TWI587577B - Reflective array antenna structure - Google Patents

Reflective array antenna structure Download PDF

Info

Publication number
TWI587577B
TWI587577B TW104134330A TW104134330A TWI587577B TW I587577 B TWI587577 B TW I587577B TW 104134330 A TW104134330 A TW 104134330A TW 104134330 A TW104134330 A TW 104134330A TW I587577 B TWI587577 B TW I587577B
Authority
TW
Taiwan
Prior art keywords
unit
phase
reflective array
reflective
array antenna
Prior art date
Application number
TW104134330A
Other languages
Chinese (zh)
Other versions
TW201715793A (en
Inventor
xi-zeng Zhou
Yao-Jiu Chen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to TW104134330A priority Critical patent/TWI587577B/en
Publication of TW201715793A publication Critical patent/TW201715793A/en
Application granted granted Critical
Publication of TWI587577B publication Critical patent/TWI587577B/en

Links

Description

反射陣列天線結構Reflective array antenna structure

本發明係關於一種反射陣列天線結構,特別是指一種能夠將數個單一反射單元以相位補償的原理擺放為一反射陣列板,並於擺放調整到相同相位的情況下,即可產生聚焦並具有高指向性及高增益的效果。The invention relates to a reflective array antenna structure, in particular to a method capable of placing a plurality of single reflection units on a phase compensation principle as a reflection array plate, and generating a focus when the arrangement is adjusted to the same phase. It has high directivity and high gain.

由於近代衛星通訊、點對點微波通訊及太空探測的技術迅速地成長,而發展也變得越來越多元化之下,使得高增益大口徑天線在雷達系統及遠距離通訊方面扮演著日益重要的角色;而常見的高增益天線目前主要有碟型天線、陣列天線、反射陣列天線,其特點為利用較大的陣列空間使饋入天線源輻射到空間中的能量能獲得有效的聚集,如此一來得以轉換成正向的增益提升效果,將可以降低雜訊干擾以及較高能量的通訊品質;As modern satellite communications, point-to-point microwave communications, and space exploration technologies are rapidly growing, and development is becoming more diverse, high-gain large-caliber antennas are playing an increasingly important role in radar systems and long-distance communications. The common high-gain antennas currently mainly have dish antennas, array antennas, and reflective array antennas, which are characterized in that the larger array space is used to enable the energy radiated into the space by the antenna source to be effectively concentrated. The ability to convert to a positive gain boost will reduce noise interference and higher energy communication quality;

其中碟型天線於上述三種高增益天線中之效率是最高的,但由於傳統的碟型天線具有體積龐大、笨重的缺點,因此造價成本也是三種型態中最高的,除非大量模組化生產,才有其可能壓低碟型天線的製作成本,另外碟型天線於選擇饋入源天線的同時,就決定了此碟形天線的頻寬;但由結構來看,卻難以實現寬角度的電子波束掃描;Among them, the dish antenna has the highest efficiency among the above three types of high-gain antennas, but the conventional dish antenna has the disadvantages of being bulky and cumbersome, so the cost of construction is the highest among the three types, unless a large number of modular production, It is possible to reduce the manufacturing cost of the dish antenna. In addition, the dish antenna determines the bandwidth of the dish antenna while selecting the feed source antenna. However, it is difficult to realize a wide-angle electron beam by the structure. scanning;

其中微帶陣列天線雖然為平面式結構,但天線上的各個輻射單元皆是依靠傳輸線分別饋入,因此在架構上也相對來的複雜且製作不易;另外還需要考量到傳輸線上的功率損耗,導致在效率上很難與碟形天線及反射陣列天線相提並論。另外微帶陣列天線的加工雖然簡單,但當組合成大型陣列天線時,卻需要複雜的功率分配饋入網路,而且傳輸過程產生的功率損耗更是不可避免的;雖然使用微帶陣列結構可以實現寬角度的波束掃描,但需要掛載可控制的相移器與後端波束成型器及功率放大模組,都將使得其造價成本提高。Although the microstrip array antenna is a planar structure, each radiating element on the antenna is separately fed by the transmission line, so the architecture is relatively complicated and difficult to manufacture; in addition, the power loss on the transmission line needs to be considered. It is difficult to compare with the dish antenna and the reflective array antenna in terms of efficiency. In addition, although the processing of the microstrip array antenna is simple, when combined into a large array antenna, a complex power distribution feed network is required, and the power loss generated by the transmission process is inevitable; although the microstrip array structure can be used A wide-angle beam scan is achieved, but the need to mount a controllable phase shifter with a back-end beamformer and a power amplifier module will increase the cost of the product.

另外,由於衛星在對地面進行發送的過程,將會產生法拉第旋轉,當傳送的電磁波在經過高空電離層時,會有部分能量被反射損耗,剩下的電磁波到達地面接收器時的偏振將會難以預測;這時若使用線性極化天線作為接收端的話,可能會有接收進來的訊號不完全之情況產生並間接造成讀取上的誤差;因此目前在衛星通訊的傳輸過程當中都是採用圓極化波,使得收發端可以不用因偏振問題而考量天線擺放方式和在經過電離層時的反射損耗量降低與不會產生線性極化才有的極化面旋轉之問題,將能夠傳送更完整的訊號到更遠目的地。In addition, due to the process of transmitting satellites to the ground, Faraday rotation will occur. When the transmitted electromagnetic waves pass through the high-altitude ionosphere, some of the energy will be reflected and the polarization of the remaining electromagnetic waves will be difficult to reach the ground receiver. Prediction; if a linearly polarized antenna is used as the receiving end, there may be cases where the incoming signal is incomplete and indirectly causes errors in reading; therefore, circular polarization is currently used in the transmission of satellite communications. Wave, so that the transceiver can avoid the problem of polarization of the antenna and the reduction of the amount of reflection loss when passing through the ionosphere and the polarization plane rotation that does not produce linear polarization, and will be able to transmit a more complete signal. Go further a destination.

為了有效減少碟型天線與傳統微帶陣列天線的缺陷,故介於碟型天線和陣列天線之間的一種反射陣列天線技術發展顯得格外重要,因此,若能夠設計出一具有平面陣列的反射陣列天線,其中平面陣列除了能夠達成等同於碟型天線的效果(高指向性及高增益)之外,且平面陣列的設計相較於碟形天線較為輕巧,而微帶型之平面反射陣列天線更具有製作容易、成本較低、體積比碟形天線小等優點,如此應為一最佳解決方案。In order to effectively reduce the defects of the dish antenna and the conventional microstrip array antenna, the development of a reflective array antenna technology between the dish antenna and the array antenna is particularly important, so if a reflective array having a planar array can be designed Antennas, in which the planar array can achieve the same effect as the dish antenna (high directivity and high gain), and the planar array design is lighter than the dish antenna, and the microstrip type planar reflective array antenna is more It has the advantages of easy production, low cost, and small volume than a dish antenna, so this should be an optimal solution.

本發明係關於一種反射陣列天線結構,係能夠將數個單一反射單元以相位補償的原理擺放為一反射陣列板,並進行擺放調整到相同相位的情況下,即可產生聚焦並具有高指向性及高增益的效果。The invention relates to a reflective array antenna structure, which is capable of arranging a plurality of single reflection units by a phase compensation principle as a reflection array plate, and performing the adjustment to the same phase, thereby generating focus and having high Directivity and high gain effects.

可達成上述反射陣列天線結構,係包含:一反射陣列板,係由數個不同相位之單一反射單元所形成,該單一反射單元係具有一底座,並於該底座表面上形成有一個十字型凸出結構,該十字型凸出結構於四個方向具有一矩形柱,而任兩個矩形柱側面之間係內凹有一壁面;一訊號發射單元,係位於該反射陣列板之上方,用以輻射一電磁波;因此,於該訊號發射單元所輻射之電磁波能夠接觸到反射陣列板時,能夠受到反彈並產生聚焦的效果。The reflective array antenna structure can be achieved, comprising: a reflective array plate formed by a plurality of single reflection units of different phases, the single reflective unit having a base and a cross-shaped convex formed on the surface of the base The cross-shaped protruding structure has a rectangular column in four directions, and a wall surface is recessed between the sides of any two rectangular columns; a signal emitting unit is located above the reflective array plate for radiating An electromagnetic wave; therefore, when the electromagnetic wave radiated by the signal emitting unit can contact the reflective array plate, it can be bounced and produce a focusing effect.

更具體的說,所述單一反射單元係為全金屬材質所製成。More specifically, the single reflecting unit is made of an all-metal material.

更具體的說,所述單一反射單元之結構能夠於不影響反射係數的情況下,能夠產生不同的相位變化。More specifically, the structure of the single reflection unit can generate different phase changes without affecting the reflection coefficient.

更具體的說,所述數個單一反射單元能夠依據相位補償的原理於不同的位置上、將數個不同相位的單一反射單元進行擺放以調整到相同相位,即可產生聚焦的效果。More specifically, the plurality of single reflection units are capable of arranging a plurality of single reflection units of different phases at different positions according to the principle of phase compensation to adjust to the same phase, thereby generating a focusing effect.

更具體的說,所述任兩個矩形柱側面之間內凹的壁面係為一弧形壁面。More specifically, the concave wall surface between the sides of any two rectangular columns is an arcuate wall surface.

有關於本發明其他技術內容、特點與功效,在以下配合參考圖式之較佳實施例的詳細說明中,將可清楚的呈現。Other details, features, and advantages of the present invention will be apparent from the following description of the preferred embodiments.

請參閱第1~3圖,為本發明反射陣列天線結構之單一反射單元結構示意圖、單一反射單元側面結構示意圖及實施示意圖,由圖中可知,本發明之反射陣列天線結構係包含一反射陣列板2及一訊號發射單元3,其中該反射陣列板2係由數個不同相位之單一反射單元1所形成的方形陣列(但不僅限於能實施為方形陣列,任何形狀之陣列亦屬於本發明保護之範圍),該單一反射單元1底部係具有一底座11,且該底座11上具有一十字型凸出結構12,該十字型凸出結構12於四個方向具有一矩形柱121,而任兩個矩形柱121側面邊緣之間係內凹有一壁面122,另外該矩形柱121會與該底座11之邊長平行及垂直的,且該矩形柱121的高度將會產生不同的相位變化,因此能夠將此相位變化應用於擺放陣列之參考方式;Please refer to FIGS. 1~3, which are schematic diagrams showing the structure of a single reflection unit of a reflective array antenna structure, a side structure diagram of a single reflection unit, and an implementation diagram. As can be seen from the figure, the reflective array antenna structure of the present invention includes a reflection array board. 2 and a signal transmitting unit 3, wherein the reflective array panel 2 is a square array formed by a plurality of single reflecting units 1 of different phases (but not limited to being implemented as a square array, and any array of shapes is also protected by the present invention. Scope), the bottom of the single reflecting unit 1 has a base 11 and the base 11 has a cross-shaped protruding structure 12 having a rectangular column 121 in four directions, and any two A rectangular wall 121 is recessed between the side edges of the rectangular column 121, and the rectangular column 121 is parallel and perpendicular to the side of the base 11, and the height of the rectangular column 121 will produce different phase changes, thereby enabling This phase change is applied to the reference mode of the array;

另外,由於該單一反射單元1為構成方形陣列的基礎元件,必須具有將電磁波反射的能力,因此該單一反射單元1的結構可為開路波導管、平面天線、偶極天線、環形天線及開槽式金屬反射面等等,而由於方形陣列擺放必須達到電磁波聚焦的情況下,才擁有高指向性及高增益的效果,因此不論是改變該單一反射單元1的結構、厚度或者間距,皆必須於不會干擾到透射係數的前提下找出變化的相位;In addition, since the single reflection unit 1 is a basic component constituting a square array, it must have the ability to reflect electromagnetic waves, and thus the single reflection unit 1 can be configured as an open waveguide, a planar antenna, a dipole antenna, a loop antenna, and a slotted Metal reflective surface, etc., and because of the square array placement must achieve electromagnetic wave focusing, it has high directivity and high gain, so whether to change the structure, thickness or spacing of the single reflective unit 1 Find the phase of the change without disturbing the transmission coefficient;

如第3圖所示,當該訊號發射單元2將電磁波輻射出來、並接觸到由多個不同相位之單一反射單元1所擺放形成的方形陣列後,由於該單一反射單元1具有使電磁波達到反射能力,故能夠將電磁波將聚焦於某一點,如此則能夠達到高增益及高指向的效果。As shown in FIG. 3, when the signal transmitting unit 2 radiates electromagnetic waves and contacts a square array formed by a plurality of single reflecting units 1 of different phases, since the single reflecting unit 1 has electromagnetic waves The ability to reflect, so that the electromagnetic wave will be focused on a certain point, so that high gain and high pointing effect can be achieved.

