JP2011142514A - Triplate-type planar antenna - Google Patents

Triplate-type planar antenna Download PDF

Info

Publication number
JP2011142514A
JP2011142514A JP2010002233A JP2010002233A JP2011142514A JP 2011142514 A JP2011142514 A JP 2011142514A JP 2010002233 A JP2010002233 A JP 2010002233A JP 2010002233 A JP2010002233 A JP 2010002233A JP 2011142514 A JP2011142514 A JP 2011142514A
Authority
JP
Japan
Prior art keywords
dielectric
polarization
planar antenna
type planar
triplate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010002233A
Other languages
Japanese (ja)
Other versions
JP5650409B2 (en
Inventor
Keiichi Natsuhara
啓一 夏原
Toru Kikuta
徹 菊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2010002233A priority Critical patent/JP5650409B2/en
Publication of JP2011142514A publication Critical patent/JP2011142514A/en
Application granted granted Critical
Publication of JP5650409B2 publication Critical patent/JP5650409B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem, wherein space required for laying feeders becomes narrow and mutual feeders are laid closer and couplings among the feeders become larger, because generally a method for rotating radiation elements is used, when polarized waves are required to be rotated in an array reference direction, even though the feeders are required to be laid on the lower sides of conductors, among slot openings in the feeders for suppressing radiation from the feeders, in a triplate-type planar antenna. <P>SOLUTION: In the triplate-type planar antenna, the slot openings are arranged so as to be directly over the radiation elements, when an antenna circuit board 3, forming the radiation elements and feeders, is mounted on a first dielectric 2a; a slot board 4, with the slot openings aiming at radio radiations, is mounted on a second dielectric 2b; and the antenna circuit board 3 is superimposed on the lower part of the second dielectric. In the triplate-type planar antenna, a polarized-wave grid board forming a polarized-wave grid inclined by an angle θ in the reference direction of the array of the radiation elements and the slot openings is installed on a third dielectric, and the third dielectric is arranged at the upper part of the slot board. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、マイクロ波帯・ミリ波帯の送受信に用いられるトリプレート型平面アンテナの偏波面制御に関する。 The present invention relates to polarization plane control of a triplate type planar antenna used for transmission / reception of a microwave band and a millimeter wave band.

例えば、マイクロ波帯・ミリ波帯の衛星通信や、衛星放送受信において、衛星側の偏波は、ある不特定の角度の傾きを持った直線偏波である場合が多いが、その場合、地球局側のアンテナの偏波も、その衛星の偏波に合わせて傾ける必要がある。   For example, in satellite communications and reception of satellite broadcasts in the microwave band and millimeter wave band, the polarization on the satellite side is often a linear polarization with a slope of an unspecified angle. It is necessary to tilt the polarization of the antenna on the station side according to the polarization of the satellite.

地球局側アンテナとして平面アンテナを使用する場合、この偏波面制御は、アンテナ全体を衛星方向に直交する面内で回転するのが最も簡単な手段ではあるが、自動車等の移動体に搭載する衛星追尾用平面アンテナでは、アンテナ全体を保護するレドームの高さをできる限り低くする必要があることから、アンテナ全体を回転する方法を使うことはできない。 When a planar antenna is used as the earth station antenna, this polarization plane control is the simplest means to rotate the entire antenna in a plane orthogonal to the satellite direction, but the satellite mounted on a moving body such as an automobile In the tracking planar antenna, it is necessary to make the height of the radome protecting the entire antenna as low as possible, and therefore the method of rotating the entire antenna cannot be used.

そのため、従来から衛星追尾用平面アンテナの偏波面制御は、図5に示されるように、アンテナの放射素子5それぞれを回転する方法が採られてきた(非特許文献1あるいは非特許文献2参照)。 Therefore, conventionally, as shown in FIG. 5, the polarization plane control of the satellite tracking planar antenna has been performed by rotating each of the radiating elements 5 of the antenna (see Non-Patent Document 1 or Non-Patent Document 2). .

”ディジタルSNG平面アンテナの放射特性”,電子情報通信学会技術報告,A.P.93-22"Radiation Characteristics of Digital SNG Planar Antenna", IEICE Technical Report, A.P.93-22 ”AntennaSystem for Mobile Video Transmission Via Satellite”,Proc.of ISAP’96“AntennaSystem for Mobile Video Transmission Via Satellite”, Proc. Of ISAP’96

しかし、図4、図5に示すようなトリプレート型平面アンテナの場合、給電線路6からの放射を抑圧するため、給電線路6はスロット開口7間の隙間の下側で引き回す必要があるが、図5のように放射素子5が回転していると、引き回す隙間が狭くなり、給電線路6どうしが近接して、線路間結合が大きくなってしまう。 However, in the case of a triplate type planar antenna as shown in FIGS. 4 and 5, the feed line 6 needs to be routed below the gap between the slot openings 7 in order to suppress radiation from the feed line 6. When the radiating element 5 is rotated as shown in FIG. 5, the gap to be drawn is narrowed, the feed lines 6 are close to each other, and the coupling between the lines is increased.

そのため、各放射素子5への励振分布が所望値から大きくずれて、図6に示すような正面以外の方向に大きなビームが出てしまうという、いわゆるグレーティングローブが発生し、指向性の規定レベルをオーバするという問題点があった。 Therefore, the so-called grating lobe that the excitation distribution to each radiating element 5 deviates greatly from a desired value and a large beam is emitted in a direction other than the front as shown in FIG. 6 occurs, and the prescribed directivity level is reduced. There was a problem of exceeding.

また、所望の偏波面が変更になるごとに、給電線路6の設計を変更する必要があり、容易に偏波面制御ができないという問題点もあった。 Further, every time the desired plane of polarization is changed, the design of the feed line 6 needs to be changed, and there is also a problem that the plane of polarization cannot be controlled easily.

本発明は、上記問題点を鑑みてなされたものであり、指向性のサイドローブレベルの上昇や、利得の低下といったアンテナ性能の低下なしに、配列の基準方向に対する偏波面の角度を容易に所望値に制御することを目的とする。 The present invention has been made in view of the above-described problems, and the angle of the polarization plane with respect to the reference direction of the array can be easily obtained without lowering the antenna performance such as an increase in the sidelobe level of directivity and a decrease in gain. The purpose is to control the value.

前記課題を解決するために、本発明は、
トリプレート型平面アンテナにおいて、
第1の誘電体上に、放射素子と給電線路を形成したアンテナ回路基板を設置し、
第2の誘電体上に、電波放射を目的とするスロット開口を有するスロット板を設置し、
前記第2の誘電体の下方に前記アンテナ回路基板を重ねる際に、前記スロット開口が前記放射素子の真上になるように配置するものであって、
第3の誘電体上に、前記放射素子及び前記スロット開口の配列の基準方向に対して、角度θだけ傾斜した偏波グリッドを形成した偏波グリッド基板を設置し、前記スロット板の上部に前記第3の誘電体を配置することを特徴とするトリプレート型平面アンテナである。
In order to solve the above problems, the present invention provides:
In the triplate type planar antenna,
An antenna circuit board on which a radiation element and a feed line are formed is installed on the first dielectric,
On the second dielectric, a slot plate having a slot opening for radio wave radiation is installed,
When the antenna circuit board is stacked under the second dielectric, the slot opening is arranged so as to be directly above the radiating element,
A polarization grid substrate having a polarization grid inclined by an angle θ with respect to a reference direction of the arrangement of the radiating elements and the slot openings is installed on a third dielectric, A triplate type planar antenna characterized in that a third dielectric is disposed.

また、本発明は、
トリプレート型平面アンテナにおいて、
第4の誘電体上に、無給電素子を形成した無給電基板を設置し、
前記第4の誘電体の下方に前記スロット板を重ねる際に、前記無給電素子が前記放射素子及び前記スロット開口の真上になるように配置するものであって、
前記第3の誘電体上に、前記放射素子及びスロット開口の配列の基準方向に対して、角度θだけ傾斜した偏波グリッドを形成した偏波グリッド基板を設置し、前記無給電基板の上部に配置することを特徴とするトリプレート型平面アンテナである。
The present invention also provides:
In the triplate type planar antenna,
A parasitic substrate on which a parasitic element is formed is installed on the fourth dielectric,
When the slot plate is stacked below the fourth dielectric, the parasitic element is arranged so as to be directly above the radiating element and the slot opening,
A polarization grid substrate formed with a polarization grid inclined by an angle θ with respect to a reference direction of the arrangement of the radiating elements and the slot openings is disposed on the third dielectric, and is disposed on the parasitic substrate. It is a triplate type planar antenna characterized by being arranged.

また、本発明は、前記角度θは、0度より大きく、かつ、45度以下であることを特徴とするトリプレート型平面アンテナである。 Also, the present invention is the triplate type planar antenna, wherein the angle θ is larger than 0 degree and not larger than 45 degrees.

以上説明したように、本発明のトリプレート型平面アンテナによれば、アンテナの性能をほとんど低下させること無く、容易に、偏波面制御を行うことができる。特に、交差偏波識別度特性は、偏波面制御しない場合(偏波グリッド9なしで、配列の基準方向と偏波方向が同じ場合)より、向上することができる。即ち、配列の基準方向に対して、任意の偏波面角度をもつトリプレート型平面アンテナを、従来よりも容易に、しかも、より高性能に、実現することができる。   As described above, according to the triplate type planar antenna of the present invention, polarization plane control can be easily performed without substantially reducing the performance of the antenna. In particular, the cross polarization discrimination characteristic can be improved as compared with the case where the polarization plane control is not performed (without the polarization grid 9 and when the reference direction of the array and the polarization direction are the same). That is, a triplate type planar antenna having an arbitrary polarization plane angle with respect to the reference direction of the arrangement can be realized more easily and with higher performance than in the past.

本発明のトリプレート型平面アンテナの実施例1の斜視分解図The perspective exploded view of Example 1 of the triplate type planar antenna of the present invention 本発明のトリプレート型平面アンテナの実施例1の上面図Top view of Embodiment 1 of the triplate type planar antenna of the present invention 本発明の無給電素子付きトリプレート型平面アンテナの実施例2の斜視分解図The perspective exploded view of Example 2 of the triplate type planar antenna with a parasitic element of the present invention 従来の偏波面制御しない場合のトリプレート型平面アンテナの上面図Top view of conventional triplate type planar antenna without polarization plane control 従来の偏波面制御した場合のトリプレート型平面アンテナの上面図Top view of a conventional triplate planar antenna with polarization plane control 従来の課題を説明するための指向性を示す線図Diagram showing directivity for explaining conventional problems 偏波グリッドの動作を説明するための上面図Top view for explaining the operation of the polarization grid 偏波グリッドの平行偏波成分の打ち消しを説明するための断面図Cross-sectional view for explaining cancellation of parallel polarization component of polarization grid 偏波グリッドあり、なしの正面利得比較図Front gain comparison diagram with and without polarization grid 偏波グリッドあり、なしの指向性比較図Comparison of directivity with and without polarization grid 偏波グリッドあり、なしの交差偏波識別度比較図Cross-polarization discrimination comparison chart with and without polarization grid 偏波グリッドあり、なしのVSWR比較図VSWR comparison diagram with and without polarization grid

本発明の好適な実施例について、図を参照して説明する。 A preferred embodiment of the present invention will be described with reference to the drawings.

高効率な多素子アレーの実現手段として、一般にトリプレート型平面アンテナが提案されているが、本発明にかかるトリプレート型平面アンテナは、図1、図2、図3に実施例として示す構造になっている。 As a means for realizing a high-efficiency multi-element array, a triplate type planar antenna is generally proposed, but the triplate type planar antenna according to the present invention has a structure shown as an example in FIGS. It has become.

つまり、スロット板4あるいは無給電基板10の面上に、図2に示すように、配列の基準方向に対して所定の角度θ(0<θ≦45度)だけ傾斜した偏波グリッド9を形成した偏波グリッド基板8を、誘電体2cを介して設け、アンテナの偏波面を所望の角度θだけ、回転するようにしたものである。 That is, as shown in FIG. 2, a polarization grid 9 inclined by a predetermined angle θ (0 <θ ≦ 45 degrees) is formed on the surface of the slot plate 4 or the parasitic substrate 10 as shown in FIG. The polarization grid substrate 8 is provided through the dielectric 2c, and the polarization plane of the antenna is rotated by a desired angle θ.

本発明の第1の特徴は、トリプレート型平面アンテナにおいて、給電線路6、及び、放射素子5を、図2のように配列の基準方向と同じ方向に引き回すことができるため、給電線路間の結合によるサイドローブレベルの上昇がほとんどない。 The first feature of the present invention is that, in the triplate type planar antenna, the feed line 6 and the radiating element 5 can be routed in the same direction as the reference direction of the arrangement as shown in FIG. There is almost no increase in side lobe level due to coupling.

また、第2の特徴は、偏波面角度θの制御は、偏波グリッド9を変更するのみでよく、アンテナ回路基板3、スロット板4、及び、無給電基板10は全く変更する必要がないので、非常に容易に偏波面制御できる。さらに、偏波グリッド9を設けた場合でも、アンテナの正面利得は、偏波グリッド9がない場合とほとんど同じになる。 The second feature is that the polarization plane angle θ can be controlled only by changing the polarization grid 9, and the antenna circuit board 3, the slot board 4 and the parasitic board 10 do not need to be changed at all. The polarization plane can be controlled very easily. Furthermore, even when the polarization grid 9 is provided, the front gain of the antenna is almost the same as when the polarization grid 9 is not provided.

これは、図7に示すように、放射素子5から放射された電波は、偏波グリッド9に垂直な偏波と平行な偏波の2つの偏波成分に、分けることができるが、その垂直な偏波成分は、偏波グリッド9に影響されずそのまま偏波グリッド9を通過し放射されるが、偏波グリッド9に平行な偏波成分は、図8に示すように、直接、偏波グリッド9を通過する直接通過波と、一旦、偏波グリッド9で反射した後、再度、スロット板4等で反射して偏波グリッド9を通過する反射波が、丁度、同振幅逆位相となり、打ち消しあうため、放射されないからである。 As shown in FIG. 7, the radio wave radiated from the radiating element 5 can be divided into two polarization components, ie, a polarization perpendicular to the polarization grid 9 and a polarization parallel to the polarization grid 9. The polarization component is not affected by the polarization grid 9 and is radiated through the polarization grid 9 as it is, but the polarization component parallel to the polarization grid 9 is directly polarized as shown in FIG. The direct passing wave that passes through the grid 9 and the reflected wave that is once reflected by the polarization grid 9 and then reflected again by the slot plate 4 etc. and passes through the polarization grid 9 have exactly the same amplitude and opposite phase, This is because they are not emitted because they cancel each other.

そのため、スロット板4と偏波グリッド9の間隔は、約1/4λg(λg=λ/√εr、λ:自由空間波長、εr:誘電体2cの比誘電率)に設定し、偏波グリッド9の間隔Sgと太さWgも偏波グリッド9に水平な偏波成分が、通過するものと反射するもので丁度同じくらいの大きさになるように、適切に設定する必要がある。 Therefore, the interval between the slot plate 4 and the polarization grid 9 is set to about 1 / 4λg (λg = λ / √εr, λ: free space wavelength, εr: relative permittivity of the dielectric 2c), and the polarization grid 9 The spacing Sg and the thickness Wg must be set appropriately so that the polarization components horizontal to the polarization grid 9 are just as large as those passing through and reflecting.

さらに具体的な実施例として、本発明にかかる、図3のような無給電素子付きトリプレート型平面アンテナの構成で、500素子のアレーアンテナを試作したので説明する。 As a more specific example, a 500-element array antenna having a configuration of a triplate type planar antenna with parasitic elements as shown in FIG. 3 according to the present invention will be described.

本アンテナでは、偏波面を垂直偏波から10.8度傾けるために、偏波グリッド9を用いた。まず初めに、偏波グリッド9無しの状態で、アンテナ回路基板3、無給電基板10、スロット板4等の設計をし、それに、スロット板4から、約1/4λg(=約6mm)の高さに、誘電体2cを介して、偏波グリッド基板8を設けた。 In this antenna, the polarization grid 9 is used to tilt the polarization plane by 10.8 degrees from the vertical polarization. First, the antenna circuit board 3, the parasitic board 10, the slot plate 4, etc. are designed without the polarization grid 9, and the slot plate 4 has a height of about ¼λg (= about 6 mm). In addition, the polarization grid substrate 8 was provided via the dielectric 2c.

ここで、偏波グリッド9の傾き角θは、10.8度とし、図7に示したグリッド寸法Sg、Wgは、実験的に調整して、最適値を求めた。 Here, the inclination angle θ of the polarization grid 9 was set to 10.8 degrees, and the grid dimensions Sg and Wg shown in FIG. 7 were experimentally adjusted to obtain optimum values.

上記のようなアンテナを用いて、偏波グリッド基板8を取り付けた場合と取り付けない場合の正面利得(図9)、指向性(図10)、交差偏波識別度(図11)、VSWR(図12)を比較した。 Front gain (FIG. 9), directivity (FIG. 10), cross polarization discrimination (FIG. 11), and VSWR (FIG. 11) when the polarization grid substrate 8 is attached and not attached using the antenna as described above. 12) was compared.

正面利得は、偏波グリッド9あり、なしにかかわらず、ほぼ同じである。偏波グリッド9が、交差偏波を抑圧するためだけに働いているとすれば、偏波グリッド9をつけると、cos(10.8度)=0.155dB程度、利得が低下するはずであるが、両者がほぼ一致していることから、偏波グリッド9により、偏波面が回転していることがわかる。 The front gain is almost the same regardless of whether or not the polarization grid 9 is provided. If the polarization grid 9 works only to suppress cross polarization, the gain should decrease by about cos (10.8 degrees) = 0.155 dB when the polarization grid 9 is attached. However, since both are substantially in agreement, it can be seen that the polarization plane is rotated by the polarization grid 9.

また、指向性、VSWRは、ほとんど変化がなく、偏波グリッド9をおいても、アンテナ回路基板3、無給電基板10、スロット板4の変更は、全く必要ないこともわかる。図6のような、グレーティングローブもほとんど出ていない。 In addition, the directivity and the VSWR are hardly changed, and it is understood that the antenna circuit board 3, the parasitic board 10, and the slot board 4 are not necessary at all even if the polarization grid 9 is provided. There are almost no grating lobes as shown in FIG.

さらに、交差偏波識別度に関しては、偏波グリッドを取り付けたことにより、大幅に向上している。図5の従来例のように、素子を回転して偏波を回転するより、大幅に簡単であるにもかかわらず、非常に良好な特性が得られた。 Furthermore, the cross polarization discrimination is greatly improved by attaching a polarization grid. Although it is much simpler than rotating the element to rotate the polarization as in the conventional example of FIG. 5, very good characteristics were obtained.

本発明によれば、前記のように、アンテナの性能をほとんど低下させることなく、容易に偏波面の制御を行うことが可能になり、また、交差偏波識別度特性においては、偏波面制御をしない場合よりも向上するのである。 According to the present invention, as described above, it is possible to easily control the polarization plane without substantially reducing the performance of the antenna, and in the cross polarization discrimination characteristic, the polarization plane control is performed. It will be better than not.

本発明は、図1、図2に示すように、地導体1の面上に、誘電体2aを介して、放射素子5と給電線路6を形成したアンテナ回路基板3を設置し、さらにその面上に誘電体2bを介して、電波放射のためのスロット開口7を有するスロット板4を、各スロット開口7が放射素子5の真上に来るように設置したトリプレート型平面アンテナにおいて、配列基準方向に対して所定の角度θ(0<θ≦45度)だけ傾斜した偏波グリッド9を形成した偏波グリッド基板8を、誘電体2cを介してスロット板4の面上全体に渡り設けることを特徴としている。 In the present invention, as shown in FIGS. 1 and 2, an antenna circuit board 3 in which a radiating element 5 and a feed line 6 are formed on a surface of a ground conductor 1 through a dielectric 2a is further provided. In the triplate type planar antenna in which the slot plate 4 having the slot openings 7 for radio wave radiation is disposed on the dielectric 2b so that each slot opening 7 is directly above the radiating element 5, the arrangement reference A polarization grid substrate 8 on which a polarization grid 9 inclined by a predetermined angle θ (0 <θ ≦ 45 degrees) with respect to the direction is formed over the entire surface of the slot plate 4 via the dielectric 2c. It is characterized by.

また本発明は、図3に示すように、スロット板4の上部に誘電体2dを介して、無給電素子11を形成した無給電基板10を、無給電素子11が放射素子5及びスロット開口7の真上に来るように設置した、無給電素子付きトリプレート型平面アンテナにおいて、配列に対して所定の角度θ(0<θ≦45度)だけ傾斜した偏波グリッド9を形成した偏波グリッド基板8を、誘電体2cを介して無給電基板10の面上全体に渡り設けることを特徴としている。 Further, in the present invention, as shown in FIG. 3, the parasitic substrate 10 in which the parasitic element 11 is formed on the upper portion of the slot plate 4 via the dielectric 2d, the parasitic element 11 is the radiating element 5 and the slot opening 7 is formed. Polarized grid in which a polarized grid 9 is inclined at a predetermined angle θ (0 <θ ≦ 45 degrees) with respect to the arrangement in a triplate type planar antenna with a parasitic element installed so as to be directly above The substrate 8 is provided over the entire surface of the parasitic substrate 10 via the dielectric 2c.

本実施例では偏波グリッド9の傾きの一例として10.8度としたが、実用に際して様々な傾きを要するものであり、この角度に限定するものではない。 In this embodiment, the inclination of the polarization grid 9 is 10.8 degrees as an example, but various inclinations are required for practical use, and the present invention is not limited to this angle.

1…地導体、
2a,2b,2c,2d…誘電体、
3…アンテナ回路基板、
4…スロット板、
5…放射素子、
6…給電線路、
7…スロット開口、
8…偏波グリッド基板、
9…偏波グリッド、
10…無給電基板、
11…無給電素子。

1 ... Ground conductor,
2a, 2b, 2c, 2d ... dielectric,
3 ... Antenna circuit board,
4 ... slot plate,
5 ... Radiating element,
6 ... Feed line,
7 ... slot opening,
8 ... Polarized grid substrate,
9 ... Polarized grid,
10 ... parasitic substrate,
11: Parasitic element.

Claims (3)

トリプレート型平面アンテナにおいて、
第1の誘電体上に、放射素子と給電線路を形成したアンテナ回路基板を設置し、
第2の誘電体上に、電波放射を目的とするスロット開口を有するスロット板を設置し、
前記第2の誘電体の下方に前記アンテナ回路基板を重ねる際に、前記スロット開口が前記放射素子の真上になるように配置するものであって、
第3の誘電体上に、前記放射素子及び前記スロット開口の配列の基準方向に対して、角度θだけ傾斜した偏波グリッドを形成した偏波グリッド基板を設置し、前記スロット板の上部に前記第3の誘電体を配置することを特徴とするトリプレート型平面アンテナ。
In the triplate type planar antenna,
An antenna circuit board on which a radiation element and a feed line are formed is installed on the first dielectric,
On the second dielectric, a slot plate having a slot opening for radio wave radiation is installed,
When the antenna circuit board is stacked under the second dielectric, the slot opening is arranged so as to be directly above the radiating element,
A polarization grid substrate having a polarization grid inclined by an angle θ with respect to a reference direction of the arrangement of the radiating elements and the slot openings is installed on a third dielectric, A triplate-type planar antenna comprising a third dielectric.
請求項1に示すトリプレート型平面アンテナにおいて、
第4の誘電体上に、無給電素子を形成した無給電基板を設置し、
前記第4の誘電体の下方に前記スロット板を重ねる際に、前記無給電素子が前記放射素子及び前記スロット開口の真上になるように配置するものであって、
前記第3の誘電体上に、前記放射素子及びスロット開口の配列の基準方向に対して、角度θだけ傾斜した偏波グリッドを形成した偏波グリッド基板を設置し、前記無給電基板の上部に前記第3の誘電体を配置することを特徴とするトリプレート型平面アンテナ。
In the triplate type planar antenna shown in claim 1,
A parasitic substrate on which a parasitic element is formed is installed on the fourth dielectric,
When the slot plate is stacked below the fourth dielectric, the parasitic element is arranged so as to be directly above the radiating element and the slot opening,
A polarization grid substrate formed with a polarization grid inclined by an angle θ with respect to a reference direction of the arrangement of the radiating elements and the slot openings is disposed on the third dielectric, and is disposed on the parasitic substrate. A triplate type planar antenna, wherein the third dielectric is disposed.
請求項1または請求項2のいずれか一項に示す角度θは、0度より大きく、かつ、45度以下であることを特徴とするトリプレート型平面アンテナ。

3. The triplate type planar antenna according to claim 1, wherein the angle θ is greater than 0 degree and not greater than 45 degrees.

JP2010002233A 2010-01-07 2010-01-07 Triplate type planar antenna Active JP5650409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010002233A JP5650409B2 (en) 2010-01-07 2010-01-07 Triplate type planar antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010002233A JP5650409B2 (en) 2010-01-07 2010-01-07 Triplate type planar antenna

Publications (2)

Publication Number Publication Date
JP2011142514A true JP2011142514A (en) 2011-07-21
JP5650409B2 JP5650409B2 (en) 2015-01-07

Family

ID=44458059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010002233A Active JP5650409B2 (en) 2010-01-07 2010-01-07 Triplate type planar antenna

Country Status (1)

Country Link
JP (1) JP5650409B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017038347A (en) * 2015-03-27 2017-02-16 ザ・ボーイング・カンパニーThe Boeing Company Multi-function shared aperture array
KR20170094740A (en) * 2016-02-11 2017-08-21 (주)탑중앙연구소 Ultra wideband patch antenna
KR20170094741A (en) * 2016-02-11 2017-08-21 (주)탑중앙연구소 Patch antenna for narrow band antenna module and narrow band antenna module comprising the same
JP2017537542A (en) * 2014-11-11 2017-12-14 ケーエムダブリュ・インコーポレーテッド Waveguide slot array antenna
CN108400445A (en) * 2018-03-14 2018-08-14 中国科学院国家天文台 A kind of moon base low frequency antenna array based on close coupling structure
JP2019103037A (en) * 2017-12-05 2019-06-24 日本無線株式会社 Circular polarization shared planar antenna
US10511102B2 (en) 2015-07-30 2019-12-17 Mitsubishi Electric Corporation Feeder circuit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05160626A (en) * 1991-12-10 1993-06-25 Hitachi Chem Co Ltd Triplate type plane antenna with non-feed element
JPH0637538A (en) * 1992-07-13 1994-02-10 Mitsubishi Electric Corp Polarizer
JPH08274539A (en) * 1995-03-30 1996-10-18 Mitsubishi Electric Corp Microstrip array antenna system
JPH0946129A (en) * 1995-07-27 1997-02-14 Mitsubishi Electric Corp Phased array antenna system
JPH0951225A (en) * 1995-08-09 1997-02-18 Mitsubishi Electric Corp Millimeter wave band plane antenna
JPH10190351A (en) * 1996-12-25 1998-07-21 Mitsubishi Electric Corp Milli wave plane antenna
JP2006254399A (en) * 2005-03-10 2006-09-21 A & P Technology Co Flat antenna

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05160626A (en) * 1991-12-10 1993-06-25 Hitachi Chem Co Ltd Triplate type plane antenna with non-feed element
JPH0637538A (en) * 1992-07-13 1994-02-10 Mitsubishi Electric Corp Polarizer
JPH08274539A (en) * 1995-03-30 1996-10-18 Mitsubishi Electric Corp Microstrip array antenna system
JPH0946129A (en) * 1995-07-27 1997-02-14 Mitsubishi Electric Corp Phased array antenna system
JPH0951225A (en) * 1995-08-09 1997-02-18 Mitsubishi Electric Corp Millimeter wave band plane antenna
JPH10190351A (en) * 1996-12-25 1998-07-21 Mitsubishi Electric Corp Milli wave plane antenna
JP2006254399A (en) * 2005-03-10 2006-09-21 A & P Technology Co Flat antenna

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017537542A (en) * 2014-11-11 2017-12-14 ケーエムダブリュ・インコーポレーテッド Waveguide slot array antenna
US10622726B2 (en) 2014-11-11 2020-04-14 Kmw Inc. Waveguide slot array antenna
US10985472B2 (en) 2014-11-11 2021-04-20 Kmw Inc. Waveguide slot array antenna
JP2017038347A (en) * 2015-03-27 2017-02-16 ザ・ボーイング・カンパニーThe Boeing Company Multi-function shared aperture array
US10511102B2 (en) 2015-07-30 2019-12-17 Mitsubishi Electric Corporation Feeder circuit
KR20170094740A (en) * 2016-02-11 2017-08-21 (주)탑중앙연구소 Ultra wideband patch antenna
KR20170094741A (en) * 2016-02-11 2017-08-21 (주)탑중앙연구소 Patch antenna for narrow band antenna module and narrow band antenna module comprising the same
KR102070402B1 (en) 2016-02-11 2020-01-28 (주)탑중앙연구소 Patch antenna for narrow band antenna module and narrow band antenna module comprising the same
KR102070401B1 (en) 2016-02-11 2020-01-28 (주)탑중앙연구소 Ultra wideband patch antenna
JP2019103037A (en) * 2017-12-05 2019-06-24 日本無線株式会社 Circular polarization shared planar antenna
JP7009031B2 (en) 2017-12-05 2022-01-25 日本無線株式会社 Circularly polarized shared plane antenna
CN108400445A (en) * 2018-03-14 2018-08-14 中国科学院国家天文台 A kind of moon base low frequency antenna array based on close coupling structure

Also Published As

Publication number Publication date
JP5650409B2 (en) 2015-01-07

Similar Documents

Publication Publication Date Title
JP6766180B2 (en) Devices and methods for reducing interconnection within an antenna array
US9373892B2 (en) Dielectric waveguide slot antenna
CN109586043B (en) Base station antenna with lens for reducing upwardly directed radiation
JP4223564B2 (en) Microstrip antenna and array antenna
US7868842B2 (en) Base station antenna with beam shaping structures
US7030831B2 (en) Multi-polarized feeds for dish antennas
KR100269584B1 (en) Low sidelobe double polarization directional antenna with chalk reflector
JP5650409B2 (en) Triplate type planar antenna
US8044862B2 (en) Antenna system having electromagnetic bandgap
US7999745B2 (en) Dual polarization antenna element with dielectric bandwidth compensation and improved cross-coupling
CN110622352B (en) Array antenna
US10658743B2 (en) Antenna array assembly
WO2020261511A1 (en) Antenna system
KR101288237B1 (en) Patch Antenna for Receiving Circular Polarization and Linear Polarization
JP4611401B2 (en) Antenna device
KR100849703B1 (en) Circular polarization antenna
KR102120455B1 (en) Automotive Radar Antenna with Wide Angle Characteristics
JP2019012970A (en) Transmission/reception shared planar antenna element and transmission/reception shared planar array antenna
TW201715793A (en) Reflective array antenna structure arranges a plurality of single reflection units based upon phase compensation principle to generate focus and have effects of high directivity and high gain
KR102018778B1 (en) High Gain Antenna Using Lens
US11145968B2 (en) Array antenna and sector antenna
US20230395998A1 (en) A dual-polarized radiator arrangement for a mobile communication antenna and a mobile communication antenna comprising at least one dual-polarized radiator arrangement
JP2001144532A (en) Antenna system
JP6593645B2 (en) Antenna device
Kockx A 5G mmWave Antenna Array with Angular Filtering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141113

R151 Written notification of patent or utility model registration

Ref document number: 5650409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151