TWI571053B - Impedance Matching Network for Plasma Reactors - Google Patents

Impedance Matching Network for Plasma Reactors Download PDF

Info

Publication number
TWI571053B
TWI571053B TW103140138A TW103140138A TWI571053B TW I571053 B TWI571053 B TW I571053B TW 103140138 A TW103140138 A TW 103140138A TW 103140138 A TW103140138 A TW 103140138A TW I571053 B TWI571053 B TW I571053B
Authority
TW
Taiwan
Prior art keywords
impedance matching
matching network
power source
variable
variable vacuum
Prior art date
Application number
TW103140138A
Other languages
Chinese (zh)
Other versions
TW201526536A (en
Inventor
xiao-bing Liu
Jie Liang
zhao-xiang Wang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Publication of TW201526536A publication Critical patent/TW201526536A/en
Application granted granted Critical
Publication of TWI571053B publication Critical patent/TWI571053B/en

Links

Description

用於等離子體反應器的阻抗匹配網路Impedance matching network for plasma reactor

本發明涉及半導體元件的製造領域,尤其涉及等離子體反應器的阻抗匹配技術領域。The present invention relates to the field of semiconductor device fabrication, and more particularly to the field of impedance matching technology for plasma reactors.

等離子體處理裝置廣泛地應用於製造積體電路(IC)或MEMS器件的製造工藝中。其中一個顯著的用途就是用於對半導體基片進行刻蝕的等離子體反應器。等離子體中含有大量的電子、離子、激發態的原子、分子和自由基等活性粒子,這些活性粒子在半導體基片表面發生各種物理和化學反應,從而使半導體基片表面性能獲得變化。一般地,對於等離子體處理模組來說,作為生成等離子體的方式,大體上可分為利用電暈(glow)放電或者高頻放電,和利用微波等方式。Plasma processing apparatuses are widely used in manufacturing processes for manufacturing integrated circuits (ICs) or MEMS devices. One of the notable uses is in plasma reactors for etching semiconductor substrates. The plasma contains a large number of active particles such as electrons, ions, excited atoms, molecules and radicals. These active particles undergo various physical and chemical reactions on the surface of the semiconductor substrate, thereby changing the surface properties of the semiconductor substrate. Generally, as a method of generating plasma, a plasma processing module can be roughly classified into a method using a glow discharge or a high-frequency discharge, and a method using microwaves.

在高頻放電方式的等離子體處理模組中,為了將激發等離子體的射頻電源功率有效的載入在放電系統上需要在射頻電源和放電系統間接入阻抗匹配網路,阻抗匹配網路通常包括電容和電感,當阻抗匹配網路的阻抗需要變化時,通常透過改變電容大小實現對阻抗匹配網路的調整。由於在實際應用中工藝參數(如射頻功率、氣壓、工藝材料或氣體)的改變會導致等離子體阻抗的迅速改變,特別是對於射頻功率源為脈衝調製輸出的應用,脈衝射頻輸出功率控制反應等離子體刻蝕工藝已廣泛應用,其基本原理是射頻功率源輸出被脈衝調製的射頻功率用於產生等離子體,所產生的等離子體的密度隨脈衝發生變化,其中的帶電粒子(電子及離子)數量間歇性變化,從而使等離子體的刻蝕作用得到控制和緩衝。在此應用中,等離子應用中射頻功率源會在微秒量級時間內改變載入在放電系統上的高頻和低頻功率,造成等離子阻抗在微秒時間內的迅速變化,這就要求阻抗匹配網路能夠提供相同數量級時間內的阻抗匹配以維持等離子體的連續穩定放電。傳統的匹配網路中可變電容是由電機驅動的,無法滿足可變電容在微秒量級內的快速調節,導致阻抗匹配網路不能夠及時調節自身大小,以致不能及時將射頻電源功率有效的載入在放電系統上,進而不能產生工藝所需的等離子體分佈。In the high-frequency discharge plasma processing module, in order to efficiently load the RF power of the excitation plasma into the discharge system, an impedance matching network needs to be connected between the RF power supply and the discharge system, and the impedance matching network usually includes Capacitance and inductance, when the impedance of the impedance matching network needs to be changed, the impedance matching network is usually adjusted by changing the size of the capacitor. Since the change of process parameters (such as RF power, air pressure, process materials or gases) in practical applications will lead to rapid changes in plasma impedance, especially for applications where the RF power source is pulse modulated output, pulsed RF output power control reaction plasma The bulk etching process has been widely used. The basic principle is that the RF power source outputs the pulsed RF power for generating plasma. The density of the generated plasma changes with the pulse, and the number of charged particles (electrons and ions). Intermittent changes, so that the etching of the plasma is controlled and buffered. In this application, the RF power source in a plasma application changes the high and low frequency power loaded on the discharge system in microseconds, causing a rapid change in plasma impedance in microseconds, which requires impedance matching. The network is capable of providing impedance matching for the same order of magnitude to maintain a continuous, stable discharge of the plasma. In the traditional matching network, the variable capacitor is driven by the motor, which cannot meet the rapid adjustment of the variable capacitor in the microsecond range. As a result, the impedance matching network cannot adjust its size in time, so that the RF power can not be effectively activated in time. The loading is on the discharge system, which in turn does not produce the plasma distribution required for the process.

為了解決上述技術問題,本發明提供一種用於等離子體反應器的阻抗匹配網路,包括至少一電感和一可變電容單元,所述可變電容單元包括至少一個可變真空電容,所述可變真空電容包括兩電極板,所述兩電極板間設置一環形壓電陶瓷板,所述環形壓電陶瓷板連接一驅動電源,所述環形壓電陶瓷板的中空區域設置一弧形電極板。In order to solve the above technical problem, the present invention provides an impedance matching network for a plasma reactor, comprising at least one inductor and a variable capacitor unit, the variable capacitor unit including at least one variable vacuum capacitor, The vacuum capacitor includes two electrode plates, and an annular piezoelectric ceramic plate is disposed between the two electrode plates, the ring-shaped piezoelectric ceramic plate is connected to a driving power source, and an arc-shaped electrode plate is disposed in a hollow region of the annular piezoelectric ceramic plate. .

優選的,所述可變真空電容單元包括若干個可變真空電容,所述若干個可變真空電容並聯或串聯。Preferably, the variable vacuum capacitor unit comprises a plurality of variable vacuum capacitors connected in parallel or in series.

優選的,所述可變電容單元和所述驅動電源之間連接一大功率MOSTFET場效應管單元,所述大功率MOSTFET場效應管單元包括若干個大功率MOSTFET場效應管。Preferably, a high power MOSTFET FET unit is connected between the variable capacitance unit and the driving power source, and the high power MOSTFET FET unit comprises a plurality of high power MOSTFET FETs.

優選的,所述大功率MOSTFET場效應管的數量與所述可變真空電容的數量相等,每個大功率MOSTFET場效應管連接一個可變真空電容。Preferably, the number of the high power MOSTFET FETs is equal to the number of the variable vacuum capacitors, and each of the high power MOSTFET FETs is connected to a variable vacuum capacitor.

優選的,所述大功率MOSTFET場效應管單元連接一微控制單元MCU。Preferably, the high power MOSTFET FET unit is connected to a micro control unit MCU.

優選的,所述可變真空電容的電容大小在微秒量級內調整。Preferably, the capacitance of the variable vacuum capacitor is adjusted in the order of microseconds.

優選的,所述若干個可變真空電容依據阻抗匹配需求並聯或串聯成一個電路,所述電路連接一個驅動電源。Preferably, the plurality of variable vacuum capacitors are connected in parallel or in series to one circuit according to impedance matching requirements, and the circuit is connected to a driving power source.

優選的,所述阻抗匹配網路連接射頻源功率源或者射頻偏置功率源。Preferably, the impedance matching network is connected to a radio source power source or a radio frequency bias power source.

優選的,所述射頻源功率源和所述射頻偏置功率源輸出為脈衝調製輸出。Preferably, the RF source power source and the RF bias power source output are pulse modulated outputs.

優選的,所述環形壓電陶瓷板透過一壓電陶瓷驅動電極和所述驅動電源連接。Preferably, the annular piezoelectric ceramic plate is connected to the driving power source through a piezoelectric ceramic driving electrode.

本發明的優點在於:本發明所述的阻抗匹配網路中的可變真空電容採用壓電陶瓷材料製作,利用壓電陶瓷材料的逆壓電效應,在對壓電陶瓷施加交變驅動電壓時,壓電陶瓷能迅速沿著電壓載入方向發生伸縮運動,進而迅速改變可變真空電容的電容值,通常在微秒量級內即可改變。透過採用多個可變真空電容並聯的方式,利用大功率MOSTFET場效應管單元和MCU控制可以實現任意數量的可變真空電容的組合,進而實現匹配阻抗的靈活調整。本發明所述的技術方案顛覆了以往利用電機驅動的傳統可變真空電容的調節方式,利用壓電陶瓷材料的逆壓電效應製作真空可變電容,實現真空可變電容能在微秒量級內實現大小調節,滿足等離子體阻抗迅速隨射頻功率源輸出改變的需要。The invention has the advantages that the variable vacuum capacitor in the impedance matching network of the invention is made of piezoelectric ceramic material, and the reverse piezoelectric effect of the piezoelectric ceramic material is used when an alternating driving voltage is applied to the piezoelectric ceramic. Piezoelectric ceramics can rapidly expand and contract along the voltage loading direction, thereby rapidly changing the capacitance of the variable vacuum capacitor, which can usually be changed in the order of microseconds. By using multiple variable vacuum capacitors in parallel, high-power MOSTFET FET units and MCU control can be used to achieve any combination of variable vacuum capacitors, thus enabling flexible adjustment of matching impedance. The technical solution described in the present invention subverts the conventional adjustment method of the conventional variable vacuum capacitor driven by the motor, and uses the inverse piezoelectric effect of the piezoelectric ceramic material to fabricate the vacuum variable capacitor, so that the vacuum variable capacitor can be in the order of microseconds. The size adjustment is implemented to meet the need for the plasma impedance to rapidly change with the output of the RF power source.

