TWI583821B - Fast remote plasma atomic layer deposition apparatus - Google Patents

Fast remote plasma atomic layer deposition apparatus Download PDF

Info

Publication number
TWI583821B
TWI583821B TW103101238A TW103101238A TWI583821B TW I583821 B TWI583821 B TW I583821B TW 103101238 A TW103101238 A TW 103101238A TW 103101238 A TW103101238 A TW 103101238A TW I583821 B TWI583821 B TW I583821B
Authority
TW
Taiwan
Prior art keywords
gas
plasma
unit
atomic layer
layer deposition
Prior art date
Application number
TW103101238A
Other languages
Chinese (zh)
Other versions
TW201428131A (en
Inventor
Hyeong Tag Jeon
Hag Young Choi
Original Assignee
Industry-Univ Coop Found Hanyang Univ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industry-Univ Coop Found Hanyang Univ filed Critical Industry-Univ Coop Found Hanyang Univ
Publication of TW201428131A publication Critical patent/TW201428131A/en
Application granted granted Critical
Publication of TWI583821B publication Critical patent/TWI583821B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B9/00Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour
    • B05B9/03Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/002Manually-actuated controlling means, e.g. push buttons, levers or triggers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B9/00Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour
    • B05B9/005Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour the liquid or other fluent material being a fluid close to a change of phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B5/00Cleaning by methods involving the use of air flow or gas flow
    • B08B5/02Cleaning by the force of jets, e.g. blowing-out cavities
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/45538Plasma being used continuously during the ALD cycle
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45548Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
    • C23C16/45551Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction for relative movement of the substrate and the gas injectors or half-reaction reactor compartments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32357Generation remote from the workpiece, e.g. down-stream
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Chemical Vapour Deposition (AREA)

Description

快速遠程等離子體原子層沉積裝置 Fast remote plasma atomic layer deposition device

本發明作為關於快速遠程等離子體原子層沉積裝置,更為詳盡地說,是關於利用通過空間分割的方式形成的遠程等離子體沉積,因此可以確保快速輸送量的快速遠程等離子體原子層沉積裝置。 The present invention is directed to a fast remote plasma atomic layer deposition apparatus, and more particularly to a remote remote plasma atomic layer deposition apparatus which utilizes remote plasma deposition formed by spatial division, thereby ensuring a fast throughput.

上述構成,原子層沉積的時候,由於利用了快速遠程等離子體,因此可提高輸送量(throughput),並且在大型基板上也能夠輕易地時原子層沉積。 In the above configuration, when the atomic layer is deposited, since the rapid remote plasma is utilized, the throughput can be increased, and the atomic layer can be easily deposited on a large substrate.

一般來說,半導體元件或是平板顯示裝置等在製造過程中需經過多種製造工序,其中把所需的薄膜沉積在晶片或玻璃等基板上的程式是必須進行的。 In general, a semiconductor element or a flat panel display device or the like is subjected to various manufacturing processes in the manufacturing process, and a program for depositing a desired film on a substrate such as a wafer or glass is necessary.

在這種薄膜沉積程式中主要使用的是:濺射鍍膜(Sputtering)、化學氣象沉積(CVD:Chemical Vapor Deposition)、原子層沉積法(ALD:Atomic Layer Deposition)等。 In this thin film deposition program, sputtering, CVD (Chemical Vapor Deposition), and atomic layer deposition (ALD: Atomic Layer Deposition) are mainly used.

其中,原子層沉積(Atomic Layer Deposition)法,作為利用單原子化學吸附及脫附的納米薄膜沉積技術,是在把各反應物逐步分離後,通過以脈衝的形態供給腔室(chamber),從而依靠反應物在基板上的表面飽和(surface saturation)反應的、利用化學吸附和脫附的新概念薄膜沉積技 術。 Among them, the Atomic Layer Deposition method, as a nano-film deposition technique using single-atom chemisorption and desorption, is to supply a chamber in a pulsed form after gradually separating the reactants. A new concept of thin film deposition using chemical adsorption and desorption depending on the surface saturation reaction of the reactants on the substrate Surgery.

傳統的原子層沉積技術,由於在沉積的工序中需要真空狀態,所以需要相關的用來維持、管理的附加裝置,因此延長了工序時間導致產生率低下。 Conventional atomic layer deposition techniques require additional means for maintenance and management due to the need for a vacuum state in the deposition process, thereby prolonging the process time and resulting in a low rate of production.

而且,由於能夠確保真空的空間是受限制的,因此存在著問題:並不適用於對大面積、大型化有要求的顯示屏產業。 Moreover, since the space for ensuring the vacuum is limited, there is a problem that it is not suitable for the display screen industry which requires a large area and a large size.

不僅如此,根據傳統技術的原子層沉積裝置,為了調節或控制反應腔室內部的壓力,還需要除注入源氣、反應氣體裝置以外的其他的裝置,因此具有使裝置複雜化的問題。 Further, according to the conventional atomic layer deposition apparatus, in order to adjust or control the pressure inside the reaction chamber, other means than the source gas and the reaction gas means are required, which has a problem of complicating the apparatus.

而且,利用遠程等離子層代替反應氣體的傳統遠程等離子層原子層沉積技術,由於源氣及遠程等離子層是隨著時間的流逝,會按照一定順序(按照時間順序)使其在基板上反應的時分割式(time-sharing type),因此它還具有輸送量慢的缺點。 Moreover, the conventional remote plasma layer atomic layer deposition technique using a remote plasma layer instead of a reactive gas, because the source gas and the remote plasma layer are reacted on the substrate in a certain order (in chronological order) as time passes. It is a time-sharing type, so it also has the disadvantage of slow delivery.

本發明提供的是能夠在一個單元中完成源氣的排氣與吸氣的快速遠程等離子體沉積裝置。 The present invention provides a fast remote plasma deposition apparatus capable of performing exhaust and aspiration of a source gas in one unit.

本發明提供的是通過空間分割方式(space division type)使源氣與遠程等離子體能夠在基板上反應的快速遠程等離子體沉積裝置。 The present invention provides a fast remote plasma deposition apparatus that enables a source gas and a remote plasma to react on a substrate by a space division type.

本發明提供的是可以確保快速輸送量的快速遠程等離子體沉積裝置。 The present invention provides a fast remote plasma deposition apparatus that ensures rapid throughput.

為了達成上述課題,根據本發明實施例的快速遠程等離子體沉積裝置包括:向基板提供氣體的源氣單元;在上述基板產生等離子體的等離子體單元;及在向上述源氣單元與上述等離子體單元之間提供的、吸入上述源氣的氣體吸入部;所提供的上述基板可沿著與上述源氣單元、等離子體單元或是上述氣體吸入部中至少一個水準方向的交叉方向相對運動。 In order to achieve the above object, a rapid remote plasma deposition apparatus according to an embodiment of the present invention includes: a source gas unit that supplies a gas to a substrate; a plasma unit that generates a plasma on the substrate; and a plasma unit to the source gas unit and the plasma a gas suction portion that is provided between the units and that sucks the source gas; the substrate is provided to be movable in a direction intersecting with at least one of the source gas unit, the plasma unit, or the gas suction unit.

上述等離子層單元包括:下部是以開口的形態形成的等離子體產生管;供給於上述等離子體產生管上部的等離子電極;在上述等離子體產生管開口下端形成的電源柵極(grid);及附著在上述電源柵極下部的花灑。 The plasma layer unit includes: a plasma generating tube formed in an open state at the lower portion; a plasma electrode supplied to an upper portion of the plasma generating tube; a power supply grid formed at a lower end of the plasma generating tube opening; and an adhesion The shower at the lower part of the above power supply grid.

上述等離子體產生管的上端可形成由供給等離子體產生氣體的氣體供給通路在內部形成的氣體注入部。 The upper end of the plasma generating tube may form a gas injection portion formed inside by a gas supply passage for supplying a plasma generating gas.

上述氣體注入部的下端可朝著上述電源柵極開口形成。 The lower end of the gas injection portion may be formed toward the power supply gate opening.

可在上述電源柵極及上述花灑上形成等離子體排除部。 A plasma exclusion portion may be formed on the power supply grid and the shower.

上述等離子體排除部可以圓孔或是切口的形態形成。 The plasma removing portion may be formed in the form of a circular hole or a slit.

上述等離子體產生部可形成與上述基板的運動方向呈直角方向的切口。 The plasma generating portion may form a slit that is perpendicular to the moving direction of the substrate.

上述等離子體電極可產生電容性等離子體,誘導性等離子體或是直流脈衝等離子體中的任意一個。 The plasma electrode can generate any one of a capacitive plasma, an inductive plasma, or a direct current pulsed plasma.

上述源氣單元和上述等離子體單元可按照空間分 割形成。 The source gas unit and the plasma unit described above may be divided according to space Cut formation.

上述源氣單元包括:由氣體供給通路在內部形成的氣體供給管,及由與上述氣體供給通路連通的壓力緩和部在內部形成的氣體排氣管。 The source gas unit includes a gas supply pipe formed inside the gas supply passage, and a gas exhaust pipe formed inside by the pressure absorbing portion that communicates with the gas supply passage.

上述壓力緩和部的內部體積可比上述氣體供給通路的內部體積大。 The internal volume of the pressure relieving portion may be larger than the internal volume of the gas supply passage.

上述氣體吸入部和上述源氣單元合為一體,上述氣體吸入部為了使氣體吸氣通路在其內部形成,可包括圍繞上述氣體排氣管外周面至少一部份的氣體吸氣管。上述氣體吸氣管的最下端可延長至比上述氣體排氣管的最下端更靠下。 The gas suction unit and the source gas unit are integrated, and the gas suction unit may include a gas suction pipe that surrounds at least a portion of an outer circumferential surface of the gas exhaust pipe in order to form the gas intake passage therein. The lowermost end of the gas suction pipe may be extended to be lower than the lowermost end of the gas exhaust pipe.

為了能與上述源氣單元或是上述氣體吸入部相對,可在上述等離子體單元的一側形成真空排氣部。 In order to be able to face the source gas unit or the gas suction unit, a vacuum exhaust unit may be formed on one side of the plasma unit.

上述等離子體單元和上述真空排氣部之間可形成清除管。 A purge tube may be formed between the plasma unit and the vacuum evacuation unit.

為了把上述源氣單元、上述等離子體單元及上述氣體吸入部安置在內部,可再包括一個在內部形成密閉反應空間的腔室(chamber),上述氣體吸入部可在上述腔室(chamber)中形成。 In order to dispose the source gas unit, the plasma unit, and the gas suction portion therein, a chamber that internally forms a closed reaction space may be included, and the gas suction portion may be in the chamber form.

如上所述,根據本發明的快速遠程等離子體原子層沉積裝置可看到產生率的提高效果,並且由於大型化也很容易,因此也可適用於顯示屏領域。 As described above, the rapid remote plasma atomic layer deposition apparatus according to the present invention can see an effect of improving the production rate, and is also easy to enlarge because it is large, and is therefore also applicable to the field of display screens.

根據本發明的快速遠程等離子體原子層沉積裝置,可輕鬆地控制沉積工序前或是工序進行時的基本壓力或是 工作壓力,並且可通過把沉積工序後殘留的氣體向室外排出來對工作壓力等進行調節,因此可防止裝置的構成變得複雜。 According to the fast remote plasma atomic layer deposition apparatus of the present invention, the basic pressure before or during the deposition process can be easily controlled or The working pressure can be adjusted by discharging the gas remaining after the deposition process to the outside, so that the configuration of the apparatus can be prevented from becoming complicated.

根據本發明的快速遠程等離子體原子層沉積裝置,通過利用具備壓力緩和部的源氣單元把源氣向基板方向噴射,因此可使源氣勻稱均一地噴射,從而提高沉積的品質。 According to the rapid remote plasma atomic layer deposition apparatus of the present invention, the source gas is ejected in the direction of the substrate by the source gas unit having the pressure relieving portion, so that the source gas can be uniformly and uniformly ejected, thereby improving the quality of deposition.

根據本發明的快速遠程等離子體原子層沉積裝置,由於源氣的供給和遠程等離子體的供給是按照空間分割的方式使原子層沉積,因此可得到快速的輸送量並能夠提高產出率。 According to the fast remote plasma atomic layer deposition apparatus of the present invention, since the supply of the source gas and the supply of the remote plasma deposit the atomic layer in a spatially divided manner, a rapid throughput can be obtained and the yield can be improved.

但是,本發明的效果並不僅限於上述內容,未提及的或是其他效果,從業職將從以下記載中明確瞭解。 However, the effects of the present invention are not limited to the above, and those which are not mentioned or other effects will be clearly understood from the following description.

100‧‧‧快速遠程等離子體沉積裝置 100‧‧‧fast remote plasma deposition apparatus

110‧‧‧基板 110‧‧‧Substrate

120‧‧‧基板溫度可變部 120‧‧‧Substrate temperature variable part

130‧‧‧源氣單元 130‧‧‧ source gas unit

131‧‧‧氣體供給管 131‧‧‧ gas supply pipe

132‧‧‧氣體吸氣管 132‧‧‧ gas suction pipe

133‧‧‧氣體吸氣部 133‧‧‧ gas suction department

134‧‧‧氣體排氣管 134‧‧‧ gas exhaust pipe

135‧‧‧氣體供給通道 135‧‧‧ gas supply channel

136‧‧‧氣體供給噴管 136‧‧‧ gas supply nozzle

137‧‧‧氣體排氣部 137‧‧‧ gas exhaust

138‧‧‧壓力緩和部 138‧‧‧ Pressure Relief Department

139‧‧‧氣體吸氣通路 139‧‧‧Gas suction channel

140‧‧‧等離子體單元 140‧‧‧plasma unit

141‧‧‧氣體注入部 141‧‧‧ gas injection department

142‧‧‧等離子體產生管 142‧‧‧ Plasma generating tube

143‧‧‧等離子體電極 143‧‧‧plasma electrode

144‧‧‧電源柵極 144‧‧‧Power grid

145‧‧‧花灑 145‧‧‧ shower

146、147‧‧‧等離子體排出部 146, 147‧‧‧ Plasma Discharge Department

150‧‧‧真空排氣部 150‧‧‧vacuum exhaust

160‧‧‧外部氣體供給部 160‧‧‧External Gas Supply Department

169‧‧‧吸入氣體吸氣部 169‧‧‧Inhalation gas suction

170‧‧‧真空抽氣部 170‧‧‧Vacuum pumping department

171‧‧‧真空排管 171‧‧‧vacuum tube

172‧‧‧真空排管 172‧‧‧vacuum tube

181‧‧‧RF電源 181‧‧‧RF power supply

182‧‧‧阻抗配合部 182‧‧‧ impedance matching department

183‧‧‧柵極電源部 183‧‧‧Gate Power Supply Department

300‧‧‧快速遠程等離子體原子層沉積裝置 300‧‧‧Fast remote plasma atomic layer deposition device

301‧‧‧腔室 301‧‧ ‧ chamber

330‧‧‧源氣單元 330‧‧‧ source gas unit

340‧‧‧等離子體單元 340‧‧‧plasma unit

350‧‧‧真空排氣部 350‧‧‧ Vacuum Exhaust Department

370‧‧‧真空抽氣部 370‧‧‧Vacuum pumping department

400‧‧‧快速遠程等離子體原子層沉積裝置 400‧‧‧Fast remote plasma atomic layer deposition device

401‧‧‧腔室 401‧‧‧ chamber

402‧‧‧腔室乾燥泵 402‧‧‧Case Drying Pump

410‧‧‧腔室 410‧‧‧ chamber

430‧‧‧源氣單元 430‧‧‧ source gas unit

440‧‧‧等離子體單元 440‧‧‧plasma unit

470‧‧‧真空抽氣部 470‧‧‧Vacuum pumping department

500‧‧‧快速遠程等離子體原子層沉積裝置 500‧‧‧Fast remote plasma atomic layer deposition apparatus

530‧‧‧源氣單元 530‧‧‧ source gas unit

540‧‧‧等離子體單元 540‧‧‧plasma unit

550‧‧‧真空排氣部 550‧‧‧vacuum exhaust

590‧‧‧清除管 590‧‧‧Clearing tube

591‧‧‧清除本體 591‧‧‧Clear the ontology

592、593‧‧‧清除埠 592, 593‧‧‧Clearing

590‧‧‧清除管 590‧‧‧Clearing tube

587‧‧‧清除排管 587‧‧‧Clear the tube

596‧‧‧清除部 596‧‧‧Clearance Department

圖1圖示的是根據本發明一實施例的快速遠程等離子體原子層沉積裝置的概略圖。 1 is a schematic diagram of a fast remote plasma atomic layer deposition apparatus in accordance with an embodiment of the present invention.

圖2圖示的是根據圖1的原子層沉積裝置的內部截面圖。 2 is an internal cross-sectional view of the atomic layer deposition apparatus according to FIG. 1.

圖3作為根據圖1的原子層沉積裝置中使用的源氣單元的斜視圖,圖示了氣體吸入部與源氣合為一體的形態。 Fig. 3 is a perspective view showing a source gas unit used in the atomic layer deposition apparatus according to Fig. 1, illustrating a state in which the gas suction portion is integrated with the source gas.

圖4是根據圖3的源氣單元的橫向及縱向的截面圖。 Figure 4 is a cross-sectional view of the source gas unit according to Figure 3 in a lateral direction and a longitudinal direction.

圖5是根據圖1的原子層沉積裝置中使用的等離子體單元的斜視圖與橫斷圖。 Figure 5 is a perspective view and a transverse view of a plasma cell used in the atomic layer deposition apparatus of Figure 1.

圖6圖示的是根據圖5的等離子體單元及與其連接的電源部的截面圖。 Fig. 6 is a cross-sectional view showing the plasma unit according to Fig. 5 and a power supply unit connected thereto.

圖7圖示的根據圖5的等離子體單元的電極形態的平面圖。 Fig. 7 is a plan view showing the electrode form of the plasma unit according to Fig. 5.

圖8至圖11圖示的是根據本發明的快速遠程等離子體原子層沉積裝置的變形例的概略圖。 8 to 11 are schematic diagrams showing a modification of the fast remote plasma atomic layer deposition apparatus according to the present invention.

以下,將參考附件圖面,對根據本發明的實施例做詳細說明。但是,本發明並不僅限或限定于此實施例。各圖面中展示的相同參考符號將代表相同部件。 Hereinafter, embodiments according to the present invention will be described in detail with reference to the attached drawings. However, the invention is not limited or limited to the embodiment. The same reference symbols are used in the drawings to represent the same parts.

圖1圖示的是根據本發明一實施例的快速遠程等離子體原子層沉積裝置的概略圖;圖2圖示的是根據圖1的原子層沉積裝置的內部截面圖;圖3作為根據圖1的原子層沉積裝置中使用的源氣單元的斜視圖,圖示了氣體吸入部與源氣合為一體的形態;圖4是根據圖3的源氣單元的橫向及縱向的截面圖;圖5是根據圖1的原子層沉積裝置中使用的等離子體單元的斜視圖與橫斷圖;圖6圖示的是根據圖5的等離子體單元及與其連接的電源部的截面圖;圖7圖示的根據圖5的等離子體單元的電極形態的平面圖;圖8至圖11圖示的是根據本發明的快速遠程等離子體原子層沉積裝置的變形例的概略圖。 1 is a schematic view of a rapid remote plasma atomic layer deposition apparatus according to an embodiment of the present invention; FIG. 2 is an internal sectional view of the atomic layer deposition apparatus according to FIG. 1; An oblique view of the source gas unit used in the atomic layer deposition apparatus, showing a form in which the gas suction portion is integrated with the source gas; FIG. 4 is a cross-sectional view of the source gas unit according to FIG. 3 in a lateral direction and a longitudinal direction; Is a perspective view and a transverse view of the plasma unit used in the atomic layer deposition apparatus of FIG. 1; FIG. 6 is a cross-sectional view of the plasma unit according to FIG. 5 and a power supply unit connected thereto; FIG. A plan view of an electrode form of the plasma unit according to Fig. 5; and Figs. 8 to 11 are schematic views of a modification of the fast remote plasma atomic layer deposition apparatus according to the present invention.

參考圖1至圖7,根據本發明一實施例的快速遠程等離子體沉積裝置(100)包括:向基板(110)提供氣體的源氣單元(130);在上述基板(110)產生等離子體的等離子體單元(140),及在向上述源氣單元(130)與上述等離子體單元(140)之間提供的、吸入上述源氣的氣體吸入部;所提供 的上述基板(110)可沿著與上述源氣單元(130)、等離子體單元(140)或是上述氣體吸入部中至少一個水準方向的交叉方向相對運動。 Referring to FIGS. 1 through 7, a rapid remote plasma deposition apparatus (100) according to an embodiment of the present invention includes: a source gas unit (130) that supplies a gas to a substrate (110); and a plasma generated on the substrate (110). a plasma unit (140), and a gas suction portion provided between the source gas unit (130) and the plasma unit (140) for drawing in the source gas; The substrate (110) is movable relative to a direction intersecting at least one of the source gas unit (130), the plasma unit (140), or the gas suction portion.

根據上述構成,原子層沉積時,因為利用快速遠程等離子體,所以可提高輸送量並且在大型的基板上也可輕鬆地使原子層沉積。 According to the above configuration, at the time of atomic layer deposition, since the rapid remote plasma is utilized, the amount of transport can be increased and the atomic layer can be easily deposited on a large substrate.

根據本發明一實施例的快速遠程等離子體沉積裝置(100),由於原子層沉積的基板(110)能夠和源氣單元(130)及等離子體單元(140)做相對運動,因此基板(110)的大小或是長度較長的情況,即大型基板的情況下原子層也可沉積。這時,如果只有在源氣單元(130)兩側排列好的等離子體單元(140)的話,也可處理大型基板。即,根據本發明一實施例的原子層沉積裝置(100),在僅有源氣單元(130)和等離子體單元(140)的最低配置下也可以創造原子層沉積的條件。 According to the fast remote plasma deposition apparatus (100) according to an embodiment of the present invention, since the atomic layer deposition substrate (110) can move relative to the source gas unit (130) and the plasma unit (140), the substrate (110) The size or length of the case, that is, the case of a large substrate, the atomic layer can also be deposited. At this time, if only the plasma unit (140) is arranged on both sides of the source gas unit (130), the large substrate can be processed. That is, the atomic layer deposition apparatus (100) according to an embodiment of the present invention can also create conditions for atomic layer deposition under the lowest configuration of only the source gas unit (130) and the plasma unit (140).

根據圖1,源氣單元(130)是1個,等離子體單元(140)是2個,真空排氣部(150)是2個。這裡,源氣單元(130),等離子體單元(140),真空排氣部(150)的個數是可以擴大的。並且,只有按照最少的等離子體單元(140),源氣單元(130)及等離子體單元(140)的形態來排列,才可以完成一個週期的原子層沉積工序,但是這樣的排列形態可根據工程的要求條件、產出率、輸送量等進行多種變形。 According to Fig. 1, there are one source gas unit (130), two plasma units (140), and two vacuum exhaust units (150). Here, the number of the source gas unit (130), the plasma unit (140), and the vacuum exhaust unit (150) can be expanded. Moreover, only one cycle of the atomic layer deposition process can be completed by arranging the minimum of the plasma unit (140), the source gas unit (130) and the plasma unit (140), but such an arrangement can be performed according to the engineering. Various requirements are imposed on the requirements, output rate, and delivery amount.

根據本發明一實施例的快速遠程等離子體沉積裝置(100)可包括:向基板(110)表面供給源氣的源氣單元(130)。可在源氣單元(130)水準方向的一側或兩側上排列 等離子體單元(140)。基板(110)可沿著源氣單元(130)或是等離子體單元(140)水準方向的交叉方向(TD)移動,源氣單元(130)或是等離子體單元(140)也可以移動。 A fast remote plasma deposition apparatus (100) according to an embodiment of the present invention may include a source gas unit (130) that supplies source gas to a surface of a substrate (110). Can be arranged on one side or both sides of the source gas unit (130) level Plasma unit (140). The substrate (110) can move along the intersecting direction (TD) of the source gas unit (130) or the plasma unit (140), and the source gas unit (130) or the plasma unit (140) can also move.

即,所提供的基板(110)能夠沿著與源氣單元(130)或是等離子體單元(140)中至少一個的水準方向向交叉的方向(TD)做相對運動。根據相同的構造,可以改善原子層沉積工序的輸送量(throughput)。 That is, the provided substrate (110) is capable of relative movement in a direction (TD) that intersects the level direction of at least one of the source gas unit (130) or the plasma unit (140). According to the same configuration, the throughput of the atomic layer deposition process can be improved.

根據本發明一實施例的原子層沉積裝置(100),為了在基板(110)的上面或是表面上原子層(Atomic Layer)沉積,至少要包括一個源氣單元(130)來注射(injection)或是抽吸(suction)源氣(Source Gas)。 An atomic layer deposition apparatus (100) according to an embodiment of the present invention includes at least one source gas unit (130) for injection on an atomic layer deposition on or above the substrate (110). Or suction source gas (Source Gas).

這裡的“注射”代表的是把源氣噴射或是吹於基板(110)表面的意思,“抽吸”與反應無關,指的是把殘留的源氣從基板(110)表面上吸收(suction)後排出的意思。 The term "injection" here means the purpose of spraying or blowing the source gas onto the surface of the substrate (110). "Pumping" is independent of the reaction, and refers to the absorption of the residual source gas from the surface of the substrate (110) (suction ) meaning after the discharge.

源氣單元(130)或是等離子體單元(140)在固定的狀態下,基板(110)可以被移送,或在基板(110)固定的狀態下,源氣單元(130)或是等離子體單元(140)可以被移送,基板(110)與源氣單元(130)或是等離子體單元(140)也可以一起被移送。在基板(110)與源氣單元(130)或是等離子體單元(140)一起被移送的情況下,可沿相反的方向移動。因此,在任意情況下,基板(110)與源氣單元(130)或是等離子體單元(140)都可沿相反的方向移動,這種相對運動方向(TD)在圖1及圖2中被表示出來。 The source gas unit (130) or the plasma unit (140) may be transferred in a fixed state, or the source gas unit (130) or the plasma unit may be in a state where the substrate (110) is fixed. (140) may be transferred, and the substrate (110) may be transferred together with the source gas unit (130) or the plasma unit (140). In the case where the substrate (110) is transferred together with the source gas unit (130) or the plasma unit (140), it can be moved in the opposite direction. Therefore, in any case, the substrate (110) and the source gas unit (130) or the plasma unit (140) can be moved in opposite directions, and the relative motion direction (TD) is in FIGS. 1 and 2 Expressed.

對於根據本發明的原子層沉積裝置(100)源氣單 元(130)或是等離子體單元(140),由於基板(100)可以沿兩個方向做相對運動,因此在處理大面積基板時,也不需要大的作業空間。並且,若對於源氣單元(130)或是等離子體單元(140)的基板(110)的相對移動距離縮短的話,由於可縮短足跡(foot print),因此可輕鬆處理大面積的基板。 Source gas sheet for atomic layer deposition apparatus (100) according to the present invention The element (130) or the plasma unit (140), since the substrate (100) can be moved in two directions, does not require a large working space when processing a large-area substrate. Further, if the relative movement distance of the source gas unit (130) or the substrate (110) of the plasma unit (140) is shortened, since a foot print can be shortened, a large-area substrate can be easily handled.

可在基板(110)的下部提供基板溫度可變部(120)。基板溫度可變部(120)可提高或是降低提供第1氣體(源氣)的基板部位的溫度,由於並不是使基板(110)的整體溫度改變,而是僅對基板的一部份溫度加以改變,所以可以防止一系列因溫度變化引起的所謂的附加問題,例如:熱擴散、壽命減少、屋裡變形等。基板溫度可變部(120)可具備加熱器(heater),或是散熱器(cooling pad)等形態。 A substrate temperature variable portion (120) may be provided at a lower portion of the substrate (110). The substrate temperature variable portion (120) can increase or decrease the temperature of the substrate portion where the first gas (source gas) is supplied, because the entire temperature of the substrate (110) is not changed, but only a part of the temperature of the substrate It is changed so that a series of so-called additional problems caused by temperature changes, such as thermal diffusion, reduced life, and deformation in the house, can be prevented. The substrate temperature variable portion (120) may be provided with a heater or a cooling pad.

根據本發明一實施例的原子層沉積裝置(100)的源氣單元(130)或是等離子體單元(140)的相對運動方向(TD)最好是相同或是按照一定的間隔距離放置排列。但是,這種間隔距離要考慮到各個反應工序階段所需要的時間後再進行調整。 The relative movement directions (TD) of the source gas unit (130) or the plasma unit (140) of the atomic layer deposition apparatus (100) according to an embodiment of the present invention are preferably the same or arranged at a certain interval. However, this separation distance is adjusted in consideration of the time required for each reaction step.

源氣單元(130)或是等離子體單元(140)的最下端部最好與基板(110)表面保持一定的間距(G)。更為詳盡地說,源氣單元(130)或是等離子體單元(140)的最下端部必須與基板(110)表面保持一定的間距(G)。上述間距(G)最好不要超過20mm。但是,間距(G)並不限定於20mm,可考慮等離子體的重疊(overlap)後再決定。 The source gas unit (130) or the lowermost end portion of the plasma unit (140) preferably maintains a certain distance (G) from the surface of the substrate (110). More specifically, the source gas unit (130) or the lowermost end of the plasma unit (140) must maintain a certain distance (G) from the surface of the substrate (110). The above spacing (G) is preferably not more than 20 mm. However, the pitch (G) is not limited to 20 mm, and may be determined in consideration of overlap of plasma.

源氣單元(130)包括:供給源氣的源氣通路(135) 在內部形成的氣體供給管(131),及與氣體供給通路(135)連通的壓力緩和部(138)在內部形成的氣體排氣管(134)。 The source gas unit (130) includes: a source gas passage (135) for supplying source gas A gas supply pipe (131) formed inside and a gas exhaust pipe (134) formed inside the pressure relieving portion (138) communicating with the gas supply passage (135).

上述氣體吸入部與反應無關,是吸入源氣後排出,源氣單元(130)與氣體吸入部可分別形成或合為一體。 The gas suction portion is discharged after the source gas is exhausted regardless of the reaction, and the source gas unit (130) and the gas suction portion may be separately formed or integrated.

圖1至圖4中圖示的原子層沉積裝置(100),是源氣單元(130)與氣體吸入部合為一體的情況。上述氣體吸入部與源氣單元(130)合為一體,上述氣體吸入部為了使氣體吸氣通路(139)在其內部形成,可包括圍繞上述氣體排氣管外周面至少一部份的氣體吸氣管(132)。及,氣體吸入部為了圍繞氣體排氣管(134)而形成,也可具備與源氣單元(130)合為一體的氣體吸入部(132)的形態。 The atomic layer deposition apparatus (100) illustrated in FIGS. 1 to 4 is a case where the source gas unit (130) is integrated with the gas suction portion. The gas suction portion is integrated with the source gas unit (130), and the gas suction portion may include a gas suction around at least a portion of the outer peripheral surface of the gas exhaust pipe in order to form the gas intake passage (139) therein. Trachea (132). Further, the gas suction portion may be formed to surround the gas exhaust pipe (134), and may include a gas suction portion (132) integrated with the source gas unit (130).

合為一體的情況下,由於通過一個源氣單元(130)就可完成源氣的排氣和吸氣,因此不必另外具備為了排出或是吸收源氣的工具,並可以改善原子層沉積工序的輸送量(throughput)。 In the case of integration, since the source gas is exhausted and inhaled by a source gas unit (130), it is not necessary to additionally have a tool for discharging or absorbing the source gas, and the atomic layer deposition process can be improved. Throughput.

外部氣體供給部(160)供給的源氣所通過的氣體供給管,與從氣體吸氣管(132)中向外部突出形成相反,氣體排氣管(134)可在氣體吸氣管(132)的內部形成。如圖2所示,氣體供給管(131)可位於吸入氣體吸收部(169)內部形成。 The gas supply pipe through which the source gas supplied from the external gas supply unit (160) passes is opposite to the externally protruded from the gas suction pipe (132), and the gas exhaust pipe (134) may be in the gas suction pipe (132) The internal formation. As shown in FIG. 2, the gas supply pipe (131) may be formed inside the suction gas absorbing portion (169).

以氣體吸氣管(132)為基準,氣體供給管(131)可在氣體排氣管(134)的對面形成。 The gas supply pipe (131) can be formed on the opposite side of the gas exhaust pipe (134) based on the gas suction pipe (132).

所形成的氣體供給管(131)截面大小(直徑或是面積)最好比氣體排氣管(134)及氣體吸氣管(132)小。在 氣體供給管(131)的內部,可形成沿著其水準方向連通的氣體供給通道(135)。在氣體供給管(131)的最上端,可形成至少一個與氣體供給部(160)連接的氣體供給埠(131a)。通過氣體供給埠(131a),氣體供給排管(161)可與氣體供給通路(135)連通。 The gas supply pipe (131) is preferably formed to have a smaller cross-sectional size (diameter or area) than the gas exhaust pipe (134) and the gas suction pipe (132). in Inside the gas supply pipe (131), a gas supply passage (135) communicating in the horizontal direction thereof can be formed. At the uppermost end of the gas supply pipe (131), at least one gas supply port (131a) connected to the gas supply portion (160) can be formed. The gas supply line (161) can communicate with the gas supply passage (135) through the gas supply port (131a).

由於氣體供給管(131)的氣體供給可通過氣體供給埠(131a)完成,因此源氣單元(130)的兩端最好形成封閉的狀態。 Since the gas supply of the gas supply pipe (131) can be completed by the gas supply port (131a), both ends of the source gas unit (130) are preferably formed in a closed state.

在氣體供給管(131)與氣體排氣管(134)之間至少可以形成一個氣體供給噴管(136),用來連通氣體供給通路(135)與壓力緩和部(138)。通過氣體供給噴管(136)可連通氣體供給通路(135)與壓力緩和部(138)。 At least one gas supply nozzle (136) may be formed between the gas supply pipe (131) and the gas exhaust pipe (134) for communicating the gas supply passage (135) and the pressure relieving portion (138). The gas supply passage (135) and the pressure relieving portion (138) are connected by a gas supply nozzle (136).

氣體供給通路(135),氣體供給噴管(136)及壓力緩和部(138)雖然相互連通,但並不與氣體吸氣通路(139)相通。由於氣體供給通路(135),氣體供給噴管(136)及壓力緩和部(138)是與氣體排出相關的部份,而氣體吸氣通路(139)是與氣體的吸氣相關的部份,因此兩者之間是不能夠相互連通的。 The gas supply passage (135), the gas supply nozzle (136) and the pressure relieving portion (138) communicate with each other, but do not communicate with the gas intake passage (139). Due to the gas supply passage (135), the gas supply nozzle (136) and the pressure mitigation portion (138) are portions related to gas discharge, and the gas suction passage (139) is a portion related to gas suction. Therefore, the two cannot communicate with each other.

所形成的壓力緩和部(138)的內部體積可比氣體供給通路(135)的內部體積大。壓力緩和部(138),是通過氣體供給通路(135)及氣體供給噴管(136)流入的氣體需流經的通路的一部份,為了能夠很好地保留住通過窄小氣體供給噴管(136)的氣體而具有相對較大體積的一部份。氣體若通過較窄的氣體供給噴管(136),氣體的壓力會增大,這時若 充滿體積或是空間相對來說較大的壓力緩和部(138),則氣體的壓力將會降低。充滿壓力緩和部(138)的同時,降低壓力的氣體將朝向基板(110)排氣(噴射),這一過程,氣體在通過源氣單元(130)整個長度時,能以均衡的壓力排除。 The internal volume of the pressure relieving portion (138) formed may be larger than the internal volume of the gas supply passage (135). The pressure relieving portion (138) is a portion of the passage through which the gas flowing through the gas supply passage (135) and the gas supply nozzle (136) flows, in order to be able to retain the narrow gas supply nozzle well. The gas of (136) has a relatively large volume portion. If the gas is supplied to the nozzle (136) through a narrow gas, the pressure of the gas will increase. The pressure relief (138), which is filled with a relatively large volume or space, will reduce the pressure of the gas. While filling the pressure relief (138), the reduced pressure gas will vent (spray) toward the substrate (110), during which the gas can be removed at a uniform pressure as it passes through the entire length of the source gas unit (130).

先在壓力緩和部(138)中把氣體聚集起來,然後通過向基板(11)方向排氣,依靠基板(110)與壓力緩和部(138)之間的壓力差,把通過源氣單元(130)整個長度的氣體均一地噴射。 First, the gas is collected in the pressure relieving portion (138), and then exhausted through the substrate (11), and the pressure difference between the substrate (110) and the pressure relieving portion (138) is passed through the source gas unit (130). The gas of the entire length is uniformly sprayed.

換句話說,壓力緩和部(138)是為了將壓力大的氣體暫時保留並降低其壓力後,使氣體能夠均衡噴射出而形成的通路的一部份。壓力緩和部(138),截面構造只要具備廓大或廓廣的形態就可以,這一形態並不限定與圖示中所示罎子的形態。 In other words, the pressure relieving portion (138) is a portion of the passage formed by allowing the gas to be temporarily released and lowering the pressure to allow the gas to be uniformly ejected. The pressure relieving portion (138) may have a cross-sectional structure as long as it has a large profile or a wide profile, and this form is not limited to the form of the jar shown in the drawings.

氣體吸氣管(132)可形成至少一個與真空抽氣部(170)向連接的氣體排氣埠(132a)。氣體排氣埠(132a)圍繞吸入氣體吸氣部(169)以達到密封,吸入氣體吸氣部(169)可與真空抽氣部(170)連接。在氣體吸氣管(132)上形成的氣體排氣埠(132a),是把源氣排到外部的埠,可與真空抽氣部(170)連接。通過氣體排氣埠(132a)的氣體,可藉助真空抽氣部(170)在脫離源氣單元(130),充滿吸入氣體吸氣部(169)後被排除、但是,根據情況的不同,不經過吸入氣體吸氣部(169),真空排管(172)與氣體排氣埠(132a)直接連接也可把吸入的氣體排到外面。 The gas suction pipe (132) may form at least one gas exhaust port (132a) connected to the vacuum suction portion (170). The gas exhaust port (132a) surrounds the suction gas intake portion (169) to achieve a seal, and the suction gas intake portion (169) is connectable to the vacuum pumping portion (170). The gas exhaust port (132a) formed on the gas suction pipe (132) is a crucible that discharges the source gas to the outside and is connectable to the vacuum pumping portion (170). The gas passing through the gas exhaust port (132a) can be removed by the vacuum pumping portion (170) after being separated from the source gas unit (130) and filled with the suction gas intake portion (169), but depending on the situation, The suction gas suction portion (169) is directly connected to the gas exhaust port (132a) through the suction gas suction portion (169), and the suction gas can be discharged to the outside.

圖4(b)是根據圖4(a)的切斷線"A-A"的圖面。 圖4(a)是源氣單元(130)的縱向的截面圖。 Fig. 4 (b) is a view of the cutting line "A-A" according to Fig. 4 (a). Fig. 4(a) is a longitudinal sectional view of the source gas unit (130).

參考圖4(a),氣體供給噴管(136)可形成複數個,但是氣體供給噴管(136)也可只形成一個。 Referring to Fig. 4(a), a plurality of gas supply nozzles (136) may be formed, but only one gas supply nozzle (136) may be formed.

另一方面,在氣體排氣管(134)中,沿著其縱向方向至少能夠形成一個氣體排氣部(137)。氣體排氣部(137)是為了把填充在壓力緩和部(138)中的氣體向源氣單元(130)外部排出而設的出口。為此,氣體排氣部(137)可具備外部與壓力緩和部(138)連通的形態。 On the other hand, in the gas exhaust pipe (134), at least one gas exhaust portion (137) can be formed along the longitudinal direction thereof. The gas exhausting portion (137) is an outlet provided to discharge the gas filled in the pressure relieving portion (138) to the outside of the source gas unit (130). Therefore, the gas exhaust unit (137) may have a form in which the outside communicates with the pressure relieving portion (138).

氣體吸入通路(139)的形成可根據氣體供給噴管(136)做到空間劃分。如圖4(b)所示,氣體吸氣管(132)和氣體排氣管(134)之間形成的氣體吸氣通路(139)可根據氣體供給噴管(136)被分開成為兩個空間。這時,氣體吸氣通路(139)最好是根據氣體供給噴管(136)對稱劃分。 The formation of the gas suction passage (139) can be spatially divided according to the gas supply nozzle (136). As shown in Fig. 4(b), the gas suction passage (139) formed between the gas suction pipe (132) and the gas exhaust pipe (134) can be divided into two spaces according to the gas supply nozzle (136). . At this time, the gas intake passage (139) is preferably symmetrically divided according to the gas supply nozzle (136).

氣體排氣管(134)可包含朝向氣體排氣管(134)外部,沿著氣體排氣部(137)延長形成的排氣引導(137a)。如圖4所示,排氣引導(137a)朝著基板位置下方、延長形成的,用來引導通過氣體排氣部(137)的氣體能夠與基板(110)最大程度接觸。 The gas exhaust pipe (134) may include an exhaust guide (137a) that is formed to extend outside the gas exhaust pipe (134) along the gas exhaust portion (137). As shown in FIG. 4, the exhaust guide (137a) is formed to extend under the substrate position to guide the gas passing through the gas exhaust portion (137) to be in maximum contact with the substrate (110).

排氣引導(137a)為了能夠使經過氣體提供噴管(136)中心、根據虛擬線使其對稱可在兩側形成,兩側形成的排氣引導(137a)之間的角度越靠下走就會變得越大,可以引導通過排氣引導(137a)的氣體散開並接觸到基板(110)上。 The exhaust guide (137a) is made to be able to pass through the center of the gas supply nozzle (136), and the symmetry according to the virtual line can be formed on both sides, and the angle between the exhaust guides (137a) formed on both sides is lower. The larger it becomes, the gas that is guided through the exhaust guide (137a) can be diffused and contacted onto the substrate (110).

這裡,氣體排氣部(137)包含在排氣引導(137a) 之間形成的至少一個的圓孔或是切口。 Here, the gas exhaust portion (137) is included in the exhaust guide (137a) At least one circular hole or slit formed therebetween.

當氣體排氣部(137)是由多個圓孔形成的時候,氣體排氣通路(138)內由於位置不同而不同的壓力大小或是差異,最好在壓力小的部份中,把圓孔變大或是減少圓孔之間的間距。另外,當氣體排氣部(137)只形成單一的切口時,氣體排氣通路(139)內由於位置不同而不同的壓力大小或是差異,最好在壓力小的部份把切口的幅度變大。 When the gas exhausting portion (137) is formed by a plurality of circular holes, different pressures or differences in the gas exhaust passage (138) due to different positions are preferably rounded in a small pressure portion. The holes become larger or reduce the spacing between the holes. In addition, when the gas exhausting portion (137) forms only a single slit, the magnitude or difference of the pressure in the gas exhaust passage (139) due to the difference in position is preferably changed in the portion where the pressure is small. Big.

氣體吸氣管(132)圓周方向的一端與排氣引導(137a)一端之間形成氣體吸氣部(133),氣體吸氣部(133)可位於沿氣體排氣管(134)或是氣體吸氣管(132)的圓周方向並可根據氣體排氣部(137)對稱。 A gas suction portion (133) is formed between one end of the gas suction pipe (132) in the circumferential direction and one end of the exhaust gas guide (137a), and the gas suction portion (133) may be located along the gas exhaust pipe (134) or the gas. The circumferential direction of the intake pipe (132) may be symmetrical according to the gas exhaust portion (137).

形成氣體吸氣部(133)的氣體吸氣管(132)的圓周方向一端(133a),也可具備朝著排氣引導(137a)的彎曲樣式。 One end (133a) of the gas intake pipe (132) forming the gas intake portion (133) in the circumferential direction may have a curved pattern toward the exhaust guide (137a).

氣體吸氣管(132)圓周方向的一端與排氣引導(137a)一端之間形成氣體吸氣部(133),氣體吸氣部(133)可位於沿氣體排氣管(134)或是氣體吸氣管(132)的圓周方向並可根據氣體排氣部(137)對稱。 A gas suction portion (133) is formed between one end of the gas suction pipe (132) in the circumferential direction and one end of the exhaust gas guide (137a), and the gas suction portion (133) may be located along the gas exhaust pipe (134) or the gas. The circumferential direction of the intake pipe (132) may be symmetrical according to the gas exhaust portion (137).

形成氣體吸氣部(133)的氣體吸氣管(132)的圓周方向一端(133a),也可具備朝著排氣引導(137a)的彎曲樣式。 One end (133a) of the gas intake pipe (132) forming the gas intake portion (133) in the circumferential direction may have a curved pattern toward the exhaust guide (137a).

這裡,氣體吸氣管(132)的最下端(133a)可延長至比氣體排氣管(134)最下端(137a)還要靠下的地方。氣體吸氣管(132)的最下端(133a)可延長至比氣體排氣管 (134)的最下端(137a)還要向下一定的距離(t)的地方。這時,突出距離(t)最好是在3mm左右。同理,由於氣體吸氣管(132)的最下端可延長至(133a)比氣體排氣管(134)的最下端還要靠下的地方,被排除的源氣在經過源氣單元(130)之間可在此被吸入。 Here, the lowermost end (133a) of the gas suction pipe (132) may be extended to a lower position than the lowermost end (137a) of the gas exhaust pipe (134). The lowermost end (133a) of the gas suction pipe (132) can be extended to a gas exhaust pipe The lower end (137a) of (134) is also a certain distance (t) downward. At this time, the protruding distance (t) is preferably about 3 mm. Similarly, since the lowermost end of the gas suction pipe (132) can be extended to (133a) lower than the lowermost end of the gas exhaust pipe (134), the excluded source gas passes through the source gas unit (130). ) can be inhaled here.

參考圖1及圖2,為了能使與源氣單元(130)或是上述氣體吸入部相對,在等離子體單元(140)的一側可形成真空排氣部(150)。真空排氣部(150)在基板(110)的表面形成真空,通過真空抽氣部(170)與真空排管(171)連接。 Referring to FIGS. 1 and 2, a vacuum exhaust portion (150) may be formed on one side of the plasma unit (140) so as to be opposed to the source gas unit (130) or the gas suction portion. The vacuum exhaust unit (150) forms a vacuum on the surface of the substrate (110), and is connected to the vacuum tube (171) through the vacuum pumping unit (170).

位於源氣單元(130)和真空排氣部(150)之間的等離子體單元(140)產生遠程等離子體,並向基板(110)的表面供給。等離子體單元(140)可包含:下部以開口的狀態形成的等離子體產生管(142),在等離子體產生管(142)上部提供的等離子體電極(143),在等離子體產生管(142)的開口下端形成的電源柵極(144)及附著於電源柵極(144)下部的花灑。 A plasma unit (140) located between the source gas unit (130) and the vacuum exhaust portion (150) generates a remote plasma and supplies it to the surface of the substrate (110). The plasma unit (140) may include: a plasma generating tube (142) having a lower portion formed in an open state, a plasma electrode (143) provided at an upper portion of the plasma generating tube (142), and a plasma generating tube (142) A power supply gate (144) formed at a lower end of the opening and a shower attached to a lower portion of the power supply gate (144).

這裡,根據本發明一實施例的快速遠程等離子體原子層沉積裝置(100)有個特徵,利用與源氣單元(130)相似的形態,即利用具備管狀(pipe)或是條(bar)狀的等離子體單元(140)使原子層沉積。 Here, the fast remote plasma atomic layer deposition apparatus (100) according to an embodiment of the present invention has a feature that utilizes a form similar to that of the source gas unit (130), that is, using a pipe or a bar shape. The plasma unit (140) deposits an atomic layer.

參考圖5,等離子體單元(140)的截面是大略的四角形,這是由於等離子體電極(143)的形態使等離子體單元(140)的截面形狀受到限制。等離子體產生管(142)是具 備特定空間用來產生並填充等離子體(P)的、大略的四角的管狀,其水準方向與基板(110)的運動方向(TD)垂直交叉。 Referring to FIG. 5, the cross section of the plasma cell (140) is a substantially quadrangular shape because the shape of the plasma electrode (143) limits the cross-sectional shape of the plasma cell (140). The plasma generating tube (142) is A specific space is used to create and fill the plasma (P), generally four-corner tubular, with a horizontal direction perpendicular to the direction of motion (TD) of the substrate (110).

在等離子體產生管(142)的上端可形成供給等離子體產生氣體的氣體供給通路(141a)在內部形成的氣體注入部(141)。通過與另外提供的等離子體反應氣體供給部(未圖示)相連的氣體注入部(141)供給的氣體,在流經氣體供給通路(141a)後向等離子體產生管內部供給。 A gas injection portion (141) formed inside the gas supply passage (141a) for supplying a plasma generating gas can be formed at the upper end of the plasma generating tube (142). The gas supplied through the gas injection portion (141) connected to the plasma reaction gas supply unit (not shown) provided separately is supplied to the inside of the plasma generation tube after flowing through the gas supply passage (141a).

這裡,氣體注入部(141)的下端(142a)朝向電源柵極可形成開口。氣體注入部(141)通過開口的部份流入等離子體產生管(142)裡。 Here, the lower end (142a) of the gas injection portion (141) may form an opening toward the power supply gate. The gas injection portion (141) flows into the plasma generating tube (142) through the portion of the opening.

向離子體產生管(142)的頂端提供的等離子體電極(143)最好能把等離子體產生管(142)的水準方向全部覆蓋。等離子體電極(143)可與阻抗配合部(182)及RF電源(181)連接。這裡,RF電源(181)最好供給具備13.56MHz頻率的交流電源。 The plasma electrode (143) provided to the tip end of the ion generating tube (142) preferably covers the entire level of the plasma generating tube (142). The plasma electrode (143) is connectable to the impedance matching portion (182) and the RF power source (181). Here, the RF power source (181) is preferably supplied with an AC power source having a frequency of 13.56 MHz.

等離子體電極(143)可具備多種形態。即,如圖7所示,可為了能夠使等離子體電極(143)電容性等離子體(CCP),誘導性等離子體(ICP)或是直流脈衝等離子體(DC pulsed plasma)中任意一個產生而形成。 The plasma electrode (143) can have various forms. That is, as shown in FIG. 7, it can be formed in order to generate any one of plasma plasma (143), capacitive plasma (CCP), inductive plasma (ICP), or DC pulsed plasma. .

圖7(a)圖示的是使容量性等離子體(CCP)產生的等離子體電極(143a)及電源(181a)。等離子體電極(143a)與等離子體產生管(142)樣子相似,即,可利用長度比寬度長的四角形模樣的等離子體電極(143a)和交流電源(181a)產生電容性等離子體。 Fig. 7(a) illustrates a plasma electrode (143a) and a power source (181a) which generate a volumetric plasma (CCP). The plasma electrode (143a) is similar to the plasma generating tube (142) in that a plasma plasma (143a) and an alternating current power source (181a) having a longer length than the width are used to generate a capacitive plasma.

圖7(a)圖示的是使容量性等離子體(CCP)產生的等離子體電極(143a)及電源(181a)。等離子體電極(143a)與等離子體產生管(142)樣子相似,即,可利用長度比寬度長的四角形模樣的等離子體電極(143a)和交流電源(181a)產生電容性等離子體。 Fig. 7(a) illustrates a plasma electrode (143a) and a power source (181a) which generate a volumetric plasma (CCP). The plasma electrode (143a) is similar to the plasma generating tube (142) in that a plasma plasma (143a) and an alternating current power source (181a) having a longer length than the width are used to generate a capacitive plasma.

圖7(b)圖示的是使誘導性等離子體(ICP)產生的等離子體電極(143b)。等離子體電極(143b)是以大致地“ㄈ”字形的電線電極形成的,使用相對的兩跟電線,利用與各個電線電極連接的交流電源(181b)可產生誘導性等離子體。 Fig. 7(b) illustrates a plasma electrode (143b) for inducing plasma (ICP). The plasma electrode (143b) is formed by a substantially "ㄈ"-shaped wire electrode, and an inductive plasma can be generated by an alternating current power source (181b) connected to each wire electrode using opposing two-wire wires.

如圖7(c)所示,利用四角形模樣的電極(143c)及與其連接的直流電源(181c)可製造直流脈衝等離子體(DC pulsed plasma)。 As shown in Fig. 7(c), a DC pulsed plasma can be manufactured by using a quadrangular electrode (143c) and a DC power source (181c) connected thereto.

另一方面,在等離子體產生管(142)的開口下部形成的電源柵極(power greed,144)可與柵極電源部(183)相連,柵極電源部(183)可使用直流電源或是RF電源燈。在電源柵極(144)的下部可形成花灑(145,showerhead)。 On the other hand, a power supply gate (144) formed at a lower portion of the opening of the plasma generating tube (142) may be connected to the gate power supply portion (183), and the gate power supply portion (183) may use a DC power supply or RF power light. A shower (145, showerhead) may be formed at a lower portion of the power supply grid (144).

向等離子體產生部(142)內部供給的反應氣體可通過等離子電極(143)及電源柵極(144)外的電氣化反應製造等離子體(P)。與其一樣被製造出的遠程等離子體供給基板(110)後,與源氣反應可在基板(11)的表面上形成原子層。 The reaction gas supplied to the inside of the plasma generating unit (142) can be plasma-generated (P) by an electrification reaction outside the plasma electrode (143) and the power source gate (144). After the remote plasma supply substrate (110) manufactured in the same manner as described above, an atomic layer can be formed on the surface of the substrate (11) by reacting with the source gas.

在電源柵極(144)及花灑(145)上可形成等離子體排出部(146,147)。即,為了使等離子體能夠向著基板(110)提供,可在電源柵極(144)上形成第1等離子體排出 部(147),然後可在花灑(145)上形成第2等離子體排出部(146)。這時,第1/2等離子體排出部(146,147)最好是相互連通的。 A plasma discharge portion (146, 147) may be formed on the power supply grid (144) and the shower (145). That is, in order to enable plasma to be supplied to the substrate (110), a first plasma discharge can be formed on the power supply gate (144). At the portion (147), a second plasma discharge portion (146) can then be formed on the shower (145). At this time, the 1/2th plasma discharge portions (146, 147) are preferably in communication with each other.

這裡,等離子體排出部(146,147)可形成圓孔(hole)或是切口(slit)的形態。當等離子體排出部(146,147)是圓口的形狀時,等離子體排出部(146,147)必須經過整個等離子體產生管(142)的下部後均衡形成。 Here, the plasma discharge portion (146, 147) may be formed in the form of a hole or a slit. When the plasma discharge portion (146, 147) is in the shape of a round mouth, the plasma discharge portion (146, 147) must be formed after the lower portion of the entire plasma generation tube (142).

當等離子體排出部(146,147)是切口形狀時,等離子體排出部(146,147)可沿著與基板(11)的運動方向(TD)垂直相交的方向形成。即,切口形態的等離子體排出部最好沿著等離子體產生管(142)的水準方向形成。若沿著等離子體產生管(142)水準方向形成的話,可供給沿著基板(110)整個面積均衡分佈的等離子體。即,可提供等離子體的均勻性(uniformity)。 When the plasma discharge portion (146, 147) is in the shape of a slit, the plasma discharge portion (146, 147) may be formed in a direction perpendicularly intersecting the moving direction (TD) of the substrate (11). That is, the plasma discharge portion in the slit form is preferably formed along the level direction of the plasma generation tube (142). If formed along the level of the plasma generating tube (142), a plasma uniformly distributed along the entire area of the substrate (110) can be supplied. That is, the uniformity of the plasma can be provided.

如圖2所示,根據本發明一實施例的快速遠程等離子體原子層沉積裝置(100)是提供源氣的源氣單元(130)與提供等離子體的等離子體單元(140)形成相互分離的管或是條的形狀,然後形成原子層的。同樣地,根據本發明一實施例的原子層沉積裝置(100)的形成是為了使源氣單元(130)與等離子體單元(140)能夠按空間分割而形成的。即,本發明是利用空間分割形態的遠程等離子體單元(140)和源氣單元使原子層沉積、同樣地,由於使用空間分割形態的遠程等離子體可確保快速地輸送量。 As shown in FIG. 2, a fast remote plasma atomic layer deposition apparatus (100) according to an embodiment of the present invention is a source gas unit (130) that supplies source gas and a plasma unit (140) that provides plasma are separated from each other. The tube or strip shape then forms an atomic layer. Also, the atomic layer deposition apparatus (100) according to an embodiment of the present invention is formed in order to enable the source gas unit (130) and the plasma unit (140) to be spatially divided. That is, the present invention utilizes a remote plasma unit (140) and a source gas unit in a spatially divided form to deposit an atomic layer, and similarly, a remote plasma using a spatially divided form can ensure a rapid transport amount.

圖2所示的源氣單元(130),源氣的排氣和吸入 可在一個單元(130)中完成。從與源氣單元(130)連接的氣體供給部(160)中得到並排出源氣,然後吸入與反應無關的殘留源氣並向外部排出,而後通過與氣體吸氣管(132)連接的真空抽氣部(170)排出。圖2中圖示的是,氣體吸入部以氣體吸氣管(132)的形態與源氣單元(130)成為一體的示例,其中氣體吸入部可與源氣單元分離單獨形成。 Source gas unit (130) shown in Figure 2, source gas exhaust and suction This can be done in one unit (130). The source gas is obtained and discharged from the gas supply portion (160) connected to the source gas unit (130), and then the residual source gas irrelevant to the reaction is taken in and discharged to the outside, and then passed through a vacuum connected to the gas suction pipe (132). The suction portion (170) is discharged. 2 is an example in which the gas suction portion is integrated with the source gas unit (130) in the form of a gas suction pipe (132), wherein the gas suction portion can be formed separately from the source gas unit.

另一方面,圖8中圖示的是,在腔室(210)內部由源氣單元(230),等離子體單元(240)及真空排氣部(250)形成的快速遠程等離子體原子層沉積裝置(200)。 On the other hand, illustrated in FIG. 8 is a rapid remote plasma atomic layer deposition formed by a source gas unit (230), a plasma unit (240), and a vacuum exhaust portion (250) inside the chamber (210). Device (200).

原子層沉積裝置(200)與腔室(201)相連,腔室(201)的內部可包含能夠形成真空的腔室乾燥泵(202,Chamber Dry Pump)。腔室乾燥泵(20)在腔室(101)的外部提供,通過抽氣排管(203)可與腔室(201)相連。這時,抽氣排管(203)可與腔室(201)相連,如圖8所示,還可與基板(210)所處的位置連接。為了與抽氣排管(203)連接,腔室(201)或是基板(210)下部可形成排氣口(204)。 The atomic layer deposition apparatus (200) is connected to the chamber (201), and the interior of the chamber (201) may include a chamber drying pump (202) capable of forming a vacuum. A chamber drying pump (20) is provided external to the chamber (101) and is connectable to the chamber (201) via a suction line (203). At this time, the evacuation tube (203) can be connected to the chamber (201), as shown in Fig. 8, and can also be connected to the position where the substrate (210) is located. In order to be connected to the exhaust pipe (203), the chamber (201) or the lower portion of the substrate (210) may form an exhaust port (204).

圖8中所示的原子層沉積裝置(200),可在沉積工序開始前,通過腔室乾燥泵(202)的啟動,把腔室(201)的內部變成真空的;通過腔室乾燥泵(202),可把腔室(201)內部用真空抽到基礎壓力(base pressure,約10-3torr),還可維持腔室(201)內部的常壓。 The atomic layer deposition apparatus (200) shown in Fig. 8 can vacuum the inside of the chamber (201) by the start of the chamber drying pump (202) before the start of the deposition process; through the chamber drying pump ( 202), the inside of the chamber (201) can be evacuated to a base pressure (about 10-3 torr), and the normal pressure inside the chamber (201) can be maintained.

若沉積工序開始的話,腔室乾燥泵(202)停止工作,沉積工序通過真空抽氣部(270)可對腔室(201)內部的工作壓力(0.1~0.2torr)進行調節。另外,真空抽氣部(370)與 腔室乾燥泵(202)一起啟動後可製造腔室(201)內部的壓力差,通過這種壓力差可提高源氣單元(230)中排氣(噴射)的氣體的均勻性,並可以做到均勻噴射。 If the deposition process is started, the chamber drying pump (202) is stopped, and the deposition process is performed by the vacuum suction portion (270) to adjust the working pressure (0.1 to 0.2 torr) inside the chamber (201). In addition, the vacuum pumping unit (370) and The chamber drying pump (202) can be started together to create a pressure difference inside the chamber (201), and the pressure difference can increase the uniformity of the exhaust (spray) gas in the source gas unit (230), and can be done. To even spray.

若沒有腔室乾燥泵(202),腔室乾燥泵(202)的性能可由源氣單元(230)代替。即,源氣單元(230)通過氣體吸氣(吸如,suction)工作也可以在腔室(201)內部形成基本壓力或是形成壓力差。 Without the chamber drying pump (202), the performance of the chamber drying pump (202) can be replaced by the source gas unit (230). That is, the source gas unit (230) can also form a basic pressure or a pressure difference inside the chamber (201) by gas suction (suction) operation.

源氣單元(230)可通過排管(261)與氣體供給部(260)連接,真空排氣部(250)可通過真空排管(271)與真空抽氣部(270)連接。這時,真空排管(271)為了與真空排氣部(250)連通,也可以與在腔室(201)上部形成的真空吸收部(279)連接。 The source gas unit (230) may be connected to the gas supply portion (260) through a discharge pipe (261), and the vacuum exhaust portion (250) may be connected to the vacuum suction portion (270) through a vacuum discharge pipe (271). At this time, the vacuum discharge pipe (271) may be connected to the vacuum suction portion (279) formed in the upper portion of the chamber (201) in order to communicate with the vacuum exhaust portion (250).

另一方面,通過源氣單元(230)吸入的源氣可依靠真空排管向真空抽氣部(270)排出。真空排管(272)為了與源氣單元(230)連通也可以與在腔室(201)上形成的吸入氣體吸收部(269)連接。 On the other hand, the source gas sucked through the source gas unit (230) can be discharged to the vacuum suction portion (270) by means of a vacuum discharge pipe. The vacuum exhaust pipe (272) may be connected to the intake gas absorbing portion (269) formed in the chamber (201) in order to communicate with the source gas unit (230).

圖9中圖示的快速遠程等離子體原子層沉積裝置(300)是當源氣單元(330)沒有氣體吸入性能的情況。這種原子層沉積裝置(300)吸入源氣後為了排出源氣,可在源氣單元(330)與等離子體單元(340)之間形成真空排氣部(350)。真空排氣部(350)也可在等離子體單元(340)的另一側提供。 The fast remote plasma atomic layer deposition apparatus (300) illustrated in Figure 9 is the case when the source gas unit (330) has no gas suction performance. After the atomic layer deposition device (300) sucks the source gas, a vacuum exhaust portion (350) may be formed between the source gas unit (330) and the plasma unit (340) in order to discharge the source gas. A vacuum exhaust (350) may also be provided on the other side of the plasma unit (340).

在腔室(301)的內部坐落著源氣單元(330),等離子體單元(340)及真空排氣部(350),與真空抽氣部(370)連接的腔室的部份中可形成排氣埠(301a)。剩下的部份與圖 8中所示原子層沉積裝置(200)相同。圖面符號是3位數字,相同部份中的圖面符號記載為第2位數字與第1位數字相同。 A source gas unit (330), a plasma unit (340) and a vacuum exhaust portion (350) are formed inside the chamber (301), and a portion of the chamber connected to the vacuum pumping portion (370) may be formed. Exhaust enthalpy (301a). The rest of the map The atomic layer deposition apparatus (200) shown in Fig. 8 is the same. The drawing symbol is a 3-digit number, and the drawing symbols in the same part are described as the second digit being the same as the first digit.

圖100中所圖示的快速遠程等離子體原子層沉積裝置(400),源氣單元(430)所具備的是僅能排氣不能吸氣的構造。或是,沒有另外的真空排氣部。源氣的排氣及真空吸入可在腔室(401)及與腔室(410)相連接的真空抽氣部(470)中完成。另外,也可在與腔室連接的腔室乾燥泵(402)中完成。 In the fast remote plasma atomic layer deposition apparatus (400) illustrated in FIG. 100, the source gas unit (430) is provided with a configuration that only exhaust gas cannot be inhaled. Or, there is no additional vacuum exhaust. Exhaust gas and vacuum suction of the source gas can be accomplished in a chamber (401) and a vacuum pumping section (470) coupled to the chamber (410). Alternatively, it can be accomplished in a chamber drying pump (402) coupled to the chamber.

與反應無關的源氣或是反應後殘留的源氣的排出,為了與源氣單元(430)與等離子體單元(440)之間的位置相對應,可在腔室(401)上通過埠完成。另外,真空排氣尾了與等離子體單元(440)另一側向對應,可通過在腔室(401)上形成的埠(401a)來完成。在埠(401a)處可與真空抽氣部(470)連接。剩下的部份與圖8中圖書的原子層沉積裝置(300)相同。 The source gas irrelevant to the reaction or the discharge of the source gas remaining after the reaction may be completed by the crucible on the chamber (401) in order to correspond to the position between the source gas unit (430) and the plasma unit (440). . In addition, the vacuum exhaust tail corresponds to the other side of the plasma unit (440) and can be completed by a crucible (401a) formed on the chamber (401). It can be connected to the vacuum pumping section (470) at the crucible (401a). The remaining portion is the same as the atomic layer deposition apparatus (300) of the book of Fig. 8.

圖11中圖示的快速遠程等離子體原子層沉積裝置(500)與圖2中圖示的原子層沉積裝置(100)相比較,等離子體單元(540)與真空排氣部(550)之間在形成清除管(590)這一點上有差異。清除管(590)與源氣單元(530)相似、為管狀或是條狀,可包含在下端及上端分各自形成清除埠(592,593)的清除本體(591)。清除管(590)可通過清除排管(587)與清除部(596)連接。剩下的部份與圖2中原子層沉積裝置相同。 The fast remote plasma atomic layer deposition apparatus (500) illustrated in FIG. 11 is compared with the atomic layer deposition apparatus (100) illustrated in FIG. 2, between the plasma unit (540) and the vacuum exhaust section (550). There is a difference in the formation of the purge tube (590). The purge tube (590) is similar to the source gas unit (530) in a tubular or strip shape and may include a purge body (591) that forms a purge crucible (592, 593) at each of the lower end and the upper end. The purge tube (590) can be connected to the purge portion (596) by a purge tube (587). The remaining portion is the same as the atomic layer deposition apparatus of FIG.

如上所述,在本發明一實施例中解釋了類似具體 構成要素等限制與特定實現的實施例及圖面,但是這些只是為了幫助能夠更為全面地理解本發明而提供的,本發明並不僅限於上述實施例。若是具有本發明所述領域基本常識的人的話,是可以從這些材料中做成多樣的修訂及變形。因此,本發明的思想並不僅限於所解釋說明的實施例,不僅是後續的申請專利範圍,而且與此申請專利範圍均等的或是等價的變形將全部歸屬於本發明思想的範圍。 As described above, similar specificities are explained in an embodiment of the present invention. The present invention is not limited to the above embodiments, but is provided to provide a more complete understanding of the present invention. If there is a person having basic knowledge in the field of the present invention, various revisions and modifications can be made from these materials. Therefore, the inventive concept is not limited to the illustrated embodiments, and the scope of the present invention is not limited to the scope of the present invention.

【商業利用可能性】 [commercial use possibility]

本發明可適用於半導體、顯示屏等製造領域。 The invention is applicable to the fields of manufacture of semiconductors, display screens and the like.

100‧‧‧快速遠程等離子體沉積裝置 100‧‧‧fast remote plasma deposition apparatus

110‧‧‧基板 110‧‧‧Substrate

120‧‧‧基板溫度可變部 120‧‧‧Substrate temperature variable part

130‧‧‧源氣單元 130‧‧‧ source gas unit

140‧‧‧等離子體單元 140‧‧‧plasma unit

150‧‧‧真空排氣部 150‧‧‧vacuum exhaust

TD‧‧‧交叉方向 TD‧‧‧ cross direction

Claims (16)

一種快速遠程等離子體原子層沉積裝置,包含有:源氣單元,向基板提供氣體;等離子體單元,在上述基板產生等離子體;及氣體吸入部,在向上述源氣單元與上述等離子體單元之間提供的、吸入上述源氣;所提供的上述基板可沿著與上述源氣單元、等離子體單元或是上述氣體吸入部中至少一個水準方向的交叉方向相對運動。 A rapid remote plasma atomic layer deposition apparatus comprising: a source gas unit for supplying a gas to a substrate; a plasma unit for generating a plasma on the substrate; and a gas suction portion to the source gas unit and the plasma unit Providing the source gas in between; the substrate provided may be relatively moved in a direction intersecting with at least one of the source gas unit, the plasma unit or the gas suction unit. 如申請專利範圍第1項所述的快速遠程等離子體原子層沉積裝置,其中上述等離子體單元包含有:等離子體產生管,下部是以開口的形態形成;等離子電極,供給於上述等離子體產生管上部;電源柵極(grid),在上述等離子體產生管開口下端形成;及花灑,附著在上述電源柵極下部。 The fast remote plasma atomic layer deposition apparatus according to claim 1, wherein the plasma unit comprises: a plasma generating tube, the lower portion is formed in an open state; and the plasma electrode is supplied to the plasma generating tube. An upper portion; a power grid formed at a lower end of the plasma generating tube opening; and a shower attached to a lower portion of the power supply grid. 如申請專利範圍第2項所述的快速遠程等離子體原子層沉積裝置,其中是以上述等離子體產生管的上端可形成由供給等離子體產生氣體的氣體供給通路在內部形成氣體注入部。 The rapid remote plasma atomic layer deposition apparatus according to claim 2, wherein a gas injection portion is formed inside the upper end of the plasma generating tube to form a gas supply path for supplying a plasma generating gas. 如申請專利範圍第3項所述的快速遠程等離子體原子層沉積裝置,其中是以上述氣體部的下端可朝著上述電源柵極開口形成。 The rapid remote plasma atomic layer deposition apparatus according to claim 3, wherein the lower end of the gas portion is formed toward the power source gate opening. 如申請專利範圍第3項所述的快速遠程等離子體原子層沉 積裝置,其中是以上述電源柵極及上述花灑上形成等離子體排除部。 Fast remote plasma atomic layer deposition as described in claim 3 The device includes a plasma removal portion formed on the power supply grid and the shower. 如申請專利範圍第5項所述的快速遠程等離子體原子層沉積裝置,其中是以上述等離子體排除部可以圓孔或是切口的形態形成。 The rapid remote plasma atomic layer deposition apparatus according to claim 5, wherein the plasma removing portion is formed in a form of a circular hole or a slit. 如申請專利範圍第6項所述的快速遠程等離子體原子層沉積裝置,其中是以上述等離子體產生部可形成與上述基板的運動方向呈直角方向的切口。 The rapid remote plasma atomic layer deposition apparatus according to claim 6, wherein the plasma generating portion can form a slit perpendicular to a moving direction of the substrate. 如申請專利範圍第2項所述的快速遠程等離子體原子層沉積裝置,其中是以上述等離子體電極可產生電容性等離子體,誘導性等離子體或是直流脈衝等離子體中的任意一個。 The rapid remote plasma atomic layer deposition apparatus according to claim 2, wherein the plasma electrode can generate any one of a capacitive plasma, an inductive plasma, or a direct current pulsed plasma. 如申請專利範圍第1項所述的快速遠程等離子體原子層沉積裝置,其中是以上述源氣單元和上述等離子體單元可按照空間分割形成。 The fast remote plasma atomic layer deposition apparatus according to claim 1, wherein the source gas unit and the plasma unit are formed in a space division manner. 如申請專利範圍第1項所述的快速遠程等離子體原子層沉積裝置,其中是以上述源氣單元包括:由氣體供給通路在內部形成的氣體供給管,及由與上述氣體供給通路連通的壓力緩和部在內部形成的氣體排氣管。 The rapid remote plasma atomic layer deposition apparatus according to claim 1, wherein the source gas unit comprises: a gas supply pipe formed inside by the gas supply passage; and a pressure connected to the gas supply passage. A gas exhaust pipe formed inside the mitigation portion. 如申請專利範圍第10項所述的快速遠程等離子體原子層沉積裝置,其中是以上述壓力緩和部的內部體積可比上述氣體供給通路的內部體積大。 The rapid remote plasma atomic layer deposition apparatus according to claim 10, wherein the internal volume of the pressure relieving portion is larger than the internal volume of the gas supply passage. 如申請專利範圍第11項所述的快速遠程等離子體原子層沉積裝置,其中是以上述氣體吸入部和上述源氣單元合為一體,上述氣體吸入部為了使氣體吸氣通路在其內部形成, 可包括圍繞上述氣體排氣管外周面至少一部份的氣體吸氣管。 The rapid remote plasma atomic layer deposition apparatus according to claim 11, wherein the gas suction portion and the source gas unit are integrated, and the gas suction portion is formed in the gas suction passage. A gas suction pipe surrounding at least a portion of the outer peripheral surface of the gas exhaust pipe may be included. 如申請專利範圍第12項所述的快速遠程等離子體原子層沉積裝置,其中是以上述氣體吸氣管的最下端可延長至比上述氣體排氣管的最下端更靠下。 The fast remote plasma atomic layer deposition apparatus according to claim 12, wherein the lower end of the gas suction pipe is extended to be lower than a lowermost end of the gas exhaust pipe. 如申請專利範圍第10項所述的快速遠程等離子體原子層沉積裝置,其中是以為了能與上述源氣單元或是上述氣體吸入部相對,可在上述等離子體單元的一側形成真空排氣部。 The fast remote plasma atomic layer deposition apparatus according to claim 10, wherein a vacuum exhaust gas is formed on one side of the plasma unit so as to be opposite to the source gas unit or the gas suction unit. unit. 如申請專利範圍第14項所述的快速遠程等離子體原子層沉積裝置,其中是以上述等離子體單元和上述真空排氣部之間可形成清除管。 The fast remote plasma atomic layer deposition apparatus according to claim 14, wherein a purge tube is formed between the plasma unit and the vacuum exhaust unit. 如申請專利範圍第10項所述的快速遠程等離子體原子層沉積裝置,其中是以為了把上述源氣單元、上述等離子體單元及上述氣體吸入部安置在內部,可再包括一個在內部形成密閉反應空間的腔室(chamber),上述氣體吸入部可在上述腔室(chamber)中形成。 The fast remote plasma atomic layer deposition apparatus according to claim 10, wherein the source gas unit, the plasma unit, and the gas inhalation portion are disposed inside, and further includes a sealing inside. A chamber of the reaction space, the gas suction portion being formed in the chamber.
TW103101238A 2013-01-14 2014-01-14 Fast remote plasma atomic layer deposition apparatus TWI583821B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130004051A KR101407068B1 (en) 2013-01-14 2013-01-14 FAST REMOTE PLASMA ATOmic layer deposition apparatus

Publications (2)

Publication Number Publication Date
TW201428131A TW201428131A (en) 2014-07-16
TWI583821B true TWI583821B (en) 2017-05-21

Family

ID=51132783

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103101238A TWI583821B (en) 2013-01-14 2014-01-14 Fast remote plasma atomic layer deposition apparatus

Country Status (3)

Country Link
KR (1) KR101407068B1 (en)
TW (1) TWI583821B (en)
WO (1) WO2014109535A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI127769B (en) * 2016-03-11 2019-02-15 Beneq Oy Apparatus and method
KR102131933B1 (en) 2018-08-17 2020-07-09 주식회사 넥서스비 Apparatus for atomic layer deposition and method for depositing atomic layer using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200736413A (en) * 2006-03-21 2007-10-01 Atto Co Ltd Apparatus for depositing atomic layer using gas separation type showerhead

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100974962B1 (en) * 2008-01-21 2010-08-09 한양대학교 산학협력단 Plasma Process Apparatus
EP2281921A1 (en) * 2009-07-30 2011-02-09 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Apparatus and method for atomic layer deposition.
EP2362001A1 (en) * 2010-02-25 2011-08-31 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Method and device for layer deposition
KR101311983B1 (en) * 2011-03-31 2013-09-30 엘아이지에이디피 주식회사 Gas injection apparatus, atomic layer deposition apparatus and the method of atomic layer deposition using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200736413A (en) * 2006-03-21 2007-10-01 Atto Co Ltd Apparatus for depositing atomic layer using gas separation type showerhead

Also Published As

Publication number Publication date
WO2014109535A1 (en) 2014-07-17
KR101407068B1 (en) 2014-06-13
TW201428131A (en) 2014-07-16

Similar Documents

Publication Publication Date Title
TWI662640B (en) Gas supply unit and substrate processing apparatus including the gas supply unit
TW201841208A (en) Substrate processing apparatus
US9970110B2 (en) Plasma processing apparatus
KR20170047155A (en) Semiconductor Manufacturing System Including Deposition Apparatus
JP2007247066A (en) Semiconductor-processing apparatus with rotating susceptor
CN109075024A (en) Micro-volume deposition chambers
JP6707827B2 (en) Film forming equipment
KR101538372B1 (en) atomic layer deposition apparatus
JP7008629B2 (en) Board processing equipment
TWI583821B (en) Fast remote plasma atomic layer deposition apparatus
KR20140076795A (en) atomic layer deposition apparatus
JP2013118411A5 (en)
KR20160082550A (en) Deposition device and method of driving the same
KR101541154B1 (en) atomic layer deposition apparatus
KR101372040B1 (en) Cvd conformal vacuum/pumping guiding design
CN116568862A (en) Method for aging a processing chamber
CN104871293B (en) Film deposition apparatus and membrane deposition method
KR101983334B1 (en) Apparatus and method for depositing thin film
KR102225930B1 (en) Film forming apparatus
KR101668868B1 (en) Atomic layer deposition apparatus
TW201725280A (en) Atomic layer deposition apparatus and semiconductor process
WO2015151147A1 (en) Plasma processing device
KR101409977B1 (en) Atomic layer deposition apparatus
KR102209094B1 (en) Plasma reaction apparatus for removing by-products and semiconductor process equpiment
JP5965289B2 (en) Remote plasma CVD equipment