TWI569375B - Memory device and method of manufacturing the same - Google Patents
Memory device and method of manufacturing the same Download PDFInfo
- Publication number
- TWI569375B TWI569375B TW104109416A TW104109416A TWI569375B TW I569375 B TWI569375 B TW I569375B TW 104109416 A TW104109416 A TW 104109416A TW 104109416 A TW104109416 A TW 104109416A TW I569375 B TWI569375 B TW I569375B
- Authority
- TW
- Taiwan
- Prior art keywords
- stacked
- body portion
- main body
- layer
- region
- Prior art date
Links
Landscapes
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
Description
本發明是有關於一種半導體元件及其製造方法,且特別是有關於一種記憶元件及其製造方法。 The present invention relates to a semiconductor device and a method of fabricating the same, and more particularly to a memory device and a method of fabricating the same.
隨著科技日新月異,為了達到降低成本、簡化製程步驟以及節省晶片面積的需求,將記憶胞陣列區與周邊電路區的元件整合在同一晶片上已然逐漸成為一種趨勢。然而,隨著記憶元件的深寬比愈來愈高,由於記憶胞陣列區與周邊電路區之間的圖案密度不同,因此,容易導致微負載效應(Micro-loading Effect)的發生。所謂微負載效應泛指在進行蝕刻製程時,由於圖案密度不同,而導致半導體元件的尺寸產生偏差。舉例來說,在圖案密度較低的周邊電路區便容易出現子溝渠(Sub-trench)的缺陷,而子溝渠的缺陷將會造成後續製程裕度(Window)的困難。因此,如何解決記憶胞陣列區與周邊電路區之間的微負載效應,並改善周邊電路區之子溝渠缺陷的問題,將變成相當重要的一門課題。 With the rapid development of technology, in order to reduce the cost, simplify the process steps and save the wafer area, it has become a trend to integrate the elements of the memory cell array and the peripheral circuit area on the same wafer. However, as the aspect ratio of the memory element becomes higher and higher, since the pattern density between the memory cell array region and the peripheral circuit region is different, it is easy to cause a micro-loading effect. The micro-loading effect generally refers to a variation in the size of a semiconductor element due to a difference in pattern density when an etching process is performed. For example, Sub-trench defects are prone to occur in peripheral circuit areas with low pattern density, and sub-channel defects will cause difficulties in subsequent process margins. Therefore, how to solve the micro-load effect between the memory cell array region and the peripheral circuit region and improve the problem of sub-channel defects in the peripheral circuit region will become a very important issue.
本發明提供一種記憶元件及其製造方法,其可解決記憶胞陣列區與周邊電路區之間的微負載效應,並改善周邊電路區之子溝渠缺陷的問題。 The invention provides a memory element and a manufacturing method thereof, which can solve the micro-load effect between the memory cell array region and the peripheral circuit region, and improve the problem of sub-ditch defects in the peripheral circuit region.
本發明提供一種記憶元件包括基底、第一堆疊結構以及多數個第二堆疊結構。基底具有第一區與第二區。第一堆疊結構位於第一區的基底上。第一堆疊結構包括多數個第一導體層以及多數個第一介電層。第一導體層與第一介電層相互堆疊。多數個第二堆疊結構位於第二區的基底上。每一第二堆疊結構包括多數個第二導體層以及多數個第二介電層。第二導體層與第二介電層相互堆疊。上述第一堆疊結構的側壁與第二堆疊結構的側壁分別為凹凸表面。 The present invention provides a memory element including a substrate, a first stacked structure, and a plurality of second stacked structures. The substrate has a first zone and a second zone. The first stack structure is located on the substrate of the first zone. The first stack structure includes a plurality of first conductor layers and a plurality of first dielectric layers. The first conductor layer and the first dielectric layer are stacked on each other. A plurality of second stacked structures are located on the substrate of the second zone. Each of the second stacked structures includes a plurality of second conductor layers and a plurality of second dielectric layers. The second conductor layer and the second dielectric layer are stacked on each other. The sidewalls of the first stack structure and the sidewalls of the second stack structure are respectively concave and convex surfaces.
在本發明的一實施例中,上述第一堆疊結構與第二堆疊結構的側壁的輪廓包括至少兩個垂直切線。 In an embodiment of the invention, the contours of the sidewalls of the first stack structure and the second stack structure comprise at least two perpendicular tangents.
在本發明的一實施例中,更包括底介電結構,其位於基底與第一堆疊結構之間以及基底與第二堆疊結構之間。上述底介電結構具有主體部、第一突出部以及多數個第二突出部。第一突出部自主體部延伸,且位於主體部與第一堆疊結構之間。而第二突出部自主體部延伸,且分別位於主體部與第二堆疊結構之間。鄰近上述第一堆疊結構之主體部的頂面與遠離第一堆疊結構之主體部的頂面之間的距離小於100Å。 In an embodiment of the invention, a bottom dielectric structure is further included between the substrate and the first stacked structure and between the substrate and the second stacked structure. The bottom dielectric structure has a main body portion, a first protruding portion, and a plurality of second protruding portions. The first protrusion extends from the body portion and is located between the body portion and the first stack structure. The second protrusions extend from the body portion and are respectively located between the body portion and the second stack structure. A distance between a top surface of the body portion adjacent to the first stack structure and a top surface remote from the body portion of the first stack structure is less than 100 Å.
在本發明的一實施例中,鄰近第一堆疊結構之主體部的 頂面與遠離第一堆疊結構之主體部的頂面之間的距離為10Å至100Å。 In an embodiment of the invention, adjacent to the body portion of the first stack structure The distance between the top surface and the top surface remote from the body portion of the first stacked structure is 10 Å to 100 Å.
本發明提供一種記憶元件包括基底、第一堆疊結構、多數個第二堆疊結構以及底介電結構。基底具有第一區與第二區。第一堆疊結構位於第一區的基底上。第一堆疊結構包括多數個第一導體層以及多數個第一介電層。第一導體層與第一介電層相互堆疊。多數個第二堆疊結構位於第二區的基底上。每一第二堆疊結構包括多數個第二導體層以及多數個第二介電層。第二導體層與第二介電層相互堆疊。底介電結構位於基底與第一堆疊結構之間以及基底與第二堆疊結構之間。上述底介電結構具有主體部、第一突出部以及多數個第二突出部。第一突出部自主體部延伸,且位於主體部與第一堆疊結構之間。而第二突出部自主體部延伸,且分別位於主體部與第二堆疊結構之間。上述第一堆疊結構之頂面與鄰近第一堆疊結構之主體部的頂面之間的距離為上述第二堆疊結構之頂面與鄰近第二堆疊結構之主體部的頂面之間的距離的1倍至1.1倍。 The present invention provides a memory element including a substrate, a first stacked structure, a plurality of second stacked structures, and a bottom dielectric structure. The substrate has a first zone and a second zone. The first stack structure is located on the substrate of the first zone. The first stack structure includes a plurality of first conductor layers and a plurality of first dielectric layers. The first conductor layer and the first dielectric layer are stacked on each other. A plurality of second stacked structures are located on the substrate of the second zone. Each of the second stacked structures includes a plurality of second conductor layers and a plurality of second dielectric layers. The second conductor layer and the second dielectric layer are stacked on each other. A bottom dielectric structure is between the substrate and the first stack structure and between the substrate and the second stack structure. The bottom dielectric structure has a main body portion, a first protruding portion, and a plurality of second protruding portions. The first protrusion extends from the body portion and is located between the body portion and the first stack structure. The second protrusions extend from the body portion and are respectively located between the body portion and the second stack structure. a distance between a top surface of the first stacked structure and a top surface adjacent to the main body portion of the first stacked structure is a distance between a top surface of the second stacked structure and a top surface of the main body portion adjacent to the second stacked structure 1 to 1.1 times.
在本發明的一實施例中,更包括電荷儲存層以及第三導體層。電荷儲存層覆蓋第一堆疊結構與第二堆疊結構的表面。第三導體層覆蓋電荷儲存層的表面。 In an embodiment of the invention, a charge storage layer and a third conductor layer are further included. A charge storage layer covers the surfaces of the first stacked structure and the second stacked structure. The third conductor layer covers the surface of the charge storage layer.
本發明提供一種記憶元件的製造方法,其步驟如下。提供基底。基底具有第一區與第二區。於基底上形成底介電層。底介電層橫越第一區與第二區。於底介電層上形成堆疊層。堆疊層 包括多數個第一導體層以及多數個第一介電層。第一導體層與第一介電層相互堆疊。對堆疊層進行蝕刻製程,移除部分堆疊層,以於第一區的基底上形成第一堆疊結構,且於第二區的基底上形成多數個第二堆疊結構。蝕刻製程包括多數次第一蝕刻步驟與多數次第二蝕刻步驟。第一蝕刻步驟與第二蝕刻步驟交替進行。 The present invention provides a method of manufacturing a memory element, the steps of which are as follows. A substrate is provided. The substrate has a first zone and a second zone. A bottom dielectric layer is formed on the substrate. The bottom dielectric layer traverses the first zone and the second zone. A stacked layer is formed on the bottom dielectric layer. Stacking layer A plurality of first conductor layers and a plurality of first dielectric layers are included. The first conductor layer and the first dielectric layer are stacked on each other. An etching process is performed on the stacked layers, and a portion of the stacked layers are removed to form a first stacked structure on the substrate of the first region, and a plurality of second stacked structures are formed on the substrate of the second region. The etching process includes a plurality of first etching steps and a plurality of second etching steps. The first etching step and the second etching step alternate.
在本發明的一實施例中,上述第一蝕刻步驟包括移除部分第一導體層。上述第二蝕刻步驟包括移除部分第一介電層。第一蝕刻步驟與第二蝕刻步驟所使用的反應氣體不同。 In an embodiment of the invention, the first etching step includes removing a portion of the first conductor layer. The second etching step includes removing a portion of the first dielectric layer. The first etching step is different from the reaction gas used in the second etching step.
在本發明的一實施例中,更包括於第一堆疊結構與第二堆疊結構上形成電荷儲存層。於電荷儲存層上形成第二導體層。 In an embodiment of the invention, the method further includes forming a charge storage layer on the first stacked structure and the second stacked structure. A second conductor layer is formed on the charge storage layer.
在本發明的一實施例中,在進行上述蝕刻製程時,更包括移除部分底介電層,以形成底介電結構。底介電結構具有主體部、第一突出部以及多數個第二突出部。第一突出部自主體部延伸,且位於主體部與第一堆疊結構之間。而第二突出部自主體部延伸,且分別位於主體部與第二堆疊結構之間。 In an embodiment of the invention, during the etching process, a portion of the bottom dielectric layer is removed to form a bottom dielectric structure. The bottom dielectric structure has a body portion, a first protrusion, and a plurality of second protrusions. The first protrusion extends from the body portion and is located between the body portion and the first stack structure. The second protrusions extend from the body portion and are respectively located between the body portion and the second stack structure.
基於上述,本發明之記憶元件的製造方法可交替進行第一蝕刻步驟與第二蝕刻步驟,以交替移除導體層與介電層。因此,本發明之具有多數個導體層以及多數個介電層的堆疊層可依序地被移除,藉此降低記憶胞陣列區與周邊電路區之間的微負載效應。如此一來,本發明便可改善周邊電路區之子溝渠缺陷的問題,以增加後續製程的裕度。 Based on the above, the manufacturing method of the memory element of the present invention may alternately perform the first etching step and the second etching step to alternately remove the conductor layer and the dielectric layer. Therefore, the stacked layers of the present invention having a plurality of conductor layers and a plurality of dielectric layers can be sequentially removed, thereby reducing the micro-loading effect between the memory cell array regions and the peripheral circuit regions. In this way, the present invention can improve the problem of sub-drain defects in the peripheral circuit area to increase the margin of subsequent processes.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉 實施例,並配合所附圖式作詳細說明如下。 In order to make the above features and advantages of the present invention more apparent, the following is a special The embodiments are described in detail below in conjunction with the drawings.
100‧‧‧基底 100‧‧‧Base
102‧‧‧底介電層 102‧‧‧ bottom dielectric layer
102a‧‧‧主體部 102a‧‧‧ Main body
102b‧‧‧第一突出部 102b‧‧‧First protrusion
102c‧‧‧第二突出部 102c‧‧‧second protrusion
103‧‧‧底介電結構 103‧‧‧Bottom dielectric structure
104‧‧‧堆疊層 104‧‧‧Stacking layer
104a‧‧‧第一堆疊結構 104a‧‧‧First stacking structure
104b‧‧‧第二堆疊結構 104b‧‧‧Second stacking structure
106、106a、106b、114‧‧‧導體層 106, 106a, 106b, 114‧‧‧ conductor layer
108、108a、108b‧‧‧介電層 108, 108a, 108b‧‧‧ dielectric layer
110a、110b、110c、110d‧‧‧圖案化的罩幕層 110a, 110b, 110c, 110d‧‧‧ patterned mask layer
112‧‧‧電荷儲存層 112‧‧‧Charge storage layer
d、H1、H2‧‧‧距離 d, H1, H2‧‧‧ distance
P‧‧‧部分 Part P‧‧‧
R1‧‧‧第一區 R1‧‧‧ first district
R2‧‧‧第二區 R2‧‧‧Second District
T1、T2‧‧‧厚度 T1, T2‧‧‧ thickness
W1、W2‧‧‧寬度 W1, W2‧‧‧ width
BCD1、BCD2、BCD3、BCD4‧‧‧底部關鍵尺寸 BCD1, BCD2, BCD3, BCD4‧‧‧ bottom critical dimensions
MCD1、MCD2、MCD3、MCD4‧‧‧中間關鍵尺寸 MCD1, MCD2, MCD3, MCD4‧‧‧ intermediate key size
TCD1、TCD2、TCD3、TCD4‧‧‧頂部關鍵尺寸 TCD1, TCD2, TCD3, TCD4‧‧‧ top key size
圖1A至圖1C為本發明實施例之記憶元件的製造流程的剖面示意圖。 1A to 1C are schematic cross-sectional views showing a manufacturing process of a memory element according to an embodiment of the present invention.
圖2A至圖2B分別為圖1B之部分堆疊結構P的放大示意圖。 2A to 2B are enlarged schematic views of a portion of the stacked structure P of Fig. 1B, respectively.
圖1A至圖1C為本發明實施例之記憶元件的製造流程的剖面示意圖。 1A to 1C are schematic cross-sectional views showing a manufacturing process of a memory element according to an embodiment of the present invention.
請參照圖1A,首先,提供基底100。基底100具有第一區R1與第二區R2。在本實施例中,第一區R1可例如是周邊電路區,而第二區R2可例如是記憶胞陣列區。基底100例如為半導體基底、半導體化合物基底或是絕緣層上有半導體基底(Semiconductor Over Insulator,SOI)。半導體例如是IVA族的原子,例如矽或鍺。半導體化合物例如是IVA族的原子所形成之半導體化合物,例如是碳化矽或是矽化鍺,或是IIIA族原子與VA族原子所形成之半導體化合物,例如是砷化鎵。 Referring to FIG. 1A, first, a substrate 100 is provided. The substrate 100 has a first region R1 and a second region R2. In the present embodiment, the first region R1 may be, for example, a peripheral circuit region, and the second region R2 may be, for example, a memory cell array region. The substrate 100 is, for example, a semiconductor substrate, a semiconductor compound substrate, or a semiconductor substrate (Semiconductor Over Insulator (SOI)). The semiconductor is, for example, an atom of the IVA group, such as ruthenium or osmium. The semiconductor compound is, for example, a semiconductor compound formed of atoms of Group IVA, such as tantalum carbide or germanium telluride, or a semiconductor compound formed of a group IIIA atom and a group VA atom, such as gallium arsenide.
接著,於基底100上形成底介電層102。底介電層102橫越第一區R1與第二區R2。底介電層102的材料可包括氧化矽、氮化矽或其組合,其形成方法可利用化學氣相沈積法來形成。底 介電層102的厚度可例如是200Å至5000Å。在一實施例中,底介電層102可例如是底氧化層(Bottom Oxide Layer,BOX)。 Next, a bottom dielectric layer 102 is formed on the substrate 100. The bottom dielectric layer 102 traverses the first region R1 and the second region R2. The material of the bottom dielectric layer 102 may include tantalum oxide, tantalum nitride or a combination thereof, and the formation method thereof may be formed by chemical vapor deposition. bottom The thickness of the dielectric layer 102 can be, for example, 200 Å to 5000 Å. In an embodiment, the bottom dielectric layer 102 can be, for example, a Bottom Oxide Layer (BOX).
然後,於底介電層102上形成堆疊層104。堆疊層104包括多數個導體層106以及多數個介電層108。導體層106與介電層108相互堆疊。在一實施例中,導體層106的材料可包括是摻雜多晶矽、非摻雜多晶矽或其組合,其形成方法可利用化學氣相沈積法來形成,導體層106的厚度可例如是200Å至1000Å。介電層108的材料可包括氧化矽、氮化矽或其組合,其形成方法可利用化學氣相沈積法來形成,介電層108的厚度可例如是200Å至1000Å。雖然,圖1A僅繪示5層的導體層106以及5層的介電層108,但本發明不以此為限,在其他實施例中,導體層106的數目可例如是8層、16層、32層或更多層。同樣地,介電層108配置於相鄰兩個導體層106之間,因此,介電層108亦可例如是8層、16層、32層或更多層。 Then, a stacked layer 104 is formed on the bottom dielectric layer 102. The stacked layer 104 includes a plurality of conductor layers 106 and a plurality of dielectric layers 108. The conductor layer 106 and the dielectric layer 108 are stacked one on another. In an embodiment, the material of the conductor layer 106 may include doped polysilicon, undoped polysilicon or a combination thereof, and the formation method thereof may be formed by chemical vapor deposition, and the thickness of the conductor layer 106 may be, for example, 200 Å to 1000 Å. . The material of the dielectric layer 108 may include tantalum oxide, tantalum nitride or a combination thereof, and the formation method thereof may be formed by chemical vapor deposition, and the thickness of the dielectric layer 108 may be, for example, 200 Å to 1000 Å. Although FIG. 1A only shows the 5-layer conductor layer 106 and the 5-layer dielectric layer 108, the invention is not limited thereto. In other embodiments, the number of the conductor layers 106 may be, for example, 8 layers or 16 layers. , 32 or more layers. Similarly, the dielectric layer 108 is disposed between two adjacent conductor layers 106. Therefore, the dielectric layer 108 can also be, for example, 8 layers, 16 layers, 32 layers, or more.
接著,於堆疊層104上形成圖案化的罩幕層110a、110b。圖案化的罩幕層110a、110b可例如是先進圖案化薄膜(Advanced Patterning Film,APF)、氮化層或其組合。先進圖案化薄膜(APF)的材料包括含碳材料,而含碳材料可例如是非晶碳。在本實施例中,可以在堆疊層104上先形成氮化層,再形成先進圖案化薄膜(APF)。 Next, patterned mask layers 110a, 110b are formed on the stacked layer 104. The patterned mask layer 110a, 110b can be, for example, an Advanced Patterning Film (APF), a nitride layer, or a combination thereof. The material of the advanced patterned film (APF) includes a carbonaceous material, and the carbonaceous material may be, for example, amorphous carbon. In this embodiment, a nitride layer may be formed on the stacked layer 104 to form an advanced patterned film (APF).
請參照圖1A與圖1B,以圖案化的罩幕層110a、110b為罩幕,對堆疊層104進行蝕刻製程,移除部分底介電層102以及 部分堆疊層104,以形成第一堆疊結構104a、多數個第二堆疊結構104b以及底介電結構103。由於在進行上述蝕刻製程時,會耗損部分圖案化的罩幕層110a、110b,所以,會在第一堆疊結構104a上形成圖案化的罩幕層110c,且同時在第二堆疊結構104b上形成圖案化的罩幕層110d(如圖1B所示)。在本實施例中,圖案化的罩幕層110c、110d的厚度可例如是200Å至2000Å。 Referring to FIG. 1A and FIG. 1B, the patterned mask layer 110a, 110b is used as a mask, and the stacked layer 104 is etched to remove a portion of the bottom dielectric layer 102 and The layers 104 are partially stacked to form a first stacked structure 104a, a plurality of second stacked structures 104b, and a bottom dielectric structure 103. Since the partially patterned mask layer 110a, 110b is consumed during the etching process described above, the patterned mask layer 110c is formed on the first stacked structure 104a and simultaneously formed on the second stacked structure 104b. A patterned mask layer 110d (shown in Figure 1B). In the present embodiment, the thickness of the patterned mask layers 110c, 110d may be, for example, 200 Å to 2000 Å.
第一堆疊結構104a位於第一區R1的基底100上。第一堆疊結構104a包括多數個導體層106a以及多數個介電層108a。導體層106a與介電層108a相互堆疊。第二堆疊結構104b位於第二區R2的基底100上。每一第二堆疊結構104b包括多數個導體層106b以及多數個介電層108b。導體層106b與介電層108b相互堆疊。底介電結構103位於基底100與第一堆疊結構104a之間以及基底100與第二堆疊結構104b之間。詳細地說,底介電結構103具有主體部102a、第一突出部102b以及多數個第二突出部102c。第一突出部102b自主體部102a延伸,位於主體部102a與第一堆疊結構104a之間,而第二突出部102c自主體部102a延伸,分別位於主體部102a與第二堆疊結構104b之間。關於本實施例之記憶元件的結構,於後續段落再詳細說明之,於此便不再詳述。 The first stack structure 104a is located on the substrate 100 of the first region R1. The first stacked structure 104a includes a plurality of conductor layers 106a and a plurality of dielectric layers 108a. The conductor layer 106a and the dielectric layer 108a are stacked one on another. The second stack structure 104b is located on the substrate 100 of the second region R2. Each of the second stacked structures 104b includes a plurality of conductor layers 106b and a plurality of dielectric layers 108b. The conductor layer 106b and the dielectric layer 108b are stacked on each other. The bottom dielectric structure 103 is located between the substrate 100 and the first stacked structure 104a and between the substrate 100 and the second stacked structure 104b. In detail, the bottom dielectric structure 103 has a main body portion 102a, a first protruding portion 102b, and a plurality of second protruding portions 102c. The first protrusion 102b extends from the body portion 102a between the body portion 102a and the first stack structure 104a, and the second protrusion portion 102c extends from the body portion 102a between the body portion 102a and the second stack structure 104b, respectively. The structure of the memory element of this embodiment will be described in detail in the following paragraphs, and will not be described in detail herein.
值得注意的是,上述蝕刻製程包括多數次第一蝕刻步驟與多數次第二蝕刻步驟。第一蝕刻步驟是用以移除部分導體層106;第二蝕刻步驟是用以移除部分介電層108,而第一蝕刻步驟與第二蝕刻步驟是交替進行。具體來說,在移除部分堆疊層104 時,其是依序進行第一蝕刻步驟、第二蝕刻步驟、第一蝕刻步驟、第二蝕刻步驟等,以依序移除部分導體層106、部分介電層108、部分導體層106、部分介電層108等。接著,再利用第二蝕刻步驟來移除部分底介電層102,以暴露第一突出部102b以及第二突出部102c的側壁。在一實施例中,上述第一蝕刻步驟與上述第二蝕刻步驟所使用的反應氣體不同。 It should be noted that the above etching process includes a plurality of first etching steps and a plurality of second etching steps. The first etching step is for removing a portion of the conductor layer 106; the second etching step is for removing a portion of the dielectric layer 108, and the first etching step and the second etching step are alternated. Specifically, the partial stack layer 104 is removed. When the first etching step, the second etching step, the first etching step, the second etching step, and the like are sequentially performed, the partial conductor layer 106, the partial dielectric layer 108, the partial conductor layer 106, and the portion are sequentially removed. Dielectric layer 108 and the like. Next, a portion of the bottom dielectric layer 102 is removed using a second etching step to expose the sidewalls of the first protrusion 102b and the second protrusion 102c. In one embodiment, the first etching step is different from the reaction gas used in the second etching step.
在本實施例中,上述蝕刻製程是交替進行第一蝕刻步驟與第二蝕刻步驟,以交替移除部分導體層106與部分介電層108。由於第一蝕刻步驟是用以移除導體層106,而第二蝕刻步驟則是用以移除介電層108,因此,本實施例可完全移除未被圖案化的罩幕層110a、110b遮蔽的部分導體層106與部分介電層108。換言之,即便第一區R1(可例如是記憶胞陣列區)與第二區R2(可例如是周邊電路區)之間的圖案密度不同,利用上述蝕刻製程來移除高深寬比的堆疊層,可降低記憶胞陣列區與周邊電路區之間的微負載效應。如此一來,本發明便可改善周邊電路區之子溝渠缺陷的問題,以增加後續製程的裕度。 In the present embodiment, the etching process is performed by alternately performing the first etching step and the second etching step to alternately remove the portion of the conductor layer 106 and the portion of the dielectric layer 108. Since the first etching step is for removing the conductor layer 106 and the second etching step is for removing the dielectric layer 108, the present embodiment can completely remove the unpatterned mask layers 110a, 110b. A portion of the conductor layer 106 and a portion of the dielectric layer 108 are shielded. In other words, even if the pattern density between the first region R1 (which may be, for example, a memory cell array region) and the second region R2 (which may be, for example, a peripheral circuit region) is different, the above etching process is used to remove the stacked layer of high aspect ratio, The micro-loading effect between the memory cell array region and the peripheral circuit region can be reduced. In this way, the present invention can improve the problem of sub-drain defects in the peripheral circuit area to increase the margin of subsequent processes.
在本實施例中,蝕刻製程可例如是乾式蝕刻。乾式蝕刻可例如是反應性離子蝕刻(RIE)。第一蝕刻步驟可例如是利用流量200sccm至400sccm的HBr與流量7.5sccm至20sccm的O2,在壓力10至70mTorr,源極電源(Source Power,Ws)為400W至1200W,偏極電源功率(Bias Power,Wb)為100W至800W下進行。第二蝕刻步驟可例如是利用流量100sccm至300sccm的 CF4、流量100sccm至300sccm的CHF3、流量10sccm至300sccm的CH2F2、流量100sccm至500sccm的N2以及流量5sccm至20sccm的O2,在壓力10mTorr至50mTorr,源極電源(Source Power,Ws)為400W至1200W,偏極電源功率(Bias Power,Wb)為100W至800W,電漿頻率(Plasma Frequency)為200Hz至1000Hz下進行。 In this embodiment, the etching process can be, for example, a dry etch. The dry etching can be, for example, reactive ion etching (RIE). The first etching step may be, for example, using a flow rate of 200 sccm to 400 sccm of HBr and a flow rate of 7.5 sccm to 20 sccm of O 2 at a pressure of 10 to 70 mTorr, a source power source (Source Power, Ws) of 400 W to 1200 W, and a bias power supply (Bias). Power, Wb) is performed from 100W to 800W. The second etching step may be, for example, CF 4 with a flow rate of 100 sccm to 300 sccm, CHF 3 with a flow rate of 100 sccm to 300 sccm, CH 2 F 2 with a flow rate of 10 sccm to 300 sccm, N 2 with a flow rate of 100 sccm to 500 sccm, and O 2 with a flow rate of 5 sccm to 20 sccm. The source power source (Source Power, Ws) is 400W to 1200W, the source power (Bias Power, Wb) is 100W to 800W, and the plasma frequency is 200Hz to 1000Hz at a pressure of 10mTorr to 50mTorr.
接著,請參照圖1C,於第一堆疊結構104a與第二堆疊結構104b上形成電荷儲存層112。電荷儲存層112沿著第一堆疊結構104a與第二堆疊結構104b的表面共形地形成。在一實施例中,電荷儲存層112可例如是由氧化層/氮化層/氧化層(Oxide-Nitride-Oxide,ONO)所構成的複合層,此複合層可為三層或更多層,本發明並不限於此,其形成方法可以是化學氣相沈積法、熱氧化法等。 Next, referring to FIG. 1C, a charge storage layer 112 is formed on the first stacked structure 104a and the second stacked structure 104b. The charge storage layer 112 is conformally formed along the surface of the first stacked structure 104a and the second stacked structure 104b. In one embodiment, the charge storage layer 112 may be, for example, a composite layer composed of an oxide layer/nitride layer/Oxide (ONO), and the composite layer may be three or more layers. The present invention is not limited thereto, and the formation method thereof may be a chemical vapor deposition method, a thermal oxidation method, or the like.
然後,於電荷儲存層112上形成導體層114。在一實施例中,位於第二區R2(可例如是記憶胞陣列區)中的導體層114可例如是字元線(Word Line,WL);而第二堆疊結構104b可例如是位元線(Bit Line,BL)。但本發明不限於此,在其他實施例中,第二堆疊結構104b可例如是字元線,而導體層114可例如是位元線。導體層114的材料可例如是摻雜多晶矽、非摻雜多晶矽或其組合,其形成方法可以利用化學氣相沈積法。導體層114的厚度可例如是200Å至3000Å。 Then, a conductor layer 114 is formed on the charge storage layer 112. In an embodiment, the conductor layer 114 located in the second region R2 (which may be, for example, a memory cell array region) may be, for example, a word line (WL Line); and the second stacked structure 104b may be, for example, a bit line. (Bit Line, BL). However, the invention is not limited thereto, and in other embodiments, the second stack structure 104b may be, for example, a word line, and the conductor layer 114 may be, for example, a bit line. The material of the conductor layer 114 may be, for example, doped polysilicon, undoped polysilicon or a combination thereof, and the formation method thereof may utilize a chemical vapor deposition method. The thickness of the conductor layer 114 can be, for example, 200 Å to 3,000 Å.
圖2A至圖2B分別為圖1B之部分堆疊結構P的放大示 意圖。 2A to 2B are enlarged views of a portion of the stacked structure P of FIG. 1B, respectively. intention.
請參考圖1B、圖2A以及圖2B,本發明提供一種記憶元件包括基底100、第一堆疊結構104a、多數個第二堆疊結構104b以及底介電結構102。基底100具有第一區R1與第二區R2。在本實施例中,第一區R1可例如是周邊電路區,而第二區R2可例如是記憶胞陣列區。第一堆疊結構104a位於第一區R1的基底100上。多數個第二堆疊結構104b位於第二區R2的基底100上。底介電結構102位於基底100與第一堆疊結構104a之間以及基底100與第二堆疊結構104b之間。詳細地說,底介電結構103具有主體部102a、第一突出部102b以及多數個第二突出部102c。第一突出部102b自主體部102a延伸,位於主體部102a與第一堆疊結構104a之間,而第二突出部102c自主體部102a延伸,分別位於主體部102a與第二堆疊結構104b之間。在本實施例中,鄰近第一堆疊結構104a之主體部102a的頂面與遠離第一堆疊結構104a之主體部102a的頂面之間的距離d可小於100Å。此距離d可例如是10Å至100Å。相較於先前技術中的子溝渠缺陷,本發明之第一區R1(可例如是周邊電路區)中的鄰近第一堆疊結構104a之主體部102a的頂面的凹陷程度較小,故可增加後續製程的裕度。 Referring to FIG. 1B, FIG. 2A and FIG. 2B, the present invention provides a memory element including a substrate 100, a first stacked structure 104a, a plurality of second stacked structures 104b, and a bottom dielectric structure 102. The substrate 100 has a first region R1 and a second region R2. In the present embodiment, the first region R1 may be, for example, a peripheral circuit region, and the second region R2 may be, for example, a memory cell array region. The first stack structure 104a is located on the substrate 100 of the first region R1. A plurality of second stacked structures 104b are located on the substrate 100 of the second region R2. The bottom dielectric structure 102 is located between the substrate 100 and the first stacked structure 104a and between the substrate 100 and the second stacked structure 104b. In detail, the bottom dielectric structure 103 has a main body portion 102a, a first protruding portion 102b, and a plurality of second protruding portions 102c. The first protrusion 102b extends from the body portion 102a between the body portion 102a and the first stack structure 104a, and the second protrusion portion 102c extends from the body portion 102a between the body portion 102a and the second stack structure 104b, respectively. In the present embodiment, the distance d between the top surface of the main body portion 102a adjacent to the first stacked structure 104a and the top surface of the main body portion 102a away from the first stacked structure 104a may be less than 100 Å. This distance d can be, for example, 10 Å to 100 Å. Compared with the sub-ditch defect in the prior art, the top surface of the main portion 102a adjacent to the first stacked structure 104a in the first region R1 of the present invention (which may be, for example, a peripheral circuit region) is less recessed, so that it can be increased The margin of subsequent processes.
在一實施例中,第一區R1可例如是周邊電路區,而第二區R2可例如是記憶胞陣列區。而位於第一區R1中的第一堆疊結構104a的底部寬度W1大於位於第二區R2中的第二堆疊結構104b的底部寬度W2。在本實施例中,第一堆疊結構104a的底部 寬度W1可例如是第二堆疊結構104b的底部寬度W2的10倍至500倍。 In an embodiment, the first region R1 may be, for example, a peripheral circuit region, and the second region R2 may be, for example, a memory cell array region. The bottom width W1 of the first stacked structure 104a located in the first region R1 is greater than the bottom width W2 of the second stacked structure 104b located in the second region R2. In this embodiment, the bottom of the first stack structure 104a The width W1 may be, for example, 10 to 500 times the bottom width W2 of the second stacked structure 104b.
值得注意的是,上述蝕刻製程是交替進行第一蝕刻步驟與第二蝕刻步驟,以交替移除部分導體層106與部分介電層108。由於第一蝕刻步驟與第二蝕刻步驟的蝕刻條件(Recipe)不同,因此,在巨觀上,第一堆疊結構104a的側壁的輪廓與第二堆疊結構104b的側壁的輪廓皆可視為是兩個垂直切線。 It should be noted that the above etching process alternates between the first etching step and the second etching step to alternately remove portions of the conductor layer 106 and the portion of the dielectric layer 108. Since the first etching step is different from the etching condition of the second etching step, the outline of the sidewall of the first stacked structure 104a and the outline of the sidewall of the second stacked structure 104b can be regarded as two in a giant view. Vertical tangent.
另一方面,在微觀上,第一堆疊結構104a的側壁的輪廓與第二堆疊結構104b的側壁分別具有凹凸表面。換言之,第一堆疊結構104a的側壁的輪廓與第二堆疊結構104b的側壁的輪廓皆可例如是鋸齒狀(Zig-Zag)、啞鈴形、瓦楞紙狀或其組合。 On the other hand, microscopically, the contour of the side wall of the first stacked structure 104a and the side wall of the second stacked structure 104b have concave and convex surfaces, respectively. In other words, the contour of the sidewall of the first stack structure 104a and the profile of the sidewall of the second stack structure 104b may each be, for example, a zig-Zag, a dumbbell shape, a corrugated paper shape, or a combination thereof.
詳細地說,以第二堆疊結構104b為例,如圖2A所示,第二堆疊結構104b之介電層108b具有第一頂部關鍵尺寸TCD1、第一中間關鍵尺寸MCD1以及第一底部關鍵尺寸BCD1。由於介電層108b的形狀可例如是蛋形,因此,第一中間關鍵尺寸MCD1大於第一頂部關鍵尺寸TCD1,且第一中間關鍵尺寸MCD1大於第一底部關鍵尺寸BCD1。在一實施例中,介電層108b的側壁可以是弧形。但本發明不限於此,在其他實施例中,介電層108b的側壁亦可以是角形。另一方面,導體層106b具有第二頂部關鍵尺寸TCD2、第二中間關鍵尺寸MCD2以及第二底部關鍵尺寸BCD2。由於導體層106b的形狀可例如是矩形,因此,第二中間關鍵尺寸MCD2等於第二頂部關鍵尺寸TCD2,且第二中間關鍵 尺寸MCD2等於第二底部關鍵尺寸BCD2。由圖2A可知,第一中間關鍵尺寸MCD1大於第二中間關鍵尺寸MCD2,因此,第二堆疊結構104b的側壁的輪廓呈現啞鈴形。在一實施例中,第一中間關鍵尺寸MCD1可例如是10nm至100nm;而第二中間關鍵尺寸MCD2可例如是10nm至100nm。 In detail, taking the second stacked structure 104b as an example, as shown in FIG. 2A, the dielectric layer 108b of the second stacked structure 104b has a first top critical dimension TCD1, a first intermediate critical dimension MCD1, and a first bottom critical dimension BCD1. . Since the shape of the dielectric layer 108b can be, for example, an egg shape, the first intermediate key dimension MCD1 is greater than the first top critical dimension TCD1, and the first intermediate critical dimension MCD1 is greater than the first bottom critical dimension BCD1. In an embodiment, the sidewalls of the dielectric layer 108b may be curved. However, the present invention is not limited thereto. In other embodiments, the sidewall of the dielectric layer 108b may also be angular. On the other hand, the conductor layer 106b has a second top critical dimension TCD2, a second intermediate critical dimension MCD2, and a second bottom critical dimension BCD2. Since the shape of the conductor layer 106b can be, for example, a rectangle, the second intermediate key dimension MCD2 is equal to the second top critical dimension TCD2, and the second intermediate key The size MCD2 is equal to the second bottom critical dimension BCD2. As can be seen from FIG. 2A, the first intermediate key dimension MCD1 is larger than the second intermediate key dimension MCD2, and therefore, the contour of the sidewall of the second stack structure 104b exhibits a dumbbell shape. In an embodiment, the first intermediate critical dimension MCD1 may be, for example, 10 nm to 100 nm; and the second intermediate critical dimension MCD2 may be, for example, 10 nm to 100 nm.
在另一實施例中,如圖2B所示,第二堆疊結構104b之介電層108b具有第三頂部關鍵尺寸TCD3、第三中間關鍵尺寸MCD3以及第三底部關鍵尺寸BCD3。由於介電層108b的形狀可例如是蛋形,因此,第三中間關鍵尺寸MCD3大於第三頂部關鍵尺寸TCD3,且第三中間關鍵尺寸MCD3大於第三底部關鍵尺寸BCD3。同樣地,在一實施例中,介電層108b的側壁可以是弧形。但本發明不限於此,在其他實施例中,介電層108b的側壁亦可以是角形。另一方面,導體層106b具有第四頂部關鍵尺寸TCD4、第四中間關鍵尺寸MCD4以及第四底部關鍵尺寸BCD4。由於導體層106b的形狀可例如是沙漏形,因此,第四中間關鍵尺寸MCD4小於第四頂部關鍵尺寸TCD4,且第四中間關鍵尺寸MCD4小於第四底部關鍵尺寸BCD4。由圖2B可知,第三中間關鍵尺寸MCD3大於第四中間關鍵尺寸MCD4,因此,第二堆疊結構104b的側壁的輪廓呈現瓦楞紙狀。在一實施例中,第三中間關鍵尺寸MCD3可例如是10nm至100nm;而第四中間關鍵尺寸MCD4可例如是10nm至100nm。此外,在本實施例中,第一堆疊結構104a亦具有與上述第二堆疊結構104b相似的側壁輪廓,於此便不再詳述。 In another embodiment, as shown in FIG. 2B, the dielectric layer 108b of the second stacked structure 104b has a third top critical dimension TCD3, a third intermediate critical dimension MCD3, and a third bottom critical dimension BCD3. Since the shape of the dielectric layer 108b can be, for example, an egg shape, the third intermediate key dimension MCD3 is greater than the third top critical dimension TCD3, and the third intermediate critical dimension MCD3 is greater than the third bottom critical dimension BCD3. Likewise, in an embodiment, the sidewalls of the dielectric layer 108b may be curved. However, the present invention is not limited thereto. In other embodiments, the sidewall of the dielectric layer 108b may also be angular. On the other hand, the conductor layer 106b has a fourth top critical dimension TCD4, a fourth intermediate critical dimension MCD4, and a fourth bottom critical dimension BCD4. Since the shape of the conductor layer 106b may be, for example, an hourglass shape, the fourth intermediate key dimension MCD4 is smaller than the fourth top critical dimension TCD4, and the fourth intermediate critical dimension MCD4 is smaller than the fourth bottom critical dimension BCD4. As can be seen from FIG. 2B, the third intermediate key size MCD3 is larger than the fourth intermediate key size MCD4, and therefore, the outline of the side wall of the second stacked structure 104b exhibits a corrugated shape. In an embodiment, the third intermediate critical dimension MCD3 may be, for example, 10 nm to 100 nm; and the fourth intermediate critical dimension MCD4 may be, for example, 10 nm to 100 nm. In addition, in the present embodiment, the first stack structure 104a also has a sidewall profile similar to that of the second stack structure 104b described above, and will not be described in detail herein.
請回頭參照圖1B,在本實施例中,第一堆疊結構104a之頂面與鄰近第一堆疊結構104a之主體部102a的頂面之間的距離H1可例如是5000A至20000A;第二堆疊結構104b之頂面與鄰近第二堆疊結構104b之主體部102a的頂面之間的距離H2可例如是5000A至20000A。上述距離H1可例如是距離H2的1倍至1.1倍。另一方面,第一突出部102b的厚度T1可例如是2000A至5000A;第二突出部102c的厚度T2可例如是2000A至5000A。上述第一突出部102b的厚度T1可例如是第二突出部102c的厚度T2的1倍至2倍。 Referring back to FIG. 1B, in the present embodiment, the distance H1 between the top surface of the first stacked structure 104a and the top surface of the main body portion 102a adjacent to the first stacked structure 104a may be, for example, 5000A to 20000A; the second stack structure The distance H2 between the top surface of 104b and the top surface of the body portion 102a adjacent to the second stack structure 104b may be, for example, 5000A to 20000A. The above distance H1 may be, for example, 1 to 1.1 times the distance H2. On the other hand, the thickness T1 of the first protrusion 102b may be, for example, 2000A to 5000A; the thickness T2 of the second protrusion 102c may be, for example, 2000A to 5000A. The thickness T1 of the first protruding portion 102b may be, for example, 1 to 2 times the thickness T2 of the second protruding portion 102c.
綜上所述,本發明之記憶元件的製造方法可交替進行第一蝕刻步驟與第二蝕刻步驟,以交替移除導體層與介電層。所以,本發明之具有多數個導體層以及多數個介電層的堆疊層可依序地被移除,藉此降低記憶胞陣列區與周邊電路區之間的微負載效應。因此,在一實施例中,記憶元件之鄰近第一堆疊結構之主體部的頂面與遠離第一堆疊結構之主體部的頂面之間的距離可小於100Å。另一方面,在一實施例中,記憶元件之第一堆疊結構之頂面與鄰近所述第一堆疊結構之主體部的頂面之間的距離可以是第二堆疊結構之頂面與鄰近所述第二堆疊結構之主體部的頂面之間的距離的1倍至1.1倍。如此一來,本發明便可改善周邊電路區之子溝渠缺陷的問題,以增加後續製程的裕度。 In summary, the method of fabricating the memory device of the present invention alternately performs the first etching step and the second etching step to alternately remove the conductor layer and the dielectric layer. Therefore, the stacked layers of the present invention having a plurality of conductor layers and a plurality of dielectric layers can be sequentially removed, thereby reducing the micro-loading effect between the memory cell array region and the peripheral circuit regions. Thus, in an embodiment, the distance between the top surface of the memory element adjacent the body portion of the first stack structure and the top surface of the body portion remote from the first stack structure may be less than 100 Å. In another aspect, in an embodiment, a distance between a top surface of the first stacked structure of the memory element and a top surface adjacent to the main body portion of the first stacked structure may be a top surface and a neighboring portion of the second stacked structure The distance between the top surfaces of the body portions of the second stacked structure is 1 to 1.1 times. In this way, the present invention can improve the problem of sub-drain defects in the peripheral circuit area to increase the margin of subsequent processes.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的 精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art without departing from the invention. In the spirit and scope, the scope of protection of the present invention is subject to the definition of the appended patent application.
100‧‧‧基底 100‧‧‧Base
102a‧‧‧主體部 102a‧‧‧ Main body
102b‧‧‧第一突出部 102b‧‧‧First protrusion
102c‧‧‧第二突出部 102c‧‧‧second protrusion
103‧‧‧底介電結構 103‧‧‧Bottom dielectric structure
104a‧‧‧第一堆疊結構 104a‧‧‧First stacking structure
104b‧‧‧第二堆疊結構 104b‧‧‧Second stacking structure
106a、106b‧‧‧導體層 106a, 106b‧‧‧ conductor layer
108a、108b‧‧‧介電層 108a, 108b‧‧‧ dielectric layer
110c、110d‧‧‧圖案化的罩幕層 110c, 110d‧‧‧ patterned mask layer
d、H1、H2‧‧‧距離 d, H1, H2‧‧‧ distance
P‧‧‧部分 Part P‧‧‧
R1‧‧‧第一區 R1‧‧‧ first district
R2‧‧‧第二區 R2‧‧‧Second District
T1、T2‧‧‧厚度 T1, T2‧‧‧ thickness
W1、W2‧‧‧寬度 W1, W2‧‧‧ width
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104109416A TWI569375B (en) | 2015-03-24 | 2015-03-24 | Memory device and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104109416A TWI569375B (en) | 2015-03-24 | 2015-03-24 | Memory device and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201635441A TW201635441A (en) | 2016-10-01 |
TWI569375B true TWI569375B (en) | 2017-02-01 |
Family
ID=57847393
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104109416A TWI569375B (en) | 2015-03-24 | 2015-03-24 | Memory device and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI569375B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201316457A (en) * | 2011-10-11 | 2013-04-16 | Macronix Int Co Ltd | Memory and manufacturing method thereof |
US20140045307A1 (en) * | 2010-06-30 | 2014-02-13 | Sandisk Technologies Inc. | Ultrahigh density vertical nand memory device and method of making thereof |
TW201511237A (en) * | 2013-07-03 | 2015-03-16 | Toshiba Kk | Nonvolatile semiconductor memory device and method of manufacturing the same |
-
2015
- 2015-03-24 TW TW104109416A patent/TWI569375B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140045307A1 (en) * | 2010-06-30 | 2014-02-13 | Sandisk Technologies Inc. | Ultrahigh density vertical nand memory device and method of making thereof |
TW201316457A (en) * | 2011-10-11 | 2013-04-16 | Macronix Int Co Ltd | Memory and manufacturing method thereof |
TW201511237A (en) * | 2013-07-03 | 2015-03-16 | Toshiba Kk | Nonvolatile semiconductor memory device and method of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
TW201635441A (en) | 2016-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI471903B (en) | Frequency doubling using spacer mask | |
US8389400B2 (en) | Method of manufacturing fine patterns of semiconductor device | |
TWI356446B (en) | Methods to reduce the critical dimension of semico | |
CN103794475B (en) | The triple graphic method of autoregistration | |
TW201906089A (en) | Dynamic random access memory and method of fabricating the same | |
CN104900495B (en) | The preparation method of self-alignment duplex pattern method and fin formula field effect transistor | |
TWI409881B (en) | Semiconductor device manufacturing method | |
JP2008536297A (en) | Patterns with a narrower pitch than photolithography structures | |
JP2007027753A (en) | Method of fabricating semiconductor device having vertical channel and the semiconductor device fabricated using the method | |
TWI661540B (en) | Method of manufacturing memory device | |
US9548369B2 (en) | Memory device and method of manufacturing the same | |
US11309433B2 (en) | Non-volatile memory structure and manufacturing method thereof | |
TWI765643B (en) | Memory device and method of manufacturing the same | |
CN114823295A (en) | Method for manufacturing semiconductor device | |
KR100714287B1 (en) | Method for forming a pattern of semiconductor device | |
TWI569375B (en) | Memory device and method of manufacturing the same | |
KR101001466B1 (en) | Method of manufacturing a non-volatile memory device | |
CN108257910B (en) | The production method of shallow trench isolation groove | |
TWI571975B (en) | Semiconductor device and method of forming the same | |
US8933566B2 (en) | Multilayer line trimming | |
US20110104881A1 (en) | Method of reducing wordline shorting | |
TWI527094B (en) | Method of forming fin structure in integrated circuit | |
CN113972163A (en) | Method for forming isolation of semiconductor device | |
JP2012204453A (en) | Forming method of wiring | |
KR20070074175A (en) | Method for manufacturing storagenode contact in semiconductor device |