而如何達到使電磁波能夠聚焦於某一點,其中相位補償將是擺放陣列之關鍵,以下為其一相位補償於反射陣列之陣列擺放方式: (1)     先找出訊號發射單元3(饋入天線)發射位置與反射陣列板2的相對位置,如第4圖所示,必須求出訊號發射單元3(饋入天線)之饋入點31到反射陣列板2之反射面21上各單一反射單元1之相位差(此處所提到之反射面31為反射陣列板2的表面,也就是數個單一反射單元1的表面);因此若饋入點31位置為(X F,Y F,Z F),而各個單一反射單元1之位置為(X 1,Y 1,Z 1)、(X 2,Y 2,Z 2)….. (X n,Y n,Z n),之後則必須再求出饋入點31之位置(X F,Y F,Z F)到各個單一反射單元1之位置(X 1,Y 1,Z 1)、(X 2,Y 2,Z 2)….. (X n,Y n,Z n)的距離; (2)     再依據相位公式 (d為距離),先求出從饋入點31到各個單一反射單元1之相位後,在減去球面波半徑(r)之相位,以取得饋入點31與各個單一反射單元1之相位差; (3)     之後,設定一預期位置4(X s,Y s,Z s),再依據上述兩個步驟,求出預期位置4(X s,Y s,Z s)到各個單一反射單元1之位置(X 1,Y 1,Z 1)、(X 2,Y 2,Z 2)….. (X n,Y n,Z n)的距離,並再求出預期位置4(X s,Y s,Z s)到各個單一反射單元1之相位後,再取得預期位置4(X s,Y s,Z s)與各個單一反射單元1之相位差; (4)     最後,將饋入點31與各個單一反射單元1之相位差及預期位置4與各個單一反射單元1之相位差相加,如此即可利用各個單一反射單元1之相位變化的特性(但不影響反射係數)進行補償相位,主要是從入射到聚焦的距離差,用相位補償的方式將各個單一反射單元1的相位補償到同相位(例如想要在30度的地方產生波束,就必須找出一個會產生30度波束的陣列單元高度),則可進一步控制任何所想聚焦之位置。 How to achieve the electromagnetic wave can be focused on a certain point, where phase compensation will be the key to placing the array, the following is a phase compensation method for the array of the reflective array: (1) First find the signal transmitting unit 3 (feeding The relative position of the transmitting position and the reflection array plate 2, as shown in Fig. 4, it is necessary to find the single reflection of the feeding point 31 of the signal transmitting unit 3 (feeding antenna) to the reflecting surface 21 of the reflective array plate 2. The phase difference of the unit 1 (the reflecting surface 31 mentioned here is the surface of the reflective array panel 2, that is, the surface of a plurality of single reflecting units 1); therefore, if the feeding point 31 is located at (X F , Y F , Z F ), and the positions of the individual single reflection units 1 are (X 1 , Y 1 , Z 1 ), (X 2 , Y 2 , Z 2 ), ... (X n , Y n , Z n ), and then The position (X F , Y F , Z F ) of the feed point 31 must be further determined to the position (X 1 , Y 1 , Z 1 ), (X 2 , Y 2 , Z 2 ) of each single reflection unit 1... .. distance of (X n , Y n , Z n ); (2) according to the phase formula (d is the distance), first, the phase from the feed point 31 to each single reflection unit 1 is obtained, and the phase of the spherical wave radius (r) is subtracted to obtain the phase of the feed point 31 and each single reflection unit 1. (3) After that, set an expected position 4 (X s , Y s , Z s ), and then according to the above two steps, find the expected position 4 (X s , Y s , Z s ) to each single reflection unit The position of 1 (X 1 , Y 1 , Z 1 ), (X 2 , Y 2 , Z 2 )..... (X n , Y n , Z n ), and then find the expected position 4 (X s , Y s , Z s ) to the phase of each single reflection unit 1, and then obtain the phase difference between the expected position 4 (X s , Y s , Z s ) and each single reflection unit 1; (4) Finally, the feed will be The phase difference between the point 31 and each single reflection unit 1 and the phase difference between the expected position 4 and each single reflection unit 1 are added, so that the phase change characteristics of each single reflection unit 1 can be utilized (but the reflection coefficient is not affected). The phase, mainly the distance difference from the incident to the focus, compensates the phase of each single reflection unit 1 to the same phase by phase compensation (for example, To generate a beam at 30 degrees, it is necessary to find an array unit height that produces a 30 degree beam) to further control any desired focus.

