圖15描述該等方法。 In some embodiments, the crystalline germanium layer 102 can be selected to include the active device structure 122 therein, followed by performing the thinning process described above with reference to FIGS. 3 and 4. These methods are described below with reference to FIGS. 11 through 15.

圖11說明包括結晶矽層102及在結晶矽102上及/或結晶矽102中形成之主動裝置結構122的半導體結構300。主動裝置結構122可包含例如PN結、電晶體、導線及傳導通道中之一或多者。在一些實施例中,主動裝置結構122可內埋在結晶矽層102內。在一些實施例中,可在層轉移製程中將其中具有主動裝置結構122之結晶矽層102轉移且黏合至基板104。 11 illustrates a semiconductor structure 300 including a crystalline germanium layer 102 and an active device structure 122 formed on crystalline germanium 102 and/or crystalline germanium 102. The active device structure 122 can include one or more of, for example, a PN junction, a transistor, a wire, and a conductive channel. In some embodiments, the active device structure 122 can be embedded within the crystalline germanium layer 102. In some embodiments, the crystalline germanium layer 102 having the active device structure 122 therein can be transferred and bonded to the substrate 104 in a layer transfer process.

如圖12所示,在使結晶矽層102變薄前,可視情況如先前參考圖2所述使結晶矽層102之主要暴露表面103變平滑。可使用例如機械研磨或拋光製程、化學蝕刻製程及化學-機械拋光(CMP)製程中之一或多者使主要暴露表面103變平滑。 As shown in FIG. 12, prior to thinning the crystalline germanium layer 102, the primary exposed surface 103 of the crystalline germanium layer 102 can be smoothed as previously described with reference to FIG. The primary exposed surface 103 can be smoothed using one or more of, for example, a mechanical grinding or polishing process, a chemical etching process, and a chemical-mechanical polishing (CMP) process.

可使結晶矽層102之一部分102'轉化為金屬矽化物112以形成圖13 中所示之半導體結構300。舉例而言(但不限制),金屬矽化物112可使用先前參考圖7及圖8描述之方法形成。在結晶矽層102包含主動裝置結構122之實施例中,可在約攝氏七百度(700℃)或700℃以下、約攝氏五百度(500℃)或500℃以下或甚至約攝氏三百度(300℃)或300℃以下之溫度下在部分102'中形成金屬矽化物112以避免破壞先前形成之主動裝置結構122。 A portion 102' of the crystalline germanium layer 102 can be converted to a metal germanide 112 to form Figure 13. The semiconductor structure 300 is shown. By way of example, but not limitation, metal telluride 112 can be formed using the methods previously described with reference to Figures 7 and 8. In an embodiment in which the crystalline germanium layer 102 includes the active device structure 122, it may be about seven hundred degrees Celsius (700 ° C) or less, less than five degrees Celsius (500 ° C) or less than 500 ° C or even about three degrees Celsius (300 degrees Celsius). The metal telluride 112 is formed in the portion 102' at a temperature of or below 300 °C to avoid damaging the previously formed active device structure 122.

在半導體材料層102中形成金屬矽化物112後,可如先前參考圖4所述使用蝕刻製程移除金屬矽化物112以形成圖14中所示之半導體結構310。因此,可使結晶矽層102自圖12中所示之初始平均層厚度TI變薄至圖14中所示之所選最終平均層厚度TFAfter the metal germanide 112 is formed in the semiconductor material layer 102, the metal germanide 112 can be removed using an etching process as previously described with reference to FIG. 4 to form the semiconductor structure 310 shown in FIG. Therefore, the crystallization layer 102 can be thinned from the initial average layer thickness T I shown in FIG. 12 to the selected final average layer thickness T F shown in FIG.

視情況,可在主動裝置結構122及結晶矽層102上提供主動裝置結構122的各種額外層。舉例而言,圖15說明另一半導體結構320,其包括在主動裝置結構122及結晶矽層102上提供的三個額外層124A、124B、124C。該等額外層124A、124B、124C可藉由沈積或磊晶生長結晶矽之額外層且在各個別結晶矽層中形成額外主動裝置結構122而形成。在其他實施例中,該等額外層124A、124B、124C可分別製造且隨後使用3D整合製程轉移且黏合在結晶矽層102上。 Various additional layers of the active device structure 122 may be provided on the active device structure 122 and the crystalline germanium layer 102, as appropriate. For example, FIG. 15 illustrates another semiconductor structure 320 that includes three additional layers 124A, 124B, 124C provided on active device structure 122 and crystalline germanium layer 102. The additional layers 124A, 124B, 124C may be formed by depositing or epitaxially growing additional layers of crystalline germanium and forming additional active device structures 122 in the respective crystalline germanium layers. In other embodiments, the additional layers 124A, 124B, 124C can be fabricated separately and subsequently transferred and bonded to the crystalline germanium layer 102 using a 3D integrated process.

下文闡述本發明之其他非限制性例示性實施例: Other non-limiting, exemplary embodiments of the invention are set forth below:

實施例1:一種製造半導體裝置之方法,其包含:在接受結構上提供結晶矽層;在結晶矽中鄰近結晶矽層之主要暴露表面的一部分中形成金屬矽化物;及使用相對於結晶矽對金屬矽化物具選擇性之蝕刻劑蝕刻金屬矽化物。 Embodiment 1 : A method of fabricating a semiconductor device, comprising: providing a crystalline germanium layer on a receiving structure; forming a metal telluride in a portion of a main exposed surface of the crystalline germanium adjacent to the crystalline germanium layer; and using a pair of crystalline germanium The metal telluride has a selective etchant to etch the metal halide.

實施例2:如實施例1之方法,其中在接受結構上提供結晶矽層包含將結晶矽層自供體結構轉移至接受結構。 Embodiment 2: The method of Embodiment 1, wherein providing the crystalline germanium layer on the accepting structure comprises transferring the crystalline germanium layer from the donor structure to the accepting structure.

實施例3:如實施例2之方法,其進一步包含選擇結晶矽層以包含主動裝置結構。 Embodiment 3: The method of Embodiment 2, further comprising selecting the crystalline germanium layer to comprise the active device structure.

實施例4:如實施例3之方法,其另外包含選擇結晶矽層以包括PN結、電晶體、導線及傳導通道中之一或多者。 Embodiment 4: The method of Embodiment 3, further comprising selecting the crystalline germanium layer to include one or more of a PN junction, a transistor, a wire, and a conductive channel.

實施例5:如實施例1至4中任一項之方法,其進一步包含選擇結晶矽以包含單晶矽。 The method of any one of embodiments 1 to 4, further comprising selecting the crystalline ruthenium to comprise a single crystal ruthenium.

實施例6:如實施例1至5中任一項之方法,其中在結晶矽中鄰近結晶矽層之主要暴露表面的部分中形成金屬矽化物包含:在結晶矽層之主要暴露表面上沈積金屬;及使所沈積金屬及結晶矽層退火以形成金屬矽化物。 The method of any one of embodiments 1 to 5, wherein the forming of the metal telluride in the portion of the crystalline germanium adjacent to the predominantly exposed surface of the crystalline germanium layer comprises: depositing a metal on the predominantly exposed surface of the crystalline germanium layer And annealing the deposited metal and the crystalline germanium layer to form a metal telluride.

實施例7:如實施例1至5中任一項之方法,其中在結晶矽中鄰近結晶矽層之主要暴露表面的部分中形成金屬矽化物包含將金屬離子植入結晶矽中以形成金屬矽化物。 The method of any one of embodiments 1 to 5, wherein forming a metal halide in a portion of the crystalline germanium adjacent to the predominantly exposed surface of the crystalline germanium layer comprises implanting metal ions into the crystalline germanium to form a metal germanium Things.

實施例8:如實施例7之方法,其進一步包含選擇金屬離子以包含鈦、鎳、鈷及鎢中之至少一者。 Embodiment 8. The method of Embodiment 7, further comprising selecting a metal ion to comprise at least one of titanium, nickel, cobalt, and tungsten.

實施例9:如實施例1至8中任一項之方法,其中在結晶矽之該部分中形成金屬矽化物包含在約700℃或700℃以下之溫度下在結晶矽之該部分中形成金屬矽化物。 The method of any one of embodiments 1 to 8, wherein the forming of the metal halide in the portion of the crystalline germanium comprises forming a metal in the portion of the crystalline germanium at a temperature of about 700 ° C or less. Telluride.

實施例10:如實施例9之方法,其中在約700℃或700℃以下之溫度下在結晶矽之該部分中形成金屬矽化物包含在約500℃或500℃以下之溫度下在結晶矽之該部分中形成金屬矽化物。 Embodiment 10: The method of Embodiment 9, wherein the forming of the metal halide in the portion of the crystalline germanium at a temperature of about 700 ° C or less comprises crystallization at a temperature of about 500 ° C or less. A metal halide is formed in this portion.