為使本發明實施例的目的、技術方案和優點更加清楚,下面將結合本發明實施例中的附圖,對本發明實施例中的技術方案進行清楚、完整地描述,顯然,所描述的實施例是本發明一部分實施例,而不是全部的實施例。基於本發明中的實施例,本領域普通技術人員在沒有做出進步性勞動前提下所獲得的所有其他實施例,都屬於本發明保護的範圍。The technical solutions in the embodiments of the present invention will be clearly and completely described in conjunction with the drawings in the embodiments of the present invention. It is a partial embodiment of the invention, and not all of the embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without departing from the scope of the present invention are within the scope of the present invention.

在等離子體工業應用中,為了將激發等離子體的射頻電源功率有效的載入在放電系統上需要在電源和放電系統間接入阻抗匹配網路。圖1示出本發明所述阻抗匹配網路與等離子體反應器連接結構示意圖。如圖1所示,等離子體反應器包括真空反應腔100,所述真空反應腔內包括上電極105和上電極105下方的下電極110,待處理的半導體基片位於下電極110上方。當射頻功率源的射頻功率施加到下電極110上時,上電極105和下電極110之間會形成等離子體120,等離子體120對所述半導體基片表面進行物理轟擊和化學反應,完成刻蝕過程。等離子體反應器的射頻功率源通常包括至少一個射頻偏置功率源和一個射頻源功率源,本實施例中,將一個射頻偏置功率源170和一個射頻源功率源160同時施加到下電極110上。射頻偏置功率源170和射頻源功率源160分別透過阻抗匹配網路140和阻抗匹配網路150將射頻功率有效的施加到下電極110上。In plasma industry applications, in order to efficiently load the RF power source that excites the plasma into the discharge system, an impedance matching network is required between the power supply and the discharge system. 1 is a schematic view showing the connection structure of the impedance matching network and the plasma reactor of the present invention. As shown in FIG. 1, the plasma reactor includes a vacuum reaction chamber 100 including an upper electrode 105 and a lower electrode 110 below the upper electrode 105, the semiconductor substrate to be processed being located above the lower electrode 110. When the RF power of the RF power source is applied to the lower electrode 110, a plasma 120 is formed between the upper electrode 105 and the lower electrode 110, and the plasma 120 physically oscillates and chemically reacts the surface of the semiconductor substrate to complete the etching. process. The RF power source of the plasma reactor generally includes at least one RF bias power source and one RF source power source. In this embodiment, one RF bias power source 170 and one RF source power source 160 are simultaneously applied to the lower electrode 110. on. The RF bias power source 170 and the RF source power source 160 effectively apply RF power to the lower electrode 110 through the impedance matching network 140 and the impedance matching network 150, respectively.

本領域技術人員易知,在等離子體反應器中,阻抗匹配網路的設置必須保證射頻功率源的阻抗和真空反應腔100內產生的等離子體120阻抗相匹配由於在實際應用中工藝參數如射頻功率、氣壓、工藝材料或氣體的改變會導致等離子體阻抗的迅速變化,特別是當射頻功率輸出為脈衝調製輸出時,為保證真空反應腔100內的等離子體120阻抗變化與射頻功率源的脈衝輸出變化一致,射頻功率源與等離子體之間的阻抗匹配網路需要進行與射頻功率源的脈衝輸出頻率相等的變化。通常,阻抗匹配網路至少包括一電感和一可變電容,在習知技術中,對阻抗匹配網路的阻抗調整主要是透過固定阻抗匹配網路的電感,改變阻抗匹配網路的可變電容來實現。在等離子體反應器中,可變電容通常為可變真空電容。傳統的可變真空電容是由電機驅動的,無法實現電容值的快速改變,特別是在射頻功率源為脈衝輸出的應用中,由於射頻功率源為脈衝輸出時,射頻功率源會在微秒量級時間內改變載入在等離子體上的高頻和低頻功率,造成等離子體阻抗在微秒量級時間內的迅速變化,這就要求阻抗匹配網路能夠提供相同數量級時間內的阻抗匹配一維持等離子體的連續穩定放電。傳統的由電機驅動的可變真空電容無法滿足這一要求。It will be readily apparent to those skilled in the art that in a plasma reactor, the impedance matching network must be arranged to ensure that the impedance of the RF power source matches the impedance of the plasma 120 generated within the vacuum reaction chamber 100 due to process parameters such as RF in practical applications. Changes in power, gas pressure, process materials, or gases can cause rapid changes in plasma impedance, particularly when the RF power output is a pulsed output, to ensure that the plasma 120 impedance changes in the vacuum reaction chamber 100 and the RF power source pulse. The output changes consistently, and the impedance matching network between the RF power source and the plasma needs to be equal to the pulse output frequency of the RF power source. Generally, the impedance matching network includes at least one inductor and one variable capacitor. In the prior art, the impedance adjustment of the impedance matching network is mainly through the inductance of the fixed impedance matching network, and the variable capacitance of the impedance matching network is changed. to realise. In a plasma reactor, the variable capacitance is typically a variable vacuum capacitance. The traditional variable vacuum capacitor is driven by the motor and cannot change the capacitance value quickly. Especially in the application where the RF power source is pulse output, the RF power source will be in microseconds when the RF power source is pulse output. Changing the high frequency and low frequency power loaded on the plasma during the time period causes the plasma impedance to change rapidly in the order of microseconds, which requires the impedance matching network to provide impedance matching for the same order of magnitude. Continuous stable discharge of plasma. Conventional motor-driven variable vacuum capacitors do not meet this requirement.

圖2示出本發明所述可變真空電容結構示意圖,所述可變真空電容1510包括兩個平行的電極板1511和1512,所述兩電極板間設置一與所述兩電極板大致平行的環形壓電陶瓷板1513。環形壓電陶瓷板1513透過一壓電陶瓷驅動電極1515連接一驅動電源153,環形壓電陶瓷板1513的中空區域設置一弧形電極板1514,電極板1512與弧形電極板1514組成平行板真空電容,圖3示出所述環形壓電陶瓷板及其弧形電極板連接結構示意圖。壓電陶瓷是一種能夠將機械能和電能互相轉換的功能陶瓷材料,在本發明中,在環形壓電陶瓷板1513上連接一交變驅動電源153,利用壓電陶瓷材料的逆壓電效應,使壓電陶瓷材料在交變電場的驅動下產生機械運動,即當對環形壓電陶瓷板1513施加交變電場時,環形壓電陶瓷板1513的形狀會沿電壓載入方向進行伸縮運動,其伸縮運動迫使其中空區域的弧形電極板1514發生壓縮或拉伸運動,導致弧形電極板1514和電極板1512之間的距離d發生變化,已知可變真空電容的的電容值計算公式為,(式中為真空介電常數,S為極板面積,d為極板間距),從而實現對電容的快速改變。採用本發明所述的技術方案,可以透過選擇不同的弧形電極板的曲度、質量設計和製作材料等實現可變真空電筒不同的電容變化率和電容值調節回應時間。在本實施例中,作用於環形壓電陶瓷板1513的驅動電源153為交流電源。2 is a schematic view showing the structure of a variable vacuum capacitor according to the present invention, the variable vacuum capacitor 1510 includes two parallel electrode plates 1511 and 1512, and a space substantially parallel to the two electrode plates is disposed between the two electrode plates. Annular piezoelectric ceramic plate 1513. The annular piezoelectric ceramic plate 1513 is connected to a driving power source 153 through a piezoelectric ceramic driving electrode 1515. The hollow region of the annular piezoelectric ceramic plate 1513 is provided with an arc electrode plate 1514. The electrode plate 1512 and the arc electrode plate 1514 form a parallel plate vacuum. Capacitor, FIG. 3 is a schematic view showing the connection structure of the annular piezoelectric ceramic plate and its curved electrode plate. Piezoelectric ceramic is a functional ceramic material capable of mutually converting mechanical energy and electrical energy. In the present invention, an alternating driving power source 153 is connected to the annular piezoelectric ceramic plate 1513, and the inverse piezoelectric effect of the piezoelectric ceramic material is utilized. The piezoelectric ceramic material is mechanically driven by the alternating electric field, that is, when an alternating electric field is applied to the annular piezoelectric ceramic plate 1513, the shape of the annular piezoelectric ceramic plate 1513 is expanded and contracted in the voltage loading direction. The telescopic movement forces the arc electrode plate 1514 in the hollow region to undergo compression or stretching motion, resulting in a change in the distance d between the arc electrode plate 1514 and the electrode plate 1512, and the capacitance value of the known variable vacuum capacitor is calculated. Formula is , (where For the vacuum dielectric constant, S is the plate area, and d is the plate spacing), thus achieving a rapid change in capacitance. According to the technical solution of the present invention, different capacitance change rates and capacitance value adjustment response times of the variable vacuum torch can be realized by selecting curvatures, mass design and materials of different arc electrode plates. In the present embodiment, the driving power source 153 acting on the annular piezoelectric ceramic plate 1513 is an alternating current power source.

圖4示出本發明所述阻抗匹配網路的結構示意圖,本實施例選擇與射頻源功率源160進行匹配的阻抗匹配網路150進行詳細描述,與射頻偏置功率源170連接的阻抗匹配網路140可以採用與阻抗匹配網路150同樣的技術方案,在此不再贅述。在圖4所示的示意圖中,射頻源功率源160連接阻抗匹配網路150,阻抗匹配網路150包括一電感152和一可變真空電容單元151,可變真空電容單元151和驅動電源153之間連接一大功率MOSTFET場效應管單元155,一微處理器MCU154連接所述的大功率MOSTFET場效應管單元155。本實施例採用的可變真空電容單元151包括多個可變真空電容1510,由於可變真空電容1510的環形壓電陶瓷板1513伸縮幅度有限,其帶動弧形電極板1514的拉伸和壓縮幅度較小,弧形電極板1514與兩平行的電極板間的距離改變較小,最終導致可變電容容值改變較小,不能滿足阻抗匹配網路的調整需求。本發明採用多個可變真空電容1510並聯或串聯成一個可變真空電容單元151,透過設置可變真空電容1510的數量及每個可變真空電容的變化大小來對可變真空電容單元151的等效電容容值進行調整。由於若干個可變真空電容1510並聯或串聯成一個電路,故可以對該電路施加同一個驅動電源153。圖5示出大功率MOSTFET場效應管與可變真空電容連接的結構示意圖;在圖5所述的實施例中,大功率MOSTFET場效應管單元155包括與可變真空電容1510對應個數的大功率MOSTFET場效應管1551,每個大功率MOSTFET場效應管1551連接一個可變真空電容1510。大功率MOSTFET場效應管控制驅動電源153載入驅動電壓到可變真空電容1510的環形壓電陶瓷板上,透過大功率MOSTFET場效應管的通斷實現驅動電壓驅動可變真空電容1510與否,進而決定參與阻抗匹配的可變真空電容單元151不同可變真空電容數量的組合。此外,大功率MOSTFET場效應管單元155還連接一微處理器MCU154,MCU154可以透過控制每個大功率MOSTFET場效應管的通斷對可變真空電容1510進行選擇,當某一大功率MOSTFET場效應管1551為導通狀態時,與之連接的可變真空電容會由於內部壓電陶瓷在驅動電壓作用下運動,進而改變電容值,當某一大功率MOSTFET場效應管1551為隔斷狀態時,與之連接的可變電容大小保持不變透過採用MCU154控制大功率MOSTFET場效應管單元的通斷,進而控制可變真空單元151可以實現任意可變真空電容數量的組合,進而實現對阻抗匹配網路150的阻抗進行靈活調整,保證放電系統的穩定功率輸入。4 is a schematic structural diagram of the impedance matching network according to the present invention. In this embodiment, an impedance matching network 150 matching the RF source power source 160 is selected for detailed description, and an impedance matching network connected to the RF bias power source 170 is described. The road 140 can adopt the same technical solution as the impedance matching network 150, and details are not described herein again. In the schematic diagram shown in FIG. 4, the RF source power source 160 is coupled to the impedance matching network 150. The impedance matching network 150 includes an inductor 152 and a variable vacuum capacitor unit 151, a variable vacuum capacitor unit 151, and a driving power source 153. A high power MOSTFET FET unit 155 is connected between them, and a microprocessor MCU 154 is connected to the high power MOSTFET FET unit 155. The variable vacuum capacitor unit 151 employed in this embodiment includes a plurality of variable vacuum capacitors 1510. Since the annular piezoelectric ceramic plate 1513 of the variable vacuum capacitor 1510 has a limited expansion and contraction amplitude, it drives the stretching and compression amplitude of the arc electrode plate 1514. Smaller, the distance between the arc electrode plate 1514 and the two parallel electrode plates changes little, and finally the change of the capacitance value of the variable capacitor is small, which cannot meet the adjustment requirement of the impedance matching network. In the present invention, a plurality of variable vacuum capacitors 1510 are connected in parallel or in series to form a variable vacuum capacitor unit 151, and the variable vacuum capacitor unit 151 is disposed by setting the number of variable vacuum capacitors 1510 and the magnitude of change of each variable vacuum capacitor. The equivalent capacitance value is adjusted. Since a plurality of variable vacuum capacitors 1510 are connected in parallel or in series to form one circuit, the same driving power source 153 can be applied to the circuit. 5 is a schematic structural view showing a connection between a high power MOSTFET field effect transistor and a variable vacuum capacitor; in the embodiment illustrated in FIG. 5, the high power MOSTFET FET unit 155 includes a large number corresponding to the variable vacuum capacitor 1510. A power MOSTFET FET 1551, each high power MOSTFET FET 1551 is coupled to a variable vacuum capacitor 1510. The high-power MOSTFET FET control driving power source 153 loads the driving voltage to the ring-shaped piezoelectric ceramic plate of the variable vacuum capacitor 1510, and drives the variable vacuum capacitor 1510 through the switching of the high-power MOSTFET FET. Further, the combination of the variable vacuum capacitor units 151 participating in the impedance matching is determined. In addition, the high power MOSTFET FET unit 155 is also coupled to a microprocessor MCU 154. The MCU 154 can select the variable vacuum capacitor 1510 by controlling the switching of each high power MOSTFET FET when a high power MOSTFET field effect is applied. When the tube 1551 is in the on state, the variable vacuum capacitor connected thereto is moved by the internal piezoelectric ceramic under the driving voltage, thereby changing the capacitance value, when a certain high-power MOSTFET FET 1551 is in a blocking state, The size of the connected variable capacitor remains unchanged. By using the MCU 154 to control the on and off of the high power MOSTFET FET unit, the variable vacuum unit 151 can be controlled to realize the combination of the number of arbitrary variable vacuum capacitors, thereby implementing the impedance matching network 150. The impedance is flexibly adjusted to ensure stable power input to the discharge system.

本發明所述的阻抗匹配網路中的可變真空電容採用壓電陶瓷材料製作,利用壓電陶瓷材料的逆壓電效應,在對壓電陶瓷施加交變驅動電壓時,壓電陶瓷能迅速沿著電壓載入方向發生伸縮運動,進而迅速改變可變真空電容的電容值,通常在微秒量級內即可改變。透過採用多個可變真空電容並聯的方式,利用大功率MOSTFET場效應管單元和MCU控制可以實現任意數量的可變真空電容的組合,進而實現匹配阻抗的靈活調整。本發明所述的技術方案顛覆了以往利用電機驅動的傳統可變真空電容的調節模式,利用壓電陶瓷材料的逆壓電效應製作真空可變電容,實現真空可變電容能在微秒量級內實現大小調節,滿足等離子體阻抗迅速隨射頻功率源輸出改變的需要。The variable vacuum capacitor in the impedance matching network of the present invention is made of piezoelectric ceramic material, and the piezoelectric ceramic can be rapidly applied when an alternating driving voltage is applied to the piezoelectric ceramic by using the inverse piezoelectric effect of the piezoelectric ceramic material. The telescopic movement occurs along the voltage loading direction, which in turn rapidly changes the capacitance of the variable vacuum capacitor, which is usually changed in the order of microseconds. By using multiple variable vacuum capacitors in parallel, high-power MOSTFET FET units and MCU control can be used to achieve any combination of variable vacuum capacitors, thus enabling flexible adjustment of matching impedance. The technical solution described in the present invention subverts the adjustment mode of the conventional variable vacuum capacitor driven by the motor in the past, and uses the inverse piezoelectric effect of the piezoelectric ceramic material to fabricate the vacuum variable capacitor, so that the vacuum variable capacitor can be in the order of microseconds. The size adjustment is implemented to meet the need for the plasma impedance to rapidly change with the output of the RF power source.

本發明雖然以較佳實施例公開如上,但其並不是用來限定本發明,任何本領域技術人員在不脫離本發明的精神和範圍內,都可以做出可能的變動和修改,因此本發明的保護範圍應當以本發明請求項所界定的範圍為准。The present invention is disclosed in the above preferred embodiments, but it is not intended to limit the present invention, and any one skilled in the art can make possible variations and modifications without departing from the spirit and scope of the invention. The scope of protection shall be subject to the scope defined by the claims of the present invention.

100‧‧‧真空反應腔
105‧‧‧上電極
110‧‧‧下電極
120‧‧‧等離子體
140、150‧‧‧阻抗匹配網路
151‧‧‧可變真空電容單元
1510‧‧‧可變真空電容
1511、1512‧‧‧電極板
1513‧‧‧環形壓電陶瓷板
1514‧‧‧弧形電極板
1515‧‧‧壓電陶瓷驅動電極
152‧‧‧電感
153‧‧‧驅動電源
154‧‧‧MCU
155‧‧‧大功率MOSTFET場效應管單元
1551‧‧‧大功率MOSTFET場效應管
160‧‧‧射頻源功率源
170‧‧‧射頻偏置功率源
d‧‧‧距離
100‧‧‧vacuum reaction chamber
105‧‧‧Upper electrode
110‧‧‧ lower electrode
120‧‧‧ Plasma
140, 150‧‧‧ impedance matching network
151‧‧‧Variable vacuum capacitor unit
1510‧‧‧Variable vacuum capacitor
1511, 1512‧‧‧electrode plates
1513‧‧‧Circular Piezoelectric Ceramic Plate
1514‧‧‧Arc electrode plate
1515‧‧‧ Piezoelectric ceramic drive electrode
152‧‧‧Inductance
153‧‧‧Drive power supply
154‧‧‧MCU
155‧‧‧High-power MOSTFET FET unit
1551‧‧‧High Power MOSTFET FET
160‧‧‧RF source power source
170‧‧‧RF bias power source
D‧‧‧distance

圖1示出本發明所述阻抗匹配網路與等離子體反應器連接結構示意圖; 圖2示出本發明所述可變真空電容結構示意圖; 圖3示出本發明所述環形壓電陶瓷板及其弧形電極板連接結構示意圖; 圖4示出本發明所述阻抗匹配網路的結構示意圖; 圖5示出大功率MOSTFET場效應管與可變真空電容連接的結構示意圖。1 is a schematic view showing the connection structure of the impedance matching network and the plasma reactor of the present invention; FIG. 2 is a schematic view showing the structure of the variable vacuum capacitor of the present invention; FIG. 3 is a view showing the annular piezoelectric ceramic board of the present invention; FIG. 4 is a schematic structural view of the impedance matching network of the present invention; FIG. 5 is a schematic structural view showing the connection of a high power MOSTFET FET and a variable vacuum capacitor.

1510‧‧‧可變真空電容 1510‧‧‧Variable vacuum capacitor

1511、1512‧‧‧電極板 1511, 1512‧‧‧electrode plates

1513‧‧‧環形壓電陶瓷板 1513‧‧‧Circular Piezoelectric Ceramic Plate

1514‧‧‧弧形電極板 1514‧‧‧Arc electrode plate

1515‧‧‧壓電陶瓷驅動電極 1515‧‧‧ Piezoelectric ceramic drive electrode

153‧‧‧驅動電源 153‧‧‧Drive power supply

d‧‧‧距離 D‧‧‧distance

Claims (10)

一種用於等離子體反應器的阻抗匹配網路,包括至少一電感和一可變電容單元,其中所述可變電容單元包括至少一個可變真空電容,所述可變真空電容包括兩電極板,所述兩電極板間設置一環形壓電陶瓷板,所述環形壓電陶瓷板連接一驅動電源,所述環形壓電陶瓷板的中空區域設置一弧形電極板。An impedance matching network for a plasma reactor, comprising at least one inductor and a variable capacitor unit, wherein the variable capacitor unit comprises at least one variable vacuum capacitor, the variable vacuum capacitor comprising two electrode plates, An annular piezoelectric ceramic plate is disposed between the two electrode plates, the annular piezoelectric ceramic plate is connected to a driving power source, and an arc-shaped electrode plate is disposed in a hollow region of the annular piezoelectric ceramic plate. 如請求項1所述的阻抗匹配網路,其中所述可變真空電容單元包括若干個可變真空電容,所述若干個可變真空電容並聯或串聯。The impedance matching network of claim 1, wherein the variable vacuum capacitor unit comprises a plurality of variable vacuum capacitors, the plurality of variable vacuum capacitors being connected in parallel or in series. 如請求項2所述的阻抗匹配網路,其中所述可變電容單元和所述驅動電源之間連接一大功率MOSTFET場效應管單元,所述大功率MOSTFET場效應管單元包括若干個大功率MOSTFET場效應管。The impedance matching network of claim 2, wherein a high power MOSTFET FET unit is connected between the variable capacitance unit and the driving power source, the high power MOSTFET FET unit comprising a plurality of high power MOSTFET FET. 如請求項3所述的阻抗匹配網路,其中所述大功率MOSTFET場效應管的數量與所述可變真空電容的數量相等,每個大功率MOSTFET場效應管連接一個可變真空電容。The impedance matching network of claim 3, wherein the number of the high power MOSTFET FETs is equal to the number of the variable vacuum capacitors, and each of the high power MOSTFET FETs is connected to a variable vacuum capacitor. 如請求項3所述的阻抗匹配網路,其中所述大功率MOSTFET場效應管單元連接一微控制單元MCU。The impedance matching network of claim 3, wherein the high power MOSTFET FET unit is coupled to a micro control unit MCU. 如請求項1所述的阻抗匹配網路,其中所述可變真空電容的電容大小在微秒量級內調整。The impedance matching network of claim 1, wherein the capacitance of the variable vacuum capacitor is adjusted in the order of microseconds. 如請求項2所述的阻抗匹配網路,其中所述若干個可變真空電容依據阻抗匹配需求並聯或串聯成一個電路,所述電路連接一個驅動電源。The impedance matching network of claim 2, wherein the plurality of variable vacuum capacitors are connected in parallel or in series to one circuit according to impedance matching requirements, the circuit being connected to a driving power source. 如請求項1所述的阻抗匹配網路,其中所述阻抗匹配網路連接射頻源功率源或者射頻偏置功率源。The impedance matching network of claim 1, wherein the impedance matching network is connected to a radio source power source or a radio frequency bias power source. 如請求項8所述的阻抗匹配網路,其中所述射頻源功率源和所述射頻偏置功率源輸出為脈衝調製輸出。The impedance matching network of claim 8, wherein the RF source power source and the RF bias power source output are pulse modulated outputs. 如請求項1所述的阻抗匹配網路,其中所述環形壓電陶瓷板透過一壓電陶瓷驅動電極和所述驅動電源連接。The impedance matching network of claim 1, wherein the annular piezoelectric ceramic plate is connected to the driving power source through a piezoelectric ceramic driving electrode.
TW103140138A 2013-11-27 2014-11-19 Impedance Matching Network for Plasma Reactors TWI571053B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310613328.6A CN104682917B (en) 2013-11-27 2013-11-27 Impedance matching network for plasma reactor

Publications (2)

Publication Number Publication Date
TW201526536A TW201526536A (en) 2015-07-01
TWI571053B true TWI571053B (en) 2017-02-11

Family

ID=53317577

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103140138A TWI571053B (en) 2013-11-27 2014-11-19 Impedance Matching Network for Plasma Reactors

Country Status (2)

Country Link
CN (1) CN104682917B (en)
TW (1) TWI571053B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10899605B2 (en) * 2018-03-05 2021-01-26 Sharp Kabushiki Kaisha MEMS device and manipulation method for micro-objects

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080232023A1 (en) * 2007-03-22 2008-09-25 James Oakes Capacitors adapted for acoustic resonance cancellation
TW201125008A (en) * 2009-10-27 2011-07-16 Fujitsu Ltd Variable capacitive element, variable capacitive device, and method for driving the variable capacitive element
CN103311082A (en) * 2012-03-13 2013-09-18 中微半导体设备(上海)有限公司 Radio frequency matching network and plasma processing chamber applying same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101989525A (en) * 2009-08-05 2011-03-23 中微半导体设备(上海)有限公司 Plasma processing cavity and switchable matching network with switchable offset frequency

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080232023A1 (en) * 2007-03-22 2008-09-25 James Oakes Capacitors adapted for acoustic resonance cancellation
TW201125008A (en) * 2009-10-27 2011-07-16 Fujitsu Ltd Variable capacitive element, variable capacitive device, and method for driving the variable capacitive element
CN103311082A (en) * 2012-03-13 2013-09-18 中微半导体设备(上海)有限公司 Radio frequency matching network and plasma processing chamber applying same

Also Published As

Publication number Publication date
CN104682917A (en) 2015-06-03
TW201526536A (en) 2015-07-01
CN104682917B (en) 2017-09-26

Similar Documents

Publication Publication Date Title
KR102569962B1 (en) Plasma processing method and plasma processing apparatus
JP5808012B2 (en) Plasma processing equipment
JP6676614B2 (en) Piezoelectric transformer
US9595423B2 (en) Frequency tuning for dual level radio frequency (RF) pulsing
US20140190635A1 (en) Plasma chamber and apparatus for treating substrate
JP7124705B2 (en) plasma generator
KR102108035B1 (en) Plasma generator and ion ratio adjustment method
JP2013125892A (en) Plasma processing apparatus
TWI603370B (en) Device for realizing impedance matching and power distribution and semiconductor processing device
Prager et al. A high voltage nanosecond pulser with variable pulse width and pulse repetition frequency control for nonequilibrium plasma applications
JP6327970B2 (en) Method for etching an insulating film
JP2017201611A (en) Plasma processing device
TWI571053B (en) Impedance Matching Network for Plasma Reactors
JP6055537B2 (en) Plasma processing method
TWI521596B (en) A Method of Controlled Plasma Etching for Pulse RF Output Power Control
CN103872907B (en) DC/DC converters and the display device for including the DC/DC converters
JP4746804B2 (en) Plasma generation method and plasma generation apparatus
CN108702837B (en) Apparatus and method for generating non-thermal atmospheric pressure plasma
JP2020077657A5 (en)
CN109065433A (en) A kind of apparatus and method of normal pressure pulse assistant flat-plate radio frequency glow discharge
WO2017188029A1 (en) Plasma treatment apparatus
US20240128055A1 (en) Apparatus for processing plasma and method of processing plasma and manufacturing semiconductor device using the same
Facta et al. Piezoelectric transformer with pulse dropping technique for high voltage generation
US20230007764A1 (en) Method of operating a piezoelectric plasma generator
CN116054763A (en) Voltage amplifier