TWI574336B - Reclaimed susceptor and method for repairing the same - Google Patents

Reclaimed susceptor and method for repairing the same Download PDF

Info

Publication number
TWI574336B
TWI574336B TW102142247A TW102142247A TWI574336B TW I574336 B TWI574336 B TW I574336B TW 102142247 A TW102142247 A TW 102142247A TW 102142247 A TW102142247 A TW 102142247A TW I574336 B TWI574336 B TW I574336B
Authority
TW
Taiwan
Prior art keywords
wafer carrier
powder
carbide
tantalum
recycled
Prior art date
Application number
TW102142247A
Other languages
Chinese (zh)
Other versions
TW201521133A (en
Inventor
顏天淵
Original Assignee
顏天淵
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 顏天淵 filed Critical 顏天淵
Priority to TW102142247A priority Critical patent/TWI574336B/en
Publication of TW201521133A publication Critical patent/TW201521133A/en
Application granted granted Critical
Publication of TWI574336B publication Critical patent/TWI574336B/en

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

回收再生晶圓承載盤及其修復方法 Recycled wafer carrier tray and repairing method thereof

本發明涉及一種回收再生晶圓承載盤及其修復方法,尤指一種用於有機金屬化學氣相沉積[Metal Organic Chemical Vapor Deposition,MOCVD]磊晶爐之晶圓承載盤[susceptor,wafer carrier or substrate holder]的回收再生及其修復。 The invention relates to a recycled wafer carrier disk and a repairing method thereof, in particular to a wafer carrier disk for a metal organic chemical vapor deposition (MOCVD) epitaxial furnace [susceptor, wafer carrier or substrate] Recycling and repair of the holder].

高功率高亮度氮化鎵[GaN]系發光二極體[Light Emitting Diode,LED]為固態照明的核心材料,而MOCVD磊晶爐是製做GaN系LED磊晶圓不可或缺的設備。 High-power high-brightness gallium nitride [GaN] light emitting diodes (LEDs) are the core materials for solid-state lighting, and MOCVD epitaxial furnaces are indispensable for making GaN-based LEDs.

MOCVD磊晶爐集精密機械、半導體材料、真空電子、流體力學、熱學、光學、化學等學科為一體,是一種自動化程度高、價格昂貴、技術集成度高的先進半導體材料製造專用設備。 MOCVD epitaxial furnace integrates precision machinery, semiconductor materials, vacuum electronics, fluid mechanics, thermals, optics, chemistry and other disciplines. It is a specialized equipment for the manufacture of advanced semiconductor materials with high degree of automation, high price and high technology integration.

MOCVD磊晶製程乃利用有機金屬化合物熱分解反應進行氣相磊晶生長半導體材料的方法。 The MOCVD epitaxial process is a method of vapor phase epitaxial growth of a semiconductor material by thermal decomposition of an organometallic compound.

MOCVD磊晶爐的主要系統組件包含:反應腔、反應氣體供應系統及廢氣處理系統;反應腔為氣體混合與發生反應的地方,腔體與反應氣體供應系統連接,藉由噴嘴或噴氣頭[showerhead]將反應氣體混合並輸送至磊晶圓表面。 The main system components of the MOCVD epitaxial furnace include: reaction chamber, reactive gas supply system and exhaust gas treatment system; the reaction chamber is where the gas mixes and reacts, and the chamber is connected to the reaction gas supply system by nozzle or jet head [showerhead] The reaction gases are mixed and delivered to the surface of the epitaxial wafer.

腔體中則包含晶圓承載盤、加熱器等,晶圓承載盤需有效吸 收加熱器提供的能量,並經由與晶圓直接熱接觸或以熱輻射方式,來加熱晶圓,使其達到磊晶生長反應所需溫度。 The cavity includes a wafer carrier, a heater, etc., and the wafer carrier needs to be effectively sucked. The energy provided by the heater is received and heated by direct thermal contact with the wafer or by thermal radiation to achieve the temperature required for the epitaxial growth reaction.

因此,晶圓承載盤必須具備良好的電磁波吸收和熱傳性質,以確保盤面溫度分佈均勻;通常一個設計良好的MOCVD反應腔,為了精確調控LED磊晶圓發光波長均勻性,其晶圓承載盤需配合加熱器,以提供最佳化晶圓溫度均勻性,以沉積品質良好的磊晶層,故晶圓承載盤為MOCVD磊晶爐中的重要零組件之一。 Therefore, the wafer carrier must have good electromagnetic wave absorption and heat transfer properties to ensure uniform temperature distribution on the disk surface; usually a well-designed MOCVD reaction cavity, in order to accurately control the wavelength uniformity of LED epitaxial wafers, the wafer carrier disk The heater is required to provide optimum wafer temperature uniformity to deposit a good quality epitaxial layer, so the wafer carrier is one of the important components in the MOCVD epitaxial furnace.

如第1圖所示為傳統單片式晶圓承載盤示意圖,而第2圖所示為傳統多片式晶圓承載盤示意圖;再參考第3圖,傳統晶圓承載盤(10)通常採用石墨底材(20)製作而成,表面上再利用CVD法鍍了一層厚度約70至120μm的碳化矽[SiC]鍍層(30)。 Figure 1 is a schematic diagram of a conventional monolithic wafer carrier, and Figure 2 is a schematic diagram of a conventional multi-chip wafer carrier. Referring to Figure 3, a conventional wafer carrier (10) is generally used. The graphite substrate (20) was fabricated, and a ruthenium carbide [SiC] plating layer (30) having a thickness of about 70 to 120 μm was deposited on the surface by CVD.

