TWI587564B - Proton exchange membrane fuel cell - Google Patents

Proton exchange membrane fuel cell Download PDF

Info

Publication number
TWI587564B
TWI587564B TW100112883A TW100112883A TWI587564B TW I587564 B TWI587564 B TW I587564B TW 100112883 A TW100112883 A TW 100112883A TW 100112883 A TW100112883 A TW 100112883A TW I587564 B TWI587564 B TW I587564B
Authority
TW
Taiwan
Prior art keywords
layer
fuel cell
microporous layer
microporous
exchange membrane
Prior art date
Application number
TW100112883A
Other languages
Chinese (zh)
Other versions
TW201242157A (en
Inventor
翁芳柏
徐俊英
蘇艾
Original Assignee
元智大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 元智大學 filed Critical 元智大學
Priority to TW100112883A priority Critical patent/TWI587564B/en
Publication of TW201242157A publication Critical patent/TW201242157A/en
Application granted granted Critical
Publication of TWI587564B publication Critical patent/TWI587564B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

質子交換膜燃料電池Proton exchange membrane fuel cell

本發明有關於一種燃料電池,特別是有關於質子交換膜燃料電池。This invention relates to a fuel cell, and more particularly to a proton exchange membrane fuel cell.

目前幾乎所有的科技產品皆需要仰賴電力才能運作,故有不同的能量轉換方式來將散佈於各種物質或環境的能量轉換成電能。為了替代消耗自然資源以及製造污染的石油以及火力發電,除了環保的太陽能發電、風力以及水力發電,其他的高效能發電或儲電裝置(電池)也是產業上極力研究的課題。At present, almost all technology products need to rely on electricity to operate, so there are different ways of energy conversion to convert energy scattered in various substances or environments into electrical energy. In addition to environmentally-friendly solar power, wind power, and hydropower generation, other high-efficiency power generation or power storage devices (batteries) are also the subject of intense research in the industry in place of natural resources and the production of polluted oil and thermal power.

在新的發電裝置的研究課題中,尤其以具有高能量轉換效率、使用方便性佳、符合環保效益以及產業應用廣度為主要依據。雖然目前已具有如鉛酸電池、鎳氫電池以及鋰電池等能夠運用於車輛動力以替代石化燃料,但仍有成本高以及充電時間長等問題。In the research topic of new power generation equipment, it is mainly based on high energy conversion efficiency, easy to use, environmental protection benefits and industrial application breadth. Although it has been able to be used in vehicle power instead of fossil fuels, such as lead-acid batteries, nickel-hydrogen batteries, and lithium batteries, it still has high cost and long charging time.

而以當前的科技發展,燃料電池是一種高效率、潔淨且能夠用作車輛動力以及資訊產品的電源。燃料電池是將酒精、天然氣、氫氣等燃料的化學能以氧化還原的方式直接轉換為電能,其高效率的能量轉換以及相對低的環境污染,成為眾所矚目的新興發電方法。此外,當燃料用盡時,只需填充燃料就可以立即使用。其中尤以氫燃料電池最為環保。氫燃料電池分別以氫以及氧為燃料和氧化劑,並且只產生副產品─水。氫燃料電池通常具有質子交換膜(proton exchange membrane),故稱為質子交換膜燃料電池。With current technology development, fuel cells are a highly efficient, clean power source that can be used as a vehicle power and information product. The fuel cell directly converts the chemical energy of fuels such as alcohol, natural gas and hydrogen into redox, and its high-efficiency energy conversion and relatively low environmental pollution have become the emerging power generation methods. In addition, when the fuel is used up, it can be used immediately by filling the fuel. Among them, hydrogen fuel cells are the most environmentally friendly. Hydrogen fuel cells use hydrogen and oxygen as fuels and oxidants, respectively, and produce only by-products, water. Hydrogen fuel cells usually have a proton exchange membrane, so they are called proton exchange membrane fuel cells.

然而,質子交換膜燃料電池的發電效能通常與其中的氣體擴散層有關,氣體擴散層用以通過氫以及氧分子,且須避免反應產生的水阻礙後續的反應進行。氣體擴散層的設計是質子交換膜燃料電池設計上的重要課題。However, the power generation efficiency of a proton exchange membrane fuel cell is generally related to a gas diffusion layer in which a gas diffusion layer is used to pass hydrogen and oxygen molecules, and water generated by the reaction must be prevented from hindering subsequent reactions. The design of the gas diffusion layer is an important issue in the design of proton exchange membrane fuel cells.

為了提高質子交換膜燃料電池的發電效能,本發明提供一種質子交換膜燃料電池。In order to improve the power generation efficiency of a proton exchange membrane fuel cell, the present invention provides a proton exchange membrane fuel cell.

本發明實施例提供一種質子交換膜燃料電池,具有陽極和陰極,並將氫以及氧分別供應於陽極以及陰極,用以產生電力。燃料電池包括陽極氣體擴散層以及陰極氣體擴散層。陽極氣體擴層包括第一碳載體層、第一微孔層、第二微孔層以及第三微孔層。第一碳載體層毗鄰陽極。第一微孔層具有重量百分比三十的鐵氟龍(聚四氯乙烯),且毗鄰第一碳載體層。第二微孔層具有重量百分比二十五的鐵氟龍,且毗鄰第一微孔層。以及第三微孔層具有重量百分比二十的鐵氟龍,毗鄰第二微孔層。陰極氣體擴層包括第二碳載體層、第四微孔層、第五微孔層以及第六微孔層。第二碳載體層毗鄰陰極。第四微孔層具有重量百分比三十的鐵氟龍,且毗鄰第二碳載體層。第五微孔層具有重量百分比二十五的鐵氟龍,且毗鄰第四微孔層。第六微孔層具有重量百分比二十的鐵氟龍,且毗鄰第五微孔層。Embodiments of the present invention provide a proton exchange membrane fuel cell having an anode and a cathode, and supplying hydrogen and oxygen to an anode and a cathode, respectively, for generating electric power. The fuel cell includes an anode gas diffusion layer and a cathode gas diffusion layer. The anode gas diffusion layer includes a first carbon support layer, a first microporous layer, a second microporous layer, and a third microporous layer. The first carbon support layer is adjacent to the anode. The first microporous layer has thirty percent by weight of Teflon (polytetrafluoroethylene) and is adjacent to the first carbon support layer. The second microporous layer has twenty-five percent by weight of Teflon and is adjacent to the first microporous layer. And the third microporous layer has Teflon in a weight percentage of twenty, adjacent to the second microporous layer. The cathode gas diffusion layer includes a second carbon carrier layer, a fourth microporous layer, a fifth microporous layer, and a sixth microporous layer. The second carbon support layer is adjacent to the cathode. The fourth microporous layer has thirty percent by weight of Teflon and is adjacent to the second carbon support layer. The fifth microporous layer has twenty-five percent by weight of Teflon and is adjacent to the fourth microporous layer. The sixth microporous layer has twenty percent by weight of Teflon and is adjacent to the fifth microporous layer.

綜上所述,本發明實施例所提供的質子交換膜燃料電池能利用氫及氧產生電能,且因為是將化學能直接轉換為電能,故具有高能量轉換效率。此外,本發明實施例所提供的質子交換膜燃料電池可適用在不同加濕條件底下,維持性能的穩定性。In summary, the proton exchange membrane fuel cell provided by the embodiment of the present invention can generate electricity by using hydrogen and oxygen, and has high energy conversion efficiency because it directly converts chemical energy into electrical energy. In addition, the proton exchange membrane fuel cell provided by the embodiments of the present invention can be applied to maintain the stability of performance under different humidification conditions.

為使能更進一步瞭解本發明之特徵及技術內容,請參閱以下有關本發明之詳細說明與附圖,但是此等說明與所附圖式僅係用來說明本發明,而非對本發明的權利範圍作任何的限制。The detailed description of the present invention and the accompanying drawings are to be understood by the claims The scope is subject to any restrictions.

請參照圖1,圖1為本發明實施例之質子交換膜燃料電池1之示意圖。質子交換膜燃料電池1具有陽極和陰極。質子交換膜燃料電池1將氫(H2)以及氧(O2)分別供應於陽極觸媒層14以及陰極觸媒層15,用以產生電力並供應至負載18。質子交換膜燃料電池1包括質子交換膜13、陽極觸媒層14、陰極觸媒層15、陽極氣體擴散層16、陰極氣體擴散層17。Please refer to FIG. 1. FIG. 1 is a schematic diagram of a proton exchange membrane fuel cell 1 according to an embodiment of the present invention. The proton exchange membrane fuel cell 1 has an anode and a cathode. The proton exchange membrane fuel cell 1 supplies hydrogen (H 2 ) and oxygen (O 2 ) to the anode catalyst layer 14 and the cathode catalyst layer 15, respectively, for generating electric power and supplying it to the load 18. The proton exchange membrane fuel cell 1 includes a proton exchange membrane 13, an anode catalyst layer 14, a cathode catalyst layer 15, an anode gas diffusion layer 16, and a cathode gas diffusion layer 17.

質子交換膜13位於陽極觸媒層14與陰極觸媒層15之間。陽極觸媒層14毗鄰質子交換膜13之第一側。陰極觸媒層15毗鄰質子交換膜13之第二側。陽極氣體擴散層16毗鄰於陽極觸媒層14與陽極集電板11之間,而陰極氣體擴散層17毗鄰於陰極觸媒層15與陰極集電板12之間。一般而言,質子交換膜燃料電池1使用加壓的封裝來包覆,在本實施例中,陽極集電板11和陰極集電板12使用表面鍍金的銅板,而陽極集電板11和陰極集電板12的外側以玻璃纖維板(未圖示)來包覆全部的元件。整體結構可以利用螺絲來鎖固,例如用八顆螺絲(未圖式)分別以2.45牛頓-公尺的力矩(torque)來固定,但本發明並不限制。是故,圖1中的元件實際上是直接堆疊在一起,而不具有間隙。The proton exchange membrane 13 is located between the anode catalyst layer 14 and the cathode catalyst layer 15. The anode catalyst layer 14 is adjacent to the first side of the proton exchange membrane 13. The cathode catalyst layer 15 is adjacent to the second side of the proton exchange membrane 13. The anode gas diffusion layer 16 is adjacent between the anode catalyst layer 14 and the anode current collector plate 11, and the cathode gas diffusion layer 17 is adjacent between the cathode catalyst layer 15 and the cathode collector plate 12. In general, the proton exchange membrane fuel cell 1 is coated with a pressurized package. In the present embodiment, the anode collector plate 11 and the cathode collector plate 12 are plated with a gold plated surface, and the anode collector plate 11 and the cathode are used. The outer side of the current collector plate 12 covers all the components with a fiberglass board (not shown). The overall structure can be locked with screws, for example, with eight screws (not shown) fixed with a torque of 2.45 Newton-meter, respectively, but the invention is not limited. Therefore, the components in Figure 1 are actually stacked directly without gaps.

質子交換膜13用以讓質子(H+)通過。陽極觸媒層14使氫(H2)分解成電子及質子。陰極觸媒層15使質子與氧(O2)結合而產生水(H2O)。本實施例之陽極觸媒層14以及陰極觸媒層15附著於質子交換膜13,例如是使用南亞(Nan-Ya company)所製造的Nafion212,其具有陽極觸媒層14以及陰極觸媒層15。而質子交換膜13與陽極觸媒層14以及陰極觸媒層15的組合通稱為膜電極組(Membrane Electrode Assembly,MEA)。在本實施例中,陽極觸媒層14以及陰極觸媒層15分別具有0.2以及0.4毫克/平方公分的白金(Pt)。陽極觸媒層14以及陰極觸媒層15的厚度皆為五至十微米(μm)。白金為加速反應速率的催化劑,而氫在陽極觸媒層14還原成質子和電子,電子被吸引至陽極11進而流經負載18。在陽極觸媒層14的還原反應的反應式為H2→2H++2e-。質子由質子交換膜13之第一側穿過質子交換膜13,抵達質子交換膜13之第二側。質子在陰極觸媒層15與氧以及由陰極12所接收的電子進行氧化反應,而產生水,而此反應式為4H++4e-+O2→2H2O。此外,也可以添加二氧化矽(SiO2)於陽極觸媒層14與陰極觸媒層15,用以保持水於陽極觸媒層14與陰極觸媒層15,並據此增加反應效率。The proton exchange membrane 13 is used to pass protons (H + ). The anode catalyst layer 14 decomposes hydrogen (H 2 ) into electrons and protons. The cathode catalyst layer 15 combines protons with oxygen (O 2 ) to produce water (H 2 O). The anode catalyst layer 14 and the cathode catalyst layer 15 of the present embodiment are attached to the proton exchange membrane 13, for example, Nafion manufactured by Nan-Ya company. 212 having an anode catalyst layer 14 and a cathode catalyst layer 15. The combination of the proton exchange membrane 13 and the anode catalyst layer 14 and the cathode catalyst layer 15 is generally referred to as a Membrane Electrode Assembly (MEA). In the present embodiment, the anode catalyst layer 14 and the cathode catalyst layer 15 have platinum (Pt) of 0.2 and 0.4 mg/cm 2 , respectively. The thickness of the anode catalyst layer 14 and the cathode catalyst layer 15 are both five to ten micrometers (μm). Platinum is a catalyst that accelerates the rate of reaction, and hydrogen is reduced to protons and electrons in the anode catalyst layer 14, and electrons are attracted to the anode 11 and then through the load 18. The reaction formula of the reduction reaction in the anode catalyst layer 14 is H 2 → 2H + + 2e - . Protons pass through the proton exchange membrane 13 from the first side of the proton exchange membrane 13 to the second side of the proton exchange membrane 13. The protons oxidize in the cathode catalyst layer 15 with oxygen and electrons received by the cathode 12 to produce water, and the reaction formula is 4H + + 4e - + O 2 → 2H 2 O. Further, cerium oxide (SiO 2 ) may be added to the anode catalyst layer 14 and the cathode catalyst layer 15 to maintain water in the anode catalyst layer 14 and the cathode catalyst layer 15, and thereby increase the reaction efficiency.

陽極氣體擴層16包括第一碳載體層161、第一微孔層162、第二層第二微孔層163以及第三層第三微孔層164。第一碳載體層161毗鄰於陽極集電板11。第一微孔層162具有重量百分比三十的鐵氟龍(聚四氯乙烯,polytetrafluoroethylene,PTFE),且毗鄰第一碳載體層161。第二層第二微孔層163具有重量百分比二十五的鐵氟龍,且毗鄰第一微孔層162。第三層第三微孔層164具有重量百分比二十的鐵氟龍,且毗鄰於第二層第二微孔層163與陽極觸媒層14之間。The anode gas diffusion layer 16 includes a first carbon carrier layer 161, a first microporous layer 162, a second layer second microporous layer 163, and a third layer third microporous layer 164. The first carbon carrier layer 161 is adjacent to the anode collector plate 11. The first microporous layer 162 has thirty percent by weight of polytetrafluoroethylene (PTFE) and is adjacent to the first carbon support layer 161. The second layer of second microporous layer 163 has twenty-five percent by weight of Teflon and is adjacent to the first microporous layer 162. The third layer of the third microporous layer 164 has a weight percentage of twenty Teflon and is adjacent between the second layer of the second microporous layer 163 and the anode catalyst layer 14.

陰極氣體擴層17包括第二碳載體層171、第四微孔層172、第五微孔層173以及第六微孔層174。第二碳載體層171毗鄰陰極集電板12。第四微孔層172具有重量百分比三十的鐵氟龍,且毗鄰第二碳載體層171。第五微孔層173具有重量百分比二十五的鐵氟龍,且毗鄰第四微孔層172。第六微孔層174具有重量百分比二十的鐵氟龍,且毗鄰於第五微孔層173與陰極觸媒層15之間。The cathode gas diffusion layer 17 includes a second carbon carrier layer 171, a fourth microporous layer 172, a fifth microporous layer 173, and a sixth microporous layer 174. The second carbon carrier layer 171 is adjacent to the cathode collector plate 12. The fourth microporous layer 172 has thirty percent by weight of Teflon and is adjacent to the second carbon support layer 171. The fifth microporous layer 173 has twenty-five percent by weight of Teflon and is adjacent to the fourth microporous layer 172. The sixth microporous layer 174 has twenty percent by weight of Teflon and is adjacent between the fifth microporous layer 173 and the cathode catalyst layer 15.

上述重量百分比的定義為鐵氟龍塗佈在基材上所增加的重量百分比,例如基材為100克,而塗佈鐵氟龍後為130克,則表示此微孔層的重量百分比為30%。The above weight percentage is defined as the weight percentage of Teflon coated on the substrate, for example, 100 grams of the substrate, and 130 grams after coating the Teflon, indicating that the weight percentage of the microporous layer is 30. %.

復參照圖1,在本實施例中,陽極氣體擴散層16以及的製作方式具有多種實施方式,本發明並不限制。舉例來說,可以使用SGL公司生產的碳紙(pure carbon paper)34BA作為第一碳載體層161,並依序塗佈鐵氟龍三次而完成第一微孔層162、第二微孔層163以及第三微孔層164。同樣地,陰極氣體擴散層17使用碳紙34BA作為第二碳載體層171,並依序塗佈鐵氟龍三次而完成第四微孔層172、第五微孔層173以及第六微孔層174。碳紙34BA為微孔隙層(micro-porous layer)的結構,而碳紙34BA所塗佈的第一微孔層至第六微孔層的鐵氟龍的厚度分別在五十至一百微米(μm)之間。不同的鐵氟龍的重量百分比即代表不同的疏水性(hydrophobicity),而此陽極氣體擴散層16以及陰極氣體擴散層17則依據不同的鐵氟龍的重量百分比而成為梯度微孔隙層(gradient micro-porous layer,GMPL)。Referring back to FIG. 1, in the present embodiment, the anode gas diffusion layer 16 and the manner of fabrication thereof have various embodiments, and the present invention is not limited thereto. For example, the first carbonaceous layer 162 and the second microporous layer 163 may be completed by using the pure carbon paper 34BA produced by SGL as the first carbon carrier layer 161 and sequentially coating the Teflon three times. And a third microporous layer 164. Similarly, the cathode gas diffusion layer 17 uses the carbon paper 34BA as the second carbon carrier layer 171, and sequentially coats the Teflon three times to complete the fourth microporous layer 172, the fifth microporous layer 173, and the sixth microporous layer. 174. The carbon paper 34BA is a micro-porous layer structure, and the thickness of the Teflon from the first to sixth microporous layers coated by the carbon paper 34BA is 50 to 100 micrometers, respectively. Between μm). The different weight percentages of Teflon represent different hydrophobicity, and the anode gas diffusion layer 16 and the cathode gas diffusion layer 17 become gradient micropores according to the weight percentage of different Teflon. -porous layer, GMPL).

陽極氣體擴散層16以及陰極氣體擴散層17的疏水性會依據操作時相對溼度(relative humidity,RH)的高低而有不同的效果,在本實施例中以陰極氣體擴散層17的疏水性為例來說明,而陽極氣體擴散層16的疏水性與陰極氣體擴散層17相同。請參照圖2A,圖2A為陰極氣體擴散層17操作在高相對濕度時的示意圖。在高相對濕度時,陰極觸媒層15以及第二碳載體層171皆含有較高比例的水。此時,氧分子(O2)會穿過第二碳載體層171,且穿過第四微孔層至第六微孔層(172~174)的鐵氟龍而到達陰極觸媒層15。然而,由於第四微孔層至第六微孔層(172~174)的鐵氟龍之重量百分比逐漸減少,第四微孔層172的疏水性大於第五微孔層173,而第五微孔層173的疏水性大於第六微孔層174。如此導致但是,第六微孔層174依然可以保留較多的水以使得陰極觸媒層15可以維持較高的溼度。The hydrophobicity of the anode gas diffusion layer 16 and the cathode gas diffusion layer 17 may have different effects depending on the relative humidity (RH) during operation. In the present embodiment, the hydrophobicity of the cathode gas diffusion layer 17 is taken as an example. The hydrophobicity of the anode gas diffusion layer 16 is the same as that of the cathode gas diffusion layer 17. Please refer to FIG. 2A. FIG. 2A is a schematic diagram of the cathode gas diffusion layer 17 operating at a high relative humidity. At high relative humidity, both the cathode catalyst layer 15 and the second carbon support layer 171 contain a relatively high proportion of water. At this time, the oxygen molecules (O 2 ) pass through the second carbon carrier layer 171 and pass through the Teflon of the fourth to sixth microporous layers (172 to 174) to reach the cathode catalyst layer 15. However, since the weight percentage of Teflon of the fourth to sixth microporous layers (172 to 174) is gradually decreased, the fourth microporous layer 172 is more hydrophobic than the fifth microporous layer 173, and the fifth micro The pore layer 173 is more hydrophobic than the sixth microporous layer 174. As a result, however, the sixth microporous layer 174 can still retain more water so that the cathode catalyst layer 15 can maintain a higher humidity.

圖2A中的水滴代表因為疏水性的差異而在陰極氣體擴散層之內的水的分布情形。同樣地,第四微孔層至第六微孔層(172~174)的不同疏水性所造成的梯度,使水較不容易往陰極觸媒層15擴散。如此,在較高的相對溼度時,陰極觸媒層15較不容易受到所產生的水的聚集而降低反應速率。The water droplets in Fig. 2A represent the distribution of water within the cathode gas diffusion layer due to the difference in hydrophobicity. Similarly, the gradient caused by the different hydrophobicities of the fourth to sixth microporous layers (172 to 174) makes water less likely to diffuse toward the cathode catalyst layer 15. Thus, at higher relative humidity, the cathode catalyst layer 15 is less susceptible to the accumulation of water produced and reduces the rate of reaction.

請參照圖2B,圖2B為陰極氣體擴散層17操作在低相對濕度時的示意圖。在低相對濕度時,陰極觸媒層15以及第二碳載體層171皆含有較低比例的水。此時,氧分子(O2)同樣會穿過第二碳載體層171,且穿過第四微孔層至第六微孔層(172~174)的鐵氟龍而到達陰極觸媒層15。然而,由於第四微孔層至第六微孔層(172~174)的鐵氟龍之重量百分比逐漸減少,第四微孔層172的疏水性大於第五微孔層173,而第五微孔層173的疏水性大於第六微孔層174。如此導致了陰極氣體擴散層15產生的水較不容易擴散至第四微孔層172。藉此,可以讓陰極氣體擴散層15保持相對較高的溼度。圖2B中的水滴代表因為疏水性的差異而在陰極氣體擴散層17之內的水的分布情形。同樣地,第四微孔層至第六微孔層(172~174)的不同疏水性所造成的梯度,使水較容易停留在陰極觸媒層15。如此,在較低的相對溼度時,陰極觸媒層15容易保持水,並避免反應速率降低。Please refer to FIG. 2B. FIG. 2B is a schematic diagram of the cathode gas diffusion layer 17 operating at low relative humidity. At low relative humidity, both the cathode catalyst layer 15 and the second carbon support layer 171 contain a lower proportion of water. At this time, the oxygen molecules (O 2 ) also pass through the second carbon carrier layer 171 and pass through the Teflon of the fourth to sixth microporous layers (172 to 174) to reach the cathode catalyst layer 15 . However, since the weight percentage of Teflon of the fourth to sixth microporous layers (172 to 174) is gradually decreased, the fourth microporous layer 172 is more hydrophobic than the fifth microporous layer 173, and the fifth micro The pore layer 173 is more hydrophobic than the sixth microporous layer 174. This causes the water generated by the cathode gas diffusion layer 15 to be less likely to diffuse to the fourth microporous layer 172. Thereby, the cathode gas diffusion layer 15 can be maintained at a relatively high humidity. The water droplets in Fig. 2B represent the distribution of water within the cathode gas diffusion layer 17 due to the difference in hydrophobicity. Similarly, the gradient caused by the different hydrophobicities of the fourth to sixth microporous layers (172 to 174) makes it easier for water to stay in the cathode catalyst layer 15. Thus, at a lower relative humidity, the cathode catalyst layer 15 tends to retain water and avoid a decrease in the reaction rate.

同理,在高濕度下,陽極觸媒層14可以避免水回流而維持在適當的溼度下;在低濕度下,陽極觸媒層14所產生的水可以適度的保留在第三微孔層164以維持較高的溼度。Similarly, under high humidity, the anode catalyst layer 14 can be prevented from flowing back to maintain proper humidity; at low humidity, the water generated by the anode catalyst layer 14 can be moderately retained in the third microporous layer 164. To maintain high humidity.

此外,質子交換膜燃料電池1亦可以增加流場(flow field)結構於陽極集電板11和陰極集電板12之內側,如圖3所示。質子交換膜燃料電池3基本上與圖1之質子交換膜燃料電池1相同,其差異僅在於增加的陽極流場板38以及陰極流場板39分別用以將氫以及氧傳送至陽極氣體擴散層16以及陰極氣體擴散層17。使用流場的方式可以使燃料(在此為氫氣)以及氧化劑(在此為氧氣)均勻通入燃料電池,而提升燃料電池的效能。在本實施例中的陽極流場板38以及陰極流場板39由石墨(graphite)構成,但本發明並不限定於此。此外,陽極流場板38以及陰極流場板39亦可整合於陽極集電板11以及陰極集電板12。換句話說,陽極集電板11以及陰極集電板12可以依照流場的需要而設計成可以讓燃料與氧化劑均勻通過的結構。在經由上述之說明後,本技術領域具有通常知識者應可推知流場板的實施方式,在此不加累述。Further, the proton exchange membrane fuel cell 1 can also increase the flow field structure inside the anode collector plate 11 and the cathode collector plate 12, as shown in FIG. The proton exchange membrane fuel cell 3 is substantially identical to the proton exchange membrane fuel cell 1 of Fig. 1 except that the increased anode flow field plate 38 and cathode flow field plate 39 are used to transfer hydrogen and oxygen, respectively, to the anode gas diffusion layer. 16 and a cathode gas diffusion layer 17. The use of a flow field allows the fuel (here hydrogen) and the oxidant (here oxygen) to pass uniformly into the fuel cell, improving the performance of the fuel cell. The anode flow field plate 38 and the cathode flow field plate 39 in this embodiment are composed of graphite, but the present invention is not limited thereto. Further, the anode flow field plate 38 and the cathode flow field plate 39 may be integrated into the anode current collector plate 11 and the cathode current collector plate 12. In other words, the anode current collecting plate 11 and the cathode current collecting plate 12 can be designed in such a manner that the fuel and the oxidizing agent can pass uniformly in accordance with the needs of the flow field. After the above description, those skilled in the art should be able to infer the implementation of the flow field plate, which will not be described here.

測試本實施例之質子交換膜燃料電池3之效能的測試平台為Scribner Associates company的850C測試機台,850C測試基台不僅可以量測極化曲線(polarization curve(電壓對電流密度的曲線)),也可以量測交流阻抗(AC-impedance),並據此了解水的含量。輸入陽極集電板11以及陰極集電板12的氫氣以及氧氣的比例為二比一。質子交換膜燃料電池3的溫度為80℃。而進入氣體(氫氣以及氧氣)具有預定的相對溼度,並且可藉由改變進入氣體的溫度來改變質子交換膜燃料電池1內的氣體的相對溼度。進入質子交換膜燃料電池3的氣體之相對濕度在百分之百至百分之五之間,且將本實施例之質子交換膜燃料電池3與使用SGL所生產並商業化的微孔隙層34BC作為氣體擴散層的燃料電池的效能做比較,以了解不同的相對溼度對燃料電池的影響。在數據資料中,以梯度微孔隙層GMPL代表本實施例之質子交換膜燃料電池3,以34BC代表使用微孔隙層34BC的燃料電池。The test platform for testing the performance of the proton exchange membrane fuel cell 3 of the present embodiment is the 850C test machine of the Scribner Associates company, and the 850C test abutment can measure not only the polarization curve (voltage versus current density curve), It is also possible to measure AC-impedance and understand the water content accordingly. The ratio of hydrogen gas and oxygen gas input to the anode current collector plate 11 and the cathode current collector plate 12 is two to one. The temperature of the proton exchange membrane fuel cell 3 was 80 °C. The incoming gas (hydrogen and oxygen) has a predetermined relative humidity, and the relative humidity of the gas in the proton exchange membrane fuel cell 1 can be changed by changing the temperature of the incoming gas. The relative humidity of the gas entering the proton exchange membrane fuel cell 3 is between 100% and 5%, and the proton exchange membrane fuel cell 3 of the present embodiment and the microporous layer 34BC produced and commercialized using SGL are diffused as a gas. The performance of the layers of fuel cells is compared to understand the effects of different relative humidity on the fuel cell. In the data sheet, the gradient microporous layer GMPL represents the proton exchange membrane fuel cell 3 of the present embodiment, and the 34BC represents a fuel cell using the microporous layer 34BC.

請參照圖4A,圖4A為本發明實施例之質子交換膜燃料電池3與使用微孔隙層34BC的燃料電池操作在高濕度之極化曲線圖。由圖4A可知,在相對濕度(RH)在百分之百至百分之二十五時,本實施例之質子交換膜燃料電池3之效能比使用微孔隙層34BC的燃料電池好。由於陽極氣體擴散層16以及陰極氣體擴散層17所構成的梯度微孔隙層可以防止水在陽極觸媒層14以及陰極觸媒層15聚集過多。請再參照圖4B,圖4B為本發明實施例之質子交換膜燃料電池3與使用微孔隙層34BC的燃料電池在相對溼度百分之百時之定頻交流阻抗圖。由圖4B可知,本實施例之質子交換膜燃料電池3的質傳阻力(mass transfer resistance)低於使用微孔隙層34BC的燃料電池。Referring to FIG. 4A, FIG. 4A is a polarization diagram of the proton exchange membrane fuel cell 3 and the fuel cell using the microporous layer 34BC operating at high humidity according to an embodiment of the present invention. As can be seen from Fig. 4A, the proton exchange membrane fuel cell 3 of the present embodiment is more effective than the fuel cell using the microporous layer 34BC at a relative humidity (RH) of 100 to 25 percent. The gradient microporous layer formed by the anode gas diffusion layer 16 and the cathode gas diffusion layer 17 prevents water from being excessively accumulated in the anode catalyst layer 14 and the cathode catalyst layer 15. Referring to FIG. 4B again, FIG. 4B is a diagram showing a fixed-frequency AC impedance diagram of the proton exchange membrane fuel cell 3 and the fuel cell using the microporous layer 34BC at a relative humidity of one hundred percent according to an embodiment of the present invention. As can be seen from FIG. 4B, the mass transfer resistance of the proton exchange membrane fuel cell 3 of the present embodiment is lower than that of the fuel cell using the microporous layer 34BC.

關於在較低的相對溼度時的燃料電池效能,請參照圖5A,圖5A為本發明實施例之質子交換膜燃料電池3與使用微孔隙層34BC的燃料電池操作在低相對濕度時之極化曲線圖。由圖5A可知,在相對濕度百分之三十至百分之五時,本實施例之質子交換膜燃料電池3之效能比使用微孔隙層34BC的燃料電池好。梯度微孔隙層可以使水停留在陽極觸媒層14以及陰極觸媒層15而保持濕度,並據此提升反應速率。Regarding the fuel cell performance at a lower relative humidity, please refer to FIG. 5A, which illustrates the polarization of the proton exchange membrane fuel cell 3 and the fuel cell using the microporous layer 34BC operating at low relative humidity according to an embodiment of the present invention. Graph. As can be seen from Fig. 5A, the proton exchange membrane fuel cell 3 of the present embodiment is more effective than the fuel cell using the microporous layer 34BC at 30 to 5 percent relative humidity. The gradient microporous layer allows water to remain in the anode catalyst layer 14 and the cathode catalyst layer 15 to maintain humidity and thereby increase the reaction rate.

請再參照圖5B,圖5B為本發明實施例之質子交換膜燃料電池3與使用微孔隙層34BC的燃料電池操作在相對濕度百分之五之定頻交流阻抗圖。圖5B顯示,本實施例之質子交換膜燃料電池3之質傳阻力低於使用微孔隙層34BC之燃料電池。而此結果也是因為本實施例之質子交換膜燃料電池3之陽極觸媒層14以及陰極觸媒層15保有較多的水。Referring to FIG. 5B again, FIG. 5B is a diagram showing a fixed-frequency AC impedance diagram of the proton exchange membrane fuel cell 3 and the fuel cell using the microporous layer 34BC operating at a relative humidity of five percent according to an embodiment of the present invention. Fig. 5B shows that the mass transfer resistance of the proton exchange membrane fuel cell 3 of the present embodiment is lower than that of the fuel cell using the microporous layer 34BC. This result is also because the anode catalyst layer 14 and the cathode catalyst layer 15 of the proton exchange membrane fuel cell 3 of the present embodiment retain a large amount of water.

為了了解不同的疏水性對燃料電池的效能之影響,將鐵氟龍在第一至第六微孔層的重量百分比改變,以形成另一種梯度微孔隙層,以GMPL2表示。陰極氣體擴散層17之第四微孔層至第六微孔層的鐵氟龍之重量百分比分別變更為百分之三十五、百分之二十五以及百分之十五。同樣地,陽極氣體擴散層16之第一微孔層至第三微孔層(162~164)的鐵氟龍之重量百分比分別為百分之三十五、百分之二十五以及百分之十五。To understand the effect of different hydrophobicity on the performance of the fuel cell, the weight percent of Teflon in the first to sixth microporous layers was varied to form another gradient microporous layer, designated GMPL2. The weight percentage of the Teflon from the fourth to sixth microporous layers of the cathode gas diffusion layer 17 was changed to 35 percent, 25 percent, and 15 percent, respectively. Similarly, the weight percentage of the Teflon of the first to third microporous layers (162 to 164) of the anode gas diffusion layer 16 is 35 percent, 25 percent, and percentage, respectively. Fifteen.

請參照圖6A,圖6A為本發明實施例質子交換膜燃料電池3與使用微孔隙層34BC的燃料電池操作在濕度為百分之百之極化曲線圖。由圖6A可以發現,使用梯度微孔隙層GMPL2之效能為三者中最差,因為透氣性(permeability)為三者中最差,以及鐵氟龍在第一微孔層至第三微孔層(162~164)中過多,如此阻止了水從觸媒層轉移至氣體擴散層,進而影響了反應速率。實際上微孔隙層34BC以及梯度微孔隙層GMPL以及GMPL2的透氣性分別為2.1、1.3以及0.4(立方公分/平方公分‧秒)。透氣性會隨著鐵氟龍的重量百分比增加而減少,而且當氣體擴散層的厚度愈厚時,則擴散的距離要愈長,使得透氣性降低。而高的透氣性有益於效能,特別是在質傳區域(mass transfer region)。由此可知,存在一個最理想的鐵氟龍的重量百分比,而使燃料電池的效能最優化(optimize)。而在本實施例中,梯度微孔隙層GMPL的鐵氟龍之重量百分比即為最理想的值。Referring to FIG. 6A, FIG. 6A is a graph showing the polarization of the proton exchange membrane fuel cell 3 and the fuel cell using the microporous layer 34BC at a humidity of 100% according to an embodiment of the present invention. It can be seen from Fig. 6A that the efficiency of using the gradient microporous layer GMPL2 is the worst among the three, because the permeability is the worst among the three, and the Teflon is in the first to third microporous layers. Too much (162-164) prevents the transfer of water from the catalyst layer to the gas diffusion layer, which in turn affects the reaction rate. Actually, the gas permeability of the microporous layer 34BC and the gradient microporous layer GMPL and GMPL2 were 2.1, 1.3, and 0.4 (cubic centimeters per square centimeter ‧ seconds), respectively. The gas permeability decreases as the weight percentage of the Teflon increases, and as the thickness of the gas diffusion layer becomes thicker, the longer the diffusion distance, the lower the gas permeability. High gas permeability is beneficial for performance, especially in the mass transfer region. It can be seen that there is an ideal weight percentage of Teflon to optimize the performance of the fuel cell. In the present embodiment, the weight percentage of the Teflon of the gradient microporous layer GMPL is the most desirable value.

為了了解相對溼度的變化所造成的影響,請同時參照圖6A和圖6B,圖6B為本發明實施例之質子交換膜燃料電池3與使用微孔隙層34BC的燃料電池操作在濕度為百分之三十之極化曲線圖。由圖6A和圖6B可知,陽極觸媒層14以及陰極觸媒層15的濕度較低或脫水(dehydrated)時,燃料電池的效能降低。因為使用微孔隙層GMPL的燃料電池可以保持水於陽極觸媒層34以及陰極觸媒層35,而使其效能優於使用微孔隙層34BC的燃料電池。In order to understand the influence of the change in relative humidity, please refer to FIG. 6A and FIG. 6B simultaneously. FIG. 6B is a view of the proton exchange membrane fuel cell 3 and the fuel cell using the microporous layer 34BC operating at a humidity of 100% according to an embodiment of the present invention. The polarization curve of thirty. 6A and 6B, when the humidity of the anode catalyst layer 14 and the cathode catalyst layer 15 is low or dehydrated, the performance of the fuel cell is lowered. Since the fuel cell using the microporous layer GMPL can maintain water in the anode catalyst layer 34 and the cathode catalyst layer 35, it is superior in performance to the fuel cell using the microporous layer 34BC.

為了進一步了解燃料電池在穩態(steady state)的效能,請再同時參照圖7A以及圖7B,圖7A為質子交換膜燃料電池3操作在0.6伏特以及不同相對濕度之電流密度圖,圖7B為使用微孔隙層34BC的燃料電池操作在0.6伏特以及不同相對濕度之電流密度圖。在相對溼度為百分之百時,使用微孔隙層34BC的燃料電池的電流密度為700毫安培/平方公分,而使用梯度微孔隙層GMPL的燃料電池的電流密度為800毫安培/平方公分。如先前所述,使用梯度微孔隙層GMPL所構成的梯度疏水層,可以將水由觸媒層排除(exclude)至氣體擴散層,而且能構成氣體傳輸至觸媒層的路徑。而在相對溼度為百分之七十五以及百分之五十時,使用梯度微孔隙層GMPL的燃料電池的電流密度仍優於使用微孔隙層34BC的燃料電池。甚至在相對濕度為百分之二十五時,也是同樣的情形。值得注意的是,電流密度的下尖峰(undershoot)是由於反應所產生的水過多而大量溢出(flooding)的暫態現象,並致使當時氣體的擴散被水阻塞。In order to further understand the performance of the fuel cell in a steady state, please refer to FIG. 7A and FIG. 7B simultaneously. FIG. 7A is a current density map of the proton exchange membrane fuel cell 3 operating at 0.6 volts and different relative humidity, FIG. 7B is The fuel cell using the microvoid layer 34BC operates at a current density map of 0.6 volts and different relative humidity. At a relative humidity of one hundred percent, the fuel cell using the microvoided layer 34BC has a current density of 700 mA/cm 2 , while the fuel cell using the gradient microporous layer GMPL has a current density of 800 mA/cm 2 . As previously described, using a gradient hydrophobic layer of gradient microporous layer GMPL, water can be excluded from the catalyst layer to the gas diffusion layer and can constitute a path for gas transport to the catalyst layer. At a relative humidity of seventy-five percent and fifty percent, the current density of the fuel cell using the gradient microporous layer GMPL is still superior to that of the fuel cell using the microporous layer 34BC. The same is true even when the relative humidity is twenty-five percent. It is worth noting that the undershoot of the current density is a transient phenomenon of flooding due to excessive water produced by the reaction, and causes the diffusion of gas at that time to be blocked by water.

為了確認在低相對溼度時的電流密度差異,請再參照圖8A以及圖8B,圖8A為質子交換膜燃料電池3操作在0.6伏特以及低相對濕度之電流密度圖,圖8B為使用微孔隙層34BC的燃料電池操作在0.6伏特以及低相對濕度之電流密度圖。由圖8A以及圖8B可知,在低相對濕度時,使用梯度微孔隙層GMPL的燃料電池的電流密度仍優於使用微孔隙層34BC的燃料電池。如先前所述,梯度微孔隙層GMPL可以保持水於觸媒層,而避免反應速率降低。In order to confirm the difference in current density at low relative humidity, please refer to FIG. 8A and FIG. 8B again. FIG. 8A is a current density map of the proton exchange membrane fuel cell 3 operating at 0.6 volts and low relative humidity, and FIG. 8B is a micro-porosity layer. The 34BC fuel cell operates at a current density map of 0.6 volts and low relative humidity. As can be seen from FIGS. 8A and 8B, the fuel cell using the gradient microporous layer GMPL still has a higher current density than the fuel cell using the microporous layer 34BC at low relative humidity. As previously described, the gradient microporous layer GMPL can retain water in the catalyst layer while avoiding a reduction in reaction rate.

根據本發明實施例,上述的質子交換膜燃料電池能將水由觸媒層排除,而避免水的大量溢出而致使效能降低。同時,在低相對溼度時,梯度微孔隙層能保持水於觸媒層,避免反應速率降低。此外,梯度微孔隙層也提供氣體的傳輸路徑,使穩態的電流密度大於傳統的質子交換膜燃料電池。According to an embodiment of the present invention, the above-described proton exchange membrane fuel cell can remove water from the catalyst layer while avoiding a large overflow of water to cause a decrease in efficiency. At the same time, at low relative humidity, the gradient microporous layer can keep water in the catalyst layer, avoiding a decrease in reaction rate. In addition, the gradient microporous layer also provides a gas transport path that allows the steady state current density to be greater than that of a conventional proton exchange membrane fuel cell.

以上所述僅為本發明之實施例,其並非用以侷限本發明之專利範圍。The above description is only an embodiment of the present invention, and is not intended to limit the scope of the invention.

1...質子交換膜燃料電池1. . . Proton exchange membrane fuel cell

11...陽極集電板11. . . Anode collector board

12...陰極集電板12. . . Cathode collector board

13...質子交換膜13. . . Proton exchange membrane

14...陽極觸媒層14. . . Anode catalyst layer

15...陰極觸媒層15. . . Cathode catalyst layer

16...陽極氣體擴散層16. . . Anode gas diffusion layer

17...陰極氣體擴散層17. . . Cathode gas diffusion layer

18...負載18. . . load

161...第一碳載體層161. . . First carbon carrier layer

162...第一微孔層162. . . First microporous layer

163...第二微孔層163. . . Second microporous layer

164...第三微孔層164. . . Third microporous layer

171...第二碳載體層171. . . Second carbon carrier layer

172...第四微孔層172. . . Fourth microporous layer

173...第五微孔層173. . . Fifth microporous layer

174...第六微孔層174. . . Sixth microporous layer

38...陽極流場板38. . . Anode flow field plate

39...陰極流場板39. . . Cathode flow field plate

圖1為本發明實施例之質子交換膜燃料電池之示意圖。1 is a schematic view of a proton exchange membrane fuel cell according to an embodiment of the present invention.

圖2A為本發明實施例之陰極氣體擴散層使用在高濕度時之示意圖。2A is a schematic view showing a cathode gas diffusion layer used in a high humidity according to an embodiment of the present invention.

圖2B為本發明實施例之陰極氣體擴散層使用在低濕度時之示意圖。2B is a schematic view showing the cathode gas diffusion layer used in a low humidity state according to an embodiment of the present invention.

圖3為本發明實施例之質子交換膜燃料電池之示意圖。3 is a schematic view of a proton exchange membrane fuel cell according to an embodiment of the present invention.

圖4A為本發明實施例之質子交換膜燃料電池與傳統質子交換膜燃料電池之操作在高相對濕度之極化曲線圖。4A is a polarization diagram of the operation of a proton exchange membrane fuel cell and a conventional proton exchange membrane fuel cell at a high relative humidity according to an embodiment of the present invention.

圖4B為本發明實施例之質子交換膜燃料電池與傳統質子交換膜燃料電池在相對溼度百分之百之定頻交流阻抗圖。4B is a graph showing a fixed-frequency AC impedance of a proton exchange membrane fuel cell and a conventional proton exchange membrane fuel cell at a relative humidity of 100% according to an embodiment of the present invention.

圖5A為本發明實施例之質子交換膜燃料電池與傳統質子交換膜燃料電池操作在低相對濕度之極化曲線圖。5A is a polarization diagram of a proton exchange membrane fuel cell and a conventional proton exchange membrane fuel cell operating at low relative humidity according to an embodiment of the present invention.

圖5B為本發明實施例之質子交換膜燃料電池與傳統質子交換膜燃料電池操作在相對濕度百分之五之定頻交流阻抗圖。5B is a diagram showing a fixed-frequency AC impedance diagram of a proton exchange membrane fuel cell and a conventional proton exchange membrane fuel cell operating at a relative humidity of five percent according to an embodiment of the present invention.

圖6A為本發明實施例之質子交換膜燃料電池與傳統質子交換膜燃料電池操作在濕度百分之百之極化曲線圖。6A is a graph showing polarization curves of a proton exchange membrane fuel cell and a conventional proton exchange membrane fuel cell operating at a humidity of 100% according to an embodiment of the present invention.

圖6B為本發明實施例之質子交換膜燃料電池與傳統質子交換膜燃料電池操作在濕度為百分之三十之極化曲線圖。6B is a graph showing polarization curves of a proton exchange membrane fuel cell and a conventional proton exchange membrane fuel cell operating at a humidity of 30% according to an embodiment of the present invention.

圖7A為使用傳統質子交換膜燃料電池操作在0.6伏特以及不同相對濕度之電流密度圖。Figure 7A is a graph of current density at 0.6 volts and different relative humidity using a conventional proton exchange membrane fuel cell.

圖7B為本發明實施例之質子交換膜燃料電池操作在0.6伏特以及不同相對濕度之電流密度圖。7B is a current density diagram of a proton exchange membrane fuel cell operating at 0.6 volts and different relative humidity according to an embodiment of the present invention.

圖8A為使用傳統氣體擴散層之質子交換膜燃料電池操作在0.6伏特以及低相對濕度之電流密度圖。Figure 8A is a current density plot of a proton exchange membrane fuel cell operating at 0.6 volts and low relative humidity using a conventional gas diffusion layer.

圖8B為本發明實施例之質子交換膜燃料電池操作在0.6伏特以及低相對濕度之電流密度圖。Figure 8B is a current density diagram of a proton exchange membrane fuel cell operating at 0.6 volts and low relative humidity, in accordance with an embodiment of the present invention.

1...質子交換膜燃料電池1. . . Proton exchange membrane fuel cell

11...陽極集電板11. . . Anode collector board

12...陰極集電板12. . . Cathode collector board

13...質子交換膜13. . . Proton exchange membrane

14...陽極觸媒層14. . . Anode catalyst layer

15...陰極觸媒層15. . . Cathode catalyst layer

16...陽極氣體擴散層16. . . Anode gas diffusion layer

17...陰極氣體擴散層17. . . Cathode gas diffusion layer

18...負載18. . . load

161...第一碳載體層161. . . First carbon carrier layer

162...第一微孔層162. . . First microporous layer

163...第二微孔層163. . . Second microporous layer

164...第三微孔層164. . . Third microporous layer

171...第二碳載體層171. . . Second carbon carrier layer

172...第四微孔層172. . . Fourth microporous layer

173...第五微孔層173. . . Fifth microporous layer

174...第六微孔層174. . . Sixth microporous layer

Claims (9)

一種質子交換膜燃料電池,該燃料電池具有一陽極和一陰極,並將氫以及氧分別供應於該陽極以及該陰極,用以產生電力,該燃料電池包括:一陽極氣體擴散層包括:一第一碳載體層,毗鄰該陽極;一第一微孔層,具有重量百分比三十的鐵氟龍(聚四氯乙烯),毗鄰該第一碳載體層;一第二微孔層,具有重量百分比二十五的鐵氟龍,毗鄰該第一微孔層;以及一第三微孔層,具有重量百分比二十的鐵氟龍,毗鄰該第二微孔層,其中該第二微孔層位於該第一微孔層與該第三微孔層之間;一陰極氣體擴散層包括:一第二碳載體層,毗鄰該陰極;一第四微孔層,具有重量百分比三十的鐵氟龍,毗鄰該第二碳載體層;一第五微孔層,具有重量百分比二十五的鐵氟龍,毗鄰該第四微孔層;一第六微孔層,具有重量百分比二十的鐵氟龍,毗鄰該第五微孔層,其中該第五微孔層位於該第四微孔層與該第六微孔層之間,其中,該燃料電池之該陽極氣體擴散層與該陰極氣體擴散層皆構成梯度微孔隙(gradient micro-porous)結構,且該第三微孔層與該第六微孔層的疏水性分別低於該第二微孔層與該第五微孔 層,該第二微孔層與該第五微孔層的疏水性分別低於該第一微孔層與該第四微孔層。 A proton exchange membrane fuel cell having an anode and a cathode, and supplying hydrogen and oxygen to the anode and the cathode, respectively, for generating electric power, the fuel cell comprising: an anode gas diffusion layer comprising: a first a carbon carrier layer adjacent to the anode; a first microporous layer having a weight percentage of Teflon (polytetrafluoroethylene) adjacent to the first carbon support layer; and a second microporous layer having a weight percentage Twenty-five Teflon adjacent to the first microporous layer; and a third microporous layer having twenty percent Teflon adjacent to the second microporous layer, wherein the second microporous layer is located Between the first microporous layer and the third microporous layer; a cathode gas diffusion layer comprising: a second carbon carrier layer adjacent to the cathode; a fourth microporous layer having a weight percentage of Teflon Adjacent to the second carbon support layer; a fifth microporous layer having twenty-five percent by weight of Teflon adjacent to the fourth microporous layer; and a sixth microporous layer having twenty percent by weight of ferric fluoride a dragon adjacent to the fifth microporous layer, wherein the a five microporous layer is disposed between the fourth microporous layer and the sixth microporous layer, wherein the anode gas diffusion layer and the cathode gas diffusion layer of the fuel cell both form a gradient micro-porous structure And the hydrophobicity of the third microporous layer and the sixth microporous layer are respectively lower than the second microporous layer and the fifth microporous layer The hydrophobicity of the second microporous layer and the fifth microporous layer is lower than that of the first microporous layer and the fourth microporous layer, respectively. 如申請專利範圍第1項之質子交換膜燃料電池,該燃料電池之該第一微孔層、該第二微孔層、該第三微孔層、該第四微孔層、該第五微孔層以及該第六微孔層的厚度分別在五十至一百微米之間。 The proton exchange membrane fuel cell of claim 1, wherein the first microporous layer, the second microporous layer, the third microporous layer, the fourth microporous layer, and the fifth micro The thickness of the aperture layer and the sixth microporous layer are between fifty and one hundred micrometers, respectively. 如申請專利範圍第1項之質子交換膜燃料電池,該燃料電池更包括:一陽極流場板(flow field plate),用以將氫傳送至該陽極氣體擴散層;以及一陰極流場板,用以將氧傳送至該陰極氣體擴散層。 The proton exchange membrane fuel cell of claim 1, wherein the fuel cell further comprises: an anode flow field plate for transferring hydrogen to the anode gas diffusion layer; and a cathode flow field plate. Used to deliver oxygen to the cathode gas diffusion layer. 如申請專利範圍第1項之質子交換膜燃料電池,該燃料電池之該陽極觸媒層與該陰極觸媒層具有白金(Pt)。 A proton exchange membrane fuel cell according to claim 1, wherein the anode catalyst layer of the fuel cell and the cathode catalyst layer have platinum (Pt). 如申請專利範圍第4項之質子交換膜燃料電池,該燃料電池之該陽極觸媒層與該陰極觸媒層具有二氧化矽,用以保持水於該陽極觸媒層與該陰極觸媒層,並據此增加反應速率。 The proton exchange membrane fuel cell of claim 4, wherein the anode catalyst layer of the fuel cell and the cathode catalyst layer have cerium oxide for holding water in the anode catalyst layer and the cathode catalyst layer. And increase the reaction rate accordingly. 如申請專利範圍第1項之質子交換膜燃料電池,該燃料電池之該陽極氣體擴散層與該陰極氣體擴散層之該第一碳載體層與該第二碳載體層為碳紙,且具有微孔隙(micro-porous)結構,用以讓氫以及氧通過。 The proton exchange membrane fuel cell of claim 1, wherein the anode gas diffusion layer of the fuel cell and the first carbon carrier layer and the second carbon carrier layer of the cathode gas diffusion layer are carbon paper and have micro A micro-porous structure for passing hydrogen and oxygen. 如申請專利範圍第4項之質子交換膜燃料電池,該第三微孔層與該第六微孔層的保水性高於該第二微孔層與該第五微孔層,該第二微孔層與該第五微孔層的保水性高於該第一微孔層與該第四微孔層。 The proton exchange membrane fuel cell of claim 4, wherein the third microporous layer and the sixth microporous layer have higher water retention than the second microporous layer and the fifth microporous layer, the second micro The water retention of the pore layer and the fifth microporous layer is higher than the first microporous layer and the fourth microporous layer. 如申請專利範圍第1項之質子交換膜燃料電池,該燃料電 池在一高濕度狀態時,該陽極氣體擴散層以及該陰極氣體擴散層防止水充滿該陽極觸媒層與該陰極觸媒層,避免該燃料電池的反應速率降低。 Such as the proton exchange membrane fuel cell of claim 1 of the patent scope, the fuel electric When the cell is in a high humidity state, the anode gas diffusion layer and the cathode gas diffusion layer prevent water from filling the anode catalyst layer and the cathode catalyst layer, thereby preventing the reaction rate of the fuel cell from being lowered. 如申請專利範圍第1項之質子交換膜燃料電池,該燃料電池在一低濕度狀態時,該陽極氣體擴散層以及該陰極氣體擴散層保持水於該陽極觸媒層與該陰極觸媒層,避免該燃料電池的反應速率降低。 The proton exchange membrane fuel cell of claim 1, wherein the anode gas diffusion layer and the cathode gas diffusion layer retain water in the anode catalyst layer and the cathode catalyst layer in a low humidity state, The reaction rate of the fuel cell is prevented from decreasing.
TW100112883A 2011-04-13 2011-04-13 Proton exchange membrane fuel cell TWI587564B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100112883A TWI587564B (en) 2011-04-13 2011-04-13 Proton exchange membrane fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100112883A TWI587564B (en) 2011-04-13 2011-04-13 Proton exchange membrane fuel cell

Publications (2)

Publication Number Publication Date
TW201242157A TW201242157A (en) 2012-10-16
TWI587564B true TWI587564B (en) 2017-06-11

Family

ID=47600248

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100112883A TWI587564B (en) 2011-04-13 2011-04-13 Proton exchange membrane fuel cell

Country Status (1)

Country Link
TW (1) TWI587564B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110061256A (en) * 2019-03-16 2019-07-26 洛阳师范学院 A kind of diffusion layer structure of fuel cell
CN112952114B (en) * 2021-03-23 2022-09-13 上海电气集团股份有限公司 Gas diffusion layer and preparation method and application thereof
CN114243044B (en) * 2021-12-21 2023-12-26 中国科学院山西煤炭化学研究所 Gas diffusion layer for improving water management capacity of fuel cell and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1926712A (en) * 2003-11-14 2007-03-07 佩密斯股份有限公司 Structures for gas diffusion materials and methods for their fabrication
CN101399347A (en) * 2007-09-27 2009-04-01 中国科学院大连化学物理研究所 Gas diffusion layer used for fuel cell with proton exchange film, production and application thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1926712A (en) * 2003-11-14 2007-03-07 佩密斯股份有限公司 Structures for gas diffusion materials and methods for their fabrication
CN101399347A (en) * 2007-09-27 2009-04-01 中国科学院大连化学物理研究所 Gas diffusion layer used for fuel cell with proton exchange film, production and application thereof

Also Published As

Publication number Publication date
TW201242157A (en) 2012-10-16

Similar Documents

Publication Publication Date Title
CN107452965A (en) Anode gas diffusion electrode and fuel cell
JP5034172B2 (en) Gas diffusion layer for fuel cell and fuel cell using the same
JP2006324104A (en) Gas diffusion layer for fuel cell and fuel cell using this
JP2009026762A (en) Porous transportation structure for direct oxidization fuel cell system operated by enriched fuel
JP5105888B2 (en) Gas diffusion electrode, fuel cell, and method of manufacturing gas diffusion electrode
CN102870258A (en) Proton-exchange membrane fuel cell electrode structuration
TWI587564B (en) Proton exchange membrane fuel cell
JP2010129310A (en) Gas diffusion layer for fuel cell, manufacturing method thereof
US8278012B2 (en) Membrane electrode assembly for fuel cell, and fuel cell system including the same
JP5740889B2 (en) Carbon-coated catalyst material for polymer electrolyte fuel cell, its production method, electrode catalyst layer, and membrane electrode assembly
KR100969476B1 (en) Membrane-electrode assembly of fuel cell and fuel cell
JP2019140010A (en) Catalyst layer for fuel cell, electrolyte membrane-electrode assembly, and fuel cell
JP5430486B2 (en) Moisture management sheet, gas diffusion sheet, membrane-electrode assembly, and polymer electrolyte fuel cell
KR101008155B1 (en) Membrane-electrode assembly of fuel cell and fuel cell
JP2006040767A (en) Solid polymer fuel electrode
JP2019040705A (en) Catalyst layer and electrolyte membrane-electrode assembly for fuel cell, and fuel cell
JP4271127B2 (en) Electrode structure of polymer electrolyte fuel cell
CN103762372B (en) The solution and ultra-thin catalyst layer and preparation method thereof of catalyst layer water logging
KR101112693B1 (en) Membrane-electrode assembly of fuel cell and preparing method thereof
JP2021184373A (en) Cathode gas diffusion layer for fuel cell
JP2009218184A (en) Catalyst electrode for fuel cell, manufacturing method therefor, membrane electrode assembly, and solid polymer type fuel cell
JP2006318790A (en) Solid polymer type fuel cell, gas diffusion electrode therefor, and its manufacturing method
JP2006019174A (en) Gas diffusion electrode, membrane-electrode assembly, its manufacturing method, and solid polymer fuel cell
KR101573147B1 (en) Electrode for fuel cell, membrane electrode assembly comprising the same and fuel cell comprising the same
JP2015060801A (en) Method for manufacturing film-electrode assembly, film-electrode assembly, and solid polymer fuel cell