實施例11:如實施例10之方法,其中在約500℃或500℃以下之溫度下在結晶矽之該部分中形成金屬矽化物包含在約300℃或300℃以下之溫度下在結晶矽之該部分中形成金屬矽化物。 Embodiment 11: The method of Embodiment 10, wherein the forming of the metal halide in the portion of the crystalline germanium at a temperature of about 500 ° C or less comprises crystallization at a temperature of about 300 ° C or less. A metal halide is formed in this portion.

實施例12:如實施例1至11中任一項之方法,其中蝕刻金屬矽化物包含使用濕式蝕刻製程、乾式蝕刻製程及電化蝕刻製程中之一或多者蝕刻金屬矽化物。 The method of any one of embodiments 1 to 11, wherein etching the metal halide comprises etching the metal halide using one or more of a wet etching process, a dry etching process, and an electrochemical etching process.

實施例13:如實施例1至12中任一項之方法,其中蝕刻金屬矽化 物包含至少實質上移除金屬矽化物且暴露結晶矽之表面。 Embodiment 13: The method of any one of embodiments 1 to 12, wherein the metal is etched The object comprises a surface that at least substantially removes the metal halide and exposes the crystalline germanium.

實施例14:如實施例13之方法,其進一步包含使用濕式清洗製程、化學-機械拋光製程、電漿清洗製程及離子修整製程中之一或多者使結晶矽之表面變平滑。 Embodiment 14: The method of Embodiment 13, further comprising smoothing the surface of the crystalline crucible using one or more of a wet cleaning process, a chemical-mechanical polishing process, a plasma cleaning process, and an ion conditioning process.

實施例15:如實施例1至14中任一項之方法,其中蝕刻金屬矽化物包含在約攝氏一百度(100℃)或100℃以下之溫度下蝕刻金屬矽化物。 The method of any one of embodiments 1 to 14, wherein etching the metal telluride comprises etching the metal telluride at a temperature of about one hundred degrees Celsius (100 ° C) or less.

實施例16:如實施例15中任一項之方法,其中在約攝氏一百度(100℃)或100℃以下之溫度下蝕刻金屬矽化物包含在約攝氏二十五度(25℃)或25℃以下之溫度下蝕刻金屬矽化物。 The method of any one of the preceding embodiments, wherein the etching of the metal halide at a temperature of about one hundred degrees Celsius (100 ° C) or less is comprised at about twenty-five degrees Celsius (25 ° C) or 25 The metal telluride is etched at a temperature below °C.

實施例17:如實施例1至16中任一項之方法,其中使用相對於結晶矽對金屬矽化物具選擇性之蝕刻劑蝕刻金屬矽化物包含用HF蝕刻金屬矽化物。 The method of any one of embodiments 1 to 16, wherein etching the metal halide using an etchant selective to the metal telluride relative to the crystalline germanium comprises etching the metal germanide with HF.

實施例18:如實施例1至17中任一項之方法,其進一步包含形成SOI型基板,該基板包含結晶矽、接受結構及其間之介電層。 The method of any one of embodiments 1 to 17, further comprising forming an SOI-type substrate comprising a crystalline germanium, a receiving structure, and a dielectric layer therebetween.

實施例19:如實施例1至18中任一項之方法,其進一步包含形成包含結晶矽之電子信號處理器、記憶體裝置、發光二極體、雷射二極體及光電池中之一或多者。 The method of any one of embodiments 1 to 18, further comprising forming one of an electronic signal processor, a memory device, a light emitting diode, a laser diode, and a photovoltaic cell comprising crystalline germanium or More.

實施例20:如實施例1至19中任一項之方法,其進一步包含形成結晶矽層以在蝕刻金屬矽化物後使平均層厚度為約500nm或500nm以下。 The method of any one of embodiments 1 to 19, further comprising forming a crystalline germanium layer to have an average layer thickness of about 500 nm or less after etching the metal germanide.

實施例21:如實施例20之方法,其進一步包含形成結晶矽層以在蝕刻金屬矽化物後使平均層厚度為約100nm或100nm以下。 Embodiment 21. The method of Embodiment 20, further comprising forming a crystalline germanium layer to have an average layer thickness of about 100 nm or less after etching the metal telluride.

實施例22:如實施例1至21中任一項之方法,其進一步包含在蝕刻金屬矽化物後使結晶矽層之主要暴露表面的平均表面粗糙度Ra為約5.0nm或5.0nm以下。 Example 22: The procedure of Example 1 to 21 any one of which further comprises, after etching of the metal silicide crystal silicon layer of the exposed major surface average surface roughness R a is about 5.0nm 5.0nm or less.

實施例23:如實施例22之方法,其進一步包含在蝕刻金屬矽化物後使結晶矽層之主要暴露表面的平均表面粗糙度Ra為約2.0nm或2.0nm以下。 Example 23: The procedure of Example 22 of the embodiment, further comprising, after etching a metal silicide layer of crystalline silicon so that the exposed major surface average surface roughness R a is about 2.0nm 2.0nm or less.

實施例24:一種形成絕緣體上矽(SOI)基板之方法,其包含:在基板上提供結晶矽層,其中在結晶聚矽氧層與基礎基板之間具有介電材料;及使結晶矽層變薄至約500nm或500nm以下之厚度。使結晶矽層變薄包含:在結晶矽層中鄰近結晶矽層之主要暴露表面的一部分中形成大體上平坦之金屬矽化物層;及使用相對於結晶矽對金屬矽化物層具選擇性之蝕刻劑蝕刻金屬矽化物層。 Embodiment 24: A method of forming a substrate-on-insulator (SOI) substrate, comprising: providing a crystalline germanium layer on a substrate, wherein a dielectric material is provided between the crystalline polyoxynitride layer and the base substrate; and the crystalline germanium layer is changed Thin to a thickness of about 500 nm or less. Thinning the crystalline germanium layer comprises: forming a substantially planar metal germanide layer in a portion of the predominantly exposed surface of the crystalline germanium layer adjacent to the crystalline germanium layer; and etching selective to the metal germanide layer relative to the crystalline germanium layer The agent etches the metal halide layer.

實施例25:如實施例24之方法,其中在結晶矽中鄰近結晶矽層之主要暴露表面的部分中形成金屬矽化物包含:在結晶矽層之主要暴露表面上沈積金屬;及使沈積之金屬及結晶矽層退火以形成金屬矽化物。 Embodiment 25: The method of Embodiment 24, wherein forming a metal halide in a portion of the crystalline germanium adjacent to the predominantly exposed surface of the crystalline germanium layer comprises: depositing a metal on a predominantly exposed surface of the crystalline germanium layer; and depositing the metal And the crystalline germanium layer is annealed to form a metal telluride.

實施例26:如實施例24之方法,其中在結晶矽中鄰近結晶矽層之主要暴露表面的部分中形成金屬矽化物包含將金屬離子植入結晶矽中以形成金屬矽化物。 Embodiment 26: The method of Embodiment 24, wherein forming a metal halide in a portion of the crystalline germanium adjacent to the predominantly exposed surface of the crystalline germanium layer comprises implanting metal ions into the crystalline germanium to form a metal germanide.

實施例27:如實施例26之方法,其進一步包含選擇金屬離子以包含鈦、鎳、鈷及鎢中之至少一者。 Embodiment 27. The method of embodiment 26, further comprising selecting a metal ion to comprise at least one of titanium, nickel, cobalt, and tungsten.

實施例28:如實施例24至27中任一項之方法,其中在結晶矽之該部分中形成金屬矽化物包含在約700℃或700℃以下之溫度下在結晶矽之該部分中形成金屬矽化物。 The method of any one of embodiments 24 to 27, wherein the forming the metal halide in the portion of the crystalline germanium comprises forming a metal in the portion of the crystalline germanium at a temperature of about 700 ° C or less. Telluride.

實施例29:如實施例28之方法,其中在約700℃或700℃以下之溫度下在結晶矽之該部分中形成金屬矽化物包含在約500℃或500℃以下之溫度下在結晶矽之該部分中形成金屬矽化物。 Embodiment 29: The method of Embodiment 28, wherein the forming of the metal halide in the portion of the crystalline germanium at a temperature of about 700 ° C or less comprises crystallization at a temperature of about 500 ° C or less. A metal halide is formed in this portion.

實施例30:如實施例29之方法,其中在約500℃或500℃以下之溫度下在結晶矽之該部分中形成金屬矽化物包含在約300℃或300℃以 下之溫度下在結晶矽之該部分中形成金屬矽化物。 Embodiment 30: The method of Embodiment 29, wherein the forming of the metal halide in the portion of the crystalline germanium at a temperature of about 500 ° C or less is included at about 300 ° C or 300 ° C. A metal telluride is formed in this portion of the crystalline germanium at a lower temperature.

實施例31:如實施例24至30中任一項之方法,其中蝕刻金屬矽化物包含在約攝氏一百度(100℃)或100℃以下之溫度下蝕刻金屬矽化物。 The method of any one of embodiments 24 to 30, wherein etching the metal telluride comprises etching the metal telluride at a temperature of about one hundred degrees Celsius (100 ° C) or less.

實施例32:如實施例31之方法,其中在約攝氏一百度(100℃)或100℃以下之溫度下蝕刻金屬矽化物包含在約攝氏二十五度(25℃)或25℃以下之溫度下蝕刻金屬矽化物。 Embodiment 32: The method of Embodiment 31, wherein the etching of the metal halide at a temperature of about one hundred degrees Celsius (100 ° C) or less is contained at a temperature of about 25 degrees Celsius (25 ° C) or below 25 ° C. The metal halide is etched under.

實施例33:如實施例24至32中任一項之方法,其進一步包含形成結晶矽層以在蝕刻金屬矽化物後使平均層厚度為約100nm或100nm以下。 The method of any one of embodiments 24 to 32, further comprising forming a crystalline germanium layer to have an average layer thickness of about 100 nm or less after etching the metal telluride.

實施例34:如實施例24至33中任一項之方法,其進一步包含在蝕刻金屬矽化物後使結晶矽層之主要暴露表面的平均表面粗糙度Ra為約5.0nm或5.0nm以下。 Example 34: The method of any one of embodiments 24-33, further comprising, after etching a metal silicide layer of crystalline silicon so that the exposed major surface average surface roughness R a is about 5.0nm 5.0nm or less.

實施例35:如實施例34之方法,其進一步包含在蝕刻金屬矽化物後使結晶矽層之主要暴露表面的平均表面粗糙度Ra為約2.0nm或2.0nm以下。 Example 35: The method of embodiment 34, further comprising, after etching a metal silicide layer of crystalline silicon so that the exposed major surface average surface roughness R a is about 2.0nm 2.0nm or less.

上述本發明之例示性實施例不限制本發明之範疇,因為此等實施例僅為本發明實施例之實例,本發明之範疇由隨附申請專利範圍及其合法等效物之範疇界定。任何等效實施例預期均屬於本發明之範疇。實際上,除本文中所示及所述者外,本發明之各種修改(諸如所述元件之替代可用組合)對於熟習此項技術者將由該描述顯而易見。換言之,本文所述之一個例示性實施例的一或多個特徵可與本文所述之另一例示性實施例的一或多個特徵組合以提供本發明之其他實施例。該等修改及實施例亦意欲屬於隨附申請專利範圍之範疇。 The above-described exemplary embodiments of the present invention are not intended to limit the scope of the invention, and the scope of the invention is defined by the scope of the appended claims and their legal equivalents. Any equivalent embodiments are intended to fall within the scope of the invention. In fact, various modifications of the invention, such as alternative combinations of the elements described herein, are apparent to those skilled in the art. In other words, one or more features of one exemplary embodiment described herein can be combined with one or more features of another exemplary embodiment described herein to provide further embodiments of the invention. Such modifications and embodiments are also intended to fall within the scope of the appended claims.

100‧‧‧半導體結構 100‧‧‧Semiconductor structure

102‧‧‧結晶矽層/結晶矽 102‧‧‧ Crystallization layer/crystallization

103‧‧‧暴露表面/主要暴露表面 103‧‧‧ exposed surface/main exposed surface

104‧‧‧基板 104‧‧‧Substrate

106‧‧‧中間層 106‧‧‧Intermediate

109‧‧‧平面 109‧‧‧ plane

Claims (15)

一種製造半導體裝置之方法,其包含:在接受結構上提供結晶矽層;及於在該接受結構上提供該結晶矽層之後,減小該結晶矽層之厚度,減小該厚度包含:在鄰近該結晶矽層之主要暴露表面的一部分結晶矽層中形成一基本上由金屬矽化物構成之層,其中形成該基本上由金屬矽化物構成之層包含向該結晶矽層中植入金屬離子以形成該基本上由金屬矽化物構成之層;及於形成該基本上由金屬矽化物構成之層之後,使用相對於該結晶矽層對該基本上由金屬矽化物構成之層具選擇性之蝕刻劑蝕刻該基本上由金屬矽化物構成之層,該蝕刻劑係以比該基本上由金屬矽化物構成之層移除該結晶矽層之任何蝕刻速度更高的蝕刻速度移除該基本上由金屬矽化物構成之層。 A method of fabricating a semiconductor device, comprising: providing a crystalline germanium layer on a receiving structure; and after providing the crystalline germanium layer on the receiving structure, reducing a thickness of the crystalline germanium layer, the thickness comprising: adjacent Forming a layer consisting essentially of metal telluride in a portion of the crystalline germanium layer of the predominantly exposed surface of the crystalline germanium layer, wherein forming the layer consisting essentially of metal germanide comprises implanting metal ions into the crystalline germanium layer Forming the layer consisting essentially of the metal telluride; and after forming the layer consisting essentially of the metal telluride, using a selective etching of the layer consisting essentially of the metal telluride relative to the crystalline germanium layer Etching the layer consisting essentially of a metal halide, the etchant being removed at an etch rate that is higher than any etch rate at which the layer consisting essentially of metal germanide removes the crystalline germanium layer A layer of metal halide. 如請求項1之方法,其中在該接受結構上提供該結晶矽層包含將該結晶矽層自供體結構轉移至該接受結構。 The method of claim 1, wherein providing the crystalline germanium layer on the accepting structure comprises transferring the crystalline germanium layer from the donor structure to the accepting structure. 如請求項2之方法,其進一步包含選擇該結晶矽層以包含主動裝置結構。 The method of claim 2, further comprising selecting the crystalline germanium layer to comprise an active device structure. 如請求項1之方法,其中在鄰近該結晶矽層之主要暴露表面的該部分結晶矽層中形成該基本上由金屬矽化物構成之層包含:在該結晶矽層之該主要暴露表面上沈積金屬;及使該所沈積金屬及該結晶矽層退火以形成該基本上由金屬矽化物構成之層。 The method of claim 1, wherein the forming of the layer consisting essentially of metal telluride in the portion of the crystalline germanium layer adjacent to the major exposed surface of the crystalline germanium layer comprises: depositing on the predominantly exposed surface of the crystalline germanium layer And annealing the deposited metal and the crystalline germanium layer to form the layer consisting essentially of metal germanide. 如請求項1之方法,其進一步包含選擇該等金屬離子以包含鈦、鎳、鈷及鎢中之至少一者。 The method of claim 1, further comprising selecting the metal ions to include at least one of titanium, nickel, cobalt, and tungsten. 如請求項1之方法,其中在該結晶矽層中之該部分中形成該基本上由金屬矽化物構成之層包含在約700℃或700℃以下之溫度下,在該結晶矽層之該部分中形成該基本上由金屬矽化物構成之層。 The method of claim 1, wherein the layer consisting essentially of the metal telluride is formed in the portion of the crystalline germanium layer at a temperature of about 700 ° C or less, at the portion of the crystalline germanium layer The layer consisting essentially of metal telluride is formed. 如請求項1之方法,其中蝕刻該基本上由金屬矽化物構成之層包含使用濕式蝕刻製程、乾式蝕刻製程及電化蝕刻製程中之一或多者蝕刻該基本上由金屬矽化物構成之層。 The method of claim 1, wherein etching the layer consisting essentially of metal germanide comprises etching the layer consisting essentially of metal telluride using one or more of a wet etching process, a dry etching process, and an electrochemical etching process . 如請求項1之方法,其中蝕刻該基本上由金屬矽化物構成之層包含至少實質上移除該基本上由金屬矽化物構成之層及暴露該結晶矽層之表面。 The method of claim 1, wherein etching the layer consisting essentially of the metal telluride comprises at least substantially removing the layer consisting essentially of the metal telluride and exposing the surface of the crystalline germanium layer. 如請求項8之方法,其進一步包含使用濕式清洗製程、化學-機械拋光製程、電漿清洗製程及離子修整製程中之一或多者使該結晶矽層之表面變平滑。 The method of claim 8, further comprising smoothing the surface of the crystalline germanium layer using one or more of a wet cleaning process, a chemical-mechanical polishing process, a plasma cleaning process, and an ion conditioning process. 如請求項1之方法,其中蝕刻該基本上由金屬矽化物構成之層包含在約攝氏一百度(100℃)或100℃以下之溫度下,蝕刻該基本上由金屬矽化物構成之層。 The method of claim 1, wherein etching the layer consisting essentially of metal telluride comprises etching the layer consisting essentially of metal telluride at a temperature of about one hundred degrees Celsius (100 ° C) or less. 如請求項1之方法,其中使用相對於該結晶矽層對該金屬矽化物具選擇性之該蝕刻劑蝕刻該基本上由金屬矽化物構成之層包含用HF蝕刻該基本上由金屬矽化物構成之層。 The method of claim 1, wherein the etchant is selectively etched using the etchant with respect to the metal ruthenium layer to form the layer consisting essentially of a metal ruthenium comprising etching with HF to form substantially Layer. 如請求項1之方法,其進一步包含形成包含該結晶矽層、該接受結構及其間之介電層之SOI型基板。 The method of claim 1, further comprising forming an SOI type substrate comprising the crystalline germanium layer, the accepting structure, and a dielectric layer therebetween. 如請求項1之方法,其進一步包含形成包含該結晶矽層之電子信號處理器、記憶體裝置、發光二極體、雷射二極體及光電池中的一或多者。 The method of claim 1, further comprising forming one or more of an electronic signal processor, a memory device, a light emitting diode, a laser diode, and a photovoltaic cell including the crystalline germanium layer. 如請求項1之方法,其進一步包含形成該結晶矽層以在蝕刻該基本上由金屬矽化物構成之層後,使平均層厚度為約100nm或100 nm以下。 The method of claim 1, further comprising forming the crystalline germanium layer to have an average layer thickness of about 100 nm or 100 after etching the layer consisting essentially of metal germanide Below nm. 如請求項1之方法,其進一步包含在蝕刻該基本上由金屬矽化物構成之層後,使該結晶矽層之主要暴露表面的平均表面粗糙度Ra為約2.0nm或2.0nm以下。 The method of Paragraph 1 requests, further comprising, after etching the layer consists essentially of a metal silicide, so that the silicon layer is exposed principal crystalline average surface roughness R a is about 2.0nm 2.0nm or less.
TW102106329A 2012-02-22 2013-02-22 Method of fabricating a semiconductor device TWI588886B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/402,464 US9136134B2 (en) 2012-02-22 2012-02-22 Methods of providing thin layers of crystalline semiconductor material, and related structures and devices
FR1252148A FR2987936B1 (en) 2012-03-09 2012-03-09 METHODS OF MANUFACTURING FINE LAYERS OF CRYSTALLINE SEMICONDUCTOR MATERIAL, AND RELATED STRUCTURES AND DEVICES

Publications (2)

Publication Number Publication Date
TW201347033A TW201347033A (en) 2013-11-16
TWI588886B true TWI588886B (en) 2017-06-21

Family

ID=47901230

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102106329A TWI588886B (en) 2012-02-22 2013-02-22 Method of fabricating a semiconductor device

Country Status (6)

Country Link
JP (1) JP6193271B2 (en)
KR (1) KR102031725B1 (en)
CN (1) CN104115259B (en)
SG (1) SG11201404576TA (en)
TW (1) TWI588886B (en)
WO (1) WO2013124719A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112382555B (en) * 2020-11-12 2024-07-19 广东先导微电子科技有限公司 Method for cleaning indium phosphide substrate
WO2023234368A1 (en) * 2022-06-02 2023-12-07 セントラル硝子株式会社 Substrate processing method and substrate production method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5223081A (en) * 1991-07-03 1993-06-29 Doan Trung T Method for roughening a silicon or polysilicon surface for a semiconductor substrate
US20080296565A1 (en) * 2007-05-31 2008-12-04 Samsung Sdi Co., Ltd. Method of fabricating polycrystalline silicon layer, tft fabricated using the same, method of fabricating tft, and organic light emitting diode display device having the same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2681472B1 (en) 1991-09-18 1993-10-29 Commissariat Energie Atomique PROCESS FOR PRODUCING THIN FILMS OF SEMICONDUCTOR MATERIAL.
JP3187498B2 (en) * 1992-01-27 2001-07-11 株式会社東芝 Semiconductor device
JPH07254574A (en) * 1994-03-16 1995-10-03 Sony Corp Formation of electrode
KR100199064B1 (en) * 1995-10-17 1999-07-01 구자홍 Fabrication method of thin film transistor
FR2755537B1 (en) 1996-11-05 1999-03-05 Commissariat Energie Atomique METHOD FOR MANUFACTURING A THIN FILM ON A SUPPORT AND STRUCTURE THUS OBTAINED
FR2767416B1 (en) 1997-08-12 1999-10-01 Commissariat Energie Atomique PROCESS FOR PRODUCING A THIN FILM OF SOLID MATERIAL
FR2773261B1 (en) 1997-12-30 2000-01-28 Commissariat Energie Atomique METHOD FOR THE TRANSFER OF A THIN FILM COMPRISING A STEP OF CREATING INCLUSIONS
FR2795865B1 (en) 1999-06-30 2001-08-17 Commissariat Energie Atomique METHOD FOR MAKING A THIN FILM USING PRESSURIZATION
FR2818010B1 (en) 2000-12-08 2003-09-05 Commissariat Energie Atomique METHOD OF MAKING A THIN LAYER INVOLVING THE INTRODUCTION OF GAS SPECIES
US7256104B2 (en) * 2003-05-21 2007-08-14 Canon Kabushiki Kaisha Substrate manufacturing method and substrate processing apparatus
FR2855908B1 (en) * 2003-06-06 2005-08-26 Soitec Silicon On Insulator METHOD FOR OBTAINING A STRUCTURE COMPRISING AT LEAST ONE SUBSTRATE AND AN ULTRAMINO LAYER
WO2006117900A1 (en) * 2005-04-26 2006-11-09 Sharp Kabushiki Kaisha Process for producing semiconductor device and semiconductor device
JP5028272B2 (en) * 2005-11-29 2012-09-19 シャープ株式会社 Semiconductor device and manufacturing method thereof
JP4380709B2 (en) * 2007-01-31 2009-12-09 セイコーエプソン株式会社 Manufacturing method of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5223081A (en) * 1991-07-03 1993-06-29 Doan Trung T Method for roughening a silicon or polysilicon surface for a semiconductor substrate
US20080296565A1 (en) * 2007-05-31 2008-12-04 Samsung Sdi Co., Ltd. Method of fabricating polycrystalline silicon layer, tft fabricated using the same, method of fabricating tft, and organic light emitting diode display device having the same

Also Published As

Publication number Publication date
SG11201404576TA (en) 2014-10-30
KR102031725B1 (en) 2019-10-14
JP2015515122A (en) 2015-05-21
CN104115259B (en) 2017-03-22
KR20140129116A (en) 2014-11-06
JP6193271B2 (en) 2017-09-06
TW201347033A (en) 2013-11-16
WO2013124719A1 (en) 2013-08-29
CN104115259A (en) 2014-10-22

Similar Documents

Publication Publication Date Title
JP5338443B2 (en) Manufacturing method of SOI wafer
JP5976738B2 (en) Method for manufacturing a microtechnology structure
TWI573198B (en) Methods of transferring layers of material in 3d integration processes and related structures and devices
US7396734B2 (en) Substrate manufacturing method
US20080280416A1 (en) Techniques for Layer Transfer Processing
KR101431780B1 (en) Patterned thin soi
US7629666B2 (en) Method and structure for implanting bonded substrates for electrical conductivity
CN102339769A (en) Temporary semiconductor structure bonding methods and related bonded semiconductor structures
US20120061794A1 (en) Methods of forming through wafer interconnects in semiconductor structures using sacrificial material, and semiconductor structures formed by such methods
US8673733B2 (en) Methods of transferring layers of material in 3D integration processes and related structures and devices
US7547609B2 (en) Method and structure for implanting bonded substrates for electrical conductivity
TWI588886B (en) Method of fabricating a semiconductor device
US10427937B2 (en) Method for producing a multilayer MEMS component, and corresponding multilayer MEMS component
CN105874571B (en) system and method for local layer transfer
JP2013537363A (en) Method for forming a through-wafer interconnect in a semiconductor structure using a sacrificial material, and a semiconductor structure formed by such a method
US9136134B2 (en) Methods of providing thin layers of crystalline semiconductor material, and related structures and devices
JP2007173694A (en) Method of manufacturing semiconductor substrate
CN113889432A (en) Method for manufacturing semiconductor-on-insulator structure
FR2987936A1 (en) Fabrication of semiconductor device used as e.g. photocell, involves providing crystalline silicon layer on recipient structure, forming metal silicide in crystalline silicon portion, and arid etching metal silicide to metal silicide
TW202345408A (en) Method for manufacturing a 3d circuit with mutualised steps of recrystallising and activating dopants
WO2022179615A1 (en) Method for manufacturing semiconductor-on-insulator structure
CN118435358A (en) Method for manufacturing three-dimensional circuit by using shared crystallization and dopant activation steps
CN113345833A (en) Method for manufacturing multilayer SOI substrate and multilayer SOI substrate
JP2008130726A (en) Method for manufacturing semiconductor device