JP5572490B2 - Flat reflector - Google Patents

Flat reflector Download PDF

Info

Publication number
JP5572490B2
JP5572490B2 JP2010203527A JP2010203527A JP5572490B2 JP 5572490 B2 JP5572490 B2 JP 5572490B2 JP 2010203527 A JP2010203527 A JP 2010203527A JP 2010203527 A JP2010203527 A JP 2010203527A JP 5572490 B2 JP5572490 B2 JP 5572490B2
Authority
JP
Japan
Prior art keywords
phase delay
planar
planar member
patch
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010203527A
Other languages
Japanese (ja)
Other versions
JP2012060530A (en
Inventor
好伸 岡野
功治 坂内
智広 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Yagi Solutions Inc
Original Assignee
Hitachi Kokusai Yagi Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Yagi Solutions Inc filed Critical Hitachi Kokusai Yagi Solutions Inc
Priority to JP2010203527A priority Critical patent/JP5572490B2/en
Publication of JP2012060530A publication Critical patent/JP2012060530A/en
Application granted granted Critical
Publication of JP5572490B2 publication Critical patent/JP5572490B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Aerials With Secondary Devices (AREA)

Description

本発明は、例えば放送波受信システムや無線通信システム等において、閉空間へ入射した電磁波を反射し閉空間内の所望位置に収束させる平面状反射板に関する。   The present invention relates to a planar reflector that reflects an electromagnetic wave incident on a closed space and converges it to a desired position in the closed space, for example, in a broadcast wave receiving system or a wireless communication system.

ビル内や一般家庭の室内等において、テレビ放送例えば地上デジタル放送を室内アンテナにより直接受信する場合、所定レベル以上の受信電界強度が必要であるが、十分な受信電界強度が得られない場合、従来では室内に室内再送信装置を設置して受信電界強度を高めることが行われている(例えば、特許文献1参照。)。上記室内再送信装置は、受信アンテナによりテレビ放送波を受信し、所定の信号レベルまで増幅した後、再送信アンテナから再送信することにより、室内において所望の受信電界強度が得られるようにしている。   When directly receiving TV broadcasts, for example, terrestrial digital broadcasts with indoor antennas, in buildings or indoors of ordinary households, a reception electric field strength of a predetermined level or more is necessary, but if sufficient reception electric field strength cannot be obtained, Then, an indoor re-transmission device is installed indoors to increase the received electric field strength (see, for example, Patent Document 1). The indoor retransmission apparatus receives a television broadcast wave by a receiving antenna, amplifies the signal to a predetermined signal level, and retransmits the signal from the retransmission antenna so that a desired received electric field strength can be obtained indoors. .

上記のように室内再送信装置を設置することで室内の受信電界強度を高めることができるが、室内再送信装置は非常に高価であり、且つ設置場所が必要である。   By installing the indoor retransmission apparatus as described above, the indoor received electric field strength can be increased, but the indoor retransmission apparatus is very expensive and requires an installation location.

このため室内再送信装置に比較して簡易な方法により、室内の受信電界強度を高めることが要望されている。この簡易な方法として、例えば室内の壁面等を利用して反射板を設置し、室内に入射したテレビ放送波を反射板により反射して所望の位置に収束させ、その収束点における電界強度を改善することが考えられる。   For this reason, it is desired to increase the received electric field strength in the room by a simpler method than in the indoor retransmission apparatus. As a simple method, for example, a reflector is installed using an indoor wall surface, etc., and a television broadcast wave incident on the room is reflected by the reflector and converged to a desired position to improve the electric field strength at the convergence point. It is possible to do.

反射板を使用して反射面から所定の距離に反射波を収束させ、電界集中点(焦点)を形成するには、パラボラアンテナのように反射面を放物線状に湾曲させる必要があり、従来使用されている平面状反射板では反射面から所定の距離に反射波を収束させることができない。   In order to converge a reflected wave at a predetermined distance from a reflecting surface using a reflecting plate and form an electric field concentration point (focal point), it is necessary to curve the reflecting surface in a parabolic shape like a parabolic antenna, which is conventionally used. With the planar reflecting plate, the reflected wave cannot be converged at a predetermined distance from the reflecting surface.

図6は平面状導体板11の前面に垂直に平面波(電磁波)12を入射した場合における反射波13の状態を示している。平面状導体板11の前面に垂直に平面波12を入射した場合、反射係数が略1と見なしてよい上記平面状導体板11に対し幾何光学におけるホイヘンス・フレネルの原理などを考慮すれば、平面状導体板11上の全ての点で発生する反射波13の合成波は平面状の同位相の波、すなわち平面波となる。従って、特定の点に電界の集中は生じない。   FIG. 6 shows a state of the reflected wave 13 when a plane wave (electromagnetic wave) 12 is incident perpendicularly to the front surface of the planar conductor plate 11. When the plane wave 12 is incident perpendicularly to the front surface of the planar conductor plate 11, the planar conductor plate 11, which may be regarded as having a reflection coefficient of approximately 1, has a planar shape if the principle of Huygens Fresnel in geometric optics is taken into consideration. A combined wave of the reflected waves 13 generated at all points on the conductor plate 11 becomes a plane wave having the same phase, that is, a plane wave. Therefore, electric field concentration does not occur at a specific point.

一方、図7に示すように反射面を湾曲させ、特にその湾曲を放物面状にした放物面状導体板11Aの前面に垂直に平面波12を入射した場合、放物面状導体板11A上の全ての点で発生する反射波13は同位相(周知のように入射波に対し反射波は180度位相がずれて反射する)であるが、その位置がずれているために反射波13の等位相面14も放物面状導体板11Aに対応して放物面状に湾曲する。この結果、当該放物面の焦点位置の焦点15に電界が集中する。上記周知の幾何光学の原理を利用し、平行に入射する電波を広い面積の反射鏡により反射させ、該反射した電波を前記放物面の焦点に集中させて高いアンテナ利得を得るようにしたものが周知のパラボラアンテナである。   On the other hand, as shown in FIG. 7, when a plane wave 12 is incident on the front surface of a parabolic conductor plate 11A having a curved reflecting surface, in particular, a parabolic surface, the parabolic conductor plate 11A. The reflected waves 13 generated at all the above points have the same phase (as is well known, the reflected wave is reflected with a phase difference of 180 degrees with respect to the incident wave). The equiphase surface 14 is also curved in a parabolic shape corresponding to the parabolic conductor plate 11A. As a result, the electric field concentrates on the focal point 15 at the focal position of the paraboloid. Utilizing the above-mentioned well-known geometrical optics principle, parallel incident radio waves are reflected by a reflector with a large area, and the reflected radio waves are concentrated on the focal point of the paraboloid so as to obtain a high antenna gain. Is a well-known parabolic antenna.

特開2004−128720号公報JP 2004-128720 A 特開2010−62689号公報JP 2010-62689 A

D.Sievenpiper et al,”High-Impedance Electro-magnetic Surfaces with a Forbidden Frequency Band,”IEEE Trans,Microwave Theory Tech.,vol.47,pp.2059-2074,1999D. Sievenpiper et al, “High-Impedance Electro-magnetic Surfaces with a Forbidden Frequency Band,” IEEE Trans, Microwave Theory Tech., Vol. 47, pp. 2059-2074, 1999 K.Chang et al,”High-Impedance Surface with Nonindentical Lattices,”iWAT2008,pp.422-425,2008K. Chang et al, “High-Impedance Surface with Nonindentical Lattices,” iWAT2008, pp.422-425,2008 井幡 他「非周期配列 High-Impedance Surface による反射方向制御の検討」信学技報,IEICE Technical Report A P2010-2(2010-04)Ibuchi et al. “Examination of Reflection Direction Control by Aperiodic Array High-Impedance Surface” IEICE Technical Report A P2010-2 (2010-04)

一般家庭等において例えば地上デジタル放送を室内アンテナにより直接受信する場合、受信信号は所定値以上のCN比の信号品質が必要である。そのためには受信電波について十分な受信電界強度が得られる必要がある。この目的のために考えられる方法として、室内の所望位置に上記パラボラアンテナの焦点のような電界収束領域が形成されるような放物面状に形成した反射板を設置し、その電界収束領域に室内アンテナを配置することで上記した所定の受信電波の品質を確保することが考えられる。   For example, when a terrestrial digital broadcast is directly received by an indoor antenna in a general home, the received signal needs to have a signal quality with a CN ratio equal to or higher than a predetermined value. For this purpose, it is necessary to obtain a sufficient received electric field strength for the received radio wave. A conceivable method for this purpose is to install a reflector formed in a parabolic shape so that an electric field converging region such as the focal point of the parabolic antenna is formed at a desired position in the room. It is conceivable to secure the quality of the predetermined received radio wave by arranging the indoor antenna.

しかし、一般家庭等において、室内の壁面を利用して反射板を設置する場合、壁面は通常平な面となっているので、放物面状に形成した反射板を設置することは困難であると共に無駄な設置空間を生じるので現実的でない。   However, when installing a reflector using an indoor wall surface in a general home, etc., it is difficult to install a reflector formed in a parabolic shape because the wall surface is usually a flat surface. At the same time, it creates a useless installation space, which is not realistic.

本発明は上記の課題を解決するためになされたもので、閉空間に入射する電磁波を反射して所望位置に収束させ、その収束点における電界強度を高めることができる平面状反射板を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a planar reflector that can reflect an electromagnetic wave incident on a closed space and converge it at a desired position, thereby increasing the electric field strength at the convergence point. For the purpose.

本発明に係る平面上反射板は、誘電率が1.5以下の平面状部材と、前記平面状部材の前面に略等間隔でマトリクス状に配設されて入射波を反射すると共に該反射波の位相を遅延する複数の位相遅延素子と、前記平面状部材の裏面の全面に設けられる平面状導体板とを具備し、前記平面状部材の中心付近に位相遅延効果の最も大きい位相遅延素子を配設し、外側に向かうに従って順次位相遅延効果の小さい位相遅延素子を配設し、前記平面状部材の前面から所定距離の位置に前記位相遅延素子による反射波を点状もしくは線状に収束させる平面状反射板であって、前記複数の位相遅延素子は、導体薄片を用いて形成された、各辺の長さがλ/2〜λ/8(λは収束させようとする電磁波の波長)の範囲で同一に設定された正方形のパッチ素子であり、前記複数の位相遅延素子の少なくとも一部は、該パッチ素子の中央部に開口穴を有し、大きい位相遅延効果の位相遅延素子ほど、該開口穴を大きく設定したことを特徴とする。
また、前記平面状部材は、発泡スチロール又は木材製であり、前記複数の位相遅延素子と平面状導体板との間を所定の間隔に保持し、前記複数の位相遅延素子の隣接する辺の間隔は0.05〜0.1λに設定され、前記開口穴は四角形に形成すると、より好適である。
The planar reflecting plate according to the present invention is arranged in a matrix at substantially equal intervals on a planar member having a dielectric constant of 1.5 or less and on the front surface of the planar member, and reflects the incident wave. of a plurality of phase delay elements for delaying the phase, comprising a flat conductor plate provided on the entire back surface of the planar member, the largest phase delay element of the phase retardation effect in the vicinity of the center of the planar member A phase delay element having a small phase delay effect is arranged in order toward the outside, and the reflected wave from the phase delay element is converged in a dotted or linear manner at a predetermined distance from the front surface of the planar member. that a flat planar reflector, the plurality of phase delay elements, formed by using a conductive flakes, the electromagnetic wave lengths of each side is λ / 2~λ / 8 (λ to try to converge Square patch element set to the same wavelength range) Ri, at least some of said plurality of phase delay elements has an opening hole in the middle portion of the patch element, the more phase delay elements of large phase delay effect, characterized by being set to a large opening holes.
Further, the planar member is made of polystyrene foam or wood, holds a predetermined distance between the plurality of phase delay elements and the planar conductor plate, and an interval between adjacent sides of the plurality of phase delay elements is It is more preferable that the opening hole is set to 0.05 to 0.1λ and the opening hole is formed in a square shape.

本発明によれば、平面状導体板に入射する電磁波を反射して希望する受信点に収束させ、その収束域における電界強度を高め、受信電波の受信品質を改善することができる。従って、例えば室内に直接入射する電磁波を本発明の平面状反射板で反射して希望する受信点に収束させ、室内での無線環境を改善することができる。   According to the present invention, the electromagnetic wave incident on the planar conductor plate can be reflected and converged to a desired reception point, the electric field strength in the convergence area can be increased, and the reception quality of the received radio wave can be improved. Therefore, for example, an electromagnetic wave directly incident on the room is reflected by the planar reflector of the present invention and converged to a desired reception point, thereby improving the indoor wireless environment.

本発明の実施例1に係る平面状反射板の基本構成を示す側断面図である。It is a sectional side view which shows the basic composition of the planar reflector which concerns on Example 1 of this invention. 同実施例1における位相遅延素子として使用されるパッチ素子構造体の斜視図である。It is a perspective view of the patch element structure used as a phase delay element in the first embodiment. 同実施例1におけるパッチ素子構造体のリアクタンス推移を示す図である。It is a figure which shows the reactance transition of the patch element structure in the Example 1. FIG. 同実施例1に係る平面状反射板の具体的な構成例を示し、(a)は正面図、(b)は側面図である。The specific structural example of the planar reflecting plate which concerns on the Example 1 is shown, (a) is a front view, (b) is a side view. 本発明の実施例2に係る平面状反射板の構成例を示す正面図である。It is a front view which shows the structural example of the planar reflecting plate which concerns on Example 2 of this invention. 平面状導体板に平面波(電磁波)を入射した場合の反射波の状態を示す図である。It is a figure which shows the state of the reflected wave when a plane wave (electromagnetic wave) injects into a planar conductor board. 放物面状導体板に平面波(電磁波)を入射した場合の反射波の状態を示す図である。It is a figure which shows the state of the reflected wave at the time of entering a plane wave (electromagnetic wave) in a parabolic conductor plate.

以下、本発明の実施の形態について図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の実施例1に係る平面状反射板の基本構成を示す側断面図である。図1において、21は平面状部材で、例えば、誘電率が空気に近い1.5以下程度である木材や発泡スチロールなどを用いて平板状に構成したものである。上記平面状部材21の前面には、複数の位相遅延素子22が等間隔(中心間隔)で配設される。上記位相遅延素子22は、入射波23を反射すると共にその反射波24の位相を遅延する。なお、上記先行技術文献の非特許文献1〜3には、入射波に対して反射板上の共振素子(本発明の説明における位相遅延素子に相当)の配置による反射波の位相遅延の効果、位相遅延量の設定に関し詳細に記載されているので、上記反射波24の位相の遅延に関する原理的な理解は、上記文献の記載を参照してもらいたい。   FIG. 1 is a side sectional view showing a basic configuration of a planar reflector according to Embodiment 1 of the present invention. In FIG. 1, reference numeral 21 denotes a planar member, which is formed into a flat plate shape using, for example, wood or foamed polystyrene having a dielectric constant of about 1.5 or less that is close to air. On the front surface of the planar member 21, a plurality of phase delay elements 22 are arranged at equal intervals (center interval). The phase delay element 22 reflects the incident wave 23 and delays the phase of the reflected wave 24. Note that Non-Patent Documents 1 to 3 of the above prior art documents describe the effect of the phase delay of the reflected wave due to the arrangement of the resonant element (corresponding to the phase delay element in the description of the present invention) on the reflector with respect to the incident wave, Since it is described in detail regarding the setting of the phase delay amount, for the basic understanding of the phase delay of the reflected wave 24, please refer to the description of the above document.

上記平面状部材21の前面に垂直に平面波(電磁波)が入射されると、その入射波23がそれぞれ位相遅延素子22で反射されて反射波24となる。このとき反射波24の位相変位量は位相遅延素子22によって決定される。   When a plane wave (electromagnetic wave) is incident vertically on the front surface of the planar member 21, the incident wave 23 is reflected by the phase delay element 22 to become a reflected wave 24. At this time, the phase displacement amount of the reflected wave 24 is determined by the phase delay element 22.

上記位相遅延素子22としては、例えば入射波23の中心付近には他の位置での反射より反射波位相を遅らせる素子Zcを配設し、その周囲には素子Zcより位相遅延効果の低い素子Zbを配設し、その外縁には位相遅延効果が更に低い素子Zaを配設する。すなわち、平面状部材21の中心部に位相遅延素子22として位相遅延効果が一番大きい素子Zcを配置し、その外側に行くに従って順次位相遅延効果が小さくなるように素子Zb、Zaを順次一定の間隔で略同心円状となるように配置する。   As the phase delay element 22, for example, an element Zc for delaying the reflected wave phase from the reflection at other positions is disposed near the center of the incident wave 23, and an element Zb having a phase delay effect lower than that of the element Zc is disposed around the element Zc. And an element Za having a lower phase delay effect is provided on the outer edge. That is, the element Zc having the largest phase delay effect is arranged as the phase delay element 22 at the center of the planar member 21, and the elements Zb and Za are sequentially fixed so that the phase delay effect becomes smaller toward the outside. It arrange | positions so that it may become a substantially concentric form at intervals.

具体的には、入射波23の周波数に対し、Zcとして高い容量性リアクタンスを有する素子を選び、順次Zb、Zaとして容量性リアクタンスの小さくなる素子を選択する。   Specifically, an element having a high capacitive reactance is selected as Zc with respect to the frequency of the incident wave 23, and elements having a small capacitive reactance are sequentially selected as Zb and Za.

上記のように平面状部材21の前面に複数の位相遅延素子22を配設することにより、平面状部材21に入射した入射波23は反射時に位相遅延効果が異なった値となり、平面状部材21の前面が物理的には平面状であっても、すなわち、位相遅延素子22が平面状に配設されていても反射波24の等位相面25を湾曲させることができる。この場合、上記したように平面状部材21の中心部に位相遅延素子22として位相遅延効果が一番大きい素子Zcを配置し、その外側に行くに従って順次位相遅延効果が小さくなるように素子Zb、Zaを順次一定の間隔で同心円状に配置することにより、平面状部材21の反射面から有限な距離に反射波の電磁波の収束する領域である収束域26を発生させることができる。上記平面状部材21と収束域26との間の距離は、位相遅延素子22の値によって設定することが可能である。   By arranging the plurality of phase delay elements 22 on the front surface of the planar member 21 as described above, the incident wave 23 incident on the planar member 21 has a different phase delay effect when reflected, and thus the planar member 21. Even if the front surface is physically planar, that is, even if the phase delay element 22 is disposed in a planar shape, the equiphase surface 25 of the reflected wave 24 can be curved. In this case, as described above, the element Zc having the largest phase delay effect is arranged as the phase delay element 22 in the center of the planar member 21, and the elements Zb, By sequentially disposing Za in a concentric manner at regular intervals, it is possible to generate a convergence area 26 that is an area where the electromagnetic waves of the reflected wave converge at a finite distance from the reflection surface of the planar member 21. The distance between the planar member 21 and the convergence area 26 can be set by the value of the phase delay element 22.

上記のように構成された平面状反射板を家屋の壁面を利用して設置し、上記平面状反射板から例えば2〜3mの位置に収束域26が生じるように位相遅延素子22の位相遅延効果の値を設定して収束域26の位置に室内アンテナを設置することにより、例えば地上デジタル放送の直接受信が困難であった室内においても、室内に入射したTV放送波を収束させて信号レベルを高め、所用のCN比の信号品質を確保して直接受信を可能とすることができる。上記室内アンテナは、収束域26の位置に正確に配置しなくても、収束域26の近傍であれば、平面状反射板からの収束された反射波24を受信することができる。例えば平面状部材21と収束域26を結ぶ方向であれば収束域26を中心として約λ/8の範囲、平面状部材21と平行する方向であれば収束域26を中心として約λ/4の範囲に室内アンテナを設置して平面状反射板からの収束された反射波24を受信することができる。なお、上記平面状反射板はTV放送波の到来方向に対向している壁面を利用して設置し、室内アンテナは室内に設置されているテレビ受像機に接続する。   The planar reflection plate configured as described above is installed using the wall surface of the house, and the phase delay effect of the phase delay element 22 so that the convergence region 26 is generated at a position of, for example, 2 to 3 m from the planar reflection plate. By setting an indoor antenna at the position of the convergence area 26, for example, even in a room where direct reception of digital terrestrial broadcasting is difficult, the TV broadcast wave incident on the room is converged to reduce the signal level. It is possible to improve the signal quality of the required CN ratio and enable direct reception. The indoor antenna can receive the converged reflected wave 24 from the planar reflecting plate as long as it is in the vicinity of the convergence area 26 without being accurately placed at the position of the convergence area 26. For example, if the direction connects the planar member 21 and the convergence area 26, the range is approximately λ / 8 centered on the convergence area 26, and if the direction is parallel to the planar member 21, the distance is approximately λ / 4 centered on the convergence area 26. An indoor antenna can be installed in the range to receive the reflected wave 24 converged from the planar reflector. The planar reflector is installed using a wall surface facing the direction of arrival of TV broadcast waves, and the indoor antenna is connected to a television receiver installed indoors.

上記平面状部材21に配設されて入射波23を反射すると共に反射波位相を遅延する位相遅延素子22としては、例えば図2に示すパッチ素子構造体30が使用される。パッチ素子構造体30は、平面状導体板(アース板)31と例えば方形状導体板を用いたパッチ素子32を所定の間隔を保って対向配置した構成となっている。上記パッチ素子32は、例えば一辺の長さLが約λ/2〜λ/8に設定され、平面状導体板31との間隔dは2cm程度に設定される。また、平面状導体板31の一辺の長さは、パッチ素子32よりも十分に大きい値に設定される。なお、上記λは収束させようとする電磁波の波長を示している。   For example, a patch element structure 30 shown in FIG. 2 is used as the phase delay element 22 disposed on the planar member 21 to reflect the incident wave 23 and delay the phase of the reflected wave. The patch element structure 30 has a configuration in which a planar conductor plate (ground plate) 31 and a patch element 32 using, for example, a rectangular conductor plate are arranged to face each other with a predetermined interval. The patch element 32 has, for example, a side length L of about λ / 2 to λ / 8, and a distance d from the planar conductor plate 31 of about 2 cm. The length of one side of the planar conductor plate 31 is set to a value sufficiently larger than that of the patch element 32. Note that λ represents the wavelength of the electromagnetic wave to be converged.

上記パッチ素子構造体30は、並列共振特性を有しており、図3は上記パッチ素子構造体のリアクタンス推移を示したもので、横軸に周波数(f)をとり、縦軸にリアクタンスXをとって示した。図3から上記パッチ素子構造体は励振周波数によって誘導性リアクタンス素子として働く場合と容量性リアクタンスとして働く場合があることが分かる。   The patch element structure 30 has parallel resonance characteristics, and FIG. 3 shows changes in reactance of the patch element structure. The horizontal axis represents frequency (f), and the vertical axis represents reactance X. I showed it. FIG. 3 shows that the patch element structure may function as an inductive reactance element or a capacitive reactance depending on the excitation frequency.

上記パッチ素子構造体30は、図3に示すように共振点fo以下の周波数領域においては誘導性リアクタンス素子として働き、共振点fo以上の周波数領域においては容量性リアクタンス素子として働くので、パッチ素子32の一辺の長さLを約λ/2〜λ/8の範囲で設定することにより、誘導性リアクタンス素子あるいは容量性リアクタンス素子として動作させることができる。   As shown in FIG. 3, the patch element structure 30 functions as an inductive reactance element in the frequency region below the resonance point fo and as a capacitive reactance element in the frequency region above the resonance point fo. By setting the length L of one side in the range of about λ / 2 to λ / 8, the device can be operated as an inductive reactance element or a capacitive reactance element.

図1に示した平面状反射板において、入射波23の周波数を固定した場合、上記パッチ素子構造体30の特性を利用すれば、パッチ素子構造体の共振周波数から外れた小さいサイズのパッチ素子32を利用して容量性リアクタンス素子の実現が可能であり、パッチ素子32のサイズ(面積)を可変設定することにより容量性リアクタンスの値を制御できる。この場合、パッチ素子32の厚みは一様でも、素子サイズ(面積)の値を制御するだけで容量性リアクタンスの値が変化するので、図4に示すように平面状部材21上にサイズ(面積)の異なる複数のパッチ素子32を平面状に一定の間隔(中心間隔)で配設した平面状反射板を使用して電界を点状または線状に収束させることが可能になる。   In the planar reflector shown in FIG. 1, when the frequency of the incident wave 23 is fixed, the patch element 32 having a small size deviated from the resonance frequency of the patch element structure 30 can be obtained by using the characteristics of the patch element structure 30. Can be used to realize a capacitive reactance element, and the value of the capacitive reactance can be controlled by variably setting the size (area) of the patch element 32. In this case, even if the thickness of the patch element 32 is uniform, the value of the capacitive reactance changes only by controlling the value of the element size (area). Therefore, the size (area) is formed on the planar member 21 as shown in FIG. It is possible to converge the electric field in the form of dots or lines by using a planar reflecting plate in which a plurality of patch elements 32 having different () are arranged at a constant interval (center interval).

図4は本発明の実施例1に係る平面状反射板の具体的な構成例を示したもので、(a)は正面図、(b)は側面図である。なお、図4は1枚の平面状部材21上に複数のパッチ素子32をマトリクス状に配設した場合の例を示している。   4A and 4B show a specific configuration example of the planar reflector according to the first embodiment of the present invention. FIG. 4A is a front view, and FIG. 4B is a side view. FIG. 4 shows an example in which a plurality of patch elements 32 are arranged in a matrix on a single planar member 21.

上記平面状部材21は、厚さTが約2cmの発泡スチロールを方形状(横長)に形成したもので、例えば横幅Wは約180〜190cm、高さHは約135〜140cmに設定される。上記平面状部材21の前面には複数のパッチ素子32が導体箔片等を用いて例えば6行8列に配設され、平面状部材21の裏面には平面状導体板31Aが全面に設けられる。この平面状導体板31Aは、例えば導体箔片等を用いて形成され、図2に示した各パッチ素子構造体30の平面状導体板31として作用する。すなわち、平面状部材21に複数のパッチ素子構造体30を6行8列に配設した構成となっている。   The planar member 21 is made of foamed polystyrene having a thickness T of about 2 cm in a square shape (horizontally long). For example, the lateral width W is set to about 180 to 190 cm and the height H is set to about 135 to 140 cm. A plurality of patch elements 32 are arranged on the front surface of the planar member 21 in, for example, 6 rows and 8 columns using conductor foil pieces, and a planar conductor plate 31A is provided on the entire rear surface of the planar member 21. . The planar conductor plate 31A is formed using, for example, a conductor foil piece, and functions as the planar conductor plate 31 of each patch element structure 30 shown in FIG. In other words, a plurality of patch element structures 30 are arranged on the planar member 21 in 6 rows and 8 columns.

上記パッチ素子32は、縦及び横の長さLaが同一寸法の方形状に形成され、一定の間隔Gで配設される。また、各パッチ素子32には、中央部に例えば4角形の開口穴33が設けられる。この場合、各行に配設された8個のパッチ素子32は、中央に位置する素子面積が一番小さくなるように開口穴33を大きい値(穴寸法h3)に設定し、両側方向に行くに従って素子面積が大きくなるように開口穴33を順次小さい値(穴寸法h2)、(穴寸法h1)に設定する。そして、各行の両側に位置するパッチ素子32は、開口穴33を設けず、素子面積が一番大きくなるように設定している。上記開口穴33の寸法h1、h2、h3は、縦及び横方向の長さを示している。   The patch element 32 is formed in a square shape having the same vertical and horizontal lengths La, and is arranged at a constant interval G. Each patch element 32 is provided with, for example, a rectangular opening hole 33 at the center. In this case, for the eight patch elements 32 arranged in each row, the opening hole 33 is set to a large value (hole dimension h3) so that the element area located at the center is the smallest, and as it goes in both directions. The opening holes 33 are sequentially set to small values (hole dimension h2) and (hole dimension h1) so as to increase the element area. The patch elements 32 located on both sides of each row are set so as to have the largest element area without providing the opening holes 33. The dimensions h1, h2, and h3 of the opening hole 33 indicate the lengths in the vertical and horizontal directions.

すなわち、各行のパッチ素子32は、例えば中央部の素子の位相遅延効果が一番大きくなるように容量性リアクタンスの値を大きく設定し、両側方向に行くに従って位相遅延効果が小さくなるように容量性リアクタンスの値を順次小さく設定する。例えば各パッチ素子32の縦及び横の長さLa、間隔G、開口穴33の寸法h1、h2、h3を次のように設定する。   That is, for each patch element 32 in each row, for example, the capacitive reactance value is set to be large so that the phase delay effect of the element at the center is maximized, and the capacitive element is set so that the phase delay effect becomes smaller toward both sides. Reactance values are set sequentially smaller. For example, the vertical and horizontal lengths La, the gap G, and the dimensions h1, h2, and h3 of the opening holes 33 are set as follows.

La:約0.3λ〜0.5λ
G :約0.05λ〜0.1λ
h1:約0.05λ
h2:約0.12λ
h3:約0.15λ
各パッチ素子32及び開口穴33を上記の寸法に設定することにより、パッチ素子32を容量性リアクタンスとして動作させることができる。
La: about 0.3λ to 0.5λ
G: about 0.05λ to 0.1λ
h1: about 0.05λ
h2: about 0.12λ
h3: about 0.15λ
By setting each patch element 32 and the opening hole 33 to the above dimensions, the patch element 32 can be operated as a capacitive reactance.

上記のように構成した平面状反射板を使用することにより、平面状部材21から約2mの前方に反射波を線状(縦方向)に収束させ、その収束域における電界強度を数dB改善することができる。   By using the planar reflecting plate configured as described above, the reflected wave is converged linearly (longitudinal direction) about 2 m ahead from the planar member 21, and the electric field strength in the convergence region is improved by several dB. be able to.

例えば平面状部材21として縦横の寸法が2.7m×2.7m、厚さTが2cmの発泡スチロールを使用し、この平面状部材21の前面に配設されるパッチ素子32の縦横の長さLa、間隔G、及び開口穴33の寸法h1、h2、h3を上記の値に設定した場合、パッチ素子32によって反射される反射波を約2mの前方に線状(縦方向)に収束させ、その収束域における電界強度を3〜5dB程度改善することができる。   For example, a foamed polystyrene having a vertical and horizontal dimension of 2.7 m × 2.7 m and a thickness T of 2 cm is used as the planar member 21, and the vertical and horizontal lengths La of the patch elements 32 disposed on the front surface of the planar member 21. When the distance G and the dimensions h1, h2, and h3 of the opening hole 33 are set to the above values, the reflected wave reflected by the patch element 32 is converged linearly (longitudinal direction) in front of about 2 m, and The electric field strength in the convergence range can be improved by about 3 to 5 dB.

次に本発明の実施例2に係る平面状反射板について説明する。   Next, a planar reflecting plate according to Embodiment 2 of the present invention will be described.

図5は本発明の実施例2に係る平面状反射板の構成例を示す正面図である。この実施例2に係る平面状反射板は、1枚の平面状部材21上に複数のパッチ素子32を8行8列に配設した場合の例を示している。   FIG. 5 is a front view showing a configuration example of the planar reflector according to the second embodiment of the present invention. The planar reflector according to the second embodiment shows an example in which a plurality of patch elements 32 are arranged in 8 rows and 8 columns on one planar member 21.

平面状部材21の前面には複数のパッチ素子32が8行8列に配設され、平面状部材21の裏面には平面状導体板31Aが全面に設けられる。上記パッチ素子32は、縦及び横の長さLaが同一寸法の方形状に形成され、一定の間隔Gで配設される。   A plurality of patch elements 32 are arranged in 8 rows and 8 columns on the front surface of the planar member 21, and a planar conductor plate 31 </ b> A is provided on the entire rear surface of the planar member 21. The patch element 32 is formed in a square shape having the same vertical and horizontal lengths La, and is arranged at a constant interval G.

また、各パッチ素子32には、中央部に例えば4角形の開口穴33が設けられる。この場合、平面状部材21の中央に配置される1個ないし複数個例えば4個のパッチ素子32は、素子面積が一番小さくなるように開口穴33を大きい値(穴寸法h3)に設定し、外側方向に行くに従って素子面積が大きくなるように開口穴33を順次小さい値(穴寸法h2)、(穴寸法h1)に設定する。すなわち、中央に位置する4個のパッチ素子32の外側には穴寸法h2の開口穴33を有する12個のパッチ素子32を配設し、更にその外側には穴寸法h1の開口穴33を有する20個のパッチ素子32を配設する。そして、最外側に位置するパッチ素子32は、開口穴33を設けず、素子面積が一番大きくなるように設定する。   Each patch element 32 is provided with, for example, a rectangular opening hole 33 at the center. In this case, for one to a plurality of, for example, four patch elements 32 arranged in the center of the planar member 21, the opening hole 33 is set to a large value (hole dimension h3) so that the element area is minimized. The opening holes 33 are sequentially set to small values (hole dimension h2) and (hole dimension h1) so that the element area increases as going outward. That is, twelve patch elements 32 each having an opening hole 33 having a hole size h2 are disposed outside the four patch elements 32 positioned at the center, and further, an opening hole 33 having a hole dimension h1 is provided outside thereof. Twenty patch elements 32 are arranged. The patch element 32 positioned on the outermost side is set so that the element area is maximized without providing the opening hole 33.

上記のように平面状部材21の中央部に位相遅延効果が最も大きいパッチ素子32を配設し、外側方向に行くに従って順次位相遅延効果が小さくなるように開口穴寸法の小さいパッチ素子32を略同心円状に配設する。上記各パッチ素子32の縦及び横の長さLa、間隔G、開口穴33の寸法h1、h2、h3の数値は、上記実施例1の場合と同様にして設定される。   As described above, the patch element 32 having the largest phase delay effect is arranged at the center of the planar member 21, and the patch elements 32 having small opening hole sizes are substantially arranged so that the phase delay effect is gradually reduced in the outward direction. They are arranged concentrically. The numerical values of the vertical and horizontal lengths La, the gap G, and the dimensions h1, h2, and h3 of the opening holes 33 are set in the same manner as in the first embodiment.

上記実施例2に示した素子配設の平面状反射板を使用することにより、平面状部材21から約2mの前方に反射波を点状に収束させることができる。   By using the planar reflector having the element arrangement shown in the second embodiment, the reflected wave can be converged in a dot shape in front of the planar member 21 by about 2 m.

上記実施例1、2によれば、平面状反射板を使用して反射面から有限な距離例えば約2〜3mの位置に反射波を点状もしくは線状に収束させることができる。従って、上記平面状反射板を家屋の壁面部分に設置し、点状もしくは線状の収束域位置に室内アンテナを配置することにより、この室内アンテナの受信電界強度を数dB改善することができる。このため受信電界強度が十分得られず、地上デジタル放送の直接受信が困難であった室内においても、室内アンテナの受信信号レベルを高め、所用のCN比の信号品質を確保して直接受信を可能とすることができる。   According to the first and second embodiments, the reflected wave can be converged in a dotted or linear manner at a finite distance from the reflecting surface, for example, at a position of about 2 to 3 m using the planar reflecting plate. Therefore, by installing the planar reflecting plate on the wall surface of the house and arranging the indoor antenna at the point-like or linear convergence region position, the received electric field strength of the indoor antenna can be improved by several dB. For this reason, even in a room where the reception field strength is not sufficient and direct terrestrial digital broadcasting is difficult to receive, the reception signal level of the indoor antenna is increased, and the signal quality of the required CN ratio is secured and direct reception is possible. It can be.

なお、上記実施例1、2では、パッチ素子32の中央部に開口穴33を設け、この開口穴33の大きさにより素子面積を変えて各パッチ素子32のリアクタンス即ち位相遅延効果を可変設定するようにしたが、開口穴33を設けずに各パッチ素子32の縦及び横の長さにより素子面積を変えて所定の位相遅延効果が得られるようにしてもよい。   In the first and second embodiments, an opening hole 33 is provided in the center of the patch element 32, and the reactance, that is, the phase delay effect of each patch element 32 is variably set by changing the element area according to the size of the opening hole 33. However, the opening area 33 may not be provided, and a predetermined phase delay effect may be obtained by changing the element area depending on the vertical and horizontal lengths of the patch elements 32.

また、上記実施例1、2では、パッチ素子32を方形状に形成した場合について示したが、その他、例えば多角形や円形等、任意の形状に形成することが可能である。この場合、各パッチ素子32は、中心間隔が一定となるように配設する。   In the first and second embodiments, the case where the patch element 32 is formed in a square shape has been described. However, the patch element 32 can be formed in an arbitrary shape such as a polygon or a circle. In this case, the patch elements 32 are arranged so that the center distance is constant.

また、上記実施例1、2では、パッチ素子32に4角形の開口穴33を設けた場合について示したが、開口穴33の形状は4角形に限らず任意の形状に形成することが可能である。   In the first and second embodiments, the case where the patch element 32 is provided with the quadrangular opening hole 33 has been described. However, the shape of the opening hole 33 is not limited to the quadrangular shape and can be formed in an arbitrary shape. is there.

また、上記実施例1、2では、位相遅延素子としてパッチ素子32を用いた場合について示したが、その他の素子を用いてもよい。例えば平面状部材21の前面に複数の反射素子(反射電極)をパッチ素子32と同様に配置し、各反射素子にインダクタンス素子やキャパシタンス素子を接続して所定の位相遅延効果が得られるようにしてもよい。   In the first and second embodiments, the patch element 32 is used as the phase delay element. However, other elements may be used. For example, a plurality of reflective elements (reflective electrodes) are arranged on the front surface of the planar member 21 in the same manner as the patch element 32, and an inductance element and a capacitance element are connected to each reflective element so as to obtain a predetermined phase delay effect. Also good.

また、本発明は、上記実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できるものである。   Further, the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage.

21…平面状部材、22…位相遅延素子、23…入射波、24…反射波、25…等位相面、26…収束域、30…パッチ素子構造体、31、31A…平面状導体板、32…パッチ素子、33…パッチ素子の開口穴。   DESCRIPTION OF SYMBOLS 21 ... Planar member, 22 ... Phase delay element, 23 ... Incident wave, 24 ... Reflected wave, 25 ... Equiphase surface, 26 ... Convergence zone, 30 ... Patch element structure, 31, 31A ... Planar conductor plate, 32 ... patch element, 33 ... opening hole of patch element.

Claims (2)

誘電率が1.5以下の平面状部材と、前記平面状部材の前面に略等間隔でマトリクス状に配設されて入射波を反射すると共に該反射波の位相を遅延する複数の位相遅延素子と、前記平面状部材の裏面の全面に設けられる平面状導体板とを具備し、前記平面状部材の中心付近に位相遅延効果の最も大きい位相遅延素子を配設し、外側に向かうに従って順次位相遅延効果の小さい位相遅延素子を配設し、前記平面状部材の前面から所定距離の位置に前記位相遅延素子による反射波を点状もしくは線状に収束させる平面状反射板であって、
前記複数の位相遅延素子は、導体薄片を用いて形成された、各辺の長さがλ/2〜λ/8(λは収束させようとする電磁波の波長)の範囲で同一に設定された正方形のパッチ素子であり、前記複数の位相遅延素子の少なくとも一部は、該パッチ素子の中央部に開口穴を有し、大きい位相遅延効果の位相遅延素子ほど、該開口穴を大きく設定したことを特徴とする平面状反射板。
A planar member having a dielectric constant of 1.5 or less, and a plurality of phase delay elements arranged in a matrix at substantially equal intervals on the front surface of the planar member to reflect incident waves and delay the phase of the reflected waves And a planar conductor plate provided on the entire back surface of the planar member, a phase delay element having the largest phase delay effect is disposed near the center of the planar member, and sequentially phased toward the outside. arranged a small phase delay element of the delay effect, a flat planar reflector from the front Ru converges the reflected wave by the phase delay element in punctiform or linear at a position a predetermined distance of said planar member,
The plurality of phase delay elements are formed using conductor thin pieces, and the length of each side is set to be the same within a range of λ / 2 to λ / 8 (λ is the wavelength of the electromagnetic wave to be converged). It is a square patch element, and at least a part of the plurality of phase delay elements has an opening hole at the center of the patch element, and the opening hole is set to be larger for a phase delay element having a larger phase delay effect. A planar reflector characterized by the above.
前記平面状部材は、発泡スチロール又は木材製であり、前記複数の位相遅延素子と平面状導体板との間を所定の間隔に保持し、  The planar member is made of polystyrene foam or wood, and maintains a predetermined distance between the plurality of phase delay elements and the planar conductor plate,
前記複数の位相遅延素子の隣接する辺の間隔は0.05〜0.1λであり、前記開口穴は四角形とすることを特徴とする請求項1記載の平面状反射板。  The planar reflector according to claim 1, wherein an interval between adjacent sides of the plurality of phase delay elements is 0.05 to 0.1λ, and the opening hole is a square.
JP2010203527A 2010-09-10 2010-09-10 Flat reflector Expired - Fee Related JP5572490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010203527A JP5572490B2 (en) 2010-09-10 2010-09-10 Flat reflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010203527A JP5572490B2 (en) 2010-09-10 2010-09-10 Flat reflector

Publications (2)

Publication Number Publication Date
JP2012060530A JP2012060530A (en) 2012-03-22
JP5572490B2 true JP5572490B2 (en) 2014-08-13

Family

ID=46057050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010203527A Expired - Fee Related JP5572490B2 (en) 2010-09-10 2010-09-10 Flat reflector

Country Status (1)

Country Link
JP (1) JP5572490B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022156917A (en) * 2021-03-31 2022-10-14 株式会社ジャパンディスプレイ radio wave reflector
WO2023140193A1 (en) * 2022-01-19 2023-07-27 日東電工株式会社 Reflector

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6483480B1 (en) * 2000-03-29 2002-11-19 Hrl Laboratories, Llc Tunable impedance surface
JP2003110353A (en) * 2001-09-27 2003-04-11 Mitsubishi Electric Corp Common array antenna for polarized waves
JP2005191982A (en) * 2003-12-26 2005-07-14 Kobe Steel Ltd Antenna
WO2007051487A1 (en) * 2005-11-03 2007-05-10 Centre National De La Recherche Scientifique (C.N.R.S.) A reflectarry and a millimetre wave radar
TWI273739B (en) * 2005-11-09 2007-02-11 Tatung Co Reflection plate with variable size of trough hole

Also Published As

Publication number Publication date
JP2012060530A (en) 2012-03-22

Similar Documents

Publication Publication Date Title
JP6766180B2 (en) Devices and methods for reducing interconnection within an antenna array
CN101548434B (en) Dual-band dual-polarized base station antenna for mobile communication
US8339330B2 (en) Frequency selective surface structure for multi frequency bands
US8907861B2 (en) Antennas integrated with dielectric construction materials
Moghadas et al. A dual-band high-gain resonant cavity antenna with orthogonal polarizations
Chen et al. Low-profile wideband reflectarray by novel elements with linear phase response
CN113013638A (en) Broadband folding type plane reflection array antenna
JP5219794B2 (en) Dielectric antenna
JP7321484B2 (en) Radio wave absorption structure
KR20220131340A (en) Reflective Array Antenna for Enhanced Wireless Communication Coverage Area
JP5572490B2 (en) Flat reflector
AU2014332522B2 (en) Low profile high efficiency multi-band reflector antennas
CN109980334B (en) Broadband dual polarized antenna
TWI587577B (en) Reflective array antenna structure
JP2012049654A (en) Ebg structure by divided substrate
Ryan et al. A broadband transmitarray using double square ring elements
JP2014045278A (en) Frequency sharing directional antenna
Danchen et al. Investigation on a single-layer microstrip circular-patch/ring-combination reflectarray element
US20010050653A1 (en) Apparatus and method for reducing polarization cross-coupling in cross dipole reflectarrays
Mourtzios et al. Novel antenna configurations with non-uniform ebg lattices for wireless communication networks
Monti et al. Gradient metasurface dome for phased arrays able reducing the grating lobes within single-side scanning region
CN112201964A (en) Reflection transmission array antenna and construction method thereof
CN105470658A (en) Dual-polarized waveguide slit feed asymmetric medium packed column lens antenna
JP2003234617A (en) Composite antenna
KR200366457Y1 (en) Satallite broadcasting antenna equipped plane-reflex-arrangement-plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130305

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140630

R150 Certificate of patent or registration of utility model

Ref document number: 5572490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees