TWI587402B - High voltage semiconductor device and method for manufacturing the same - Google Patents
High voltage semiconductor device and method for manufacturing the same Download PDFInfo
- Publication number
- TWI587402B TWI587402B TW105105380A TW105105380A TWI587402B TW I587402 B TWI587402 B TW I587402B TW 105105380 A TW105105380 A TW 105105380A TW 105105380 A TW105105380 A TW 105105380A TW I587402 B TWI587402 B TW I587402B
- Authority
- TW
- Taiwan
- Prior art keywords
- region
- doped region
- high voltage
- semiconductor device
- doping
- Prior art date
Links
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Description
本揭露係關於一種半導體技術,且特別是關於一種可降低或消除基體效應(body effect)之高壓半導體裝置。 The present disclosure relates to a semiconductor technology, and more particularly to a high voltage semiconductor device that reduces or eliminates the body effect.
高壓半導體裝置技術適用於高電壓與高功率的積體電路領域。傳統高壓半導體裝置,例如橫向擴散金氧半場效電晶體(Lateral diffused MOSFET,LDMOSFET),主要用於高於或約為18V的元件應用領域。高壓半導體裝置技術的優點在於符合成本效益,且易相容於其他製程,已廣泛應用於顯示器驅動IC元件、電源供應器、電力管理、通訊、車用電子或工業控制等領域中。 The high voltage semiconductor device technology is suitable for the field of high voltage and high power integrated circuits. Conventional high voltage semiconductor devices, such as laterally diffused MOSFETs, are primarily used in component applications above or about 18V. The advantages of high-voltage semiconductor device technology are cost-effective and easy to be compatible with other processes, and have been widely used in display driver IC components, power supplies, power management, communications, automotive electronics or industrial control.
第1圖係繪示出習知的N型水平式擴散金氧半場效電晶體(LDMOSFET)剖面示意圖。N型水平式擴散金氧半場效電晶體10包括:一P型半導體基底100及位於其上的一P型磊晶層102。P型磊晶層102上具有閘極結構116及場絕緣層114。再者,閘極結構116兩側的P型磊晶層102內分別為一P型基體(body)區106及一N型漂移區104,其中漂移區104進一步延伸於下方的P型半導體基底100內。基體區106內具有P型接觸區108及相鄰的N型接觸區110(二者或稱為源極區),而漂移區104內具有N型接觸區112(或稱為汲極區)。再者,一源極電極117電 性連接於P型接觸區108及N型接觸區110;一汲極電極119電性連接於N型接觸區112;及一閘極電極121電性連接於閘極結構116。 FIG. 1 is a schematic cross-sectional view showing a conventional N-type horizontal diffusion gold-oxygen half field effect transistor (LDMOSFET). The N-type horizontal diffusion gold-oxygen field effect transistor 10 includes a P-type semiconductor substrate 100 and a P-type epitaxial layer 102 thereon. The P-type epitaxial layer 102 has a gate structure 116 and a field insulating layer 114 thereon. Furthermore, the P-type epitaxial layer 102 on both sides of the gate structure 116 is a P-type body region 106 and an N-type drift region 104, wherein the drift region 104 further extends to the underlying P-type semiconductor substrate 100. Inside. The base region 106 has a P-type contact region 108 and an adjacent N-type contact region 110 (both referred to as a source region), and the drift region 104 has an N-type contact region 112 (also referred to as a drain region). Furthermore, a source electrode 117 is electrically The gate electrode 119 is electrically connected to the N-type contact region 112; and the gate electrode 121 is electrically connected to the gate structure 116.
然而,在上述N型水平式擴散金氧半場效電晶體10中,源極區經由基體區106與下方的P型半導體基底100電性連接。因此,當源極區耦接至一內部電路或電阻時,會引發基體效應而改變電晶體10的臨限電壓(threshold voltage)。如此一來,電晶體10的驅動電流會隨著施加於源極區的電壓的增加而下降,因而降低電晶體10的效能。 However, in the above-described N-type horizontal diffusion MOS field oxide 10, the source region is electrically connected to the underlying P-type semiconductor substrate 100 via the base region 106. Therefore, when the source region is coupled to an internal circuit or a resistor, a matrix effect is induced to change the threshold voltage of the transistor 10. As a result, the driving current of the transistor 10 decreases as the voltage applied to the source region increases, thereby lowering the performance of the transistor 10.
因此,有必要尋求一種高壓半導體裝置及其製造方法,其能夠解決或改善上述的問題。 Therefore, it is necessary to find a high voltage semiconductor device and a method of fabricating the same that can solve or ameliorate the above problems.
本揭露一實施例提供一種高壓半導體裝置,包括:具有一第一導電型的一半導體基底;具有一第二導電型的一第一摻雜區,位於半導體基底內;一磊晶層,形成於半導體基底上;具有第一導電型的一基體區,位於第一摻雜區上的磊晶層內;具有第二導電型及相同摻雜濃度的一第二摻雜區及一第三摻雜區,分別位於基體區兩相對側的磊晶層內而鄰接基體區;一源極區及一汲極區,分別位於基體區及第二摻雜區內;一場絕緣層位於源極區及汲極區之間的第二摻雜區內;以及一閘極結構,位於磊晶層上,且覆蓋一部分的場絕緣層。 An embodiment of the present disclosure provides a high voltage semiconductor device including: a semiconductor substrate having a first conductivity type; a first doped region having a second conductivity type, located in the semiconductor substrate; and an epitaxial layer formed on On the semiconductor substrate; a substrate region having a first conductivity type, located in the epitaxial layer on the first doped region; a second doped region having a second conductivity type and the same doping concentration and a third doping region The regions are respectively located in the epitaxial layers on opposite sides of the substrate region adjacent to the substrate region; a source region and a drain region are respectively located in the base region and the second doping region; and an insulating layer is located in the source region and the germanium region a second doping region between the polar regions; and a gate structure on the epitaxial layer and covering a portion of the field insulating layer.
本揭露另一實施例提供一種高壓半導體裝置之製造方法,包括:提供具有一第一導電型的一半導體基底;於半導體基底內形成具有一第二導電型的一第一摻雜區;於半導體 基底上形成一磊晶層;於磊晶層內形成具有第一導電型的一基體區及具有第二導電型及相同摻雜濃度的一第二摻雜區及一第三摻雜區,其中基體區位於第一摻雜區上,且第二摻雜區及第三摻雜區分別位於基體區兩相對側並鄰接基體區;於該第二摻雜區內形成一場絕緣層;於磊晶層上形成一閘極結構,其中閘極結構覆蓋一部分的場絕緣層;以及於基體區內形成一源極區,且於第二摻雜區內形成一汲極區。 Another embodiment of the present disclosure provides a method of fabricating a high voltage semiconductor device, including: providing a semiconductor substrate having a first conductivity type; forming a first doped region having a second conductivity type in the semiconductor substrate; Forming an epitaxial layer on the substrate; forming a substrate region having a first conductivity type and a second doping region and a third doping region having a second conductivity type and a same doping concentration in the epitaxial layer, wherein The base region is located on the first doped region, and the second doped region and the third doped region are respectively located on opposite sides of the base region and adjacent to the base region; a field insulating layer is formed in the second doped region; Forming a gate structure on the layer, wherein the gate structure covers a portion of the field insulating layer; and forming a source region in the substrate region and forming a drain region in the second doping region.
10‧‧‧電晶體 10‧‧‧Optoelectronics
20、30、40、50、60‧‧‧高壓半導體裝置 20, 30, 40, 50, 60‧‧‧ high voltage semiconductor devices
100‧‧‧P型半導體基底 100‧‧‧P type semiconductor substrate
102‧‧‧P型磊晶層 102‧‧‧P type epitaxial layer
104‧‧‧N型漂移區 104‧‧‧N type drift zone
106‧‧‧基體區 106‧‧‧basal area
108‧‧‧P型接觸區 108‧‧‧P type contact area
110、112‧‧‧N型接觸區 110, 112‧‧‧N type contact area
114、220‧‧‧場絕緣層 114, 220‧‧ ‧ field insulation
116、233‧‧‧閘極結構 116, 233‧‧ ‧ gate structure
117‧‧‧源極電極 117‧‧‧ source electrode
119‧‧‧汲極電極 119‧‧‧汲electrode
121‧‧‧閘極電極 121‧‧‧gate electrode
200‧‧‧半導體基底 200‧‧‧Semiconductor substrate
202‧‧‧第一摻雜區 202‧‧‧First doped area
204‧‧‧埋入層 204‧‧‧buried layer
210‧‧‧磊晶層 210‧‧‧ epitaxial layer
212‧‧‧高壓井區 212‧‧‧High-pressure well area
212a‧‧‧第二摻雜區 212a‧‧‧Second doped area
212b‧‧‧第三摻雜區 212b‧‧‧ third doped area
216‧‧‧場降區 216‧‧‧Field drop zone
222‧‧‧基體區 222‧‧‧basal area
224、226‧‧‧摻雜區 224, 226‧‧‧Doped area
227‧‧‧源極區 227‧‧‧ source area
228‧‧‧汲極區 228‧‧‧Bungee Area
230‧‧‧閘極介電層 230‧‧‧ gate dielectric layer
232‧‧‧閘極層 232‧‧ ‧ gate layer
240、242、244‧‧‧內連結構 240, 242, 244‧‧‧ interconnected structures
250‧‧‧內層介電層 250‧‧‧ Inner dielectric layer
E1、E2‧‧‧外側邊緣 E1, E2‧‧‧ outer edge
W‧‧‧寬度 W‧‧‧Width
第1圖係繪示出習知的N型水平式擴散金氧半場效電晶體剖面示意圖。 Fig. 1 is a schematic cross-sectional view showing a conventional N-type horizontal diffusion gold-oxygen half field effect transistor.
第2A至2F圖係繪示出根據本揭露一實施例之高壓半導體裝置之製造方法的剖面示意圖。 2A to 2F are cross-sectional views showing a method of manufacturing a high voltage semiconductor device according to an embodiment of the present disclosure.
第3A至3D圖係分別繪示出根據本揭露一實施例之高壓半導體裝置的剖面示意圖。 3A to 3D are cross-sectional views showing a high voltage semiconductor device according to an embodiment of the present disclosure, respectively.
以下說明本揭露實施例之高壓半導體裝置及其製造方法。然而,可輕易了解本揭露所提供的實施例僅用於說明以特定方法製作及使用本發明,並非用以侷限本發明的範圍。 Hereinafter, a high voltage semiconductor device and a method of manufacturing the same according to embodiments of the present disclosure will be described. However, the present invention is to be understood as being limited to the details of the invention and is not intended to limit the scope of the invention.
本揭露之實施例提供一種高壓半導體裝置,例如橫向擴散金氧半場效電晶體,其利用不同於基體區的導電型的摻雜區來隔離高壓半導體裝置中具有相同導電型的基體區與基底,進而降低或消除基體效應。 Embodiments of the present disclosure provide a high voltage semiconductor device, such as a laterally diffused gold oxide half field effect transistor, which utilizes a doped region of a conductivity type different from a base region to isolate a substrate region and a substrate having the same conductivity type in a high voltage semiconductor device, In turn, the matrix effect is reduced or eliminated.
請參照第2E圖,其繪示出根據本揭露一實施例之 高壓半導體裝置20的剖面示意圖。在本實施例中,半導體裝置20可為一水平式擴散金氧半場效電晶體。高壓半導體裝置20包括一半導體基底200,例如為矽基底、鍺化矽(SiGe)基底、塊體半導體(bulk semiconductor)基底、化合物半導體(compound semiconductor)基底、絕緣層上覆矽(silicon on insulator,SOI)基底或其他習用之半導體基底,其具有一第一導電型。 Please refer to FIG. 2E, which illustrates an embodiment according to the present disclosure. A schematic cross-sectional view of the high voltage semiconductor device 20. In the present embodiment, the semiconductor device 20 can be a horizontal diffusion MOS field effect transistor. The high voltage semiconductor device 20 includes a semiconductor substrate 200, such as a germanium substrate, a germanium telluride (SiGe) substrate, a bulk semiconductor substrate, a compound semiconductor substrate, and a silicon on insulator. A SOI) substrate or other conventional semiconductor substrate having a first conductivity type.
再者,半導體基底200內具有一第一摻雜區202,例如一高壓井區,其鄰近於半導體基底200的上表面。第一摻雜區202具有不同於第一導電型的一第二導電型。舉例來說,第一導電型為P型,而第二導電型為N型。在其他實施例中,第一導電型可為N型,而第二導電型為P型。 Furthermore, the semiconductor substrate 200 has a first doped region 202 therein, such as a high voltage well region adjacent to the upper surface of the semiconductor substrate 200. The first doping region 202 has a second conductivity type different from the first conductivity type. For example, the first conductivity type is a P type, and the second conductivity type is an N type. In other embodiments, the first conductivity type may be an N type and the second conductivity type is a P type.
在本實施例中,高壓半導體裝置20更包括一磊晶層210,其形成於半導體基底200上,且具有第一導電型。磊晶層210內具有複數個作為隔離結構的場絕緣層220。在一實施例中,場絕緣層220可為場氧化物(field oxide)。在一範例中,場絕緣層220為局部矽氧化層(local oxidation of silicon,LOCOS)。在其他實施例中,場絕緣層220可為淺溝槽隔離(shallow trench isolation,STI)結構。 In the present embodiment, the high voltage semiconductor device 20 further includes an epitaxial layer 210 formed on the semiconductor substrate 200 and having a first conductivity type. The epitaxial layer 210 has a plurality of field insulating layers 220 as isolation structures. In an embodiment, the field insulating layer 220 can be a field oxide. In one example, the field insulating layer 220 is a local oxidation of silicon (LOCOS). In other embodiments, the field insulating layer 220 can be a shallow trench isolation (STI) structure.
在本實施例中,高壓半導體裝置20更包括具有第一導電型的一基體區222及具有第二導電型及相同摻雜濃度的一第二摻雜區212a及一第三摻雜區212b。基體區222位於第一摻雜區202上的磊晶層210內,且基體區222由磊晶層210的上表面延伸至其下表面,使基體區222的底部可鄰接於第一摻雜區202。再者,第二摻雜區212a及第三摻雜區212b分別位於基體 區222兩相對側的磊晶層210內而鄰接基體區222。在本實施例中,第二摻雜區212a及第三摻雜區212b位於第一摻雜區202上方,且由磊晶層210的上表面延伸至其下表面,使第二摻雜區212a及第三摻雜區212b的底部可鄰接於第一摻雜區202。在一實施例中,第三摻雜區212b的一外側邊緣E2對準於第一摻雜區202的一對應的外側邊緣E1。再者,第三摻雜區212b具有一寬度W在1至8微米的範圍。 In the present embodiment, the high voltage semiconductor device 20 further includes a base region 222 having a first conductivity type and a second doping region 212a and a third doping region 212b having a second conductivity type and the same doping concentration. The base region 222 is located in the epitaxial layer 210 on the first doped region 202, and the base region 222 extends from the upper surface of the epitaxial layer 210 to the lower surface thereof, so that the bottom of the base region 222 can be adjacent to the first doped region. 202. Furthermore, the second doping region 212a and the third doping region 212b are respectively located on the substrate The regions 222 are in opposite layers of the epitaxial layer 210 adjacent to the substrate region 222. In this embodiment, the second doping region 212a and the third doping region 212b are located above the first doping region 202, and extend from the upper surface of the epitaxial layer 210 to the lower surface thereof, so that the second doping region 212a The bottom of the third doping region 212b may be adjacent to the first doping region 202. In an embodiment, an outer edge E2 of the third doped region 212b is aligned with a corresponding outer edge E1 of the first doped region 202. Further, the third doping region 212b has a width W in the range of 1 to 8 μm.
在一實施例中,第一摻雜區202與第二摻雜區212a及第三摻雜區212b具有相同的摻雜濃度。在此情形中,第一摻雜區202與第二摻雜區212a及第三摻雜區212b為高壓井區。再者,第二摻雜區212a及第三摻雜區212b為基體區222所隔開的同一高壓井區212或各自形成於磊晶層210內的高壓井區。在一範例中,高壓井區的摻雜濃度約在1.0×1015至1.0×1016ions/cm3的範圍。在其他實施例中,第一摻雜區202的摻雜濃度不同於第二摻雜區212a及第三摻雜區212b。在此情形中,第一摻雜區202為高壓井區,而第二摻雜區212a及第三摻雜區212b為井區,且井區(即,第二摻雜區212a及第三摻雜區212b)的摻雜濃度高於高壓井區(即,第一摻雜區202)。再者,第二摻雜區212a及第三摻雜區212b為基體區222所隔開的同一井區或各自形成於磊晶層210內的井區。在一範例中,高壓井區的摻雜濃度約在1.0×1015至1.0×1016ions/cm3的範圍,而井區的摻雜濃度約在1.0×1016至1.0×1017ions/cm3的範圍。在本實施例中,第一摻雜區202、第二摻雜區212a及第三摻雜區212b係作為水平式擴散金氧半場效電晶體的一漂移區。 In an embodiment, the first doping region 202 has the same doping concentration as the second doping region 212a and the third doping region 212b. In this case, the first doping region 202 and the second doping region 212a and the third doping region 212b are high voltage well regions. Furthermore, the second doping region 212a and the third doping region 212b are the same high-voltage well region 212 separated by the base region 222 or a high-voltage well region formed in the epitaxial layer 210. In one example, the doping concentration of the high pressure well region is in the range of about 1.0 x 10 15 to 1.0 x 10 16 ions/cm 3 . In other embodiments, the doping concentration of the first doping region 202 is different from the second doping region 212a and the third doping region 212b. In this case, the first doping region 202 is a high voltage well region, and the second doping region 212a and the third doping region 212b are well regions, and the well region (ie, the second doping region 212a and the third doping region) The impurity concentration of the impurity region 212b) is higher than that of the high voltage well region (ie, the first doping region 202). Furthermore, the second doping region 212a and the third doping region 212b are the same well regions separated by the base region 222 or well regions each formed in the epitaxial layer 210. In one example, the doping concentration of the high voltage well region is in the range of about 1.0×10 15 to 1.0×10 16 ions/cm 3 , and the doping concentration in the well region is about 1.0×10 16 to 1.0×10 17 ions/ The range of cm 3 . In this embodiment, the first doping region 202, the second doping region 212a, and the third doping region 212b are used as a drift region of the horizontal diffusion MOS field effect transistor.
在本實施例中,高壓半導體裝置20更包括一源極區227、一汲極區228及一閘極結構233。源極區227及汲極區228分別位於基體區222及第二摻雜區212a內。源極區227由具有第二導電型的摻雜區226及具有第一導電型的摻雜區224(其作為一基體接觸區)所構成。再者,汲極區228僅由具有第二導電型的摻雜區所構成。再者,閘極結構233位於磊晶層210上,且覆蓋一部分的場絕緣層220,其中此場絕緣層220形成於源極區227及汲極區228之間的第二摻雜區212a內。閘極結構233通常包括一閘極介電層230及位於閘極介電層230上方的閘極層232。 In the present embodiment, the high voltage semiconductor device 20 further includes a source region 227, a drain region 228, and a gate structure 233. The source region 227 and the drain region 228 are respectively located in the base region 222 and the second doping region 212a. The source region 227 is composed of a doped region 226 having a second conductivity type and a doped region 224 having a first conductivity type as a substrate contact region. Furthermore, the drain region 228 is composed only of doped regions having a second conductivity type. Moreover, the gate structure 233 is located on the epitaxial layer 210 and covers a portion of the field insulating layer 220. The field insulating layer 220 is formed in the second doping region 212a between the source region 227 and the drain region 228. . The gate structure 233 generally includes a gate dielectric layer 230 and a gate layer 232 over the gate dielectric layer 230.
在本實施例中,高壓半導體裝置20可包括具有第一導電型的一場降區(field reduction region)216,其位於第二摻雜區212a內且對應於閘極結構233下方的場絕緣層220下方,用以降低表面電場。在一實施例中,場降區216的摻雜濃度約為1.0×1017ions/cm3。 In the present embodiment, the high voltage semiconductor device 20 may include a field reduction region 216 having a first conductivity type, which is located in the second doping region 212a and corresponds to the field insulating layer 220 under the gate structure 233. Below, to reduce the surface electric field. In one embodiment, the field drop region 216 has a doping concentration of about 1.0 x 10 17 ions/cm 3 .
在本實施例中,高壓半導體裝置20更包括一內層介電(interlayer dielectric,ILD)層250及位於其中的複數個內連結構240、242及244。在本實施例中,內連結構240電性連接於源極區227,以作為一源極電極;內連結構242電性連接於汲極區216,以作為一汲極電極;以及內連結構244電性連接於閘極結構233,以作為一閘極電極。 In the present embodiment, the high voltage semiconductor device 20 further includes an inner layer dielectric (ILD) layer 250 and a plurality of interconnect structures 240, 242 and 244 located therein. In this embodiment, the interconnect structure 240 is electrically connected to the source region 227 as a source electrode; the interconnect structure 242 is electrically connected to the drain region 216 as a drain electrode; and the interconnect structure 244 is electrically connected to the gate structure 233 to serve as a gate electrode.
請參照第3A及3B圖,其分別繪示出根據本發明其他實施例之高壓半導體裝置30及40剖面示意圖,其中相同於第2F圖的部件係使用相同的標號並省略其說明。在第3A圖中,高 壓半導體裝置30具有相似於高壓半導體裝置20(如第2F圖所示)的結構。不同之處在於高壓半導體裝置30中第三摻雜區212b的外側邊緣E2未對準於第一摻雜區212a的對應的外側邊緣E1。舉例來說,外側邊緣E2橫向延伸而超越外側邊緣E1。 Referring to FIGS. 3A and 3B, there are shown schematic cross-sectional views of high voltage semiconductor devices 30 and 40 according to other embodiments of the present invention, wherein components that are the same as those of FIG. 2F are given the same reference numerals and their description is omitted. In Figure 3A, high The piezoelectric semiconductor device 30 has a structure similar to that of the high voltage semiconductor device 20 (as shown in Fig. 2F). The difference is that the outer edge E2 of the third doping region 212b in the high voltage semiconductor device 30 is not aligned with the corresponding outer edge E1 of the first doping region 212a. For example, the outer edge E2 extends laterally beyond the outer edge E1.
在第3B圖中,高壓半導體裝置40具有相似於高壓半導體裝置20(如第2F圖所示)的結構。不同之處在於高壓半導體裝置40中第三摻雜區212b的外側邊緣E2未對準於第一摻雜區212a的對應的外側邊緣E1。舉例來說,外側邊緣E1橫向延伸而超越外側邊緣E2。 In Fig. 3B, the high voltage semiconductor device 40 has a structure similar to that of the high voltage semiconductor device 20 (as shown in Fig. 2F). The difference is that the outer edge E2 of the third doped region 212b in the high voltage semiconductor device 40 is not aligned with the corresponding outer edge E1 of the first doped region 212a. For example, the outer edge E1 extends laterally beyond the outer edge E2.
請參照第3C圖,其繪示出根據本發明其他實施例之高壓半導體裝置50剖面示意圖,其中相同於第2F圖的部件係使用相同的標號並省略其說明。在本實施例中,高壓半導體裝置50具有相似於高壓半導體裝置20(如第2F圖所示)的結構。不同之處在於高壓半導體裝置50中更包括具有第二導電型的一埋入層(buried layer)204,位於基體區222下方的第一摻雜區202內,使基體區222的底部鄰接埋入層204的上表面。再者,埋入層204的摻雜濃度約在1.0×1018。在本實施例中,第二摻雜區212a及第三摻雜區212b可為井區或高壓井區。在一範例中,第二導電型為N型,而埋入層204為N型埋入層(N+ buried layer,NBL)。 Referring to FIG. 3C, a cross-sectional view of a high voltage semiconductor device 50 according to another embodiment of the present invention is illustrated, wherein components identical to those of FIG. 2F are given the same reference numerals and their description is omitted. In the present embodiment, the high voltage semiconductor device 50 has a structure similar to that of the high voltage semiconductor device 20 (as shown in Fig. 2F). The difference is that the high voltage semiconductor device 50 further includes a buried layer 204 having a second conductivity type, located in the first doping region 202 below the base region 222, so that the bottom of the base region 222 is adjacently buried. The upper surface of layer 204. Furthermore, the doping concentration of the buried layer 204 is about 1.0×10 18 . In this embodiment, the second doping region 212a and the third doping region 212b may be a well region or a high voltage well region. In one example, the second conductivity type is N-type, and the buried layer 204 is an N type buried layer (N + buried layer, NBL) .
請參照第3D圖,其繪示出根據本發明其他實施例之高壓半導體裝置60剖面示意圖,其中相同於第2F圖的部件係使用相同的標號並省略其說明。在本實施例中,高壓半導體裝置60具有相似於高壓半導體裝置20(如第2F圖所示)的結構。不 同之處在於高壓半導體裝置60中使用具有第二導電型的一埋入層204取代高壓半導體裝置20中的第一摻雜區202設置於基體區222下方,使基體區222的底部鄰接埋入層204的上表面。在本實施例中,第二摻雜區212a及第三摻雜區212b可為井區或高壓井區。 Referring to FIG. 3D, there is shown a cross-sectional view of a high voltage semiconductor device 60 according to another embodiment of the present invention, wherein components identical to those of FIG. 2F are given the same reference numerals and the description thereof is omitted. In the present embodiment, the high voltage semiconductor device 60 has a structure similar to that of the high voltage semiconductor device 20 (as shown in Fig. 2F). Do not The same applies to the use of a buried layer 204 having a second conductivity type in the high voltage semiconductor device 60 instead of the first doped region 202 in the high voltage semiconductor device 20 disposed under the base region 222, so that the bottom portion of the base region 222 is buried adjacently. The upper surface of layer 204. In this embodiment, the second doping region 212a and the third doping region 212b may be a well region or a high voltage well region.
接著,請參照第2A至2F圖,其繪示出根據本揭露一實施例之高壓半導體裝置20製造方法的剖面示意圖。請參照第2A圖,提供一半導體基底200,其具有一第一導電型。在本實施例中,半導體基底200可為矽基底、鍺化矽基底、塊體半導體基底、化合物半導體基底、絕緣層上覆矽基底或其他習用之半導體基底。 Next, please refer to FIGS. 2A to 2F, which are schematic cross-sectional views showing a method of manufacturing the high voltage semiconductor device 20 according to an embodiment of the present disclosure. Referring to FIG. 2A, a semiconductor substrate 200 having a first conductivity type is provided. In the present embodiment, the semiconductor substrate 200 may be a germanium substrate, a germanium germanium germanium substrate, a bulk semiconductor substrate, a compound semiconductor substrate, an insulating layer overlying germanium substrate, or other conventional semiconductor substrates.
接著,可藉由離子佈植製程及熱製程,於半導體基底200內形成一第一摻雜區202,例如一高壓井區,其鄰近於半導體基底200的上表面。第一摻雜區202具有不同於第一導電型的一第二導電型。舉例來說,第一導電型為P型,而第二導電型為N型。在其他實施例中,第一導電型可為N型,而第二導電型為P型。 Next, a first doping region 202, such as a high voltage well region, adjacent to the upper surface of the semiconductor substrate 200 may be formed in the semiconductor substrate 200 by an ion implantation process and a thermal process. The first doping region 202 has a second conductivity type different from the first conductivity type. For example, the first conductivity type is a P type, and the second conductivity type is an N type. In other embodiments, the first conductivity type may be an N type and the second conductivity type is a P type.
接著,請參照第2B圖,可藉由磊晶生長於半導體基底200上形成具有第一導電型的一磊晶層210。接著,可藉由離子佈植製程及熱製程,於磊晶層210內形成具有第二導電型的一摻雜區,例如高壓井區212。在本實施例中,高壓井區212的摻雜濃度可相同於第一摻雜區202。舉例來說,高壓井區212及第一摻雜區202的摻雜濃度約在1.0×1015至1.0×1016ions/cm3的範圍。在其他實施例中,具有第二導電型的摻雜區可為一井 區,其摻雜濃度不同於第一摻雜區202。舉例來說,井區的摻雜濃度約在1.0×1016至1.0×1017ions/cm3的範圍,而第一摻雜區202的摻雜濃度約在1.0×1015至1.0×1016ions/cm3的範圍。亦即,井區的摻雜濃度高於第一摻雜區202的摻雜濃度。 Next, referring to FIG. 2B, an epitaxial layer 210 having a first conductivity type can be formed by epitaxial growth on the semiconductor substrate 200. Then, a doped region having a second conductivity type, such as a high voltage well region 212, is formed in the epitaxial layer 210 by an ion implantation process and a thermal process. In the present embodiment, the doping concentration of the high voltage well region 212 may be the same as the first doping region 202. For example, the doping concentration of the high voltage well region 212 and the first doping region 202 is in the range of about 1.0×10 15 to 1.0×10 16 ions/cm 3 . In other embodiments, the doped region having the second conductivity type may be a well region having a different doping concentration than the first doping region 202. For example, the doping concentration of the well region is in the range of about 1.0×10 16 to 1.0×10 17 ions/cm 3 , and the doping concentration of the first doping region 202 is about 1.0×10 15 to 1.0×10 16 . The range of ions/cm 3 . That is, the doping concentration of the well region is higher than the doping concentration of the first doping region 202.
接著,請參照第2C圖,於磊晶層210內形成複數個作為隔離結構的場絕緣層220,其中至少一場絕緣層形成於高壓井區212內。在一實施例中,場絕緣層220可為場氧化物。在一範例中,場絕緣層220為局部矽氧化層(LOCOS)。在其他實施例中,場絕緣層220可為淺溝槽隔離(STI)結構。需注意的是在其他實施例中,可於形成場絕緣層220後,於磊晶層210內形成具有第二導電型的高壓井區212或井區。 Next, referring to FIG. 2C, a plurality of field insulating layers 220 as isolation structures are formed in the epitaxial layer 210, wherein at least one field of the insulating layer is formed in the high voltage well region 212. In an embodiment, the field insulating layer 220 can be a field oxide. In one example, the field insulating layer 220 is a local tantalum oxide layer (LOCOS). In other embodiments, the field insulating layer 220 can be a shallow trench isolation (STI) structure. It should be noted that in other embodiments, a high-voltage well region 212 or a well region having a second conductivity type may be formed in the epitaxial layer 210 after the field insulating layer 220 is formed.
接著,請參照第2D圖,可藉由離子佈植製程及熱製程,於磊晶層210的高壓井區212或井區內形成具有第一導電型的一基體區222,以將高壓井區212或井區分隔成具有第二導電型及相同摻雜濃度的一第二摻雜區212a及一第三摻雜區212b。如第2D圖所示,基體區222位於第一摻雜區202上的磊晶層210內,且基體區222由磊晶層210的上表面延伸至其下表面,使基體區222的底部可鄰接於第一摻雜區202。再者,第二摻雜區212a及第三摻雜區212b分別位於基體區222兩相對側的磊晶層210內而鄰接基體區222。在本實施例中,第二摻雜區212a及第三摻雜區212b位於第一摻雜區202上方,且由磊晶層210的上表面延伸至其下表面,使第二摻雜區212a及第三摻雜區212b的底部可鄰接於第一摻雜區202。在一實施例中,第三摻雜區212b的一外側邊緣E2對準於第一摻雜區202的一對應的 外側邊緣E1。再者,第三摻雜區212b具有一寬度W在1至8微米的範圍。在其他實施例中,可在形成基體區222之前或之後,藉由各自的離子佈植製程形成第二摻雜區212a及第三摻雜區212b。 Next, referring to FIG. 2D, a substrate region 222 having a first conductivity type may be formed in the high-voltage well region 212 or the well region of the epitaxial layer 210 by an ion implantation process and a thermal process to place the high-voltage well region. The 212 or well region is divided into a second doped region 212a and a third doped region 212b having a second conductivity type and the same doping concentration. As shown in FIG. 2D, the base region 222 is located in the epitaxial layer 210 on the first doped region 202, and the base region 222 extends from the upper surface of the epitaxial layer 210 to the lower surface thereof, so that the bottom of the base region 222 can be Adjacent to the first doping region 202. Furthermore, the second doped region 212a and the third doped region 212b are respectively located in the epitaxial layer 210 on opposite sides of the base region 222 adjacent to the base region 222. In this embodiment, the second doping region 212a and the third doping region 212b are located above the first doping region 202, and extend from the upper surface of the epitaxial layer 210 to the lower surface thereof, so that the second doping region 212a The bottom of the third doping region 212b may be adjacent to the first doping region 202. In an embodiment, an outer edge E2 of the third doping region 212b is aligned with a corresponding one of the first doping regions 202. Outer edge E1. Further, the third doping region 212b has a width W in the range of 1 to 8 μm. In other embodiments, the second doped region 212a and the third doped region 212b may be formed by a respective ion implantation process before or after the formation of the base region 222.
接著,請再參照第2D圖,可選擇性地於場絕緣層220下方的第二摻雜區212a內形成具有第一導電型的一場降區216,其用以降低表面電場。在一實施例中,場降區216的摻雜濃度約為1.0×1017ions/cm3。接著,可利用習知MOS製程於磊晶層210上形成一閘極結構233,其中閘極結構233局部覆蓋場降區216上方的場絕緣層220。閘極結構233通常包括一閘極介電層230及位於閘極介電層230上方的閘極層232。 Next, referring again to FIG. 2D, a field drop region 216 having a first conductivity type may be selectively formed in the second doping region 212a under the field insulating layer 220 to reduce the surface electric field. In one embodiment, the field drop region 216 has a doping concentration of about 1.0 x 10 17 ions/cm 3 . Next, a gate structure 233 can be formed on the epitaxial layer 210 by using a conventional MOS process, wherein the gate structure 233 partially covers the field insulating layer 220 above the field drop region 216. The gate structure 233 generally includes a gate dielectric layer 230 and a gate layer 232 over the gate dielectric layer 230.
接著,請參照第2E圖,可藉由離子佈植製程,於基體區222內形成一源極區227,且於第二摻雜區212a內形成一汲極區228。源極區227由具有第二導電型的摻雜區226及具有第一導電型的摻雜區224(其作為一基體接觸區)所構成。再者,汲極區228僅由具有第二導電型的摻雜區所構成。 Next, referring to FIG. 2E, a source region 227 is formed in the base region 222 by the ion implantation process, and a drain region 228 is formed in the second doped region 212a. The source region 227 is composed of a doped region 226 having a second conductivity type and a doped region 224 having a first conductivity type as a substrate contact region. Furthermore, the drain region 228 is composed only of doped regions having a second conductivity type.
接著,請參照第2F圖,可利用習知金屬化製程,於磊晶層210上形成一金屬化層,並覆蓋閘極結構233。如此一來,便形成高壓半導體裝置20。在本實施例中,金屬化層可包括一內層介電(ILD)層250及位於其中的複數個內連結構240、242及244。在本實施例中,內連結構240電性連接於源極區227,以作為一源極電極;內連結構242電性連接於汲極區216,以作為一汲極電極;以及內連結構244電性連接於閘極結構233,以作為一閘極電極。 Next, referring to FIG. 2F, a metallization layer can be formed on the epitaxial layer 210 by using a conventional metallization process, and the gate structure 233 can be covered. As a result, the high voltage semiconductor device 20 is formed. In this embodiment, the metallization layer can include an inner dielectric (ILD) layer 250 and a plurality of interconnect structures 240, 242, and 244 located therein. In this embodiment, the interconnect structure 240 is electrically connected to the source region 227 as a source electrode; the interconnect structure 242 is electrically connected to the drain region 216 as a drain electrode; and the interconnect structure 244 is electrically connected to the gate structure 233 to serve as a gate electrode.
可以理解的是可採用相同或相似於第2A至2F圖所示的方法來製作第3A至3D圖分別所示的高壓半導體裝置30、40、50及60。 It is to be understood that the high voltage semiconductor devices 30, 40, 50, and 60 shown in Figs. 3A to 3D, respectively, can be fabricated by the same or similar methods as those shown in Figs. 2A to 2F.
根據上述實施例,基體區的兩相對側及底部形成了具有不同於基體區的導電型的摻雜區,這些摻雜區構成連續的隔離結構,以隔離高壓半導體裝置中具有相同導電型的基體區與基底。因此,當源極區耦接至一內部電路或電阻時,可降低或消除基體效應而避免驅動電流隨著施加於源極區的電壓的增加而下降,進而提升或維持高壓半導體裝置的效能。再者,這些摻雜區可具有相同的的摻雜濃度,因此可使高壓半導體裝置具有穩定的峰值電場(peak electric field)。另外,由於可採用高壓半導體裝置中的高壓井區形成連續的隔離結構,因此不需額外的製造成本。 According to the above embodiment, the opposite sides and the bottom of the base region form doped regions having a conductivity type different from the base region, and the doped regions constitute a continuous isolation structure to isolate the substrate having the same conductivity type in the high voltage semiconductor device. Area and base. Therefore, when the source region is coupled to an internal circuit or a resistor, the substrate effect can be reduced or eliminated to prevent the driving current from decreasing as the voltage applied to the source region increases, thereby improving or maintaining the performance of the high voltage semiconductor device. Furthermore, these doped regions can have the same doping concentration, thus enabling the high voltage semiconductor device to have a stable peak electric field. In addition, since a high-voltage well region in a high-voltage semiconductor device can be used to form a continuous isolation structure, no additional manufacturing cost is required.
雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can be modified and retouched without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.
20‧‧‧高壓半導體裝置 20‧‧‧High voltage semiconductor device
200‧‧‧半導體基底 200‧‧‧Semiconductor substrate
202‧‧‧第一摻雜區 202‧‧‧First doped area
210‧‧‧磊晶層 210‧‧‧ epitaxial layer
212‧‧‧高壓井區 212‧‧‧High-pressure well area
212a‧‧‧第二摻雜區 212a‧‧‧Second doped area
212b‧‧‧第三摻雜區 212b‧‧‧ third doped area
216‧‧‧場降區 216‧‧‧Field drop zone
220‧‧‧場絕緣層 220‧‧ ‧ field insulation
222‧‧‧基體區 222‧‧‧basal area
224、226‧‧‧摻雜區 224, 226‧‧‧Doped area
227‧‧‧源極區 227‧‧‧ source area
228‧‧‧汲極區 228‧‧‧Bungee Area
230‧‧‧閘極介電層 230‧‧‧ gate dielectric layer
232‧‧‧閘極層 232‧‧ ‧ gate layer
233‧‧‧閘極結構 233‧‧ ‧ gate structure
240、242、244‧‧‧內連結構 240, 242, 244‧‧‧ interconnected structures
250‧‧‧內層介電層 250‧‧‧ Inner dielectric layer
E1、E2‧‧‧外側邊緣 E1, E2‧‧‧ outer edge
W‧‧‧寬度 W‧‧‧Width
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105105380A TWI587402B (en) | 2016-02-24 | 2016-02-24 | High voltage semiconductor device and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105105380A TWI587402B (en) | 2016-02-24 | 2016-02-24 | High voltage semiconductor device and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI587402B true TWI587402B (en) | 2017-06-11 |
TW201730971A TW201730971A (en) | 2017-09-01 |
Family
ID=59687868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105105380A TWI587402B (en) | 2016-02-24 | 2016-02-24 | High voltage semiconductor device and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI587402B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10128331B1 (en) | 2017-08-01 | 2018-11-13 | Vanguard International Semiconductor Corporation | High-voltage semiconductor device and method for manufacturing the same |
CN109216453A (en) * | 2017-07-04 | 2019-01-15 | 世界先进积体电路股份有限公司 | High voltage semiconductor device and its manufacturing method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI644441B (en) * | 2018-05-04 | 2018-12-11 | 立錡科技股份有限公司 | High voltage device and manufacturing method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040108544A1 (en) * | 2002-12-09 | 2004-06-10 | Semiconductor Components Industries, Llc | High voltage mosfet with laterally varying drain doping and method |
TW201251007A (en) * | 2011-05-12 | 2012-12-16 | United Microelectronics Corp | Lateral-diffused metal oxide semiconductor device (LDMOS) and fabrication method thereof |
TW201403817A (en) * | 2012-07-12 | 2014-01-16 | Macronix Int Co Ltd | Semiconductor structure and method for forming the same |
-
2016
- 2016-02-24 TW TW105105380A patent/TWI587402B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040108544A1 (en) * | 2002-12-09 | 2004-06-10 | Semiconductor Components Industries, Llc | High voltage mosfet with laterally varying drain doping and method |
TW201251007A (en) * | 2011-05-12 | 2012-12-16 | United Microelectronics Corp | Lateral-diffused metal oxide semiconductor device (LDMOS) and fabrication method thereof |
TW201403817A (en) * | 2012-07-12 | 2014-01-16 | Macronix Int Co Ltd | Semiconductor structure and method for forming the same |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109216453A (en) * | 2017-07-04 | 2019-01-15 | 世界先进积体电路股份有限公司 | High voltage semiconductor device and its manufacturing method |
CN109216453B (en) * | 2017-07-04 | 2022-02-15 | 世界先进积体电路股份有限公司 | High voltage semiconductor device and method for manufacturing the same |
US10128331B1 (en) | 2017-08-01 | 2018-11-13 | Vanguard International Semiconductor Corporation | High-voltage semiconductor device and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
TW201730971A (en) | 2017-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9153666B1 (en) | LDMOS with corrugated drift region | |
JP5172654B2 (en) | Semiconductor device | |
TWI488297B (en) | Device and method for manufacturing the same | |
TWI640093B (en) | Semiconductor device having gate structures and manufacturing method thereof | |
US10879389B2 (en) | Semiconductor device capable of high-voltage operation | |
TWI409946B (en) | Semiconductor device and method for forming the same | |
US11081580B2 (en) | High-voltage semiconductor devices and methods for manufacturing the same | |
US20160322262A1 (en) | Integration of devices | |
US20140117416A1 (en) | Semiconductor device and associated method for manufacturing | |
TWI544578B (en) | Semiconductor device having metal layer and method of fabricating same | |
US7649222B2 (en) | Semiconductor device | |
WO2013171873A1 (en) | Semiconductor device | |
TWI503983B (en) | Power mosfet and methods for forming the same | |
JP2014078689A (en) | Power semiconductor device and method of manufacturing the same | |
US10256340B2 (en) | High-voltage semiconductor device and method for manufacturing the same | |
TWI634660B (en) | High voltage semiconductor device and method for manufacturing the same | |
TWI587402B (en) | High voltage semiconductor device and method for manufacturing the same | |
US10128331B1 (en) | High-voltage semiconductor device and method for manufacturing the same | |
US10249614B2 (en) | Semiconductor device | |
TWI387012B (en) | Lateral diffused metal oxide semiconductor transistor and method for increasing break down voltage of lateral diffused metal oxide semiconductor transistor | |
KR20090107024A (en) | Pn junction and mos capacitor hybrid resurf transistor | |
TWI575741B (en) | High voltage semiconductor device and method for manufacturing the same | |
CN111509044B (en) | Semiconductor structure and forming method thereof | |
CN107146814B (en) | High voltage semiconductor device and method for manufacturing the same | |
US20190371943A1 (en) | Silicon on insulator semiconductor device with mixed doped regions |