而本發明之技術更能夠應用於天線極化(Polarization),而線型極化與圓極化應用於本發明時,各個單一反射單元1擺放的方式會有所不同,其中天線極化原理如下: (1)     由於RF電波實際上事由兩個場(filelds)所組成,一個是電場另一個是磁場,這兩個場在平面上互相垂直,能量在電場與磁場之間來回運動,形成所謂的電磁場。與天線平行的平面稱為E-Plane,與天線垂直的平面則稱為H-Plane,電場與電波極化有直接的關係。 (2)     而極化是天線以水平或垂直位置所呈現的實體方位,電場方向與天線的金屬發射元件互相平行,若電場平行於地面則形成水平極化,若電場與地面垂直則會產生垂直極化。無線電波必須保持相同的極化方向,若天線未依正確方向排列,天線就不會依照相同方式極化,因而造成彼此間無法有效的通訊。 (3)     極化的排列角度若相差45度,功率約衰減一半(-3dB);若是相差90度,功率約是原來百分之一(-20dB)。以柵欄可以很具體地描述天線極化的運作,每個柵欄都可以當作極化裝置,拿繩索的波浪運動當作電磁波運動,當柵欄間的排列方式相同時,繩索可藉以相同平面運動正常通過柵欄;若柵欄排列方式不同,繩索的波浪運作將被阻隔無法通過。若以光的運動說明,同樣也能解釋極化造成的影響。However, the technique of the present invention can be applied to antenna polarization, and when linear polarization and circular polarization are applied to the present invention, the manner in which each single reflection unit 1 is placed is different, and the antenna polarization principle is as follows : (1) Since RF waves actually consist of two fields (filelds), one is the electric field and the other is the magnetic field. The two fields are perpendicular to each other on the plane, and the energy moves back and forth between the electric field and the magnetic field, forming a so-called Electromagnetic field. The plane parallel to the antenna is called E-Plane, and the plane perpendicular to the antenna is called H-Plane. The electric field is directly related to the polarization of the wave. (2) Polarization is the physical orientation of the antenna in horizontal or vertical position. The direction of the electric field is parallel to the metal emitting elements of the antenna. If the electric field is parallel to the ground, horizontal polarization is formed. If the electric field is perpendicular to the ground, vertical is generated. polarization. Radio waves must maintain the same polarization direction. If the antennas are not aligned in the correct direction, the antennas will not be polarized in the same way, resulting in ineffective communication with each other. (3) If the arrangement angle of polarization is 45 degrees, the power is about half (-3dB); if it is 90 degrees, the power is about one percent (-20dB). The fence can describe the operation of the antenna polarization very specifically. Each fence can be used as a polarization device. The wave motion of the rope is used as the electromagnetic wave motion. When the arrangement between the fences is the same, the rope can be moved in the same plane. Through the fence; if the fence is arranged differently, the wave operation of the rope will be blocked and cannot pass. If the movement of light is explained, the effect of polarization can also be explained.

本發明所提供之反射陣列天線結構,與其他習用技術相互比較時,其優點如下: 1.         本發明係能夠將數個單一反射單元以相位補償的原理擺放為一反射陣列板,並進行擺放調整到相同相位的情況下,即可產生聚焦並具有高指向性及高增益的效果。 2.         本發明之反射陣列天線結構係為一應用於毫米波之高增益聚焦反射陣列天線設計,能夠於平面陣列達成等同於碟型天線的效果,並可提供高指向性及高增益等效能,並且由於毫米頻段較高,相對之波長較短,因此不只可應用於戶外亦可對於室內的通訊應用有很大的助益。 3.         本發明之反射陣列天線結構係將碟形天線的結構更改為平面結構,並達到於碟形天線相同高指向性及高增益的效果,且本發明將單一反射單元擺放成方形陣列的形式,亦達到反射聚焦的能力,並符合高指向性及高增益的效果。The advantages of the reflective array antenna structure provided by the present invention when compared with other conventional techniques are as follows: 1. The present invention is capable of placing a plurality of single reflection units on a phase compensation principle as a reflection array plate and performing pendulum When the adjustment is made to the same phase, focus can be produced with high directivity and high gain. 2. The reflective array antenna structure of the present invention is a high gain focusing reflective array antenna designed for millimeter waves, which can achieve the same effect as a dish antenna in a planar array, and can provide high directivity and high gain equivalent energy. And because the millimeter frequency band is higher and the relative wavelength is shorter, it can be applied not only to the outdoor but also to the indoor communication application. 3. The reflective array antenna structure of the present invention changes the structure of the dish antenna to a planar structure and achieves the same high directivity and high gain effect of the dish antenna, and the present invention places the single reflection unit in a square array. Form, also achieves the ability to reflect focus, and meet the high directivity and high gain effect.

本發明已透過上述之實施例揭露如上,然其並非用以限定本發明,任何熟悉此一技術領域具有通常知識者,在瞭解本發明前述的技術特徵及實施例,並在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之專利保護範圍須視本說明書所附之請求項所界定者為準。The present invention has been disclosed in the above embodiments, and is not intended to limit the present invention. Any of those skilled in the art can understand the foregoing technical features and embodiments of the present invention without departing from the invention. In the spirit and scope, the scope of patent protection of the present invention is subject to the definition of the claims attached to the present specification.

<TABLE border="1" borderColor="#000000" width="_0002"><TBODY><tr><td> 1 </td><td> 單一反射單元 </td></tr><tr><td> 11 </td><td> 底座 </td></tr><tr><td> 12 </td><td> 十字型凸出結構 </td></tr><tr><td> 121 </td><td> 矩形柱 </td></tr><tr><td> 122 </td><td> 壁面 </td></tr><tr><td> 2 </td><td> 反射陣列板 </td></tr><tr><td> 21 </td><td> 反射面 </td></tr><tr><td> 3 </td><td> 訊號發射單元 </td></tr><tr><td> 31 </td><td> 饋入點 </td></tr><tr><td> 4 </td><td> 預期位置 </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="_0002"><TBODY><tr><td> 1 </td><td> Single reflection unit</td></tr><tr> <td> 11 </td><td> pedestal</td></tr><tr><td> 12 </td><td> cross-shaped bulge structure</td></tr><tr> <td> 121 </td><td> Rectangular Column</td></tr><tr><td> 122 </td><td> Wall </td></tr><tr><td> 2 </td><td> Reflective Array Board</td></tr><tr><td> 21 </td><td> Reflective Surface </td></tr><tr><td> 3 </td><td> Signal Transmitting Unit</td></tr><tr><td> 31 </td><td> Feeding Point</td></tr><tr><td> 4 </td><td> Expected location</td></tr></TBODY></TABLE>

[第1圖]係本發明反射陣列天線結構之單一反射單元結構示意圖。        [第2圖]係本發明反射陣列天線結構之單一反射單元側面結構示意圖。        [第3圖]係本發明反射陣列天線結構之實施示意圖。        [第4圖]係本發明反射陣列天線結構之反射聚焦實施示意圖。[Fig. 1] is a schematic view showing the structure of a single reflection unit of the reflective array antenna structure of the present invention. [Fig. 2] is a side view showing the structure of a single reflection unit of the reflective array antenna structure of the present invention. [Fig. 3] is a schematic view showing the implementation of the structure of the reflective array antenna of the present invention. [Fig. 4] is a schematic diagram showing the reflection focusing of the reflective array antenna structure of the present invention.

<TABLE border="1" borderColor="#000000" width="_0003"><TBODY><tr><td> 1 </td><td> 單一反射單元 </td></tr><tr><td> 2 </td><td> 反射陣列板 </td></tr><tr><td> 3 </td><td> 訊號發射單元 </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="_0003"><TBODY><tr><td> 1 </td><td> Single reflection unit</td></tr><tr> <td> 2 </td><td> Reflective Array Board</td></tr><tr><td> 3 </td><td> Signal Transmitting Unit</td></tr></TBODY ></TABLE>

Claims (4)

一種反射陣列天線結構,係包含:一反射陣列板,係由數個不同相位之單一反射單元所形成,該單一反射單元係具有一底座,並於該底座表面上形成有一個十字型凸出結構,該十字型凸出結構於四個方向具有一矩形柱,而任兩個矩形柱側面之間係內凹有一壁面;一訊號發射單元,係位於該反射陣列板之上方,用以輻射一電磁波;因此,於該訊號發射單元所輻射之電磁波能夠接觸到反射陣列板時,能夠受到反彈並產生聚焦的效果,而數個單一反射單元能夠依據相位補償的原理於不同的位置上、將數個不同相位的單一反射單元進行擺放以調整到相同相位,即可產生聚焦的效果,其中相位補償必須找出該訊號發射單元發射位置與反射陣列板的相對位置,之後,設定一預期位置,再求出預期位置到各個單一反射單元之位置的距離,並再求出預期位置到各個單一反射單元之相位後,再取得預期位置與各個單一反射單元之相位差,最後,將該訊號發射單元之饋入點與各個單一反射單元之相位差及預期位置與各個單一反射單元之相位差相加,如此即可利用各個單一反射單元之相位變化的特性進行補償相位。 A reflective array antenna structure comprises: a reflective array plate formed by a plurality of single reflection units of different phases, the single reflective unit having a base and a cross-shaped protruding structure formed on the surface of the base The cross-shaped protruding structure has a rectangular column in four directions, and a wall surface is recessed between the sides of any two rectangular columns; a signal emitting unit is located above the reflective array plate for radiating an electromagnetic wave Therefore, when the electromagnetic wave radiated by the signal transmitting unit can contact the reflective array plate, it can be bounced and produce a focusing effect, and several single reflecting units can be several at different positions according to the principle of phase compensation. The single reflection unit of different phases is placed to adjust to the same phase, and the focusing effect can be generated. The phase compensation must find the relative position of the emission position of the signal transmitting unit and the reflective array board, and then set an expected position. Find the distance from the expected position to the position of each single reflection unit, and then find the expected position to each After the phase of a reflecting unit, the phase difference between the expected position and each single reflecting unit is obtained, and finally, the phase difference between the feeding point of the signal transmitting unit and each single reflecting unit and the expected position and the phase difference of each single reflecting unit are Addition, in this way, the phase of the phase change of each single reflection unit can be used to compensate the phase. 如請求項1所述之反射陣列天線結構,其中該單一反射單元係為全金屬材質所製成。 The reflective array antenna structure of claim 1, wherein the single reflective unit is made of an all-metal material. 如請求項1所述之反射陣列天線結構,其中該單一反射單元之結構能夠於不影響反射係數的情況下,能夠產生不同的相位變化。 The reflective array antenna structure of claim 1, wherein the structure of the single reflective unit is capable of generating different phase changes without affecting the reflection coefficient. 如請求項1所述之反射陣列天線結構,其中任兩個矩形柱側面之間內凹的壁面係為一弧形壁面。 The reflective array antenna structure of claim 1, wherein the concave wall surface between the sides of any two rectangular columns is a curved wall surface.
TW104134330A 2015-10-20 2015-10-20 Reflective array antenna structure TWI587577B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104134330A TWI587577B (en) 2015-10-20 2015-10-20 Reflective array antenna structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104134330A TWI587577B (en) 2015-10-20 2015-10-20 Reflective array antenna structure

Publications (2)

Publication Number Publication Date
TW201715793A TW201715793A (en) 2017-05-01
TWI587577B true TWI587577B (en) 2017-06-11

Family

ID=59367131

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104134330A TWI587577B (en) 2015-10-20 2015-10-20 Reflective array antenna structure

Country Status (1)

Country Link
TW (1) TWI587577B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110459877A (en) * 2018-05-08 2019-11-15 西安光启尖端技术研究院 It is a kind of for measuring the phase compensating method and device of array antenna

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112736487B (en) * 2020-12-28 2022-01-25 中国科学院国家空间科学中心 Microstrip reflection array antenna adopting zigzag floor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI241741B (en) * 2004-12-30 2005-10-11 Tatung Co Ltd Microstrip reflect array antenna adopting a plurality of u-slot patches
TWM428595U (en) * 2011-12-21 2012-05-01 Univ Yuan Ze Dual-band reflective array antenna
TWM497349U (en) * 2014-08-08 2015-03-11 Hsi-Tseng Chou High gain focus reflective array antenna applied to 12GHz to 18GHz
TWM507586U (en) * 2015-03-27 2015-08-21 Univ Yuan Ze Modular fully metallic reflective array antenna structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI241741B (en) * 2004-12-30 2005-10-11 Tatung Co Ltd Microstrip reflect array antenna adopting a plurality of u-slot patches
TWM428595U (en) * 2011-12-21 2012-05-01 Univ Yuan Ze Dual-band reflective array antenna
TWM497349U (en) * 2014-08-08 2015-03-11 Hsi-Tseng Chou High gain focus reflective array antenna applied to 12GHz to 18GHz
TWM507586U (en) * 2015-03-27 2015-08-21 Univ Yuan Ze Modular fully metallic reflective array antenna structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110459877A (en) * 2018-05-08 2019-11-15 西安光启尖端技术研究院 It is a kind of for measuring the phase compensating method and device of array antenna
CN110459877B (en) * 2018-05-08 2021-11-19 西安光启尖端技术研究院 Phase compensation method and device for measuring array antenna

Also Published As

Publication number Publication date
TW201715793A (en) 2017-05-01

Similar Documents

Publication Publication Date Title
JP6766180B2 (en) Devices and methods for reducing interconnection within an antenna array
US8390531B2 (en) Reflect array
US6947003B2 (en) Slot array antenna
CN100492765C (en) Slot array antenna
KR102172187B1 (en) Omni-directional antenna for mobile communication service
CN109841961B (en) Multi-beam double-mirror antenna based on super surface
Chen et al. Low-profile wideband reflectarray by novel elements with linear phase response
CN101814660A (en) Flat plate reflective array antenna
Wang et al. Ellipsoidal Luneburg lens binary array for wide-angle scanning
CN113013638A (en) Broadband folding type plane reflection array antenna
CN113258296A (en) Dual-frequency dual-polarization multifunctional transmission and reflection type super-surface antenna and communication equipment
CN113300113A (en) Broadband dual-polarization multi-beam orbital angular momentum antenna and communication equipment
KR20220131340A (en) Reflective Array Antenna for Enhanced Wireless Communication Coverage Area
CN113851856B (en) Broadband high-gain metal lens antenna based on four-ridge waveguide
JP2011142514A (en) Triplate-type planar antenna
TWI587577B (en) Reflective array antenna structure
Wang et al. A low-profile wide-angle reconfigurable transmitarray antenna using phase transforming lens with virtual focal source
Cheng et al. Broadband dual-polarized metal lens with theoretically arbitrarily variable focal diameter ratio using 3-D printing technology
CN215266686U (en) Dual-frequency dual-polarization multifunctional transmission and reflection type super-surface antenna and communication equipment
CN210326130U (en) Novel antenna housing of patch array antenna
JP5572490B2 (en) Flat reflector
CN105470658A (en) Dual-polarized waveguide slit feed asymmetric medium packed column lens antenna
US20230282974A1 (en) Cavity-backed antenna having controllable beam width
EP3079202A1 (en) A microwave antenna, and a method of generating first signals and detecting second signals
CN112952398B (en) Double-channel Ku waveband receiving antenna

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees