TWI581233B - Low power source drive circuit - Google Patents
Low power source drive circuit Download PDFInfo
- Publication number
- TWI581233B TWI581233B TW105109362A TW105109362A TWI581233B TW I581233 B TWI581233 B TW I581233B TW 105109362 A TW105109362 A TW 105109362A TW 105109362 A TW105109362 A TW 105109362A TW I581233 B TWI581233 B TW I581233B
- Authority
- TW
- Taiwan
- Prior art keywords
- switch
- control signal
- current
- pull
- output stage
- Prior art date
Links
Landscapes
- Electronic Switches (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Description
本發明是有關於一種源極驅動電路,特別是指一種低功率源極驅動電路。 The invention relates to a source driving circuit, in particular to a low power source driving circuit.
近年來,隨著資訊產品市場興起,液晶顯示器由於外型輕薄、耗電量低、無輻射污染、且能與半導體製程技術相容等優點,於電腦系統、行動裝置等產業被廣泛應用。液晶顯示器是利用源極驅動晶片和閘極驅動晶片來驅動面板上的像素以顯示影像,一般而言,源極驅動晶片消耗較多功率,而且隨著液晶顯示器的解析度不斷提高,意味著需要越來越多顆的源極驅動晶片,而這方面的需求與系統設計工程師節省系統用電的目標互相衝突。 In recent years, with the rise of the information product market, liquid crystal displays are widely used in computer systems and mobile devices due to their advantages of thinness, low power consumption, no radiation pollution, and compatibility with semiconductor process technology. The liquid crystal display uses a source driving chip and a gate driving chip to drive pixels on the panel to display images. Generally, the source driving chip consumes more power, and as the resolution of the liquid crystal display continues to increase, it means that More and more sources drive the chip, and this need conflicts with the system design engineer's goal of saving system power.
參閱圖1、圖2與圖3,現有的源極驅動晶片利用AB類CMOS放大器作為輸出級的電路架構,圖1表示源極驅動晶片輸出級之放大器對一負載電容100充電的操作,此時當控制信號=1(反相控制信號=0)的時候,開關導通且反相開關不導通,放大器的上拉(Pull up)電流如圖3所示,為4I加上流向該負載電容100的充 電電流。另外,圖2表示輸出級之放大器使該負載電容100放電時的操作,當控制信號=1(反相控制信號=0)的時候,放大器的下拉(Pull down)電流如圖3所示,為4I加上來自該負載電容100的放電電流。而在圖1及圖2所示之充電和放電操作中,當控制信號=0(反相控制信號=1)的時候,開關不導通且反相開關導通,放大器的上拉及下拉電流均為0,以達到降低功率消耗的效果。目前圖1所示的源極驅動晶片之輸出級電路其低功率消耗已經到達設計上的瓶頸,因此,如何有效再降低單顆源級驅動晶片的功耗,便成為相關業者所待突破的課題。 Referring to FIG. 1, FIG. 2 and FIG. 3, the conventional source driving chip utilizes a class AB CMOS amplifier as a circuit structure of an output stage, and FIG. 1 shows an operation of charging a load capacitor 100 by an amplifier of a source driving chip output stage. When the control signal = 1 (inverting control signal = 0), the switch is turned on and the inverting switch is not turned on. The pull-up current of the amplifier is as shown in FIG. 3, which is 4I plus the flow to the load capacitor 100. Charge Electric current. In addition, FIG. 2 shows the operation when the amplifier of the output stage discharges the load capacitor 100. When the control signal=1 (inverted control signal=0), the pull-down current of the amplifier is as shown in FIG. 4I plus the discharge current from the load capacitor 100. In the charging and discharging operations shown in FIGS. 1 and 2, when the control signal = 0 (inverting control signal = 1), the switch is not turned on and the inverting switch is turned on, and the pull-up and pull-down currents of the amplifier are both 0 to achieve the effect of reducing power consumption. At present, the low-power consumption of the output stage circuit of the source driver chip shown in FIG. 1 has reached the design bottleneck. Therefore, how to effectively reduce the power consumption of the single source-level driver chip has become a problem to be solved by related companies. .
因此,本發明之目的,即在提供一種低功率源極驅動電路。 Accordingly, it is an object of the present invention to provide a low power source driver circuit.
於是,本發明低功率源極驅動電路,電連接一負載,且包含一第一輸出級,及一第二輸出級。 Therefore, the low-power source driving circuit of the present invention is electrically connected to a load and includes a first output stage and a second output stage.
該第一輸出級受控制以決定是否產生一第一上拉電流。 The first output stage is controlled to determine whether a first pull-up current is generated.
該第二輸出級受控制以決定是否產生一第二上拉電流。 The second output stage is controlled to determine whether a second pull-up current is generated.
當在一第一充電時段時,該第一輸出級產生該第一上拉電流且該第二輸出級產生該第二上拉電流,且該第一及第二上拉電流的一部份作為一充電電流對該負載充電。 When a first charging period, the first output stage generates the first pull-up current and the second output stage generates the second pull-up current, and a portion of the first and second pull-up currents A charging current charges the load.
當在一第二充電時段時,該第二輸出級不產生該第二上拉電流,而該第一輸出級產生該第一上拉電流,且該第一上拉電流的一部份作為該充電電流對該負載充電。 When in a second charging period, the second output stage does not generate the second pull-up current, and the first output stage generates the first pull-up current, and a portion of the first pull-up current serves as the The charging current charges the load.
本發明之功效在於:該低功率源極驅動電路藉由兩段式的輸出級設計,於該第一充電時段時,該第一與該第二輸出級共同對該負載充電,而於該第二充電時段時,只由該第一輸出級對該負載充電,能夠有效降低充電電流而達到省電的效果。 The effect of the present invention is that the low-power source driving circuit is designed by a two-stage output stage, and the first and second output stages jointly charge the load during the first charging period, and During the second charging period, the load is only charged by the first output stage, which can effectively reduce the charging current and achieve the effect of power saving.
100‧‧‧負載電容 100‧‧‧ load capacitance
200‧‧‧負載電容 200‧‧‧ load capacitance
1‧‧‧第一輸出級 1‧‧‧First output stage
11‧‧‧第一開關單元 11‧‧‧First switch unit
111‧‧‧第一開關 111‧‧‧First switch
112‧‧‧第二開關 112‧‧‧Second switch
113‧‧‧第一反相開關 113‧‧‧First Inverting Switch
114‧‧‧第二反相開關 114‧‧‧Secondary inverter switch
12‧‧‧第一緩衝單元 12‧‧‧First buffer unit
121‧‧‧第一電晶體 121‧‧‧First transistor
122‧‧‧第二電晶體 122‧‧‧Second transistor
2‧‧‧第二輸出級 2‧‧‧second output stage
21‧‧‧第二開關單元 21‧‧‧Second switch unit
211‧‧‧第三開關 211‧‧‧ third switch
212‧‧‧第四開關 212‧‧‧fourth switch
213‧‧‧第三反相開關 213‧‧‧ Third Inverting Switch
214‧‧‧第四反相開關 214‧‧‧fourth inverter switch
22‧‧‧第二緩衝單元 22‧‧‧Second buffer unit
221‧‧‧第三電晶體 221‧‧‧ Third transistor
222‧‧‧第四電晶體 222‧‧‧ Fourth transistor
3‧‧‧運算電路 3‧‧‧Operating circuit
Vo‧‧‧輸出電壓 Vo‧‧‧ output voltage
Vo’‧‧‧輸出電壓 Vo’‧‧‧ output voltage
本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:圖1是一方塊圖,說明一種現有的源極驅動電路對一負載電容充電的操作;圖2是一方塊圖,說明一種現有的源極驅動電路使該負載電容放電的操作;圖3是一波形圖,說明圖1及圖2所示的源極驅動電路的操作; 圖4是一方塊圖,說明本發明低功率源極驅動電路對一負載電容充電的一實施例;圖5是一方塊圖,說明本發明低功率源極驅動電路使該負載電容放電的一實施例;及圖6是一波形圖,說明圖4及圖5所示的該實施例的操作。 Other features and effects of the present invention will be apparent from the following description of the drawings. FIG. 1 is a block diagram illustrating an operation of a conventional source driving circuit for charging a load capacitor; A block diagram illustrating an operation of a conventional source driver circuit for discharging the load capacitor; and FIG. 3 is a waveform diagram illustrating operation of the source driver circuit illustrated in FIGS. 1 and 2; 4 is a block diagram showing an embodiment of charging a load capacitor by the low power source driving circuit of the present invention; and FIG. 5 is a block diagram showing an implementation of discharging the load capacitor by the low power source driving circuit of the present invention. And FIG. 6 is a waveform diagram illustrating the operation of the embodiment shown in FIGS. 4 and 5.
參閱圖4,本發明低功率源極驅動電路,電連接一負載,且包含一第一輸出級1、一第二輸出級2、一運算電路3及一控制電路(圖未示出)。在本實施例中,該負載為一負載電容200。 Referring to FIG. 4, the low-power source driving circuit of the present invention is electrically connected to a load, and includes a first output stage 1, a second output stage 2, an arithmetic circuit 3, and a control circuit (not shown). In this embodiment, the load is a load capacitor 200.
該控制電路(圖未示出)產生一第一控制信號、一第一反相控制信號、一第二控制信號及一第二反相控制信號,該第一控制信號的相位反相於該第一反相控制信號的相位,該第二控制信號的相位反相於該第二反相控制信號的相位。 The control circuit (not shown) generates a first control signal, a first inverted control signal, a second control signal, and a second inverted control signal, and the phase of the first control signal is inverted from the first An inversion control signal has a phase, the phase of the second control signal being inverted to a phase of the second inverted control signal.
該運算電路3接收一第一工作偏壓及一第二工作偏壓,且產生一第一致能電壓及一第二致能電壓。該第二工作偏壓是一地電壓。該第一工作偏壓的準位大於該第一致能電壓的準位至少一臨界電壓(threshold voltage),該第一致能電壓的準位大於該第二致能電壓,該第二致能電壓的準位大於該第二工作偏壓至少一臨界電壓。該運算電路3可根據一液晶顯示器每隔一預定時間更 新一畫面,而更新該第一與該第二致能電壓一次,使該低功率源極驅動電路根據所接收的第一與該第二致能電壓,來驅動該負載電容200處於一充電操作與一放電操作的其中一者。舉例來說,該液晶顯示器的畫面更新率(frame rate)為一秒顯示60幀畫面,也就是每間隔六十分之一秒顯示一畫面時,則該運算電路3每間隔六十分之一秒更新一次該第一與該第二致能電壓,該低功率源極驅動電路即據以驅動該負載電容200,使該負載電容200因應該畫面為黑、白或棋盤格等,而處於該充電操作與該放電操作的其中之一。 The operation circuit 3 receives a first working bias voltage and a second operating bias voltage, and generates a first enable voltage and a second enable voltage. The second operating bias is a ground voltage. The level of the first working bias is greater than the threshold of the first enabling voltage by at least one threshold voltage, the level of the first enabling voltage is greater than the second enabling voltage, and the second enabling The voltage level is greater than the second operating bias voltage by at least one threshold voltage. The arithmetic circuit 3 can be further according to a liquid crystal display every predetermined time a new screen, and updating the first and the second enable voltages once, so that the low-power source driving circuit drives the load capacitor 200 to be in a charging operation according to the received first and second enable voltages One of the operations with a discharge. For example, the frame rate of the liquid crystal display is 60 frames per second, that is, when one screen is displayed every sixtieth of a second, the operation circuit 3 is separated by one-sixtieth. The first and the second enable voltage are updated once, and the low-power source driving circuit drives the load capacitor 200 to make the load capacitor 200 be black, white, or a checkerboard, etc. One of charging operation and the discharging operation.
該第一輸出級1受控制以決定是否產生一第一上拉(Pull up)電流對該負載電容200充電,而拉升該負載電容200的電壓準位,且包括一第一開關單元11,及一第一緩衝單元12。 The first output stage 1 is controlled to determine whether a first pull-up current is generated to charge the load capacitor 200, and the voltage level of the load capacitor 200 is pulled up, and includes a first switching unit 11, And a first buffer unit 12.
該第一開關單元11受控制以輸出一指示致能或去能的第一充電控制信號。在本例中,該第一開關單元11包括一第一開關111、一第二開關112、一第一反相開關113,及一第二反相開關114。其中,有關該第一充電控制信號的說明容後再述。 The first switching unit 11 is controlled to output a first charging control signal indicating enable or disable. In this example, the first switch unit 11 includes a first switch 111, a second switch 112, a first reverse switch 113, and a second reverse switch 114. The description of the first charging control signal will be described later.
該第一開關111具有一用於接收該運算電路3的該第一致能電壓的第一端、一第二端,及一用於接收該第一控制信號的控制端,且該第一開關111根據該第一控制信號切換於導通與不導通 間。例如,當該第一控制信號為邏輯1時,該第一開關111導通;當該第一控制信號為邏輯0時,該第一開關111不導通。 The first switch 111 has a first end, a second end for receiving the first enable voltage of the operation circuit 3, and a control end for receiving the first control signal, and the first switch 111 switching between conducting and non-conducting according to the first control signal between. For example, when the first control signal is logic 1, the first switch 111 is turned on; when the first control signal is logic 0, the first switch 111 is not turned on.
該第二開關112具有一用於接收該運算電路3的該第二致能電壓的第一端、一第二端,及一用於接收該第一控制信號的控制端,且該第二開關112根據該第一控制信號切換於導通與不導通間。例如,當該第一控制信號為邏輯1時,該第二開關112導通;當該第一控制信號為邏輯0時,該第二開關112不導通。 The second switch 112 has a first end, a second end for receiving the second enable voltage of the operation circuit 3, and a control end for receiving the first control signal, and the second switch 112 switches between the conducting and the non-conducting according to the first control signal. For example, when the first control signal is logic 1, the second switch 112 is turned on; when the first control signal is logic 0, the second switch 112 is not turned on.
該第一反相開關113具有一用於接收該第一工作偏壓的第一端、一電連接該第一開關111的第二端的第二端,及一用於接收該第一反相控制信號的控制端,且該第一反相開關113根據該第一反相控制信號切換於導通與不導通間。要注意的是,當該第一控制信號為邏輯1時,該第一反相控制信號為邏輯0,該第一反相開關113不導通;當該第一控制信號為邏輯0時,該第一反相控制信號為邏輯1,該第一反相開關113導通。 The first inverting switch 113 has a first end for receiving the first working bias, a second end electrically connected to the second end of the first switch 111, and a receiving the first inverting control The control terminal of the signal, and the first inverting switch 113 is switched between the conducting and the non-conducting according to the first inverting control signal. It should be noted that when the first control signal is logic 1, the first inversion control signal is logic 0, the first inversion switch 113 is non-conducting; when the first control signal is logic 0, the An inverting control signal is logic 1, and the first inverting switch 113 is turned on.
該第二反相開關114具有一用於接收該第二工作偏壓的第一端、一電連接該第二開關112的第二端的第二端,及一用於接收該第一反相控制信號的控制端,且該第二反相開關114根據該第一反相控制信號切換於導通與不導通間。例如,當該第一反相控 制信號為邏輯0,該第二反相開關114不導通;當該第一反相控制信號為邏輯1,該第二反相開關114導通。 The second inverting switch 114 has a first end for receiving the second working bias, a second end electrically connected to the second end of the second switch 112, and a second receiving end for receiving the first inverting control The control terminal of the signal, and the second inverting switch 114 is switched between the conducting and the non-conducting according to the first inverting control signal. For example, when the first reverse phase control The signal is logic 0, the second inverter switch 114 is non-conducting; when the first inversion control signal is logic 1, the second inverter switch 114 is turned on.
因此,當該第一開關111及該第二開關112導通時,該第一反相開關113及該第二反相開關114不導通,此時,由該第一開關111的第二端輸出該第一致能電壓,且由該第二開關112的第二端輸出該第二致能電壓,以形成該指示致能的第一充電控制信號。而當該第一反相開關113及該第二反相開關114導通時,該第一開關111及該第二開關112不導通,此時,由該第一反相開關113的第二端輸出該第一工作偏壓,由該第二反相開關114的第二端輸出該第二工作偏壓,以形成該指示去能的第一充電控制信號。 Therefore, when the first switch 111 and the second switch 112 are turned on, the first inverting switch 113 and the second inverting switch 114 are not turned on. At this time, the second end of the first switch 111 outputs the a first uniform energy voltage, and the second enable voltage is output by the second end of the second switch 112 to form the first charge control signal indicating the enable. When the first inverting switch 113 and the second inverting switch 114 are turned on, the first switch 111 and the second switch 112 are not turned on. At this time, the second end of the first inverting switch 113 is output. The first working bias voltage is outputted by the second end of the second inverting switch 114 to form the first charging control signal indicating the de-energization.
該第一緩衝單元12電連接該負載電容200與該第一開關單元11間,該第一緩衝單元12根據該第一充電控制信號指示致能或去能而對應地產生或不產生該第一上拉電流。在本例中,該第一緩衝單元12包括一第一電晶體121,及一第二電晶體122。以下逐一說明該第一緩衝單元12的各細部元件。 The first buffer unit 12 is electrically connected between the load capacitor 200 and the first switch unit 11. The first buffer unit 12 correspondingly generates or does not generate the first according to the first charging control signal indicating enable or disable. Pull up current. In this example, the first buffer unit 12 includes a first transistor 121 and a second transistor 122. The detailed components of the first buffer unit 12 will be described one by one below.
該第一電晶體121具有一電連接該第一開關111的第二端與該第一反相開關113的第二端的控制端、一用於接收該第一工作偏壓的第一端,及一電連接該負載電容200的第二端。在本實施例中,該第一電晶體121是一P型金屬氧化物半導體場效電晶體 (以下簡稱PMOS),且該控制端是其閘極、該第一端是其源極、該第二端是其汲極。 The first transistor 121 has a control end electrically connected to the second end of the first switch 111 and the second end of the first inverting switch 113, a first end for receiving the first working bias, and A second end of the load capacitor 200 is electrically connected. In this embodiment, the first transistor 121 is a P-type metal oxide semiconductor field effect transistor. (hereinafter referred to as PMOS), and the control terminal is its gate, the first terminal is its source, and the second terminal is its drain.
該第二電晶體122具有一電連接該第二開關112的第二端與該第二反相開關114的第二端的控制端、一用於接收該第二工作偏壓的第一端,及一電連接該負載電容200的第二端。在本實施例中,該第二電晶體122是一N型金屬氧化物半導體場效電晶體(以下簡稱NMOS),且該控制端是其閘極、該第一端是其源極、該第二端是其汲極。 The second transistor 122 has a control end electrically connected to the second end of the second switch 112 and the second end of the second inverting switch 114, a first end for receiving the second working bias, and A second end of the load capacitor 200 is electrically connected. In this embodiment, the second transistor 122 is an N-type metal oxide semiconductor field effect transistor (hereinafter referred to as NMOS), and the control terminal is its gate, the first terminal is its source, and the first The second end is its bungee.
當該第一電晶體121的控制端接收來自該第一開關111的第一致能電壓,且當該第二電晶體122的控制端接收來自該第二開關112的第二致能電壓時,由該第一電晶體121的第二端輸出該第一上拉電流。而當該第一電晶體121的控制端接收來自該第一開關111的第一工作偏壓,且當該第二電晶體122的控制端接收來自該第二開關112的第二工作偏壓時,該第一電晶體121的第二端則不輸出該第一上拉電流。 When the control terminal of the first transistor 121 receives the first enable voltage from the first switch 111, and when the control terminal of the second transistor 122 receives the second enable voltage from the second switch 112, The first pull-up current is output from the second end of the first transistor 121. And when the control end of the first transistor 121 receives the first operating bias from the first switch 111, and when the control terminal of the second transistor 122 receives the second operating bias from the second switch 112 The second end of the first transistor 121 does not output the first pull-up current.
該第二輸出級2受控制以決定是否產生一第二上拉電流對該負載電容200充電,且包括一第二開關單元21,及一第二緩衝單元22。 The second output stage 2 is controlled to determine whether a second pull-up current is generated to charge the load capacitor 200, and includes a second switching unit 21 and a second buffer unit 22.
該第二開關單元21受控制以輸出一指示致能或去能的第二充電控制信號。在本例中,該第二開關單元21包括一第三開關211、一第四開關212、一第三反相開關213,及一第四反相開關214。以下逐一說明該第二開關單元21的各細部元件。其中,有關該第二充電控制信號的說明容後再述。 The second switching unit 21 is controlled to output a second charging control signal indicating enable or disable. In this example, the second switch unit 21 includes a third switch 211, a fourth switch 212, a third reverse switch 213, and a fourth reverse switch 214. The detailed components of the second switching unit 21 will be described one by one below. The description of the second charging control signal will be described later.
該第三開關211具有一電連接該第一開關111的第二端以接收該第一致能電壓的第一端、一第二端,及一用於接收該第二控制信號的控制端,且該第三開關211根據該第二控制信號切換於導通與不導通間。例如,當該第二控制信號為邏輯1時,該第三開關211導通;當該第二控制信號為邏輯0時,該第三開關211不導通。 The third switch 211 has a first end electrically connected to the second end of the first switch 111 to receive the first enable voltage, a second end, and a control end for receiving the second control signal. And the third switch 211 is switched between the conduction and the non-conduction according to the second control signal. For example, when the second control signal is logic 1, the third switch 211 is turned on; when the second control signal is logic 0, the third switch 211 is not turned on.
該第四開關212具有一電連接該第二開關112的第二端以接收該第二致能電壓的第一端、一第二端,及一用於接收該第二控制信號的控制端,且該第四開關212根據該第二控制信號切換於導通與不導通間。例如,當該第二控制信號為邏輯1時,該第四開關212導通;當該第二控制信號為邏輯0時,該第四開關212不導通。 The fourth switch 212 has a first end electrically connected to the second end of the second switch 112 to receive the second enable voltage, a second end, and a control end for receiving the second control signal. And the fourth switch 212 switches between the conduction and the non-conduction according to the second control signal. For example, when the second control signal is logic 1, the fourth switch 212 is turned on; when the second control signal is logic 0, the fourth switch 212 is not turned on.
該第三反相開關213具有一用於接收該第一工作偏壓的第一端、一電連接該第三開關212的第二端的第二端,及一用於 接收該第二反相控制信號的控制端,且該第三反相開關213根據該第二反相控制信號切換於導通與不導通間。要注意的是,當該第二控制信號為邏輯1時,該第二反相控制信號為邏輯0,該第三反相開關213不導通;當該第二控制信號為邏輯0時,該第二反相控制信號為邏輯1,該第三反相開關213導通。 The third inverting switch 213 has a first end for receiving the first working bias, a second end electrically connected to the second end of the third switch 212, and a second end Receiving a control end of the second inversion control signal, and the third inversion switch 213 is switched between conducting and non-conducting according to the second inverting control signal. It should be noted that when the second control signal is logic 1, the second inversion control signal is logic 0, the third inversion switch 213 is non-conducting; when the second control signal is logic 0, the The second inverting control signal is logic 1, and the third inverting switch 213 is turned on.
該第四反相開關214具有一用於接收該第二工作偏壓的第一端、一電連接該第四開關212的第二端的第二端,及一用於接收該第二反相控制信號的控制端,且該第四反相開關214根據該第二反相控制信號切換於導通與不導通間。例如,當該第二反相控制信號為邏輯0,該第四反相開關214不導通;當該第二反相控制信號為邏輯1,該第四反相開關214導通。 The fourth inverting switch 214 has a first end for receiving the second working bias, a second end electrically connected to the second end of the fourth switch 212, and a second end control for receiving the second inverting control The control terminal of the signal, and the fourth inverting switch 214 is switched between the conducting and the non-conducting according to the second inverting control signal. For example, when the second inverted control signal is logic 0, the fourth inverting switch 214 is non-conducting; when the second inverting control signal is logic 1, the fourth inverting switch 214 is turned on.
因此,當該第三開關211及該第四開關212導通時,該第三反相開關213及該第四反相開關214不導通,此時,由該第三開關211的第二端輸出該第一致能電壓,且由該第四開關212的第二端輸出該第二致能電壓,以形成該指示致能的第二充電控制信號。而當該第三反相開關213及第四反相開關214導通時,該第三開關211及該第四開關212不導通,此時,由該第三反相開關213的第二端輸出該第一工作偏壓,由該第四反相開關214的第二端輸出該第二工作偏壓,以形成該指示去能的第二充電控制信號。 Therefore, when the third switch 211 and the fourth switch 212 are turned on, the third inverting switch 213 and the fourth inverting switch 214 are not turned on. At this time, the second end of the third switch 211 outputs the The first uniform energy voltage is outputted by the second end of the fourth switch 212 to form the second charging control signal indicating the enable. When the third inverting switch 213 and the fourth inverting switch 214 are turned on, the third switch 211 and the fourth switch 212 are not turned on. At this time, the second end of the third inverting switch 213 outputs the The first working bias voltage is outputted by the second end of the fourth inverting switch 214 to form the second charging control signal indicating the de-energization.
該第二緩衝單元22電連接該負載電容200與該第二開關單元21間,該第二緩衝單元22根據該第二充電控制信號指示致能或去能而對應地產生或不產生該第二上拉電流。在本例中,該第二緩衝單元22包括一第三電晶體221,及一第四電晶體222。以下逐一說明該第二緩衝單元22的各細部元件。 The second buffer unit 22 is electrically connected between the load capacitor 200 and the second switch unit 21, and the second buffer unit 22 correspondingly generates or does not generate the second according to the second charging control signal indicating enabling or disabling. Pull up current. In this example, the second buffer unit 22 includes a third transistor 221 and a fourth transistor 222. The detailed components of the second buffer unit 22 will be described below one by one.
第三電晶體221具有一電連接該第三開關211的第二端與該第三反相開關213的第二端的控制端、一用於接收該第一工作偏壓的第一端,及一電連接該負載電容200的第二端。 The third transistor 221 has a control end electrically connected to the second end of the third switch 211 and the second end of the third inverting switch 213, a first end for receiving the first working bias, and a first end The second end of the load capacitor 200 is electrically connected.
該第四電晶體222具有一電連接該第四開關212的第二端與該第四反相開關214的第二端的控制端、一用於接收該第二工作偏壓的第一端,及一電連接該負載電容200的第二端。 The fourth transistor 222 has a control end electrically connected to the second end of the fourth switch 212 and the second end of the fourth inverting switch 214, a first end for receiving the second working bias, and A second end of the load capacitor 200 is electrically connected.
當該第三電晶體221的控制端接收來自該第三開關211的第一致能電壓,且當該第四電晶體222的控制端接收來自該第四開關212的第二致能電壓時,由該第三電晶體221的第二端輸出該第二上拉電流。而當該第三電晶體221的控制端接收來自該第三開關211的第一工作偏壓,且當該第四電晶體222的控制端接收來自該第四開關212的第二工作偏壓,而該第三電晶體221的第二端則不輸出該第二上拉電流。 When the control terminal of the third transistor 221 receives the first enable voltage from the third switch 211, and when the control terminal of the fourth transistor 222 receives the second enable voltage from the fourth switch 212, The second pull-up current is outputted from the second end of the third transistor 221 . When the control terminal of the third transistor 221 receives the first operating bias from the third switch 211, and when the control terminal of the fourth transistor 222 receives the second operating bias from the fourth switch 212, The second terminal of the third transistor 221 does not output the second pull-up current.
參閱圖4並配合圖6,在本實施例中,當在一相關於該負載電容200處於該暫態的充電操作的第一充電時段時,該第一開關單元11與該第二開關單元21受控制輸出該指示致能的第二充電控制信號,以致於該第一輸出級1產生該第一上拉電流且該第二輸出級2產生該第二上拉電流,其中該第一上拉電流一部分流向該負載電容200,一部分流向該第二電晶體122,該第二上拉電流一部份流向該負載電容200,一部分流向該第四電晶體222,而該第一及第二上拉電流中共同流向該負載電容200的部份即作為一充電電流(如圖6中斜線部分)對該負載電容200充電。而當在一相關於該負載電容200處於該穩態的充電操作的第二充電時段時,該第二開關單元21受控制輸出該指示去能的第二充電控制信號,以致於該第二輸出級2不產生該第二上拉電流,而該第一輸出級1產生該第一上拉電流,且該第一上拉電流的一部份作為該充電電流對該負載電容200充電,一部份流向該第二電晶體122。 Referring to FIG. 4 and in conjunction with FIG. 6, in the embodiment, the first switching unit 11 and the second switching unit 21 are in a first charging period related to the charging operation of the load capacitor 200. Controlling the output of the second charging control signal that is enabled, such that the first output stage 1 generates the first pull-up current and the second output stage 2 generates the second pull-up current, wherein the first pull-up current a portion of the current flows to the load capacitor 200, a portion of which flows to the second transistor 122, a portion of the second pull-up current flows to the load capacitor 200, and a portion flows to the fourth transistor 222, and the first and second pull-ups The portion of the current that flows collectively to the load capacitor 200 charges the load capacitor 200 as a charging current (as shown by the hatched portion in FIG. 6). And when a second charging period in which the load capacitance 200 is in the steady state charging operation, the second switching unit 21 is controlled to output the second charging control signal indicating the deactivation, so that the second output Stage 2 does not generate the second pull-up current, and the first output stage 1 generates the first pull-up current, and a portion of the first pull-up current charges the load capacitor 200 as the charging current, one part The portion flows to the second transistor 122.
具體的實現方式及相關元件作動進一步說明如下:當在該第一充電時段時,該第一控制信號為邏輯1(該第一反相控制信號為邏輯0),該第二控制信號為邏輯1(該第二反相控制信號為邏輯0),此時,該第一開關單元11的該第一開關111及該第二開關112皆導通(該第一反相開關113與該第二反相開關114皆不導 通),且該第二開關單元21的該第三開關211及該第四開關212皆導通(該第三反相開關213與該第四反相開關214皆不導通),此時,該第一電晶體121的控制端所接收為該第一致能電壓,該第二電晶體122的控制端所接收為該第二致能電壓,該第三電晶體221的控制端所接收為該第一致能電壓,且該第四電晶體222的控制端所接收為該第二致能電壓。 The specific implementation and related component operations are further described as follows: when the first charging period is, the first control signal is logic 1 (the first inversion control signal is logic 0), and the second control signal is logic 1 The second inverting control signal is logic 0. At this time, the first switch 111 and the second switch 112 of the first switching unit 11 are both turned on (the first inverting switch 113 and the second inverting switch) Switch 114 is not guided And the third switch 211 and the fourth switch 212 of the second switch unit 21 are both turned on (the third inverting switch 213 and the fourth inverting switch 214 are not turned on), at this time, the first The control terminal of the transistor 121 receives the first enable voltage, and the control terminal of the second transistor 122 receives the second enable voltage. The control terminal of the third transistor 221 receives the first enable voltage. The voltage is consistent, and the control terminal of the fourth transistor 222 receives the second enable voltage.
如此,在該第一充電時段,該第一電晶體121、該第二電晶體122、該第三電晶體221及該第四電晶體222皆被致能,其中,該第一電晶體121的第一端對應地產生該第一上拉電流、並經由該第一電晶體121的第二端輸出,一部份作為該充電電流流向該負載電容200,另一部分流向該第二電晶體122的第二端。該第三電晶體221的第一端對應地產生該第二上拉電流並經由該第三電晶體221的第二端輸出,一部份作為該充電電流流向該負載電容200,另一部份作為一第二下拉電流流向該第四電晶體222的第二端。故,如圖6所示,在該負載電容200充電斜率陡峭而需要急遽電流的該第一充電時段,該第一輸出級1與該第二輸出級2分別輸出該第一上拉電流與該第二上拉電流的一部份作為該充電電流同時對該負載電容200充電,且4I為該第一及第二輸出級1、2的由 PMOS流向NMOS的電流值加總,而I為只有該第一輸出級1的由PMOS流向NMOS的電流值。 As such, in the first charging period, the first transistor 121, the second transistor 122, the third transistor 221, and the fourth transistor 222 are all enabled, wherein the first transistor 121 is The first end correspondingly generates the first pull-up current, and is outputted through the second end of the first transistor 121, a portion flows as the charging current to the load capacitor 200, and another portion flows to the second transistor 122. Second end. The first end of the third transistor 221 correspondingly generates the second pull-up current and outputs through the second end of the third transistor 221, and a portion flows as the charging current to the load capacitor 200, and the other portion As a second pull-down current flows to the second end of the fourth transistor 222. Therefore, as shown in FIG. 6, in the first charging period in which the charging capacitor 200 has a steep charging slope and requires an emergency current, the first output stage 1 and the second output stage 2 respectively output the first pull-up current and the A portion of the second pull-up current charges the load capacitor 200 as the charging current, and 4I is the first and second output stages 1, 2 The current value of the PMOS flowing to the NMOS is summed, and I is the current value of only the first output stage 1 flowing from the PMOS to the NMOS.
當在該第二充電時段時,該第一控制信號為邏輯1(該第一反相控制信號為邏輯0),該第二控制信號為邏輯0(該第二反相控制信號為邏輯1),此時,該第一開關單元11的該第一開關111及該第二開關112皆導通(該第一反相開關113與該第二反相開關114皆不導通),且該第二開關單元21的該第三反相開關213及該第四反相開關214皆導通(該第三開關211與該第四開關212皆不導通),此時,該第一電晶體121的控制端所接收為該第一致能電壓,該第二電晶體122的控制端所接收為該第二致能電壓,該第三電晶體221的控制端所接收為該第一工作偏壓,且該第四電晶體222的控制端所接收為該第二工作偏壓。如此,在該第二充電時段,只有該第一電晶體121與該第二電晶體122被致能,該第三電晶體221與該第四電晶體222皆被去能,因此,在該負載電容200充電斜率緩和而達到穩態充電的該第二充電時段,該第二輸出級2被關閉,只有該第一輸出級1對該負載電容200充電,而藉此達到省電之效。 When in the second charging period, the first control signal is logic 1 (the first inversion control signal is logic 0), and the second control signal is logic 0 (the second inversion control signal is logic 1) At this time, the first switch 111 and the second switch 112 of the first switch unit 11 are both turned on (the first inverting switch 113 and the second inverting switch 114 are not turned on), and the second switch The third inverting switch 213 and the fourth inverting switch 214 of the unit 21 are both turned on (the third switch 211 and the fourth switch 212 are not turned on), and at this time, the control end of the first transistor 121 Receiving the first enable voltage, the control terminal of the second transistor 122 receives the second enable voltage, the control terminal of the third transistor 221 receives the first operational bias, and the first The second operational bias is received by the control terminal of the quad transistor 222. As such, in the second charging period, only the first transistor 121 and the second transistor 122 are enabled, and the third transistor 221 and the fourth transistor 222 are both disabled, and therefore, at the load. The charging slope of the capacitor 200 is moderated to reach the second charging period of steady state charging, and the second output stage 2 is turned off, and only the first output stage 1 charges the load capacitor 200, thereby achieving power saving effect.
進一步地,本發明低功率源極驅動電路可藉由控制該第一輸出級1的第一電晶體121相對於該第二電晶體122的一第一並聯個數比,小於該第二輸出級2的該第三電晶體221相對於該第 四電晶體222的一第二並聯個數比,進一步控制在該第二充電時段時,該第一上拉電流與該第二上拉電流分別占該第一輸出級1與該第二輸出級2之總輸出電流的比例。舉例來說,藉由設計該第一並聯個數比為2:1,且該第二並聯個數比為6:3時,即可使該第一上拉電流占該第一輸出級1與該第二輸出級2之總輸出電流的大約四分之一,該第二上拉電流占大約四分之三,因此如圖6所示,在該第二充電時段,只有該第一輸出級11產生該第一上拉電流,因此僅剩下約四分之一的電流消耗,也就是說,該源極驅動電路的驅動力只需25%,如此,能夠有效地降低源極驅動電路的電流超過50%。 Further, the low-power source driving circuit of the present invention can be smaller than the second output stage by controlling a first parallel number ratio of the first transistor 121 of the first output stage 1 with respect to the second transistor 122. The third transistor 221 of 2 is opposite to the first a second parallel number ratio of the fourth transistor 222 is further controlled. During the second charging period, the first pull-up current and the second pull-up current respectively occupy the first output stage 1 and the second output stage The ratio of the total output current of 2. For example, by designing the first parallel number ratio to be 2:1, and the second parallel number ratio is 6:3, the first pull-up current can be made to occupy the first output stage 1 and The second output stage 2 has a total output current of about one quarter, and the second pull-up current accounts for about three quarters. Therefore, as shown in FIG. 6, only the first output stage is in the second charging period. 11 generates the first pull-up current, so only about one quarter of the current consumption is left, that is, the driving force of the source driving circuit is only 25%, so that the source driving circuit can be effectively reduced. The current exceeds 50%.
參閱圖5並配合圖6,另外要說明的是,當在一相關於該負載電容200處於該暫態的放電操作的第一放電時段時,該第一輸出級1產生該第一下拉(Pull down)電流且該第二輸出級2產生該第二下拉電流,其中該第一下拉電流一部分來自該第一電晶體121,另一部份來自該負載電容200,而該第二下拉電流一部分來自該第三電晶體221,另一部份來自該負載電容200,而該第一及第二下拉電流中共同來自該負載電容200的部份即為該負載電容200的一放電電流(如圖6中斜線部分)。而當在一相關於該負載電容200處於該穩態的放電操作的第二放電時段時,該第二輸出級2不產生該第二下拉電流,而該第一輸出級1產生該第一下拉電流, 且該第一下拉電流的一部份來自該第一電晶體121,另一部份為來自該負載電容200的放電電流。因此,當在該第一放電時段時,該第一控制信號的邏輯值為1,該第二控制信號的邏輯值為0,該第一輸出級1的該第一開關單元11與該第二輸出級2的該第二開關單元21皆被致能,該第一輸出級1的該第一下拉電流與該第二輸出級2的該第二下拉電流分別有一部份作為該放電電流使該負載電容200放電,且4I為該第一及第二輸出級1、2的由PMOS流向NMOS的電流值加總。當在該第二放電時段時,該第二輸出級2的該第二開關單元21被去能而不產生該第二下拉電流,而該第一輸出級1產生該第一下拉電流,而I即表示只有該第一輸出級1的由PMOS流向NMOS的電流值。故,如圖6所示,在該第二放電時段,大約僅占該第一輸出級1與該第二輸出級2之總輸出電流四分之一的電流消耗,也就是說,該源極驅動電路的驅動力也只需25%,如此,能夠有效地降低源極驅動電路的電流超過50%。 Referring to FIG. 5 and in conjunction with FIG. 6, it is additionally noted that the first output stage 1 generates the first pulldown when a first discharge period associated with the load capacitance 200 is in the transient discharge operation ( Pulling down the current and the second output stage 2 generates the second pull-down current, wherein the first pull-down current is partially from the first transistor 121, and the other part is from the load capacitor 200, and the second pull-down current One portion is from the third transistor 221, and the other portion is from the load capacitor 200, and a portion of the first and second pull-down currents from the load capacitor 200 is a discharge current of the load capacitor 200 (eg, Figure 6 is a diagonal line). And when a second discharge period in which the load capacitance 200 is in the steady state discharge operation, the second output stage 2 does not generate the second pull-down current, and the first output stage 1 generates the first lower stage Pulling current, And a part of the first pull-down current is from the first transistor 121, and the other part is a discharge current from the load capacitor 200. Therefore, when the first discharge period is, the logic value of the first control signal is 1, and the logic value of the second control signal is 0, the first switching unit 11 and the second of the first output stage 1 The second switching unit 21 of the output stage 2 is enabled, and the first pull-down current of the first output stage 1 and the second pull-down current of the second output stage 2 respectively have a portion as the discharge current. The load capacitor 200 is discharged, and 4I is a sum of current values of the first and second output stages 1, 2 flowing from the PMOS to the NMOS. When in the second discharging period, the second switching unit 21 of the second output stage 2 is deenergized without generating the second pull-down current, and the first output stage 1 generates the first pull-down current, and I means that only the current value of the first output stage 1 flowing from the PMOS to the NMOS. Therefore, as shown in FIG. 6, during the second discharge period, only about one quarter of the total output current of the first output stage 1 and the second output stage 2 is consumed, that is, the source The driving force of the driving circuit is also only 25%, so that the current of the source driving circuit can be effectively reduced by more than 50%.
綜上所述,本發明低功率源極驅動電路,藉由兩段式的輸出級設計,於該第一充(放)電時段時,該第一輸出級1與該第二輸出級2共同對該負載電容200充(放)電,而於該第二充(放)電時段時,只由該第一輸出級1對該負載電容200充(放)電,能 夠有效降低該第一輸出級1與該第二輸出級2的驅動力而達到省電的效果,故確實能達成本發明之目的。 In summary, the low-power source driving circuit of the present invention has a two-stage output stage design, and the first output stage 1 and the second output stage 2 are common during the first charging (discharging) period The load capacitor 200 is charged (discharged), and during the second charging (discharging) period, the load capacitor 200 is charged (discharged) only by the first output stage 1. The driving force of the first output stage 1 and the second output stage 2 is effectively reduced to achieve the effect of power saving, so that the object of the present invention can be achieved.
惟以上所述者,僅為本發明之實施例而已,當不能以此限定本發明實施之範圍,凡是依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。 However, the above is only the embodiment of the present invention, and the scope of the invention is not limited thereto, and all the equivalent equivalent changes and modifications according to the scope of the patent application and the patent specification of the present invention are still The scope of the invention is covered.
200‧‧‧負載電容 200‧‧‧ load capacitance
1‧‧‧第一輸出級 1‧‧‧First output stage
11‧‧‧第一開關單元 11‧‧‧First switch unit
111‧‧‧第一開關 111‧‧‧First switch
112‧‧‧第二開關 112‧‧‧Second switch
113‧‧‧第一反相開關 113‧‧‧First Inverting Switch
114‧‧‧第二反相開關 114‧‧‧Secondary inverter switch
12‧‧‧第一緩衝單元 12‧‧‧First buffer unit
121‧‧‧第一電晶體 121‧‧‧First transistor
122‧‧‧第二電晶體 122‧‧‧Second transistor
2‧‧‧第二輸出級 2‧‧‧second output stage
21‧‧‧第二開關單元 21‧‧‧Second switch unit
211‧‧‧第三開關 211‧‧‧ third switch
212‧‧‧第四開關 212‧‧‧fourth switch
213‧‧‧第三反相開關 213‧‧‧ Third Inverting Switch
214‧‧‧第四反相開關 214‧‧‧fourth inverter switch
22‧‧‧第二緩衝單元 22‧‧‧Second buffer unit
221‧‧‧第三電晶體 221‧‧‧ Third transistor
222‧‧‧第四電晶體 222‧‧‧ Fourth transistor
3‧‧‧運算電路 3‧‧‧Operating circuit
Vo’‧‧‧輸出電壓 Vo’‧‧‧ output voltage
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105109362A TWI581233B (en) | 2016-03-25 | 2016-03-25 | Low power source drive circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105109362A TWI581233B (en) | 2016-03-25 | 2016-03-25 | Low power source drive circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI581233B true TWI581233B (en) | 2017-05-01 |
TW201734988A TW201734988A (en) | 2017-10-01 |
Family
ID=59367711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105109362A TWI581233B (en) | 2016-03-25 | 2016-03-25 | Low power source drive circuit |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI581233B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101192378A (en) * | 2006-11-22 | 2008-06-04 | 硕颉科技股份有限公司 | System capable of regulating drive ability of output stage |
CN101656534A (en) * | 2008-08-20 | 2010-02-24 | 旭曜科技股份有限公司 | Output-stage circuit and operational amplifier |
TW201029325A (en) * | 2009-01-22 | 2010-08-01 | Himax Tech Ltd | Output buffering circuit, amplifier device, and display device with reduced power consumption |
WO2015140665A1 (en) * | 2014-03-19 | 2015-09-24 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
-
2016
- 2016-03-25 TW TW105109362A patent/TWI581233B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101192378A (en) * | 2006-11-22 | 2008-06-04 | 硕颉科技股份有限公司 | System capable of regulating drive ability of output stage |
CN101656534A (en) * | 2008-08-20 | 2010-02-24 | 旭曜科技股份有限公司 | Output-stage circuit and operational amplifier |
TW201029325A (en) * | 2009-01-22 | 2010-08-01 | Himax Tech Ltd | Output buffering circuit, amplifier device, and display device with reduced power consumption |
WO2015140665A1 (en) * | 2014-03-19 | 2015-09-24 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
TW201734988A (en) | 2017-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9306572B2 (en) | Output buffer, gate electrode driving circuit and method for controlling the same | |
CN100361377C (en) | Inrush current limiting circuit for pulse frequency modwlation to control charge pump | |
CN107610632B (en) | Display driving circuit, power management device, display apparatus and driving method thereof | |
EA034004B1 (en) | Forward and reverse scanning-type goa circuit | |
TWI420497B (en) | Power-off control circuit and liquid crystal display panel comprising the same | |
CN109859670A (en) | A kind of shift register cell and its driving method, gate driving circuit | |
CN101114421A (en) | Output driver and diplay device | |
CN115225078B (en) | Level detection circuit and level conversion circuit | |
CN111342541A (en) | Power supply switching circuit | |
US8169209B2 (en) | Output driving circuit capable of reducing EMI effect | |
TWI515709B (en) | Display device and discharge control circuit thereof | |
CN111696462A (en) | Output buffer and operation method thereof | |
CN212514874U (en) | Power semiconductor device driving power supply short-circuit detection circuit | |
TWI581233B (en) | Low power source drive circuit | |
JP3036482B2 (en) | Output buffer circuit | |
CN113380210B (en) | Rapid power-down circuit and display device | |
JP2012244215A (en) | Semiconductor integrated circuit | |
US11621550B2 (en) | Overcurrent protection circuit, overcurrent protection method, clock signal generation circuit and display device | |
US11770120B2 (en) | Bootstrap circuit supporting fast charging and discharging and chip | |
JP2009124689A (en) | Level shifter, display screen driving circuit and image display system | |
CN210156919U (en) | Chip and electrostatic discharge protection circuit | |
CN100581061C (en) | Tri-state buffer prepared from low voltage complementary metal oxide semiconductor | |
CN106249453B (en) | Low-power source electrode driving circuit | |
CN100492910C (en) | Level converter using base bias | |
CN112421592A (en) | Chip and electrostatic discharge protection circuit |