TWI575545B - Method of fabricating capacitor - Google Patents
Method of fabricating capacitor Download PDFInfo
- Publication number
- TWI575545B TWI575545B TW104121661A TW104121661A TWI575545B TW I575545 B TWI575545 B TW I575545B TW 104121661 A TW104121661 A TW 104121661A TW 104121661 A TW104121661 A TW 104121661A TW I575545 B TWI575545 B TW I575545B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- conductive material
- dielectric layer
- capacitor
- manufacturing
- Prior art date
Links
Landscapes
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Ceramic Capacitors (AREA)
Description
本案是有關於一種半導體元件的製造方法,且特別是有關於一種電容器的製造方法。 The present invention relates to a method of fabricating a semiconductor device, and more particularly to a method of fabricating a capacitor.
一般的個人電腦,例如筆記本(notebook,NB)電腦,在中央處理單元(central processing unit,CPU)電源供應電路的電容(例如輸入電容)部分,常常使用多層陶瓷電容(Multi-Layer Ceramic Capacitor,MLCC)或是超級電容器(SC),其中超級電容器又稱為電雙層電容元件(electrical double layer capacitor,EDLC),以降低成本以及縮小元件面積。然而,一般的多層陶瓷電容或是超級電容的體積較大,且使用的溫度範圍也受到較大的限制,無法在低溫(如:低於-40℃)或是高溫(如:高於70℃)的範圍使用。 A typical personal computer, such as a notebook (NB) computer, often uses a multilayer ceramic capacitor (Multi-Layer Ceramic Capacitor, MLCC) in the capacitance (for example, input capacitance) of a central processing unit (CPU) power supply circuit. ) or a supercapacitor (SC), in which a supercapacitor is also called an electrical double layer capacitor (EDLC) to reduce cost and reduce component area. However, general multilayer ceramic capacitors or supercapacitors are bulky and the temperature range used is also limited, and cannot be low temperature (eg, below -40 ° C) or high temperature (eg, higher than 70 ° C). The scope of use).
本案提供一種電容器的製造方法,其具有輕薄化及快速充電的特性,具有大的使用溫度範圍。 The present invention provides a method of manufacturing a capacitor which has the characteristics of being light and thin and fast charging, and has a large temperature range of use.
本案提供的電容器的製造方法包括下列步驟。提供一基 材與一第一導電材料層,其中第一導電材料層位於基材上。移除部份第一導電材料層,以暴露出部分基材而形成多個第一內電極,其中這些第一內電極沿一第一方向排列,且相鄰的這些第一內電極之間具有一間隙。沿一第二方向進行一原子層沉積步驟,以形成一介電層,其中第一方向與第二方向垂直,以使介電層覆蓋這些第一內電極以及基材被暴露出的所述部份,且介電層未填滿這些間隙。形成一第二導電材料層,填入未被介電層填滿的這些間隙,以形成多個第二內電極。 The method of manufacturing the capacitor provided in the present application includes the following steps. Provide a base And a layer of first conductive material, wherein the first layer of conductive material is on the substrate. Removing a portion of the first conductive material layer to expose a portion of the substrate to form a plurality of first internal electrodes, wherein the first internal electrodes are arranged along a first direction, and between the adjacent first internal electrodes A gap. Performing an atomic layer deposition step along a second direction to form a dielectric layer, wherein the first direction is perpendicular to the second direction such that the dielectric layer covers the first inner electrodes and the exposed portions of the substrate And the dielectric layer does not fill these gaps. A second layer of conductive material is formed, filled in the gaps that are not filled by the dielectric layer to form a plurality of second internal electrodes.
基於上述,本案的實施例的電容器的製造方法由於可利用原子層沉積法形成介電層,因此能形成厚度均勻而且很薄的介電層,而可具有輕薄化及快速充電的特性。此外,由於電容器是採用氮化物或金屬的材質來形成第一內電極與第二內電極,並採用鈦酸鋇、鈦酸鍶或鈦酸鍶鋇的材質來堆疊地形成介電層,且採用金屬的材質來形成第一外電極與第二外電極。因此,本實施例的電容器可具有較大的溫度使用範圍,因此可克服較為嚴苛的溫度條件。 Based on the above, the capacitor manufacturing method of the embodiment of the present invention can form a dielectric layer by atomic layer deposition, thereby forming a dielectric layer having a uniform thickness and a thin thickness, and can have characteristics of lightness and lightness and rapid charging. In addition, since the capacitor is formed of a material of nitride or metal to form the first inner electrode and the second inner electrode, and the material is formed by stacking materials of barium titanate, barium titanate or barium titanate, and adopting The metal material is used to form the first outer electrode and the second outer electrode. Therefore, the capacitor of the present embodiment can have a large temperature use range, and thus can overcome relatively severe temperature conditions.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.
100‧‧‧電容器 100‧‧‧ capacitor
110‧‧‧基材 110‧‧‧Substrate
120‧‧‧第一內電極 120‧‧‧First internal electrode
120a‧‧‧第一導電材料層 120a‧‧‧First conductive material layer
130‧‧‧介電層 130‧‧‧Dielectric layer
140‧‧‧第二內電極 140‧‧‧Second internal electrode
140a‧‧‧第二導電材料層 140a‧‧‧Second conductive material layer
150‧‧‧第二外電極 150‧‧‧Second external electrode
D1‧‧‧第一方向 D1‧‧‧ first direction
D2‧‧‧第二方向 D2‧‧‧ second direction
S‧‧‧間隙 S‧‧‧ gap
圖1至圖5是本案一實施例的電容器的製作流程的剖面示意圖。 1 to 5 are schematic cross-sectional views showing a manufacturing process of a capacitor according to an embodiment of the present invention.
圖1至圖5是本案一實施例的電容器的製作流程的剖面示意圖。請參照圖1,首先,提供一基材110與一第一導電材料層120a,其中第一導電材料層120a位於基材110上。舉例而言,在本實施例中,基材110的材質包括金屬(例如是銅、銀或鋁),因此基材110可作為第一外電極使用。此外,第一導電材料層120a的材質包括氮化物(例如是一氮化鈦(TiN)、氮化鉭(TaN)或是氮化銅(CuN))、金屬(例如是銅、鉑、銀、釕(Ru)或鎳)或其他適合的材質,但本發明不以此為限。 1 to 5 are schematic cross-sectional views showing a manufacturing process of a capacitor according to an embodiment of the present invention. Referring to FIG. 1, first, a substrate 110 and a first conductive material layer 120a are provided, wherein the first conductive material layer 120a is located on the substrate 110. For example, in the present embodiment, the material of the substrate 110 includes a metal (for example, copper, silver or aluminum), and thus the substrate 110 can be used as the first external electrode. In addition, the material of the first conductive material layer 120a includes a nitride (for example, titanium nitride (TiN), tantalum nitride (TaN) or copper nitride (CuN)), and metal (for example, copper, platinum, silver, Ruthenium (Ru) or nickel) or other suitable materials, but the invention is not limited thereto.
接著請參照圖2,移除部份第一導電材料層120a,以暴露出部分基材110而形成多個第一內電極120,其中這些第一內電極120沿一第一方向D1排列,且相鄰的第一內電極120之間具有一間隙S。於一實施例中,第一導電材料層120a採用氮化物(例如是一氮化鈦)時,其可採用四氟化碳(CF4)與氬(Ar)的感應耦合電漿進行蝕刻,其中四氟化碳(CF4)約佔20%的比例,製程條件為以700瓦特的功率、-150伏特的電壓,且製程溫度約為攝氏40度左右、壓力約為15毫托。於一實施例中,第一導電材料層120a為金屬(例如是銅),其可採用烴類(例如甲烷氣體)電漿進行蝕刻,其中甲烷氣體的氣體流量約為65sccm,且製程溫度約為攝氏10度左右、壓力約為20毫托。應注意的是,如上述於本步驟中移除部份第一導電材料層的方法當是實際狀況調整,並非以此為限制。 Referring to FIG. 2, a portion of the first conductive material layer 120a is removed to expose a portion of the substrate 110 to form a plurality of first internal electrodes 120, wherein the first internal electrodes 120 are aligned along a first direction D1, and There is a gap S between the adjacent first inner electrodes 120. In an embodiment, when the first conductive material layer 120a is made of a nitride (for example, titanium nitride), it may be etched by using an inductively coupled plasma of carbon tetrafluoride (CF 4 ) and argon (Ar), wherein Carbon tetrafluoride (CF 4 ) accounts for about 20% of the ratio. The process conditions are 700 watts of power, -150 volts, and the process temperature is about 40 degrees Celsius and the pressure is about 15 milliTorr. In one embodiment, the first conductive material layer 120a is a metal (for example, copper), which can be etched by using a hydrocarbon (for example, methane gas) plasma, wherein the gas flow rate of the methane gas is about 65 sccm, and the process temperature is about The temperature is about 10 degrees Celsius and the pressure is about 20 milliTorr. It should be noted that the method of removing a portion of the first conductive material layer in the present step as described above is an actual condition adjustment, and is not limited thereto.
接著請參照圖3,沿一第二方向D2進行一原子層沉積步驟,以形成一介電層130。也就是說,在本實施例中,介電層130是利用原子層沉積法而形成,且第二方向D2即為用以形成介電層130的前驅物的流動方向。更詳細而言,在本實施例中,第一方向D1與第二方向D2垂直。如此一來,即可在只進行一次原子層沉積步驟的情況下,就形成所需的介電層130,而不用反覆進行多次原子層沉積步驟,而可降低製程難度以及節省製程步驟與成本。 Next, referring to FIG. 3, an atomic layer deposition step is performed along a second direction D2 to form a dielectric layer 130. That is, in the present embodiment, the dielectric layer 130 is formed by atomic layer deposition, and the second direction D2 is the flow direction of the precursor for forming the dielectric layer 130. In more detail, in the present embodiment, the first direction D1 is perpendicular to the second direction D2. In this way, the desired dielectric layer 130 can be formed in only one atomic layer deposition step, without repeatedly performing multiple atomic layer deposition steps, thereby reducing process difficulty and saving process steps and costs. .
具體而言,如圖3所示,介電層130填入這些間隙S之間,並覆蓋第一內電極120以及基材110被暴露出的所述部份,而未填滿這些間隙S。舉例而言,在本實施例中,介電層130的材質包括鈦酸鋇(BTO,BaTiO3)、鈦酸鍶(STO,SrTiO3)或鈦酸鍶鋇(BST),且介電層130以堆疊方式形成,而介電層130的厚度範圍落在5奈米與50奈米之間。舉例而言,上述原子層沉積步驟約在以壓力為1托,且製程溫度約介於攝氏200度至攝氏400度的範圍的製程條件下進行。應注意的是,此處的數值範圍皆僅是做為例示說明之用,其並非用以限定本發明。 Specifically, as shown in FIG. 3, the dielectric layer 130 is filled between the gaps S and covers the first inner electrode 120 and the portion of the substrate 110 exposed without filling the gaps S. For example, in the embodiment, the material of the dielectric layer 130 includes barium titanate (BTO, BaTiO 3 ), barium titanate (STO, SrTiO 3 ) or barium titanate (BST), and the dielectric layer 130 is stacked. The manner is formed, and the thickness of the dielectric layer 130 ranges between 5 nm and 50 nm. For example, the above-described atomic layer deposition step is performed under a process condition of a pressure of 1 Torr and a process temperature of about 200 degrees Celsius to 400 degrees Celsius. It should be noted that the numerical ranges herein are for illustrative purposes only and are not intended to limit the invention.
之後,可執行遠程氧電漿退火製程或是離子注入退火製程。於一實施例中,遠程氧電漿退火製程例如是於壓力為200毫托、而溫度為250℃至500℃的環境中進行。離子注入退火製程可採用鋯(Zr)、鑭(La)、鈰(Ce)、鈷(Co)、錳(Mn),其中當採用鈷或錳等金屬進行離子注入退火製程時,其製程條件例如是以250仟電子伏特,並在溫度為350℃的環境中進行離子注入,而 在溫度為700℃的環境中進行退火。應注意的是,此處的數值範圍皆僅是做為例示說明之用,其並非用以限定本發明。 Thereafter, a remote oxygen plasma annealing process or an ion implantation annealing process can be performed. In one embodiment, the remote oxygen plasma annealing process is performed, for example, in an environment having a pressure of 200 mTorr and a temperature of 250 to 500 °C. The ion implantation annealing process may be performed by using zirconium (Zr), lanthanum (La), cerium (Ce), cobalt (Co), or manganese (Mn). When a metal such as cobalt or manganese is used for the ion implantation annealing process, the process conditions are as follows. Is ion implantation at 250 仟 electron volts and at 350 ° C. Annealing was carried out in an environment at a temperature of 700 °C. It should be noted that the numerical ranges herein are for illustrative purposes only and are not intended to limit the invention.
接著請參照圖4,形成一第二導電材料層140a,填入這些未被介電層130填滿的間隙S,以形成多個第二內電極140。舉例而言,在本實施例中,形成第二導電材料層140a的方法亦為原子層沉積法,且第二導電材料層140a的材質包括氮化物(例如是一氮化鈦(TiN)、氮化鉭(TaN)或氮化銅(CuN))、金屬(例如是銅、鉑、銀、釕(Ru)或鎳)或其他適合的材質,但本案不以此為限。舉例而言,當第二導電材料層140a的材質採用氮化物時,其原子層沉積的製程條件約在以壓力約介於為0.01毫托至0.1毫托,且製程溫度約介於攝氏300度至攝氏450度的範圍的環境下進行。而當第二導電材料層140a的材質採用金屬時,其原子層沉積的製程條件約在以壓力約為8托,且製程溫度約介於攝氏375度至攝氏475度的範圍的環境下進行。應注意的是,此處的數值範圍皆僅是做為例示說明之用,其並非用以限定本發明。 Next, referring to FIG. 4, a second conductive material layer 140a is formed to fill the gaps S which are not filled by the dielectric layer 130 to form a plurality of second internal electrodes 140. For example, in the embodiment, the method of forming the second conductive material layer 140a is also an atomic layer deposition method, and the material of the second conductive material layer 140a includes a nitride (for example, titanium nitride (TiN), nitrogen. Tantalum (TaN) or copper nitride (CuN), metal (for example, copper, platinum, silver, ruthenium (Ru) or nickel) or other suitable materials, but the case is not limited thereto. For example, when the material of the second conductive material layer 140a is nitride, the process conditions for atomic layer deposition are about 0.01 mTorr to 0.1 mTorr at a pressure of about 10 degrees Celsius, and the process temperature is about 300 degrees Celsius. It is carried out in an environment of a range of 450 degrees Celsius. When the material of the second conductive material layer 140a is made of metal, the process conditions for atomic layer deposition are performed under an environment of a pressure of about 8 Torr and a process temperature of about 375 degrees Celsius to 475 degrees Celsius. It should be noted that the numerical ranges herein are for illustrative purposes only and are not intended to limit the invention.
具體而言,如圖4所示,這些第一內電極120與這些第二內電極140交錯排列,且介電層130位於這些第一內電極120與這些第二內電極140之間,並覆蓋這些第一內電極120與這些第二內電極140的表面。 Specifically, as shown in FIG. 4 , the first inner electrodes 120 are staggered with the second inner electrodes 140 , and the dielectric layer 130 is located between the first inner electrodes 120 and the second inner electrodes 140 and covered. These first inner electrodes 120 and the surfaces of these second inner electrodes 140.
接著請參照圖5,形成一第二外電極150於這些第二內電極140上,且第二外電極150亦覆蓋了位於這些第二內電極140之間的部份介電層130,如此,即可形成電容器100。舉例而言, 在本實施例中,形成第二外電極150的方法為物理氣相沉積法,且第二外電極150的材質包括金屬(例如是銅或銀)或其他適合的材質,但本發明不以此為限。當第二外電極150的材質採用銅時,其製程條件約在以基礎壓力約為3.1*10-6大氣壓、工作氣壓約為3.3*10-2大氣壓的環境下進行濺鍍,且製程溫度約介於攝氏300度至攝氏400度的範圍的環境下進行。應注意的是,此處的數值範圍皆僅是做為例示說明之用,其並非用以限定本發明。 Referring to FIG. 5, a second outer electrode 150 is formed on the second inner electrodes 140, and the second outer electrode 150 also covers a portion of the dielectric layer 130 between the second inner electrodes 140. The capacitor 100 can be formed. For example, in this embodiment, the method of forming the second outer electrode 150 is a physical vapor deposition method, and the material of the second outer electrode 150 includes a metal (for example, copper or silver) or other suitable materials, but The invention is not limited to this. When the material of the second outer electrode 150 is made of copper, the process conditions are about to be sputtered in an environment with a base pressure of about 3.1*10 -6 atm and an operating pressure of about 3.3*10 -2 atm, and the process temperature is about It is carried out in an environment ranging from 300 degrees Celsius to 400 degrees Celsius. It should be noted that the numerical ranges herein are for illustrative purposes only and are not intended to limit the invention.
如此,由於電容器100是在第一內電極120上利用原子層沉積法形成介電層130,而可形成厚度均勻而且很薄的介電層130。舉例而言,設若電容器100長30毫米(mm)、寬30毫米、高5毫米,在本實施例中,介電層130將可達到厚度50奈米(nm)、內電極厚度5奈米,且在介電層130採用的材質為碳酸鋇(BaTiO3),其介電值為1500的情況下,電容器100將可以具有43.4法拉第(F)的電容量。因此,電容器100與習知的超級電容器相較,將可有10倍以上體積能量密度表現。若再把電容器100的介電層130做到更小約5奈米左右,其電容量可增為100倍左右,而可具有輕薄化及快速充電的特性。應注意的是,此處的數值範圍皆僅是做為例示說明之用,其並非用以限定本發明。 Thus, since the capacitor 100 is formed on the first internal electrode 120 by the atomic layer deposition method, the dielectric layer 130 can be formed to have a uniform thickness and a thin thickness. For example, if the capacitor 100 is 30 millimeters (mm) long, 30 millimeters wide, and 5 millimeters high, in the present embodiment, the dielectric layer 130 can reach a thickness of 50 nanometers (nm) and an inner electrode thickness of 5 nanometers. Further, when the material used for the dielectric layer 130 is barium carbonate (BaTiO 3 ) and the dielectric value is 1500, the capacitor 100 may have a capacitance of 43.4 Faraday (F). Therefore, the capacitor 100 will be able to exhibit an energy density of more than 10 times as compared with the conventional supercapacitor. If the dielectric layer 130 of the capacitor 100 is further reduced by about 5 nm, the capacitance can be increased by about 100 times, and the characteristics of thinness and fast charging can be achieved. It should be noted that the numerical ranges herein are for illustrative purposes only and are not intended to limit the invention.
另一方面,由於電容器100是採用氮化物或金屬的材質來形成第一內電極120與第二內電極140,並採用鈦酸鋇、鈦酸鍶或鈦酸鍶鋇等的材質來堆疊地形成介電層130,且採用金屬的材質來形成第一外電極與第二外電極150。因此,本實施例的電容器 100可具有較大的溫度使用範圍,舉例而言,電容器100的溫度使用範圍落在-55℃與125℃之間,且於此區間內,其電容量的變化不超過10%,因此可克服較為嚴苛的溫度條件。 On the other hand, since the capacitor 100 is made of a material of nitride or metal to form the first inner electrode 120 and the second inner electrode 140, and is formed by stacking materials such as barium titanate, barium titanate or barium titanate. The dielectric layer 130 is made of a metal material to form the first outer electrode and the second outer electrode 150. Therefore, the capacitor of this embodiment 100 may have a larger temperature use range. For example, the temperature range of the capacitor 100 falls between -55 ° C and 125 ° C, and the capacitance changes within this interval does not exceed 10%, so it can be overcome More stringent temperature conditions.
此外,由於本實施例的電容器100的電容量已有良好的表現,因此可不需進行熱處理製程來提高介電係數,進而達到增加電容器100的電容量的要求。如此,在不進行熱處理製程的情況下,電容器100亦具有可撓性,而具有較廣泛的應用範圍。另一方面,本實施例的電容器100不需傳統堆疊的製程,而可一次性地完成精密堆疊的多層陶瓷電容,且因其電容大到已可作為電池使用,因此本實施例的電容器100亦可稱為多層陶瓷電池(Multi-Layer Ceramic Battery,MLCB)。 In addition, since the capacitance of the capacitor 100 of the present embodiment has been well represented, it is not necessary to perform a heat treatment process to increase the dielectric constant, thereby achieving the requirement of increasing the capacitance of the capacitor 100. Thus, the capacitor 100 also has flexibility without a heat treatment process, and has a wide range of applications. On the other hand, the capacitor 100 of the present embodiment does not require a conventional stacking process, but can complete the precision stacked multilayer ceramic capacitor at one time, and since the capacitance is large enough to be used as a battery, the capacitor 100 of the embodiment is also It can be called a Multi-Layer Ceramic Battery (MLCB).
綜上所述,本發明的實施例的電容器的製造方法由於可利用原子層沉積法形成介電層,因此能形成厚度均勻而且很薄的介電層,而可具有輕薄化及快速充電的特性。此外,由於電容器是採用氮化物或金屬的材質來形成第一內電極與第二內電極,並採用鈦酸鋇、鈦酸鍶或鈦酸鍶鋇的材質來堆疊地形成介電層,且採用金屬的材質來形成第一外電極與第二外電極。因此,本實施例的電容器可具有較大的溫度使用範圍,因此可克服較為嚴苛的溫度條件。 As described above, since the capacitor manufacturing method of the embodiment of the present invention can form a dielectric layer by atomic layer deposition, it is possible to form a dielectric layer having a uniform thickness and a thin thickness, and can have characteristics of lightness and lightness and rapid charging. . In addition, since the capacitor is formed of a material of nitride or metal to form the first inner electrode and the second inner electrode, and the material is formed by stacking materials of barium titanate, barium titanate or barium titanate, and adopting The metal material is used to form the first outer electrode and the second outer electrode. Therefore, the capacitor of the present embodiment can have a large temperature use range, and thus can overcome relatively severe temperature conditions.
雖然本案已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當 視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and those skilled in the art can make some modifications and refinements without departing from the spirit and scope of the present invention. Scope of protection of the invention The scope defined in the attached patent application shall prevail.
100‧‧‧電容器 100‧‧‧ capacitor
110‧‧‧基材 110‧‧‧Substrate
120‧‧‧第一內電極 120‧‧‧First internal electrode
130‧‧‧介電層 130‧‧‧Dielectric layer
140‧‧‧第二內電極 140‧‧‧Second internal electrode
150‧‧‧第二外電極 150‧‧‧Second external electrode
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104121661A TWI575545B (en) | 2015-07-03 | 2015-07-03 | Method of fabricating capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104121661A TWI575545B (en) | 2015-07-03 | 2015-07-03 | Method of fabricating capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201703078A TW201703078A (en) | 2017-01-16 |
TWI575545B true TWI575545B (en) | 2017-03-21 |
Family
ID=58401055
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104121661A TWI575545B (en) | 2015-07-03 | 2015-07-03 | Method of fabricating capacitor |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI575545B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW538528B (en) * | 2001-12-31 | 2003-06-21 | Memscap Co Ltd | Electronic component incorporating an integrated circuit and a planar microcapacitor |
TW200845232A (en) * | 2007-03-08 | 2008-11-16 | Applied Materials Inc | Method and apparatus for fabricating a high dielectric constant transistor gate using a low energy plasma system |
-
2015
- 2015-07-03 TW TW104121661A patent/TWI575545B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW538528B (en) * | 2001-12-31 | 2003-06-21 | Memscap Co Ltd | Electronic component incorporating an integrated circuit and a planar microcapacitor |
TW200845232A (en) * | 2007-03-08 | 2008-11-16 | Applied Materials Inc | Method and apparatus for fabricating a high dielectric constant transistor gate using a low energy plasma system |
Also Published As
Publication number | Publication date |
---|---|
TW201703078A (en) | 2017-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8861182B2 (en) | Conductive paste composition for internal electrode, multilayer ceramic capacitor, and fabrication method thereof | |
US9431474B2 (en) | Metal-insulator-metal stack and method for manufacturing the same | |
US8861179B2 (en) | Capacitors having dielectric regions that include multiple metal oxide-comprising materials | |
US20190096584A1 (en) | Multilayer ceramic capacitor and method of manufacturing the same | |
KR101922864B1 (en) | Multi-Layered ceramic electronic parts and manufacturing method thereof | |
JP2017204630A (en) | Thin film capacitor and manufacturing method thereof | |
WO2011002603A2 (en) | Methods of forming capacitors | |
WO2009090979A1 (en) | Capacitor, semiconductor device, method for manufacturing the capacitor, and method for manufacturing the semiconductor device | |
US8993044B2 (en) | Methods of forming capacitors having dielectric regions that include multiple metal oxide-comprising materials | |
US10403434B2 (en) | Capacitor component | |
KR101892632B1 (en) | Semicontuctor memory device having platinum group oxide-tin oxide compound and manufacturing method thereof | |
US11322302B2 (en) | Multilayer electronic component | |
US20120113561A1 (en) | Capacitor device and method for forming the same | |
JP2007234726A (en) | Semiconductor device and its fabrication process | |
TWI575545B (en) | Method of fabricating capacitor | |
Randall et al. | Thin film MLCC | |
US9887258B2 (en) | Method for fabricating capacitor | |
KR20170119119A (en) | Capacitor for semicontuctor memory device and manufacturing method thereof | |
CN1630085A (en) | Capacitor for semiconductor device and method for manufacturing same | |
US20150162134A1 (en) | Multilayer thin film for ceramic electronic component and method for manufacturing the same | |
KR101475996B1 (en) | Insulator, capacitor with the same and fabricating method thereof, and method for fabricating semiconductor device | |
CN110970557A (en) | Capacitor device and method of forming the same | |
US11961671B2 (en) | Method for manufacturing High-K MIM capacitor to improve electrical characteristics | |
TWI434305B (en) | Capacitor and manufacturing method thereof | |
US11955287B2 (en) | Multilayer electronic component |