其中,碳化矽鍍層(30)的主要功能如下所示: Among them, the main functions of the ruthenium carbide coating (30) are as follows:

第一點:保護石墨底材(20)免於被MOCVD磊晶製程中的氨氣[NH3]反應氣體侵蝕;碳化矽材料具有極佳的高溫化學穩定性,且CVD碳化矽鍍層(30)是一緻密的氣相生長多晶膜,在石墨表面鍍碳化矽後,能有效隔絕MOCVD製程氣體。 First point: Protect the graphite substrate (20) from the ammonia [NH 3 ] reaction gas in the MOCVD epitaxial process; the tantalum carbide material has excellent high temperature chemical stability, and the CVD tantalum carbide coating (30) It is a dense vapor-grown polycrystalline film that can effectively isolate MOCVD process gases after the surface of the graphite is coated with tantalum.

第二點:石墨底材(20)在高溫下容易大量放氣[outgassing],釋出的氣體會污染MOCVD製程反應氣氛,降低磊晶層品質,石墨製之傳統晶圓承載盤(10)鍍上碳化矽鍍層(30)密封後,可有效防止此放氣現象。 The second point: the graphite substrate (20) is easy to vent out at high temperature [outgassing], the released gas will pollute the reaction atmosphere of the MOCVD process, reduce the quality of the epitaxial layer, and the conventional wafer carrier disk (10) coated with graphite After the upper carbonized ruthenium plating layer (30) is sealed, the deflation phenomenon can be effectively prevented.

第三點:提高石墨製之傳統晶圓承載盤(10)的熱傳性質,由於碳化矽的熱傳導與熱輻射係數皆高於石墨,在石墨表面鍍上一層碳化矽可獲得較佳的盤面均溫性。 The third point: to improve the heat transfer properties of the conventional wafer carrier disk (10) made of graphite. Since the heat conduction and thermal emissivity of the tantalum carbide are higher than that of graphite, a better layer of the disk can be obtained by plating a layer of tantalum carbide on the surface of the graphite. Gentle.

第四點:由於石墨材料表面易於剝離產生粉塵,會對磊晶片造成微粒(particle)污染,以CVD碳化矽鍍膜後形成高硬度耐磨表層,不易 產生微粒。 Fourth point: Since the surface of the graphite material is easily peeled off to generate dust, it will cause particle contamination of the epitaxial wafer, and it is difficult to form a high hardness and wear-resistant surface layer after coating with CVD carbonized ruthenium. Produce particles.

晶圓承載盤在使用過程中,可能因晶圓相對運動的碰撞、或是機械搬送過程的碰撞、又或者是人為意外碰撞等外來撞擊,造成崩角[chipping]或碳化矽膜層(30)破損的狀況,導致石墨底材(20)外露,此時傳統晶圓承載盤(10)就必須報廢。 During the use of the wafer carrier disk, it may be caused by a collision of relative movement of the wafer, a collision of a mechanical transfer process, or an external collision such as an accidental collision, resulting in a chipping or a ruthenium carbide layer (30). The damaged condition causes the graphite substrate (20) to be exposed, and the conventional wafer carrier tray (10) must be scrapped.

即使無上述狀況,通常一般傳統晶圓承載盤(10)在使用一段時間後,也可能因為熱應力作用或表面輕微碰撞、刮傷而產生裂紋[crack],又或者是因氨氣[NH3]的蝕刻作用於碳化矽鍍層(30)的缺陷處,產生蝕孔[etch pit]。 Even if there is no such situation, usually the conventional wafer carrier disk (10) may be cracked due to thermal stress or slight collision or scratch on the surface after a period of use, or it may be caused by ammonia [NH 3 The etching acts on the defect of the tantalum carbide coating (30) to create an etch pit.

而這些裂紋或蝕孔,在承載盤工作過程中的循環熱應力幫助下,會被加速傳播或擴大,一旦穿過碳化矽鍍層(30)到達石墨底材(20),就會形成蝕刻石墨底材(20)的反應氣體通道。 These cracks or etched holes are accelerated or expanded with the help of cyclic thermal stress during the operation of the carrier. Once the graphite substrate (20) is passed through the ruthenium carbide coating (30), an etched graphite bottom is formed. The reaction gas channel of the material (20).

氨氣[NH3]在400℃以上開始分解釋出原子態氫[H],GaN系LED在MOCVD磊晶製程時的承載盤溫度,可高達約1200℃,在此高溫下,氨氣將迅速分解釋出大量原子態氫;而原子態氫對石墨相的碳,有很強的反應性,若通過擴大的裂紋或蝕孔接觸到石墨底材(20),原子態氫將強烈蝕刻石墨,反應生成氣態碳氫化合物,並混入氣相磊晶生長的氣氛中,使得磊晶層中的碳濃度逐漸升高,最終影響所生長LED的發光波長與亮度,此時承載盤即需考慮汰換更新。 Ammonia gas [NH 3 ] begins to explain atomic hydrogen [H] at temperatures above 400 ° C. The carrier disk temperature of GaN-based LEDs during MOCVD epitaxial process can be as high as about 1200 ° C. At this high temperature, ammonia gas will rapidly A large amount of atomic hydrogen is explained. The atomic hydrogen is highly reactive to the carbon of the graphite phase. If the graphite substrate (20) is contacted by enlarged cracks or etched holes, the atomic hydrogen will strongly etch the graphite. The reaction generates gaseous hydrocarbons and is mixed into the atmosphere of epitaxial epitaxial growth, so that the concentration of carbon in the epitaxial layer gradually increases, which ultimately affects the wavelength and brightness of the LEDs grown. At this time, the carrier disk needs to be replaced. Update.

當石墨底材(20)被原子態氫大量蝕刻反應後,留下底材被淘空的碳化矽表層,通常此處碳化矽鍍層(30)的顏色會由原本的藍灰色變成帶點橘色。 When the graphite substrate (20) is etched by a large amount of atomic hydrogen, the surface of the ruthenium carbide substrate whose substrate is emptied is left. Usually, the color of the ruthenium carbide coating (30) changes from the original blue-gray to a yellowish color. .

懸空的碳化矽鍍層(30)在隨後的使用過程中,易於破裂、剝離、或崩塌成為破洞,就如第4圖所示,出現大面積石墨底材(20)外露,此 時承載盤就必須報廢;實際上報廢晶圓承載盤(100)上,除了肉眼可見的破損孔洞和一些碳化矽鍍層(30)中的微小裂紋和蝕孔以外,大部份的碳化矽鍍層(30)仍舊完好,整體晶圓承載盤結構也仍完整。 The suspended ruthenium carbide coating (30) is easily broken, peeled, or collapsed into a hole during subsequent use. As shown in Fig. 4, a large-area graphite substrate (20) is exposed. The carrier tray must be scrapped; in fact, most of the silicon carbide coatings (100) are scrapped on the wafer carrier tray (100) except for the visible holes visible in the naked eye and some tiny cracks and etch holes in the ruthenium carbide coating (30). 30) Still intact, the overall wafer carrier structure is still intact.

但是,長期以來報廢的晶圓承載盤,就只能丟棄,最終淪為事業廢棄物,回收再生晶圓承載盤目前仍不可得。 However, wafer carriers that have been scrapped for a long time can only be discarded and eventually become commercial waste. Recycled wafer carrier trays are still not available.

有鑑於此,如何提供一種有效性的回收再生晶圓承載盤以及其修復方法,便成為本發明欲改進的課題。 In view of the above, how to provide an effective recycled wafer carrier disk and a repair method thereof are the subject of improvement of the present invention.

本發明之目的在於提供一種能解決晶圓承載盤報廢問題的回收再生晶圓承載盤及其修復方法。 The object of the present invention is to provide a recycled wafer carrier disk capable of solving the problem of scrapping a wafer carrier disk and a repairing method thereof.

為解決上述問題及達到本發明的目的,本發明在結構方面的技術手段是這樣實現的,一種回收再生晶圓承載盤結構,尤指一種回收再生晶圓承載盤,該回收再生晶圓承載盤(200)係針對報廢晶圓承載盤(100)再加工製成,該報廢晶圓承載盤(100)是石墨底材(20)且表面上鍍有一原有碳化矽鍍層(102),於該報廢晶圓承載盤(100)上具有破損孔洞(101),該孔洞(101)是在石墨底材(20)及原有碳化矽鍍層(102)上所形成的凹陷,其特徵在於:在報廢晶圓承載盤(100)的破損孔洞(101)處,以碳化矽基陶瓷複合材料(C)予以補平而形成完整的修補區(1);在上述報廢晶圓承載盤(100)的整體表面及該修補區(1)表面,更均勻披覆一層新沉積的碳化矽層(2)。 In order to solve the above problems and achieve the object of the present invention, the technical means of the present invention is realized by the structure of the recycled wafer carrier, especially a recycled wafer carrier, the recycled wafer carrier. (200) is produced by reprocessing a scrap wafer carrier (100), which is a graphite substrate (20) and is coated with an original tantalum carbide coating (102) on the surface. The scrapped wafer carrier tray (100) has a damaged hole (101) which is a recess formed on the graphite substrate (20) and the original tantalum carbide coating (102), characterized in that it is scrapped. The damaged hole (101) of the wafer carrier disk (100) is filled with the carbonized cerium-based ceramic composite material (C) to form a complete repairing area (1); the whole of the scrapped wafer carrier disk (100) The surface and the surface of the repaired area (1) are more evenly coated with a newly deposited layer of tantalum carbide (2).

更優選的是,所述原有碳化矽鍍層(102)上更包括裂紋(103)或蝕孔(104),而在裂紋(103)或蝕孔(104)內均勻結合新沉積的碳化矽層(2)。 More preferably, the original ruthenium carbide coating (102) further comprises a crack (103) or an etched hole (104), and uniformly bonds the newly deposited tantalum carbide layer in the crack (103) or the etched hole (104). (2).

更優選的是,所述碳化矽基陶瓷複合材料(C),其包含有陶瓷粉末(S)及碳化矽基體材料(M)。 More preferably, the cerium carbide-based ceramic composite (C) comprises a ceramic powder (S) and a cerium carbide matrix material (M).

更優選的是,所述陶瓷粉末(S)是下列之一或其混合:石墨 粉末、鑽石粉末、矽粉末、碳化矽[SiC]粉末、碳化硼[B4C]粉末、氮化硼[BN]粉末、氮化鋁[AlN]粉末、氮化矽[Si3N4]粉末、氧化鋁[Al2O3]粉末、氧化矽[SiO2]粉末。 More preferably, the ceramic powder (S) is one of the following or a mixture thereof: graphite powder, diamond powder, cerium powder, cerium carbide [SiC] powder, boron carbide [B 4 C] powder, boron nitride [BN Powder, aluminum nitride [AlN] powder, tantalum nitride [Si 3 N 4 ] powder, alumina [Al 2 O 3 ] powder, yttria [SiO 2 ] powder.

更優選的是,所述陶瓷粉末(S)的較佳粒徑為0.1μm至40μm之間。 More preferably, the ceramic powder (S) preferably has a particle diameter of between 0.1 μm and 40 μm.

更優選的是,所述新沉積的碳化矽層(2)厚度小於25μm,更佳為小於10μm。 More preferably, the newly deposited tantalum carbide layer (2) has a thickness of less than 25 μm, more preferably less than 10 μm.

為解決上述問題及達到本發明的目的,本發明在修復方面的技術手段是這樣實現的,為一種回收再生晶圓承載盤之修復方法,其係針對報廢晶圓承載盤(100)再加工製成,該報廢晶圓承載盤(100)是石墨底材(20)且表面上鍍有一原有碳化矽鍍層(102),且該報廢晶圓承載盤(100)具有破損孔洞(101),該孔洞(101)是在石墨底材(20)及原有碳化矽鍍層(102)上所形成的凹陷;其修復方法為:首先將陶瓷粉末(S)以黏結劑(Y)混合,經攪拌成一黏土狀的陶瓷粉末預成形體材料(P),再將此陶瓷粉末預成形體材料(P)填補於報廢晶圓承載盤(100)的破損孔洞(101)處形成修補區(1);接著再對該報廢晶圓承載盤(100)進行化學氣相滲透[CVI]碳化矽,使該陶瓷粉末預成形體材料(P)以氣相沉積的碳化矽基體材料(M)結合於該等修補區(1),成為一碳化矽基陶瓷複合材料(C)並同時於該報廢晶圓承載盤(100)整體表面和該等修補區(1)表面,均勻披覆一層新沉積的碳化矽層(2),最終形成回收再生晶圓承載盤(200)。 In order to solve the above problems and achieve the object of the present invention, the technical means for repairing the present invention is achieved by a method for repairing a recycled wafer carrier disk, which is processed for a scrap wafer carrier (100). The scrap wafer carrier (100) is a graphite substrate (20) and is coated with an original tantalum carbide coating (102) on the surface, and the scrap wafer carrier (100) has a damaged hole (101). The hole (101) is a recess formed on the graphite substrate (20) and the original ruthenium carbide coating (102); the repair method is as follows: firstly, the ceramic powder (S) is mixed with a binder (Y), and stirred into a a clay-like ceramic powder preform material (P), and then filling the ceramic powder preform material (P) into the damaged hole (101) of the scrap wafer carrier disk (100) to form a repairing zone (1); Then, the scrap wafer carrier (100) is subjected to chemical vapor infiltration [CVI] tantalum carbide, and the ceramic powder preform material (P) is bonded to the repair by a vapor deposited tantalum carbide matrix material (M). Zone (1), becoming a carbonized bismuth-based ceramic composite (C) and simultaneously on the scrap wafer carrier (100) Such repair and surface area (1) silicon carbide layer (2) surface, a new layer deposited uniformly coated, eventually recycled wafer susceptor (200).

更優選的是,所述修復方法中,原有碳化矽鍍層(102)更包括裂紋(103)或蝕孔(104),而所述化學氣相滲透[CVI]碳化矽,能讓反應氣體滲透進入裂紋(103)或蝕孔(104)內,以進行氣相沉積碳化矽反應。 More preferably, in the repairing method, the original tantalum carbide coating (102) further includes cracks (103) or etching holes (104), and the chemical vapor infiltration [CVI] tantalum carbide allows the reaction gas to permeate. Entering the crack (103) or the etch hole (104) for vapor deposition of the ruthenium carbide reaction.

更優選的是,所述修復方法中,陶瓷粉末(S)是下列之一或 其混合:石墨粉末、鑽石粉末、矽粉末、碳化矽[SiC]粉末、碳化硼[B4C]粉末、氮化硼[BN]粉末、氮化鋁[AlN]粉末、氮化矽[Si3N4]粉末、氧化鋁[Al2O3]粉末、氧化矽[SiO2]粉末;並以選擇碳化矽[SiC]粉末為佳。 More preferably, in the repairing method, the ceramic powder (S) is one of the following or a mixture thereof: graphite powder, diamond powder, cerium powder, cerium carbide [SiC] powder, boron carbide [B 4 C] powder, nitrogen Boron [BN] powder, aluminum nitride [AlN] powder, tantalum nitride [Si 3 N 4 ] powder, alumina [Al 2 O 3 ] powder, yttria [SiO 2 ] powder; and select tantalum carbide [ SiC] powder is preferred.

與現有技術比較,本發明具有如下的效果: Compared with the prior art, the present invention has the following effects:

本發明中,利用填補碳化矽基陶瓷複合材料於報廢晶圓承載盤之破損孔洞處,並披覆一新沉積碳化矽層,可以再次完全包覆外露的石墨底材;另外,新沉積的碳化矽材料,也能夠癒合報廢承晶圓載盤原來碳化矽鍍層中已有的裂紋和蝕孔;因此,讓報廢的承載盤能恢復其原有的特性,再次循環使用,可以大幅節省LED磊晶製程耗材,並減少不必要的事業廢棄物。 In the present invention, the exposed graphite substrate can be completely coated again by filling the carbonized bismuth-based ceramic composite material at the damaged hole of the scrap wafer carrier and coating a newly deposited tantalum carbide layer; in addition, the newly deposited carbonization The bismuth material can also heal the cracks and etch holes in the original ruthenium carbide coating of the scrap wafer carrier; therefore, the scrapped carrier can restore its original characteristics and be recycled again, which can greatly save the LED epitaxial process. Consumables and reduce unnecessary business waste.

1‧‧‧修補區 1‧‧‧Repair area

2‧‧‧新沉積碳化矽層 2‧‧‧New deposits of tantalum carbide

10‧‧‧傳統晶圓承載盤 10‧‧‧Traditional wafer carrier

20‧‧‧石墨底材 20‧‧‧Graphite substrate

30‧‧‧碳化矽鍍層 30‧‧‧Carbide coating

100‧‧‧報廢晶圓承載盤 100‧‧‧ scrapped wafer carrier tray

101‧‧‧破損孔洞 101‧‧‧damaged holes

102‧‧‧原有碳化矽鍍層 102‧‧‧Original bismuth carbide coating

103‧‧‧裂紋 103‧‧‧ crack

104‧‧‧蝕孔 104‧‧‧Erosion

200‧‧‧回收再生晶圓承載盤 200‧‧‧Recycled wafer carrier tray

H‧‧‧口袋深度 H‧‧‧ pocket depth

N‧‧‧盤面粗糙度 N‧‧‧ surface roughness

F‧‧‧盤面平坦度 F‧‧‧pan flatness

S‧‧‧陶瓷粉末 S‧‧‧Ceramic powder

Y‧‧‧黏結劑 Y‧‧‧Adhesive

P‧‧‧陶瓷粉末預成形體材料 P‧‧‧Ceramic powder preform material

M‧‧‧碳化矽基體材料 M‧‧‧Carbide matrix material

C‧‧‧碳化矽基陶瓷複合材料 C‧‧‧Carbide-based ceramic composites

第1圖:傳統單片式晶圓承載盤的示意圖。 Figure 1: Schematic diagram of a conventional monolithic wafer carrier.

第2圖:傳統多片式晶圓承載盤的示意圖。 Figure 2: Schematic diagram of a conventional multi-chip wafer carrier.

第3圖:為第2圖之晶圓承載盤的A-A剖面示意圖。 Figure 3 is a cross-sectional view of the A-A of the wafer carrier of Figure 2;

第4圖:報廢晶圓承載盤破損孔洞的剖面示意圖。 Figure 4: Schematic diagram of the broken hole of the scrap wafer carrier.

第5圖:報廢晶圓承載盤之破損孔洞填補陶瓷粉末預成形體材料以形成修補區時的剖面示意圖。 Figure 5: Schematic diagram of the broken hole of the scrap wafer carrier to fill the ceramic powder preform material to form the repaired area.

第6圖:為第5圖經化學氣相滲透碳化矽處理後成為回收再生晶圓承載盤的剖面示意圖。 Fig. 6 is a schematic cross-sectional view showing the carrier wafer of the recycled wafer after the chemical vapor infiltration of the tantalum carbide is processed in Fig. 5.

以下依據圖面所示的實施例詳細說明如後: The following is a detailed description of the following embodiments according to the drawings:

如第5圖所示,本發明之修復方法,首先是將陶瓷粉末(S)配合黏結劑(Y)混合,經攪拌成一黏土狀之陶瓷粉末預成形體[preform]材料 (P),再將此陶瓷粉末預成形體材料(P)填補於報廢晶圓承載盤(100)的破損孔洞(101)處,以形成修補區(1)。 As shown in Fig. 5, the repairing method of the present invention firstly mixes the ceramic powder (S) with the binder (Y) and stirs it into a clay-like ceramic powder preform [preform] material. (P), the ceramic powder preform material (P) is filled in the damaged hole (101) of the scrap wafer carrying tray (100) to form a repaired area (1).

接著請參考第6圖,再針對該報廢晶圓承載盤(100),進行化學氣相滲透[Chemical Vapor Infiltration,CVI]碳化矽,使該陶瓷粉末預成形體材料(P),以氣相沉積的碳化矽基體[matrix]材料(M),結合於該等修補區(1),並同時均勻披覆一新沉積碳化矽層(2),於該報廢晶圓承載盤(100)整體表面和該等修補區(1)表面,最後成為一回收再生晶圓承載盤(200)。 Next, please refer to Fig. 6, and then carry out chemical vapor infiltration (CVI) niobium carbide on the scrap wafer carrier (100) to make the ceramic powder preform material (P) to be vapor deposited. a carbon nanotube substrate [Mtrix] material (M), bonded to the repaired area (1), and uniformly coated with a new deposited tantalum carbide layer (2) on the entire surface of the scrap wafer carrier disk (100) and The surface of the repaired area (1) finally becomes a recycled wafer carrier tray (200).

本發明修復方法中使用的黏結劑(Y),其較優的選擇是使用有機黏結劑,例如下列之一:聚乙烯醇、澱粉、聚醋酸乙烯、聚苯乙烯等,其中,黏結劑(Y)在化學氣相滲透過程中,會因高溫熱分解而氣化掉。 The adhesive (Y) used in the repairing method of the present invention is preferably an organic binder, such as one of the following: polyvinyl alcohol, starch, polyvinyl acetate, polystyrene, etc., wherein the binder (Y) In the chemical vapor infiltration process, it will be vaporized due to high temperature thermal decomposition.

以化學氣相滲透[CVI]法沉積碳化矽時,其化學氣相沉積[CVD]反應,以採用甲基三氯矽烷[CH3SiCl3,methyltrichlorosilane]和氫氣[H2]的反應氣體為佳。 When the niobium carbide is deposited by the chemical vapor infiltration [CVI] method, the chemical vapor deposition [CVD] reaction is preferably carried out using a reaction gas of methyltrichlorosilane (CH3SiCl3, methyltrichlorosilane) and hydrogen [H2].

重要的是,不增加太多表面原有碳化矽鍍層(102)厚度,以免改變承載盤的口袋[pocket]深度(H)、盤面粗糙度(N)、和盤面平坦度(F)[請參考第3圖],進而影響其所承載晶圓的溫度均勻性,新沉積的碳化矽層(2)如第6圖所示,具有一小於25μm的厚度,更佳為小於10μm的厚度。 It is important not to increase the thickness of the original surface of the original ruthenium carbide coating (102) so as not to change the pocket [pocket] depth (H), disk surface roughness (N), and disk surface flatness (F) [Please refer to Fig. 3], which in turn affects the temperature uniformity of the wafers carried thereon, the newly deposited tantalum carbide layer (2) has a thickness of less than 25 μm, more preferably less than 10 μm, as shown in Fig. 6.

藉由化學氣相滲透[CVI]法來盡量減少承載盤表面碳化矽沉積,讓碳化矽滲透沉積於該陶瓷粉末預成形體材料(P)的陶瓷粉末(S)表面、陶瓷粉末(S)之間的空隙、以及破損孔洞(101)內表面,使該陶瓷粉末預成形體材料(P),以氣相沉積的碳化矽基體材料(M),結合於該等修補區(1),成為一碳化矽基陶瓷複合材料(C),並以新沉積的碳化矽層(2)完整包覆破損的石墨底材(20)。 The chemical vapor infiltration [CVI] method is used to minimize the deposition of tantalum carbide on the surface of the carrier disk, and the tantalum carbide is deposited on the surface of the ceramic powder (S) of the ceramic powder preform material (P), and the ceramic powder (S). The gap between the gap and the inner surface of the damaged hole (101) causes the ceramic powder preform material (P) to be bonded to the repaired area (1) by vapor deposition of the tantalum carbide base material (M). The tantalum-based ceramic composite (C) is carbon-coated and the damaged graphite substrate (20) is completely coated with a newly deposited tantalum carbide layer (2).

在不增加太多表面原有碳化矽鍍層(102)厚度下,仍然能夠 於承載盤之破損孔洞(101)處,形成厚實的碳化矽基陶瓷複合材料保護層,以保護石墨底材(20)。 Still able to increase the thickness of the original ruthenium carbide coating (102) At the damaged hole (101) of the carrier disk, a thick protective layer of cerium-based ceramic composite material is formed to protect the graphite substrate (20).

再者,利用化學氣相滲透[CVI]法也能讓反應氣體,滲透進入原有碳化矽鍍層(102)的裂紋(103)或蝕孔(104)內部,進行氣相沉積碳化矽的反應,讓裂紋(103)、蝕孔(104)內部空間重新長滿碳化矽材料,以癒合受損的原有碳化矽鍍層(102)。 Furthermore, the chemical vapor infiltration [CVI] method can also allow the reaction gas to penetrate into the crack (103) or the etched hole (104) of the original ruthenium carbide coating (102), and carry out the reaction of vapor deposition of ruthenium carbide. The internal space of the crack (103) and the etched hole (104) is re-filled with the cerium carbide material to heal the damaged original strontium carbide coating (102).

本發明的方法中,所使用的陶瓷粉末(S),是為下列之一或其混合:石墨粉末、鑽石粉末、矽粉末、碳化矽[SiC]粉末、碳化硼[B4C]粉末、氮化硼[BN]粉末、氮化鋁[AlN]粉末、氮化矽[Si3N4]粉末、氧化鋁[Al2O3]粉末、氧化矽[SiO2]粉末。 In the method of the present invention, the ceramic powder (S) used is one of the following or a mixture thereof: graphite powder, diamond powder, cerium powder, cerium carbide [SiC] powder, boron carbide [B 4 C] powder, nitrogen. Boron [BN] powder, aluminum nitride [AlN] powder, tantalum nitride [Si 3 N 4 ] powder, alumina [Al 2 O 3 ] powder, yttria [SiO 2 ] powder.

上述陶瓷粉末(S)中,以選擇碳化矽[SiC]粉末為佳;該陶瓷粉末(S)的較佳粒徑為0.1μm至40μm。 In the above ceramic powder (S), a cerium carbide (SiC) powder is preferably selected; and the ceramic powder (S) preferably has a particle diameter of 0.1 μm to 40 μm.

以上依據圖式所示的實施例詳細說明本發明的構造、特徵及作用效果;惟以上所述僅為本發明之較佳實施例,並非據以限制本發明實施範圍,因此舉凡與本發明意旨相符的修飾性變化,只要在均等效果的範圍內都應涵屬於本發明專利範疇。 The embodiments of the present invention are described in detail with reference to the embodiments shown in the drawings. The conforming modification changes should fall within the scope of the invention as long as they are within the scope of the equal effect.

1‧‧‧修補區 1‧‧‧Repair area

2‧‧‧新沉積的碳化矽層 2‧‧‧Newly deposited tantalum carbide layer

20‧‧‧石墨底材 20‧‧‧Graphite substrate

101‧‧‧破損孔洞 101‧‧‧damaged holes

102‧‧‧原有碳化矽鍍層 102‧‧‧Original bismuth carbide coating

200‧‧‧回收再生晶圓承載盤 200‧‧‧Recycled wafer carrier tray

S‧‧‧陶瓷粉末 S‧‧‧Ceramic powder

M‧‧‧碳化矽基體材料 M‧‧‧Carbide matrix material

C‧‧‧碳化矽基陶瓷複合材料 C‧‧‧Carbide-based ceramic composites

Claims (7)

一種回收再生晶圓承載盤,該回收再生晶圓承載盤(200)係針對報廢晶圓承載盤(100)再加工製成,該報廢晶圓承載盤(100)是石墨底材(20)且表面上鍍有一原有碳化矽鍍層(102),於該報廢晶圓承載盤(100)上具有破損孔洞(101),該孔洞(101)是在石墨底材(20)及原有碳化矽鍍層(102)上所形成的凹陷,其特徵在於:在報廢晶圓承載盤(100)的破損孔洞(101)處,以碳化矽基陶瓷複合材料(C)予以補平而形成完整的修補區(1);在上述報廢晶圓承載盤(100)的整體表面及該修補區(1)表面,更均勻披覆一層新沉積的碳化矽層(2);所述碳化矽基陶瓷複合材料(C),其包含有陶瓷粉末(S)及碳化矽基體材料(M)。 A recycled wafer carrier tray, the recycled wafer carrier tray (200) being reworked for a scrap wafer carrier tray (100), the scrap wafer carrier tray (100) being a graphite substrate (20) and The surface is plated with an original ruthenium carbide coating (102) having a damaged hole (101) on the scrap wafer carrier (100). The hole (101) is on the graphite substrate (20) and the original ruthenium carbide coating. The recess formed on (102) is characterized in that, at the damaged hole (101) of the scrap wafer carrying tray (100), the carbonized cerium-based ceramic composite material (C) is filled to form a complete repairing area ( 1); on the entire surface of the scrapped wafer carrier disk (100) and the surface of the repairing area (1), more uniformly coated with a newly deposited layer of tantalum carbide (2); the carbonized base ceramic composite material (C) ), which comprises a ceramic powder (S) and a tantalum carbide base material (M). 如請求項1所述的回收再生晶圓承載盤,其中:所述原有碳化矽鍍層(102)上更包括裂紋(103)或蝕孔(104),而在裂紋(103)或蝕孔(104)內均勻結合新沉積的碳化矽層(2)。 The recycled wafer carrier tray of claim 1, wherein: the original ruthenium carbide coating (102) further comprises a crack (103) or an etch hole (104), and the crack (103) or the etch hole ( 104) uniformly bonding the newly deposited tantalum carbide layer (2). 如請求項1所述的回收再生晶圓承載盤,其中:所述陶瓷粉末(S)是下列之一或其混合:石墨粉末、鑽石粉末、矽粉末、碳化矽[SiC]粉末、碳化硼[B4C]粉末、氮化硼[BN]粉末、氮化鋁[AlN]粉末、氮化矽[Si3N4]粉末、氧化鋁[Al2O3]粉末、氧化矽[SiO2]粉末。 The recycled wafer carrier tray according to claim 1, wherein the ceramic powder (S) is one of the following or a mixture thereof: graphite powder, diamond powder, tantalum powder, tantalum carbide [SiC] powder, boron carbide [ B 4 C] powder, boron nitride [BN] powder, aluminum nitride [AlN] powder, tantalum nitride [Si 3 N 4 ] powder, alumina [Al 2 O 3 ] powder, yttrium oxide [SiO 2 ] powder . 如請求項3所述的回收再生晶圓承載盤,其中:所述陶瓷粉末(S)的較佳粒徑為0.1μm至40μm之間。 The recycled wafer carrier tray according to claim 3, wherein the ceramic powder (S) has a preferred particle diameter of between 0.1 μm and 40 μm. 如請求項1所述的回收再生晶圓承載盤,其中:所述新沉積的碳化矽層(2)厚度小於25μm,更佳為小於10μm。 The recycled wafer carrier tray according to claim 1, wherein the newly deposited tantalum carbide layer (2) has a thickness of less than 25 μm, more preferably less than 10 μm. 一種回收再生晶圓承載盤之修復方法,其係針對報廢晶圓承載盤(100)再加工製成,該報廢晶圓承載盤(100)是石墨底材(20)且表面上鍍有一原有碳化矽鍍層(102),且該報廢晶圓承載盤(100)具有破損孔洞(101),該孔洞(101)是在石墨底材(20)及原有碳化矽鍍層(102)上所形成的凹陷;其修復方法為:首先將陶瓷粉末(S)以黏結劑(Y)混合,經攪拌成一黏土狀的陶瓷粉末預成形體材料(P),再將此陶瓷粉末預成形體材料(P)填補於報廢晶圓承載盤(100)的破損孔洞(101)處形成修補區(1);接著再對該報廢晶圓承載盤(100)進行化學氣相滲透[CVI]碳化矽,使該陶瓷粉末預成形體材料(P)以氣相沉積的碳化矽基體材料(M)結合於該等修補區(1),成為一碳化矽基陶瓷複合材料(C)並同時於該報廢晶圓承載盤(100)整體表面和該等修補區(1)表面,均勻披覆一層新沉積的碳化矽層(2),最終形成回收再生晶圓承載盤(200);所述陶瓷粉末(S)是為碳化矽[SiC]粉末。 A method for repairing a recycled wafer carrier disk, which is fabricated by reprocessing a scrap wafer carrier (100), which is a graphite substrate (20) and has an original plated surface a ruthenium carbide coating (102), and the scrap wafer carrier (100) has a damaged hole (101) formed on the graphite substrate (20) and the original ruthenium carbide coating (102). Depression; the repair method is as follows: firstly, the ceramic powder (S) is mixed with a binder (Y), and stirred into a clay-like ceramic powder preform material (P), and then the ceramic powder preform material (P) Filling the repaired area (1) at the damaged hole (101) of the scrapped wafer carrier (100); and then subjecting the scrapped wafer carrier (100) to chemical vapor infiltration [CVI] tantalum carbide to make the ceramic The powder preform material (P) is bonded to the repairing zone (1) by a vapor deposited tantalum carbide matrix material (M) to form a tantalum-based ceramic composite material (C) and simultaneously on the scrap wafer carrier tray. (100) The entire surface and the surface of the repaired area (1) are uniformly coated with a newly deposited layer of tantalum carbide (2) to form a recycled crystal. The carrier plate (200); said ceramic powder (S) for SiC [the SiC] powder. 如請求項6所述的回收再生晶圓承載盤之修復方法,其中:所述原有碳化矽鍍層(102)更包括裂紋(103)或蝕孔(104),而所述化學氣相滲透[CVI]碳化矽,能讓反應氣體滲透進入裂紋(103)或蝕孔(104)內,以進行氣相沉積碳化矽反應。 The method for repairing a recycled wafer carrier tray according to claim 6, wherein: the original tantalum carbide coating (102) further comprises a crack (103) or an etching hole (104), and the chemical vapor infiltration [ CVI] bismuth carbide, which allows the reaction gas to penetrate into the crack (103) or the etch hole (104) for vapor deposition of the ruthenium carbide reaction.
TW102142247A 2013-11-20 2013-11-20 Reclaimed susceptor and method for repairing the same TWI574336B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102142247A TWI574336B (en) 2013-11-20 2013-11-20 Reclaimed susceptor and method for repairing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102142247A TWI574336B (en) 2013-11-20 2013-11-20 Reclaimed susceptor and method for repairing the same

Publications (2)

Publication Number Publication Date
TW201521133A TW201521133A (en) 2015-06-01
TWI574336B true TWI574336B (en) 2017-03-11

Family

ID=53935117

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102142247A TWI574336B (en) 2013-11-20 2013-11-20 Reclaimed susceptor and method for repairing the same

Country Status (1)

Country Link
TW (1) TWI574336B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113782479A (en) * 2021-07-27 2021-12-10 君原电子科技(海宁)有限公司 Repairing method of electrostatic chuck base
CN116535228A (en) * 2023-03-28 2023-08-04 福建兆元光电有限公司 Method for repairing graphite disc
CN117038539B (en) * 2023-10-10 2024-01-16 杭州海乾半导体有限公司 Regeneration treatment method of silicon carbide epitaxial old carrier disc

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020032115A1 (en) * 2000-09-12 2002-03-14 Kazuyuki Oguri Coating having high resistance to heat and oxidation and multi-coated material having high resistance to heat and oxidation
US20090264273A1 (en) * 2005-01-24 2009-10-22 Riedell James A Ceramic material suitable for repair of a space vehicle component in a microgravity and vacuum environment, method of making same, and method of repairing a space vehicle component

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020032115A1 (en) * 2000-09-12 2002-03-14 Kazuyuki Oguri Coating having high resistance to heat and oxidation and multi-coated material having high resistance to heat and oxidation
US20090264273A1 (en) * 2005-01-24 2009-10-22 Riedell James A Ceramic material suitable for repair of a space vehicle component in a microgravity and vacuum environment, method of making same, and method of repairing a space vehicle component

Also Published As

Publication number Publication date
TW201521133A (en) 2015-06-01

Similar Documents

Publication Publication Date Title
CN106435443B (en) A kind of preparation method of Environmental Barrier Coatings on Si-based Ceramics
KR101593922B1 (en) Polycrystal silicon carbide bulky part for a semiconductor process by chemical vapor deposition and preparation method thereof
US20120027646A1 (en) Reaction Chamber of an Epitaxial Reactor and Reactor That Uses Said Chamber
CN109321803B (en) Heating element with porous ceramic coating
TWI574336B (en) Reclaimed susceptor and method for repairing the same
CN110890309B (en) Graphite disc repairing method
CN103890224A (en) Member for semiconductor manufacturing device
KR102103573B1 (en) Method for SiC Coating on Graphite using Hybrid Coating Method
JP2010228965A (en) Corrosion resistant member
JP2022533362A (en) Substrate support cover for hot corrosive environments
CN206385256U (en) Durable type silicon wafer bearing disk
TWM541639U (en) Improved wafer carrier
CN100398490C (en) Method for forming semiconductor processing components
CN101844752A (en) High-mass pyrolysis BN crucible and preparation method thereof
JP5333156B2 (en) Vapor growth equipment
CN109841556B (en) Method for maintaining wafer bearing plate
US7504164B2 (en) Corrosion-resistant member and process of producing the same
TWI660064B (en) Method of maintaining wafer carrier
JP2018101721A (en) Vapor growth method
TWM566720U (en) Improved graphite susceptor surface layer structure
JP2007012933A (en) Semiconductor manufacturing device and component therefor
JP2005097722A (en) Corrosion resistant member, and method for manufacturing the same
JP4570372B2 (en) Materials for plasma-resistant semiconductor manufacturing equipment
JP2014133919A (en) Member coated with thermal decomposition carbon
KR102685462B1 (en) Ceramic heaters for semiconductors

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees