TWI565734B - High durability cross-linked polymer particles - Google Patents

High durability cross-linked polymer particles Download PDF

Info

Publication number
TWI565734B
TWI565734B TW104137086A TW104137086A TWI565734B TW I565734 B TWI565734 B TW I565734B TW 104137086 A TW104137086 A TW 104137086A TW 104137086 A TW104137086 A TW 104137086A TW I565734 B TWI565734 B TW I565734B
Authority
TW
Taiwan
Prior art keywords
acrylate
meth
resin
polymer microparticles
compression
Prior art date
Application number
TW104137086A
Other languages
Chinese (zh)
Other versions
TW201716474A (en
Inventor
Ju-Lun Yan
Zheng-Kai Lin
Qi-Lv He
Yih-Ping Wang
Xing Zhang
Wen-Heng Luo
Guo-Ming Wei
Original Assignee
Cpc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cpc Corp filed Critical Cpc Corp
Priority to TW104137086A priority Critical patent/TWI565734B/en
Application granted granted Critical
Publication of TWI565734B publication Critical patent/TWI565734B/en
Publication of TW201716474A publication Critical patent/TW201716474A/en

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Description

高耐用交聯型高分子微粒子Highly durable crosslinked polymer microparticles

本發明係有關於一種藉由單體聚合方式所合成之高耐用交聯型高分子微粒子,特別係指此交聯型高分子微粒子具備高耐用性,使其在塗料與電子化學品之應用上更為廣泛者。The invention relates to a high-durability cross-linked polymer microparticle synthesized by a monomer polymerization method, in particular to the high durability of the cross-linked polymer microparticle, which is applied to coatings and electronic chemicals. More extensive.

具有高交聯度且優良耐熱性及耐溶劑性之交聯聚合物粒子,可應用於以各種間隔物、導電性微粒子等電氣、電子材料領域為始的樹脂薄膜之潤滑特性的改質劑、層析用載體、及生物醫藥用元件等種種領域中。一般而言這些交聯聚合物粒子可藉由懸浮聚合法、乳化聚合法、種子溶脹聚合法、或分散聚合法等方法而製造。 專利文獻1(特開昭54-126288號公報)中揭示,經過將對於水之溶解度小的有機化合物作為膨潤助劑吸收於種子聚合物之第一階段、與其後將可某程度溶解於水之單體吸收於種子聚合物而形成單體膨潤粒子之第二階段,保持粒子形狀下進行聚合單體之膨潤聚合法。該方法為,可使用多量交聯性單體,結果可製造出具有1微米(μm)以上尺寸之均勻粒子徑分佈之交聯聚合物粒子。然而,在該方法所使用之膨潤助劑對於水之溶解度因顯著低,故有著將此吸收於種子聚合物之第一階段必須花費長時間之缺點。並且,未吸收於種子聚合物之殘留油滴在聚合後有時會形成粗大粒子。 專利文獻2(專利第200948881號公報)中揭示,提供一種藉由使作為具有至少兩個環結構之脂環式化合物的單體聚合所得之聚合物粒子。上述單體為丙烯酸系單體。該聚合物粒子之平均粒徑介於1微米至10微米之間,粒徑變異係數Cv%(coefficient variation)皆小於5%,顯示粒徑均一度高。該聚合物粒子壓縮變形回復率為50%以下,且經壓縮10%之壓縮彈性模數(K10)與壓縮20%時之壓縮彈性模數(K20)均介於980~4900 N/mm 2(100~500 kgf/mm 2)之間,壓縮20%時之壓縮彈性模數(K20)/ 壓縮10%之壓縮彈性模數(K10)之比值均小於1,顯示該聚合物粒子之機械特性為外硬內軟型。 鑑於前案在種子溶脹聚合法合成交聯型高分子微粒子過程,交聯劑單體於溶脹過程中,僅進入種子微粒子之表面層,而未深入種子微球核心,當提高溫度開始進行交聯反應時,僅在高分子微粒子表面層形成硬度較高之交聯性結構,故此方法所得交聯型高分子微粒子壓縮20%時之壓縮彈性模數(K20)/ 壓縮10%之壓縮彈性模數(K10)之比值均小於1,顯示該聚合物粒子之機械特性為外硬內軟型,在壓縮回復循環試驗上此高分子微粒子耐用度較差。故,ㄧ般習用者係無法符合使用者於實際使用時之所需。 The cross-linked polymer particles having a high degree of crosslinking and excellent heat resistance and solvent resistance can be applied to a modifier for lubricating properties of a resin film starting from various electrical and electronic materials such as various spacers and conductive fine particles. It is used in various fields such as a carrier for chromatography and a device for biomedicine. In general, these crosslinked polymer particles can be produced by a suspension polymerization method, an emulsion polymerization method, a seed swelling polymerization method, or a dispersion polymerization method. It is disclosed in Patent Document 1 (JP-A-54-126288) that the organic compound having a small solubility in water is absorbed as a swelling aid in the first stage of the seed polymer, and thereafter, it can be dissolved to some extent in the water. The monomer is absorbed in the seed polymer to form a second stage of the monomer swelling particles, and the swelling polymerization method of the polymerization monomer is carried out in the particle shape. In this method, a large amount of crosslinkable monomer can be used, and as a result, crosslinked polymer particles having a uniform particle diameter distribution of a size of 1 μm or more can be produced. However, since the swelling aid used in the method has a significantly low solubility for water, it has the disadvantage that it takes a long time to absorb this in the first stage of the seed polymer. Further, residual oil droplets that are not absorbed by the seed polymer sometimes form coarse particles after polymerization. Patent Document 2 (Patent No. 200948881) discloses a polymer particle obtained by polymerizing a monomer which is an alicyclic compound having at least two ring structures. The above monomer is an acrylic monomer. The average particle diameter of the polymer particles is between 1 micrometer and 10 micrometers, and the coefficient of variation of the particle diameter Cv% (coefficient variation) is less than 5%, indicating that the particle diameter is uniform. The polymer particles have a compression deformation recovery ratio of 50% or less, and a compression elastic modulus (K10) of 10% compression and a compression elastic modulus (K20) of 20% compression are both between 980 and 4900 N/mm 2 ( Between 100 and 500 kgf/mm 2 ), the ratio of the compressive elastic modulus (K20) at a compression of 20%/the compression modulus (K10) at a compression of 10% is less than 1, indicating that the mechanical properties of the polymer particles are External hard and soft. In view of the process of synthesizing crosslinked polymer microparticles in the seed swelling polymerization method, the crosslinker monomer only enters the surface layer of the seed microparticles in the swelling process, but does not penetrate into the core of the seed microsphere, and starts to crosslink when the temperature is raised. In the reaction, only a crosslinked structure having a high hardness is formed on the surface layer of the polymer microparticles, so the compression elastic modulus (K20) of the crosslinked polymer microparticles obtained by the method is 20% compression/compression elastic modulus of 10% compression. The ratio of (K10) was less than 1, indicating that the mechanical properties of the polymer particles were externally hard and soft, and the polymer microparticles had poor durability in the compression recovery cycle test. Therefore, the user-like users cannot meet the needs of the user in actual use.

本發明之主要目的係在於,克服習知技藝所遭遇之上述問題並提供一種藉由單體聚合方式,利用配方調控分散聚合法合成種子高分子微粒子之分子量,以不同分子量之種子高分子微粒子與交聯劑配方進行種子溶脹聚合法合成之高耐用交聯型高分子微粒子。 本發明之次要目的係在於,提供一種具備絕緣性質與外軟內硬型特性,且其機械特性為越接近微粒子核心硬度越高,經過壓縮回復循環試驗後,顯示其耐用程度佳,使其在塗料與電子化學品之應用上更為廣泛之高耐用交聯型高分子微粒子。 為達以上之目的,本發明係一種高耐用交聯型高分子微粒子,係由絕緣性樹脂組成,其硬度愈接近核心越高之機械特性中,具有40~99%之壓縮變形回復率,且經壓縮10%之壓縮彈性模數(K10)與壓縮20%時之壓縮彈性模數(K20)均介於200~1,500 kgf/mm 2之間,且K10係大於200 kgf/mm 2,其中,K20/K10之比值係大於1,且該絕緣性樹脂組成包含壓克力系列及其共聚物、聚苯乙烯系列及其共聚物、聚醯亞胺系列及其共聚物、與聚胺酯系列及其共聚物。 於本發明上述實施例中,該交聯型高分子微粒子外觀係為圓球型。 於本發明上述實施例中,該交聯型高分子微粒子係藉由分散聚合反應搭配種子溶脹聚合反應製得。 於本發明上述實施例中,該交聯型高分子微粒子之粒徑變異係數Cv%(coefficient variation)係小於8%,其平均粒徑係介於0.1微米至10微米之間。 於本發明上述實施例中,該交聯型高分子微粒子進行壓縮回復250次以上壓縮回復循環試驗之後,其平均粒徑在測試前後變化量小於5%而無破裂,且機械特性K10與K20在測試前後變化量小於10%者。 於本發明上述實施例中,該壓縮回復循環試驗係指單顆交聯型高分子微粒子在經過壓縮後,產生粒徑變型量大於50%之變形後,卸載壓縮力道,為一次循環。 於本發明上述實施例中,該交聯型高分子微粒子在平均粒徑小於4微米時,其壓縮變形回復率係大於40%。 本發明所提一種高耐用交聯型高分子微粒子製備方法,其至少包含下列步驟:(A)使用單官能基單體經分散聚合法合成種子高分子微粒子,其中該種子高分子微粒子之數量平均分子量(Number Average Molecular Weight)係介於20,000~50,000之間;以及(B)以上述均一粒徑之種子高分子微粒子為母粒子,在聚合起始劑作用下進一步與交聯劑配方並搭配使用水性聚合抑制劑進行種子溶脹聚合法,合成出交聯型高分子微粒子,該交聯型高分子微粒子為外軟內硬型,具備壓縮回復耐用性,具有40~99%之壓縮變形回復率,且K10與K20均介於200~1,500 kgf/mm 2之間,且K10係大於200 kgf/mm 2,其中,K20/K10之比值係大於1。 於本發明上述實施例中,該交聯型高分子微粒子之粒徑變異係數係小於8%,其平均粒徑係介於0.1微米至10微米之間。 於本發明上述實施例中,該交聯劑配方包含單官能基單體與多官能基單體,該多官能基單體係選自二乙烯基苯、二乙烯基聯苯基、二乙烯基□、(聚)烷二醇系二(甲基)丙烯酸酯、1,6-己二醇二丙烯酸酯、烷二醇系二(甲基)丙烯酸酯、新戊二醇二(甲基)丙烯酸酯、三羥甲基丙烷三(甲基)丙烯酸酯、四羥甲基甲烷三(甲基)丙烯酸酯、四羥甲基丙烷四(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、乙氧基化環己烷二甲醇二(甲基)丙烯酸酯、乙氧基化雙酚A二(甲基)丙烯酸酯、三環癸烷二甲醇二(甲基)丙烯酸酯、丙氧基化乙氧基化雙酚二甲基丙烯酸酯、參羥基甲基乙烷二甲基丙烯酸酯、參羥基甲基乙烷三(甲基)丙烯酸酯、1,1,1-參羥基甲基丙烷三丙烯酸酯、二烯丙基苯二甲酸酯及其異構物、三烯丙基三聚異氰酸酯及其衍生物、NK酯之其中任一種或其組合。 於本發明上述實施例中,該單官能基單體係選自苯乙烯或其衍生物、(甲基)丙烯酸酯、乙烯基酯、N-乙烯基化合物、含有氟化烷基之(甲基)丙烯酸酯、共軛二烯之其中任一種或其組合。 於本發明上述實施例中,該單官能基單體占總單體比例係介於10~80質量%,而該多官能基單體占總單體比例係介於20~90質量%。 於本發明上述實施例中,該聚合起始劑係選自過氧化物、偶氮系化合物之其中任一種或其組合。 於本發明上述實施例中,該分散聚合法藉由溶液聚合合成該種子高分子微粒子時所使用之聚合溶劑,係選自水、醇類、醚醇類、酮類、酯類、脂肪族或芳香族烴類、鹵化烴類、醚類、縮醛類、脂肪酸類、硫或氮含有有機化合物類之其中任一種或其組合。 於本發明上述實施例中,該水性聚合抑制劑係選自亞硝酸鈉、氯化亞銅、三氯化鐵、硫黃之其中任一種或其組合。 於本發明上述實施例中,該交聯型高分子微粒子之合成進一步包括使用分散劑、安定劑、及乳化劑(界面活性劑)。 於本發明上述實施例中,該分散劑及該安定劑係選自疏水性或親水性之聚苯乙烯衍生物、聚(甲基)丙烯酸衍生物、聚乙烯基烷基醚衍生物、纖維素衍生物、聚乙酸乙烯酯衍生物、含氮聚合物衍生物、聚鹵化乙烯基衍生物、聚矽氧烷衍生物之其中任一種或其組合。 於本發明上述實施例中,該乳化劑係選自陰離子系乳化劑、陽離子系乳化劑、非離子系乳化劑之其中任一種或其組合。 The main object of the present invention is to overcome the above problems encountered in the prior art and to provide a molecular weight of seed polymer microparticles synthesized by a formulation-controlled dispersion polymerization method by means of a monomer polymerization method, and seed molecular microparticles of different molecular weights. The cross-linking agent formula is a high-strength cross-linked polymer microparticle synthesized by a seed swelling polymerization method. A secondary object of the present invention is to provide an insulating property and an outer soft inner hard property, and the mechanical properties thereof are closer to the hardness of the microparticle core, and the durability is good after the compression recovery cycle test. A wider range of high-strength cross-linked polymer microparticles for coatings and electronic chemicals. In order to achieve the above object, the present invention is a high-strength cross-linking type polymer fine particle composed of an insulating resin, and the hardness thereof is closer to the mechanical property of the core, and has a compression deformation recovery ratio of 40 to 99%, and The compressive elastic modulus (K10) after compression of 10% and the compression elastic modulus (K20) when compressed by 20% are both between 200 and 1,500 kgf/mm 2 , and the K10 system is greater than 200 kgf/mm 2 , wherein The ratio of K20/K10 is greater than 1, and the insulating resin composition comprises an acrylic series and a copolymer thereof, a polystyrene series and a copolymer thereof, a polyimine series and a copolymer thereof, and a polyurethane series and copolymerization thereof. Things. In the above embodiment of the present invention, the crosslinked polymer microparticles have a spherical appearance. In the above embodiment of the present invention, the crosslinked polymer microparticles are obtained by a dispersion polymerization reaction with a seed swelling polymerization reaction. In the above embodiment of the present invention, the cross-linking type polymer fine particles have a coefficient of variation of Cv% (coefficient variation) of less than 8% and an average particle diameter of between 0.1 μm and 10 μm. In the above embodiment of the present invention, after the cross-linked polymer microparticles are subjected to a compression recovery of more than 250 compression recovery cycles, the average particle diameter is less than 5% before and after the test without cracking, and the mechanical properties K10 and K20 are The amount of change before and after the test is less than 10%. In the above embodiment of the present invention, the compression recovery cycle test refers to a process in which a single cross-linked polymer microparticle is subjected to compression to produce a particle size modification amount greater than 50%, and the compression force is unloaded for one cycle. In the above embodiment of the present invention, the crosslinked polymer microparticles have a compression set recovery ratio of more than 40% when the average particle diameter is less than 4 μm. The invention provides a method for preparing high-durability cross-linked polymer microparticles, which comprises at least the following steps: (A) synthesizing seed polymer microparticles by a dispersion polymerization method using a monofunctional monomer, wherein the number of the seed polymer microparticles is average The molecular weight (Number Average Molecular Weight) is between 20,000 and 50,000; and (B) the seed polymer microparticles having the above uniform particle diameter are used as the mother particles, and further used in combination with the crosslinking agent by the polymerization initiator The aqueous polymerization inhibitor performs seed swelling polymerization method to synthesize cross-linked polymer microparticles, which are external soft and hard type, have compression recovery durability, and have a compression deformation recovery ratio of 40 to 99%. And K10 and K20 are both between 200 and 1,500 kgf/mm 2 , and the K10 system is greater than 200 kgf/mm 2 , wherein the ratio of K20/K10 is greater than 1. In the above embodiment of the present invention, the cross-linking type polymer microparticles have a particle size variation coefficient of less than 8% and an average particle diameter of between 0.1 micrometers and 10 micrometers. In the above embodiment of the present invention, the crosslinking agent formulation comprises a monofunctional monomer and a polyfunctional monomer, the polyfunctional single system being selected from the group consisting of divinylbenzene, divinylbiphenyl, and divinyl. □, (poly)alkanediol di(meth)acrylate, 1,6-hexanediol diacrylate, alkanediol di(meth)acrylate, neopentyl glycol di(meth)acrylic acid Ester, trimethylolpropane tri(meth)acrylate, tetramethylol methane tri(meth)acrylate, tetramethylolpropane tetra(meth)acrylate, pentaerythritol tri(meth)acrylate, Ethoxylated cyclohexanedimethanol di(meth)acrylate, ethoxylated bisphenol A di(meth)acrylate, tricyclodecane dimethanol di(meth)acrylate, propoxylated Ethoxylated bisphenol dimethacrylate, hydroxymethylethane dimethacrylate, hydroxymethylethane tri(meth)acrylate, 1,1,1-paraxylmethylpropane III Any one or combination of acrylate, diallyl phthalate and isomers thereof, triallyl isocyanurate and its derivatives, NK ester. In the above embodiment of the present invention, the monofunctional single system is selected from the group consisting of styrene or a derivative thereof, a (meth) acrylate, a vinyl ester, an N-vinyl compound, and a fluorinated alkyl group (methyl group). Any one or a combination of an acrylate or a conjugated diene. In the above embodiment of the present invention, the monofunctional monomer accounts for 10 to 80% by mass of the total monomer, and the polyfunctional monomer accounts for 20 to 90% by mass of the total monomer. In the above embodiment of the invention, the polymerization initiator is selected from any one of a peroxide and an azo compound or a combination thereof. In the above embodiment of the present invention, the polymerization solvent used in the dispersion polymerization method for synthesizing the seed polymer microparticles by solution polymerization is selected from the group consisting of water, alcohols, ether alcohols, ketones, esters, aliphatics or Any one or a combination of aromatic hydrocarbons, halogenated hydrocarbons, ethers, acetals, fatty acids, sulfur or nitrogen containing organic compounds. In the above embodiment of the present invention, the aqueous polymerization inhibitor is selected from any one or a combination of sodium nitrite, cuprous chloride, ferric chloride, and sulfur. In the above embodiment of the invention, the synthesis of the crosslinked polymeric microparticles further comprises the use of a dispersing agent, a stabilizer, and an emulsifier (surfactant). In the above embodiment of the present invention, the dispersing agent and the stabilizer are selected from the group consisting of hydrophobic or hydrophilic polystyrene derivatives, poly(meth)acrylic acid derivatives, polyvinyl alkyl ether derivatives, and cellulose. Any one or a combination of a derivative, a polyvinyl acetate derivative, a nitrogen-containing polymer derivative, a polyhalogenated vinyl derivative, a polyoxyalkylene derivative. In the above embodiment of the present invention, the emulsifier is selected from any one of an anionic emulsifier, a cationic emulsifier, and a nonionic emulsifier, or a combination thereof.

本發明係一種高耐用交聯型高分子微粒子,係藉由配方調控分散聚合法合成種子高分子微粒子之分子量,以不同分子量之種子高分子微粒子進行種子溶脹聚合法合成交聯型高分子微粒子。該交聯型高分子微粒子之組成為絕緣性樹脂,外觀呈現圓球型,在其硬度愈接近核心越高之機械特性中,於平均粒徑小於4微米時,該交聯型高分子微粒子具有40~99%之壓縮變形回復率,且經壓縮10%之壓縮彈性模數(K10)與壓縮20%時之壓縮彈性模數(K20)均介於1,960~14,700 N/mm 2(200~1,500 kgf/mm 2)之間,且K10係大於200 kgf/mm 2,其中,K20/K10之比值係大於1,且該絕緣性樹脂組成包含壓克力系列及其共聚物、聚苯乙烯系列及其共聚物、聚醯亞胺系列及其共聚物、與聚胺酯系列及其共聚物。 上述交聯型高分子微粒子在平均粒徑小於4微米時,粒徑變異係數Cv%(coefficient variation)係小於8%,平均粒徑係介於0.1微米至10微米之間。 上述種子高分子微粒子之數量平均分子量(Number Average Molecular Weight)係介於20,000~120,000之間。但由於不同分子量之種子高分子微粒子在進行種子溶脹聚合法時,會影響交聯劑滲入種子高分子微粒子之程度,經實驗結果顯示,當種子高分子微粒子分子量大於70,000時,所合成之交聯型高分子微粒子為外硬內軟型,在壓縮回復循環試驗上此高分子微粒子耐用度較差;當種子高分子微粒子分子量小於50,000時,所合成之交聯型高分子微粒子為外軟內硬型,在壓縮回復循環試驗上此高分子微粒子耐用度較佳。 根據上述實驗結果,本發明藉由使用數量平均分子量小於50,000之均一粒徑種子高分子微粒子為母粒子,含浸交聯劑配方,搭配使用水性聚合抑制劑,經由種子溶脹聚合法製造出交聯型高分子微粒子,該交聯型高分子微粒子具備外軟內硬型特性,經過壓縮回復循環試驗後,顯示其耐用程度較佳。 以下為本發明之較佳實施型態做詳細說明。但本發明並未限定於以下實施型態。 有關本實驗實施型態之交聯型高分子微粒子製備方法,係至少包含下列步驟: (A)使用單官能基單體經分散聚合法合成種子高分子微粒子,其中該種子高分子微粒子之數量平均分子量係介於20,000~50,000之間;以及 (B)以上述均一粒徑之種子高分子微粒子為母粒子,在聚合起始劑作用下進一步與交聯劑配方並搭配使用水性聚合抑制劑進行種子溶脹聚合法,合成出外軟內硬型之交聯型高分子微粒子。 上述構成種子高分子微粒子或交聯型高分子微粒子之聚合物組成,包含選自苯乙烯系樹脂、丙烯酸系樹脂、甲基丙烯酸系樹脂、聚乙烯系樹脂、聚丙烯系樹脂、聚矽氧系樹脂、聚酯系樹脂、聚尿烷系樹脂、聚醯胺系樹脂、環氧系樹脂、聚乙烯基丁縮醛系樹脂、松香系樹脂、□系樹脂、酚系樹脂、三聚氰胺系樹脂、鳥糞胺系樹脂、噁唑□系樹脂、碳化二亞胺系樹脂、或將這些經交聯反應所得之硬化樹脂等。上述聚合物組成可單獨使用其中任一種或組合二種以上使用。 上述單官能基單體係選自苯乙烯、o-甲基苯乙烯、m-甲基苯乙烯、p-甲基苯乙烯、α-甲基苯乙烯、o-乙基苯乙烯、m-乙基苯乙烯、p-乙基苯乙烯、2,4-二甲基苯乙烯、p-n-丁基苯乙烯、p-t-丁基苯乙烯、p-n-己基苯乙烯、p-n-辛基苯乙烯、p-n-壬基苯乙烯、p-n-癸基苯乙烯、p-n-十二烷基苯乙烯、p-甲氧基苯乙烯、p-苯基苯乙烯、p-氯苯乙烯及3,4-二氯苯乙烯等苯乙烯或其衍生物;丙烯酸甲酯、丙烯酸乙酯、丙烯酸丙酯、丙烯酸n-丁酯、丙烯酸異丁酯、丙烯酸己酯、丙烯酸2-乙基己酯、丙烯酸n-辛酯、丙烯酸十二烷酯、丙烯酸月桂酯、丙烯酸硬脂醯酯、丙烯酸2-氯乙酯、丙烯酸苯酯、α-氯丙烯酸甲酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸丙酯、甲基丙烯酸n-丁酯、甲基丙烯酸異丁酯、甲基丙烯酸己酯、甲基丙烯酸2-乙基己酯、甲基丙烯酸n-辛酯、甲基丙烯酸十二烷酯、甲基丙烯酸月桂酯及甲基丙烯酸硬脂醯酯等(甲基)丙烯酸酯;乙酸乙烯酯、丙酸乙烯酯、安息香酸乙烯基及酪酸乙烯酯等乙烯基酯;N-乙烯基□咯、N-乙烯基□唑、N-乙烯基□□及N-乙烯基□咯烷酮等N-乙烯基化合物;氟化乙烯基、氟化亞乙烯、四氟伸乙基、六氟丙烯、丙烯酸三氟乙基及丙烯酸四氟丙基等含有氟化烷基之(甲基)丙烯酸酯;丁二烯及異戊二烯等共軛二烯等。上述所舉單官能基單體可單獨使用其中任一種或組合二種以上使用。 上述交聯劑配方,除了包含上述單官能基單體外,還包含多官能基單體,該多官能基單體係選自二乙烯基苯;二乙烯基聯苯基;二乙烯基□;(聚)乙二醇二(甲基)丙烯酸酯、(聚)丙二醇二(甲基)丙烯酸酯及(聚)四甲二醇二(甲基)丙烯酸酯等(聚)烷二醇系二(甲基)丙烯酸酯;1,6-己二醇二丙烯酸酯;1,6-己二醇二(甲基)丙烯酸酯、1,8-辛二醇二(甲基)丙烯酸酯、1,9-壬二醇二(甲基)丙烯酸酯、1,10-癸二醇二(甲基)丙烯酸酯、1,12-十二烷二醇二(甲基)丙烯酸酯、3-甲基-1,5-戊二醇二(甲基)丙烯酸酯、2,4-二乙基-1,5-戊二醇二(甲基)丙烯酸酯、丁基乙基丙二醇二(甲基)丙烯酸酯、3-甲基-1,7-辛二醇二(甲基)丙烯酸酯及2-甲基-1,8-辛二醇二(甲基)丙烯酸酯等烷二醇系二(甲基)丙烯酸酯;新戊二醇二(甲基)丙烯酸酯、三羥甲基丙烷三(甲基)丙烯酸酯、四羥甲基甲烷三(甲基)丙烯酸酯、四羥甲基丙烷四(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、乙氧基化環己烷二甲醇二(甲基)丙烯酸酯、乙氧基化雙酚A二(甲基)丙烯酸酯、三環癸烷二甲醇二(甲基)丙烯酸酯、丙氧基化乙氧基化雙酚二甲基丙烯酸酯、參羥基甲基乙烷二甲基丙烯酸酯、參羥基甲基乙烷三(甲基)丙烯酸酯、1,1,1-參羥基甲基丙烷三丙烯酸酯、二烯丙基苯二甲酸酯及其異構物、以及三烯丙基三聚異氰酸酯及其衍生物。作為可商業上入手之多官能單體,可舉出新中村化學工業(股)製之NK酯(ATMPT-6P0、A-TMPT-3E0、A-TMM-3LMN、A-GLY系列、A-9300、AD-TMP、AD-TMP-4CL、ATM-4E、A-DPH)等。上述所舉多官能單體可單獨使用其中任一種或組合二種以上使用。 上述交聯劑配方中該單官能基單體占總單體比例介於10~80質量%,較佳比例為20~50質量%,更佳比例為20~40質量%;該多官能基單體占總單體比例係介於20~90質量%,較佳比例為50~80質量%,更佳比例為60~80質量%。 上述使用於欲製造交聯高分子微粒子之自由基聚合時之聚合起始劑,可使用公知自由基聚合起始劑。該聚合起始劑係選自過氧化苯甲醯、枯烯氫過氧化物、t-丁基氫過氧化物、過硫酸鉀、過硫酸鈉及過硫酸銨等過氧化物;偶氮二異丁□、偶氮二甲基丁□及偶氮二異戊□等偶氮系化合物等。上述所舉聚合起始劑可單獨使用其中任一種或組合二種以上使用。 上述分散聚合法藉由溶液聚合合成該種子高分子微粒子時所使用之聚合溶劑,係選自水;甲醇、乙醇、1-丙醇、2-丙醇、1-丁醇、2-丁醇、異丁基醇、tert-丁基醇、1-戊醇、2-戊醇、3-戊醇、2-甲基-1-丁醇、異戊基醇、tert-戊基醇、1-己醇、2-甲基-1-戊醇、4-甲基-2-戊醇、2-乙基丁醇、1-庚醇、2-庚醇、3-庚醇、2-辛醇、2-乙基-1-己醇、苯甲醇及環己醇等醇類;甲基賽珞蘇、乙基賽珞蘇、異丙基賽珞蘇、丁基賽珞蘇及二乙二醇單丁基醚等醚醇類;丙酮、甲基乙酮、甲基異丁酮及環己酮等酮類;乙酸乙酯、乙酸丁酯、丙酸乙酯、(烷基)賽珞蘇乙酸酯、乙基卡必醇乙酸酯及丁基卡必醇乙酸酯等酯類;戊烷、2-甲基丁烷、n-己烷、環己烷、2-甲基戊烷、2,2-二甲基丁烷、2,3-二甲基丁烷、庚烷、n-辛烷、異辛烷、2,2,3-三甲基戊烷、癸烷、壬烷、環戊烷、甲基環戊烷、甲基環己烷、乙基環己烷、p-薄荷烷、二環己基、苯、甲苯、二甲苯及乙基苯等脂肪族或芳香族烴類;四氯化碳、三氯伸乙基、氯苯及四溴乙烷等鹵化烴類;乙基醚、二甲基醚、三噁烷及四氫□喃等醚類;甲縮醛及二乙基縮醛等縮醛類;甲酸、乙酸及丙酸等脂肪酸類;硝基丙烯、硝基苯、二甲胺、單乙醇胺、□啶、二甲基甲醯胺、二甲基亞□、乙□及N-甲基-2-□咯烷酮等硫或氮含有有機化合物類等。上述所舉聚合溶劑可單獨使用其中任一種或組合二種以上使用。 上述合成交聯型高分子微粒子,可適宜地選擇使用分散劑、安定劑、及乳化劑(界面活性劑)。 上述分散劑及安定劑係選自聚羥基苯乙烯、聚苯乙烯磺酸、乙烯基酚-(甲基)丙烯酸酯共聚物、苯乙烯-(甲基)丙烯酸酯共聚物及苯乙烯-乙烯基酚-(甲基)丙烯酸酯共聚物等聚苯乙烯衍生物;聚(甲基)丙烯酸、聚(甲基)丙烯醯胺、聚丙烯□、聚乙基(甲基)丙烯酸酯及聚丁基(甲基)丙烯酸酯等聚(甲基)丙烯酸衍生物;聚甲基乙烯基醚、聚乙基乙烯基醚、聚丁基乙烯基醚及聚異丁基乙烯基醚等聚乙烯基烷基醚衍生物;纖維素、甲基纖維素、乙酸纖維素、硝酸纖維素、羥基甲基纖維素、羥基乙基纖維素、羥基丙基纖維素及羧基甲基纖維素等纖維素衍生物 ;聚乙烯基醇、聚乙烯基丁縮醛、聚乙烯基甲縮醛及聚乙酸乙烯酯等聚乙酸乙烯酯衍生物;聚乙烯基□啶、聚乙烯基□咯烷酮、聚乙烯亞胺及聚-2-甲基-2-噁唑□等含氮聚合物衍生物;聚氯化乙烯基及聚氯化亞乙烯等聚鹵化乙烯基衍生物;聚二甲基矽氧烷等聚矽氧烷衍生物等各種疏水性或親水性之分散劑、安定劑。上述所舉分散劑、安定劑可單獨使用其中任一種或組合二種以上使用。 上述乳化劑係選自十二烷基硫酸鈉、月桂基硫酸鈉等烷基硫酸酯鹽、十二烷基苯磺酸鈉等烷基苯磺酸鹽、烷基□磺酸鹽、脂肪酸鹽、烷基磷酸鹽及烷基磺基琥珀酸鹽等陰離子系乳化劑;烷基胺鹽、第四級銨鹽、烷基甜菜鹼及胺氧化物等陽離子系乳化劑;聚環氧乙烷烷基醚、聚環氧乙烷烷基醚、聚環氧乙烷烷基烯丙基醚、聚環氧乙烷烷基苯基醚、山梨醇酐脂肪酸酯、甘油脂肪酸酯及聚環氧乙烷脂肪酸酯等非離子系乳化劑等。上述所舉乳化劑可單獨使用其中任一種或組合二種以上使用。 上述水性聚合抑制劑係選自亞硝酸鈉、氯化亞銅、三氯化鐵、硫黃等。上述所舉水性聚合抑制劑可單獨使用其中任一種或組合二種以上使用。 本發明之種子高分子微粒子之分子量資訊係由下列步驟量測計算。 種子高分子微粒子之分子量資訊係經由凝膠滲透層析儀(Gel Permeation Chromatography, GPC)量測而得,量測步驟如下:先利用標準分子量之聚苯乙烯高分子製作檢量線,再將待測種子高分子微粒子取數十毫克溶於四氫□喃中,用微量針筒注射入凝膠滲透層析儀中 ,利用設備軟體比對出樣品之相對分子量等資訊。 上述分子量資訊可使用Agilent 1100 series設備搭配Waters公司生產之層析管柱Styragel □HR 5經由軟體HP GPC-Addon Rev A.01.03比對而得到。 本發明所生產之交聯型高分子微粒子,平均粒徑介於0.1微米至10微米之間,粒徑變異係數Cv%較佳值小於10%,更佳值小於8%,最佳值小於5%。 上述交聯型高分子微粒子之平均粒徑與粒徑變異係數Cv%,係由下列步驟量測計算而得。 該交聯型高分子微粒子利用超音波分散於醇類溶劑中,取數滴乳化溶液滴於載玻片上,烘烤至乾。利用總放大倍率為1000X(物鏡100X,目鏡10X)之蔡司(Zeiss)光學顯微鏡Axio Imager A2觀測並紀錄圖檔,利用程式隨機選擇30顆交聯型高分子微粒子,個別量測交聯型高分子微粒子直徑並記錄,例用統計方法計算出平均粒徑、標準差與粒徑變異係數Cv%。 粒徑變異係數Cv%=(ρ/Dn)×100 其中ρ為交聯型高分子微粒子直徑之標準偏差;及Dn為平均粒徑。 該交聯型高分子微粒子之直徑位移10%時之壓縮彈性模數(K10值)較好為110~800 kgf/mm 2之範圍內,更好為200~750 kgf/mm 2。該交聯型高分子微粒子之直徑位移20%時之壓縮彈性模數(K20值)較好為110~1,400 kgf/mm 2之範圍內,更好為300~1200 kgf /mm 2。 將該交聯型高分子微粒子散布微小壓縮試驗機在試料台上,藉由此設備量測壓縮變形回復率、壓縮10%與20%時之壓縮彈性模數(K10與K20)及壓縮回復循環試驗。 上述微小壓縮試驗機可使用島津(SHIMADZU)微小壓縮試驗機MCT-211系列。 該交聯型高分子微粒子之壓縮變形回復率係由將粒子自中心以1.1155 mN/秒之速度壓縮至10 mN後,相反地以1.1155 mN/秒之速度減少荷重時,測定出荷重值與壓縮變位之關係而得。 壓縮變形回復率(%)=[(L 1-L 2)/L 1]×100 其中L 1為施加負荷時,自原點用荷重值至反向荷重值為止之壓縮位移 ;及L 2為移除負荷時,自反向荷重值至原點用荷重值為止之壓縮位移。 交聯型高分子微粒子之壓縮彈性模數(K10與K20)可利用下列方式量測而得。 將交聯型高分子微粒子散布微小壓縮試驗機在試料台上,於壓縮速度為1.1155 mN/秒及最大試驗荷重為10 mN之條件下,對交聯型高分子微粒子進行壓縮。測定此時之荷重值(N)及壓縮位移(mm)。可藉由下述公式,由所得之測定值求出上述壓縮彈性模數。 K值(N/mm 2)=(3/2 1/2)×F×S -3/2×R -1/2K值(N/mm 2)=K值(kgf/mm 2)×9.8(N/kgf)。 其中F為交聯型高分子微粒子壓縮變形10%、20%或30%時之荷重值(N);S為交聯型高分子微粒子壓縮變形10%、20%或30%時之壓縮位移(mm);及R為交聯型高分子微粒子之半徑(mm)。 上述壓縮回復循環試驗係指單顆交聯型高分子微粒子施加負荷達到所設定之最大試驗荷重,接著移除負荷時達到所設定之最小試驗荷重 ,此過程中交聯型高分子微粒子在施加負荷時將被壓縮,產生粒徑變型量大於50%之變形後,移除負荷時交聯型高分子微粒子回復,為一次循環測試,重複上述步驟n次,即為進行壓縮回復循環試驗,本發明所採用測試條件其n值為250次。該交聯型高分子微粒子經過250次以上壓縮回復循環試驗之後,其平均粒徑在測試前後變化量小於5%而無破裂,且機械特性K10與K20在測試前後變化量小於10%。 所選定單顆交聯型高分子微粒子經由壓縮回復循環試驗後,經由設備上所搭載光學顯微鏡觀測交聯型高分子微粒子表面性質與破裂程度,藉此決定交聯型高分子微粒子之耐用性。 以下舉出實施例與比較例,對本發明做具體說明。但本發明並不限定於以下實施例。   [分散聚合法合成種子高分子微粒子] 實驗步驟如下所示,步驟1:先秤取適當量穩定劑與磁石置於三頸瓶中,倒入醇類與水之溶劑至三頸瓶中,封口攪拌至溶解後通氬氣。步驟2:取適當量單體倒入步驟1中三頸瓶。步驟3:取適當量起始劑,倒入步驟2中三頸瓶,攪拌同時通氬氣約5分鐘。步驟4:架設冷凝管於三頸瓶上,封口且接口皆封膜防漏氣,並置於已預熱55~78°C油鍋攪拌24~48小時,反應期間溶液呈白色乳化狀。步驟5:反應結束降至室溫,白色乳化溶液分別置入離心管中,利用離心機選用適當轉速與時間即可將固液相分離,上層液相倒出捨棄,之後用醇類溶劑與水洗下層白色粉體,並置於超音波槽震盪,重複上述離心與清洗白色粉體之步驟三次,將白色乳化溶液置於適當大小圓底瓶中,利用減壓迴旋濃縮與真空乾燥方式移除甲醇與水溶劑,並將白色粉體收集於樣品瓶中,低溫保存。步驟6:將白色樣品置入光學顯微鏡與GPC設備中量測粒徑與分子量相關資訊。 上述分散聚合法合成種子高分子微粒子之試劑配方如表1所示。 表一 上述所得種子高分子微粒子之粒徑資訊(包含平均粒徑與粒徑變異係數Cv%)與數量平均分子量數據如表2所示。 表二 [種子溶脹聚合法合成交聯型高分子微粒子] 實驗步驟如下所示,步驟1:將種子高分子微粒子與乳化劑(界面活性劑)水溶液置於三頸圓底瓶中,架冷凝管於三頸圓底瓶上,封口且接口皆封膜防漏氣,並於室溫下攪拌16小時,期間持續通氮氣保護反應。步驟2:將適當量單體(包含單官能基單體與多官能基單體)、聚合起始劑、分散劑與安定劑水溶液均勻混合,使用乳化機得到乳化溶液。步驟3:將步驟2之乳化溶液緩慢滴加入步驟1之三頸圓底瓶中,並於室溫下攪拌16小時,期間持續通氮氣保護反應。步驟4:配製水性聚合抑制劑與界面活性劑混合水溶液,將該溶液加入三頸圓底瓶中 ,室溫下攪拌數分鐘,移至預熱80°C油鍋,攪拌16小時,期間持續通氮氣保護反應。步驟5:反應結束降至室溫,白色乳化溶液分別置入離心管中,利用離心機選用適當轉速與時間即可將固液相分離,上層液相倒出捨棄,之後用甲醇與水洗下層白色粉體,並置於超音波槽震盪,重複上述離心與清洗白色粉體之步驟三次,將白色乳化溶液置於適當大小圓底瓶中,利用減壓迴旋濃縮與真空乾燥方式移除甲醇與水溶劑 ,並將白色粉體收集於樣品瓶中,低溫保存。步驟6:將白色樣品置入光學顯微鏡與微粒子機械特性量測機中量測粒徑與相關壓縮變形回復率與壓縮彈性模數資訊。 上述種子溶脹聚合法合成交聯型高分子微粒子之試劑配      方如表3所示。 表三 上述所得交聯型高分子微粒子之粒徑資訊(包含平均粒徑與粒徑變異係數Cv%)、壓縮變形回復率與壓縮彈性模數之數據如表4所示。 表四 上述交聯型高分子微粒子經壓縮回復250次以上壓縮回復循環試驗後,該交聯型高分子微粒子外觀描述與耐用性評估如表5所示。     表五 藉此,本發明藉由使用數量平均分子量小於50,000之均一粒徑種子高分子微粒子為母粒子,在聚合起始劑作用下進一步與交聯劑配方進行種子溶脹聚合法,合成出交聯型高分子微粒子,該交聯型高分子微粒子具備絕緣性質與外軟內硬型特性,且其機械特性為越接近微粒子核心硬度越高,可通過250次壓縮回復循環試驗後,外觀無明顯破裂現象,顯示本發明可提升交聯型高分子微粒子之壓縮回復耐用性,使具備高耐用性之交聯型高分子微粒子可廣泛地應用於塗料與電子化學品上。 綜上所述,本發明係一種高耐用交聯型高分子微粒子,可有效改善習用之種種缺點,藉由單體聚合方式,利用調控種子高分子微粒子之分子量與交聯劑配方所合成之交聯型高分子微粒子,具備絕緣性質與外軟內硬型特性,且其機械特性為越接近微粒子核心硬度越高,經過壓縮回復循環試驗後,顯示其耐用程度佳,使其在塗料與電子化學品之應用上更為廣泛,進而使本發明之□生能更進步、更實用、更符合使用者之所須,確已符合發明專利申請之要件,爰依法提出專利申請。 惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍;故,凡依本發明申請專利範圍及發明說明書內容所作之簡單的等效變化與修飾,皆應仍屬本發明專利涵蓋之範圍內。 The invention relates to a high-durability cross-linked polymer microparticles, wherein the molecular weight of the seed polymer microparticles is synthesized by a formulation-controlled dispersion polymerization method, and the cross-linked polymer microparticles are synthesized by a seed swelling polymerization method with seed molecular microparticles of different molecular weights. The crosslinked polymer microparticles have an insulating resin and exhibit a spherical shape. The mechanical properties of the crosslinked polymer microparticles are higher in hardness than the core. When the average particle diameter is less than 4 μm, the crosslinked polymer microparticles have 40 to 99% compression deformation recovery rate, and the compression elastic modulus (K10) after compression of 10% and the compression elastic modulus (K20) when compressed by 20% are both 1,960 to 14,700 N/mm 2 (200 to 1,500) Between kg/mm 2 ) and K10 is greater than 200 kgf/mm 2 , wherein the ratio of K20/K10 is greater than 1, and the insulating resin composition comprises an acrylic series and a copolymer thereof, a polystyrene series and Its copolymers, polyimine series and their copolymers, and polyurethane series and their copolymers. When the average particle diameter is less than 4 μm, the cross-linking type polymer fine particles have a coefficient of variation of Cv% (coefficient variation) of less than 8% and an average particle diameter of from 0.1 μm to 10 μm. The number average molecular weight of the seed polymer microparticles is between 20,000 and 120,000. However, when the seed polymer microparticles of different molecular weights are subjected to the seed swelling polymerization method, the crosslinking agent is infiltrated into the seed polymer microparticles. The experimental results show that when the molecular weight of the seed polymer particles is greater than 70,000, the synthesized cross-linking is obtained. The polymer microparticles are externally hard and soft, and the polymer microparticles have poor durability in the compression recovery cycle test. When the molecular weight of the seed polymer particles is less than 50,000, the crosslinked polymer microparticles synthesized are externally soft and hard. The polymer microparticles have better durability in the compression recovery cycle test. According to the above experimental results, the present invention produces a crosslinked type by seed swelling polymerization method by using a uniform particle size seed polymer microparticle having a number average molecular weight of less than 50,000 as a mother particle, an impregnation crosslinker formulation, and an aqueous polymerization inhibitor. The polymer microparticles have the outer soft and inner hard characteristics, and after the compression recovery cycle test, the durability is better. The following is a detailed description of the preferred embodiment of the invention. However, the present invention is not limited to the following embodiments. The method for preparing the crosslinked polymer microparticles in the embodiment of the present invention comprises at least the following steps: (A) synthesizing seed polymer microparticles by a dispersion polymerization method using a monofunctional monomer, wherein the number of the seed polymer microparticles is average The molecular weight is between 20,000 and 50,000; and (B) the seed polymer microparticles having the above uniform particle diameter are used as the mother particles, and further reacted with the crosslinking agent and the aqueous polymerization inhibitor is used for the seeding under the action of the polymerization initiator. By the swelling polymerization method, the cross-linked polymer microparticles of the outer soft inner hard type are synthesized. The polymer composition constituting the seed polymer microparticles or the crosslinked polymer microparticles is selected from the group consisting of a styrene resin, an acrylic resin, a methacrylic resin, a polyethylene resin, a polypropylene resin, and a polysiloxane system. Resin, polyester resin, polyurethane resin, polyamine resin, epoxy resin, polyvinyl butyral resin, rosin resin, □ resin, phenol resin, melamine resin, bird A fecal amine resin, an oxazole-based resin, a carbodiimide-based resin, or a cured resin obtained by crosslinking these reactions. The above polymer composition may be used alone or in combination of two or more. The above monofunctional monosystem is selected from the group consisting of styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, α-methylstyrene, o-ethylstyrene, m-B Styrene, p-ethylstyrene, 2,4-dimethylstyrene, pn-butylstyrene, pt-butylstyrene, pn-hexylstyrene, pn-octylstyrene, pn- Mercaptostyrene, pn-mercaptostyrene, pn-dodecylstyrene, p-methoxystyrene, p-phenylstyrene, p-chlorostyrene and 3,4-dichlorostyrene Ethylene styrene or its derivatives; methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, acrylic acid Dodecyl ester, lauryl acrylate, stearyl acrylate, 2-chloroethyl acrylate, phenyl acrylate, methyl α-chloro acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate , n-butyl methacrylate, isobutyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, n-octyl methacrylate, dodecyl methacrylate (meth) acrylate such as lauryl methacrylate and stearyl methacrylate; vinyl esters such as vinyl acetate, vinyl propionate, vinyl benzoate, and vinyl butyrate; N-vinyl fluorene N-vinyl compounds such as N-vinyl oxazole, N-vinyl □ □ and N-vinyl cylanidone; fluorinated vinyl, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, A fluorinated alkyl (meth) acrylate such as trifluoroethyl acrylate or tetrafluoropropyl acrylate; a conjugated diene such as butadiene or isoprene; and the like. The above-mentioned monofunctional monomer may be used alone or in combination of two or more. The above crosslinking agent formulation, in addition to the above monofunctional monomer, further comprises a polyfunctional monomer selected from the group consisting of divinylbenzene; divinylbiphenyl; divinyl □; (poly)ethylene glycol di(meth)acrylate, (poly)propylene glycol di(meth)acrylate, and (poly)tetramethyl glycol di(meth)acrylate (poly)alkanediol system II Methyl) acrylate; 1,6-hexanediol diacrylate; 1,6-hexanediol di(meth)acrylate, 1,8-octanediol di(meth)acrylate, 1,9 -decanediol di(meth)acrylate, 1,10-nonanediol di(meth)acrylate, 1,12-dodecanediol di(meth)acrylate, 3-methyl-1 , 5-pentanediol di(meth)acrylate, 2,4-diethyl-1,5-pentanediol di(meth)acrylate, butyl ethylpropylene glycol di(meth)acrylate, Alkylene glycol-based di(meth)acrylic acid such as 3-methyl-1,7-octanediol di(meth)acrylate and 2-methyl-1,8-octanediol di(meth)acrylate Ester; neopentyl glycol di(meth) acrylate, trimethylolpropane tri(meth) acrylate, tetramethylol methane tri(meth) acrylate, tetrahydroxy Methylpropane tetra(meth)acrylate, pentaerythritol tri(meth)acrylate, ethoxylated cyclohexanedimethanol di(meth)acrylate, ethoxylated bisphenol A di(meth)acrylic acid Ester, tricyclodecane dimethanol di(meth) acrylate, propoxylated ethoxylated bisphenol dimethacrylate, hydroxymethyl ethane dimethacrylate, hydroxymethyl ethane Tris(meth)acrylate, 1,1,1-paraxylmethylpropane triacrylate, diallyl phthalate and isomers thereof, and triallyl isocyanurate and derivatives thereof . As a commercially available polyfunctional monomer, NK esters manufactured by Shin-Nakamura Chemical Industry Co., Ltd. (ATMPT-6P0, A-TMPT-3E0, A-TMM-3LMN, A-GLY series, A-9300) , AD-TMP, AD-TMP-4CL, ATM-4E, A-DPH). The above-mentioned polyfunctional monomer may be used alone or in combination of two or more. The ratio of the monofunctional monomer to the total monomer in the above crosslinking agent formulation is from 10 to 80% by mass, preferably from 20 to 50% by mass, and more preferably from 20 to 40% by mass; the polyfunctional single The ratio of the total monomer to the body is from 20 to 90% by mass, preferably from 50 to 80% by mass, and more preferably from 60 to 80% by mass. As the polymerization initiator used in the radical polymerization for producing the crosslinked polymer fine particles, a known radical polymerization initiator can be used. The polymerization initiator is selected from the group consisting of benzamidine peroxide, cumene hydroperoxide, t-butyl hydroperoxide, potassium persulfate, sodium persulfate and ammonium persulfate; azobis An azo compound such as butyl hydride, azodimethyl butyl hydride or azobisisoamyl hydride. The above-mentioned polymerization initiators may be used alone or in combination of two or more. The polymerization solvent used in the above-described dispersion polymerization method for synthesizing the seed polymer microparticles by solution polymerization is selected from the group consisting of water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, Isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isoamyl alcohol, tert-amyl alcohol, 1-hexyl Alcohol, 2-methyl-1-pentanol, 4-methyl-2-pentanol, 2-ethylbutanol, 1-heptanol, 2-heptanol, 3-heptanol, 2-octanol, 2 Alcohols such as ethyl-1-hexanol, benzyl alcohol and cyclohexanol; methyl acesulfame, ethyl cyproterone, isopropyl celecoxime, butyl cyanidin and diethylene glycol monobutyl Ether alcohols such as ethers; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ethyl acetate, butyl acetate, ethyl propionate, (alkyl) cyanoacetate Ester such as ethyl carbitol acetate and butyl carbitol acetate; pentane, 2-methylbutane, n-hexane, cyclohexane, 2-methylpentane, 2, 2-Dimethylbutane, 2,3-dimethylbutane, heptane, n-octane, isooctane, 2,2,3-trimethylpentane, decane, decane, cyclopentane Alkane, methylcyclopentane, methyl ring Aliphatic or aromatic hydrocarbons such as alkane, ethylcyclohexane, p-menthane, dicyclohexyl, benzene, toluene, xylene and ethylbenzene; carbon tetrachloride, trichloroethylene, chlorobenzene and Halogenated hydrocarbons such as tetrabromoethane; ethers such as ethyl ether, dimethyl ether, trioxane and tetrahydrofuran; acetals such as methylal and diethyl acetal; formic acid, acetic acid and propionic acid And other fatty acids; nitropropene, nitrobenzene, dimethylamine, monoethanolamine, pyridine, dimethylformamide, dimethylidene, ethyl and N-methyl-2-delrolidone, etc. Sulfur or nitrogen contains organic compounds and the like. The above-mentioned polymerization solvent may be used alone or in combination of two or more. As the synthetic crosslinked polymer fine particles, a dispersing agent, a stabilizer, and an emulsifier (surfactant) can be suitably selected. The above dispersant and stabilizer are selected from the group consisting of polyhydroxystyrene, polystyrenesulfonic acid, vinylphenol-(meth)acrylate copolymer, styrene-(meth)acrylate copolymer and styrene-vinyl Polystyrene derivatives such as phenol-(meth)acrylate copolymer; poly(meth)acrylic acid, poly(meth)acrylamide, polypropylene □, polyethyl (meth) acrylate, and polybutyl Poly(meth)acrylic acid derivatives such as (meth) acrylate; polyvinyl alkyl groups such as polymethyl vinyl ether, polyethyl vinyl ether, polybutyl vinyl ether, and polyisobutyl vinyl ether Ether derivatives; cellulose derivatives such as cellulose, methyl cellulose, cellulose acetate, nitrocellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, and carboxymethyl cellulose; Polyvinyl acetate derivatives such as vinyl alcohol, polyvinyl butyral, polyvinyl formal, and polyvinyl acetate; polyvinyl pyridine, polyvinyl cyano ketone, polyethylene imine, and poly Nitrogen-containing polymer derivatives such as -2-methyl-2-oxazole □; polychlorinated vinyl and polyvinylidene chloride, etc. Halogenated vinyl derivatives; polydimethylsiloxane and other silicone polyethylene oxide derivatives, and other hydrophilic or hydrophobic dispersed, stabilizer. The above-mentioned dispersing agent and stabilizer may be used alone or in combination of two or more. The emulsifier is selected from the group consisting of alkylsulfate salts such as sodium lauryl sulfate and sodium lauryl sulfate, alkylbenzenesulfonates such as sodium dodecylbenzenesulfonate, alkylsulfonates, fatty acid salts, and the like. Anionic emulsifiers such as alkyl phosphates and alkyl sulfosuccinates; cationic emulsifiers such as alkylamine salts, fourth ammonium salts, alkyl betaines and amine oxides; polyethylene oxide alkyl groups; Ether, polyethylene oxide alkyl ether, polyethylene oxide alkyl allyl ether, polyethylene oxide alkyl phenyl ether, sorbitan fatty acid ester, glycerin fatty acid ester, and polyethylene oxide A nonionic emulsifier such as an alkanoic acid ester. Any of the above-mentioned emulsifiers may be used alone or in combination of two or more. The aqueous polymerization inhibitor is selected from the group consisting of sodium nitrite, cuprous chloride, ferric chloride, sulfur, and the like. The aqueous polymerization inhibitors mentioned above may be used alone or in combination of two or more. The molecular weight information of the seed polymer microparticles of the present invention is calculated by the following steps. The molecular weight information of the seed polymer microparticles is measured by Gel Permeation Chromatography (GPC). The measurement procedure is as follows: First, a calibration curve is prepared by using a standard molecular weight polystyrene polymer, and then The seed polymer microparticles were taken in tens of milligrams dissolved in tetrahydrofuran, and injected into a gel permeation chromatograph using a micro syringe, and the relative molecular weight of the sample was compared using the device software. The above molecular weight information can be obtained by aligning the Agilent 1100 series apparatus with the chromatography column Styragel □HR 5 manufactured by Waters via the software HP GPC-Addon Rev A.01.03. The crosslinked polymeric microparticles produced by the invention have an average particle diameter of between 0.1 micrometer and 10 micrometers, a particle size variation coefficient Cv% preferably less than 10%, a better value of less than 8%, and an optimal value of less than 5 %. The average particle diameter and the particle diameter variation coefficient Cv% of the crosslinked polymer microparticles are calculated by the following steps. The crosslinked polymer microparticles are dispersed in an alcohol solvent by ultrasonic waves, and a few drops of the emulsified solution are dropped on a glass slide and baked to dryness. The Zeiss optical microscope Axio Imager A2 with a total magnification of 1000X (objective 100X, eyepiece 10X) was used to observe and record the image file, and 30 cross-linked polymer microparticles were randomly selected by the program to measure the crosslinked polymer. The diameter of the microparticles was recorded and recorded. The average particle size, standard deviation and particle size variation coefficient Cv% were calculated by statistical methods. Particle size coefficient of variation Cv% = (ρ / Dn) × 100 where ρ is the standard deviation of the diameter of the crosslinked polymer microparticles; and Dn is the average particle diameter. The compression elastic modulus (K10 value) when the diameter of the crosslinked polymer fine particles is 10% is preferably in the range of 110 to 800 kgf/mm 2 , more preferably 200 to 750 kgf/mm 2 . The compression elastic modulus (K20 value) when the diameter of the crosslinked polymer microparticles is 20% is preferably in the range of 110 to 1,400 kgf/mm 2 , more preferably 300 to 1200 kgf /mm 2 . Dispersing the crosslinked polymer microparticles on a sample stage on a micro-compression test machine, and measuring the compression deformation recovery rate, the compression elastic modulus (K10 and K20) at 10% and 20% compression, and the compression recovery cycle by using the apparatus. test. The above-mentioned micro compression tester can use the Shimadzu (ZIMADZU) micro compression tester MCT-211 series. The compression deformation recovery rate of the crosslinked polymer microparticles is measured by compressing the particles from the center at a speed of 1.1155 mN/sec to 10 mN, and conversely reducing the load at a speed of 1.1155 mN/sec. The relationship between the displacements. Compression deformation recovery rate (%) = [(L 1 - L 2 ) / L 1 ] × 100 where L 1 is the compression displacement from the origin load value to the reverse load value when the load is applied; and L 2 is The compression displacement from the reverse load value to the origin load value when the load is removed. The compressive elastic modulus (K10 and K20) of the crosslinked polymer microparticles can be measured by the following methods. The crosslinked polymer microparticles were dispersed on a sample stage, and the crosslinked polymer microparticles were compressed at a compression rate of 1.1155 mN/sec and a maximum test load of 10 mN. The load value (N) and the compression displacement (mm) at this time were measured. The above-described compression elastic modulus can be obtained from the obtained measured values by the following formula. K value (N/mm 2 )=(3/2 1/2 )×F×S −3/2 ×R −1/2 K value (N/mm 2 )=K value (kgf/mm 2 )×9.8 (N/kgf). Wherein F is the load value (N) when the crosslinked polymer microparticles are 10%, 20% or 30% compressed; and S is the compression displacement of the crosslinked polymer microparticles at 10%, 20% or 30% compression deformation ( Mm); and R is the radius (mm) of the crosslinked polymer microparticles. The above-mentioned compression recovery cycle test means that a single cross-linked polymer microparticle is applied with a load to the set maximum test load, and then the load is set to a minimum test load, during which the cross-linked polymer microparticles are subjected to a load. When the deformation is performed, the deformation of the particle size is greater than 50%, and the cross-linked polymer microparticles are recovered when the load is removed, and the cycle is repeated for the first time, that is, the compression recovery cycle test is performed. The test conditions used were such that the n value was 250 times. After the cross-linked polymer microparticles were subjected to a compression recovery cycle test for more than 250 times, the average particle diameter was less than 5% before and after the test without cracking, and the mechanical properties K10 and K20 were less than 10% before and after the test. After the selected single crosslinked polymer microparticles were subjected to a compression recovery cycle test, the surface properties and the degree of cracking of the crosslinked polymer microparticles were observed by an optical microscope mounted on the apparatus, thereby determining the durability of the crosslinked polymer microparticles. The present invention will be specifically described below by way of examples and comparative examples. However, the invention is not limited to the following examples. [Dispersion polymerization method for synthesizing seed polymer microparticles] The experimental procedure is as follows. Step 1: Firstly weigh the appropriate amount of stabilizer and magnet in a three-necked flask, pour the solvent of alcohol and water into a three-necked flask, and seal. Stir until dissolved and pass argon. Step 2: Pour the appropriate amount of monomer into the three-necked flask in step 1. Step 3: Take an appropriate amount of the initiator, pour into the three-necked flask in step 2, and stir while passing argon for about 5 minutes. Step 4: Set up the condenser tube on the three-necked bottle, seal and seal the membrane to prevent leakage, and place it in the oil pan which has been preheated at 55-78 °C for 24 to 48 hours. During the reaction, the solution is white emulsified. Step 5: The reaction is cooled to room temperature. The white emulsified solution is placed in a centrifuge tube. The solid phase is separated by a suitable speed and time using a centrifuge. The upper liquid phase is poured out and discarded, and then washed with an alcohol solvent and water. The lower layer of white powder is placed in an ultrasonic bath. The above steps of centrifuging and washing the white powder are repeated three times. The white emulsified solution is placed in a round bottle of appropriate size, and the methanol is removed by vacuum concentration and vacuum drying. Aqueous solvent, and the white powder was collected in a sample vial and stored at low temperature. Step 6: Place the white sample in an optical microscope and GPC equipment to measure particle size and molecular weight. The reagent formulations for the synthesis of seed polymer microparticles by the above dispersion polymerization method are shown in Table 1. Table I The particle size information (including the average particle diameter and the particle diameter variation coefficient Cv%) and the number average molecular weight data of the seed polymer microparticles obtained above are shown in Table 2. Table II [Separation of cross-linked polymer microparticles by seed swelling polymerization method] The experimental procedure is as follows. Step 1: Place the seed polymer microparticles and the emulsifier (surfactant) aqueous solution in a three-necked round bottom bottle, and condense the tube in three On the neck round bottom bottle, the sealing and the interface are sealed to prevent leakage, and stirred at room temperature for 16 hours, during which the nitrogen gas is continuously protected. Step 2: An appropriate amount of a monomer (including a monofunctional monomer and a polyfunctional monomer), a polymerization initiator, a dispersant, and an aqueous stabilizer solution are uniformly mixed, and an emulsification solution is obtained using an emulsifier. Step 3: The emulsified solution of Step 2 was slowly added dropwise to the three-necked round bottom bottle of Step 1, and stirred at room temperature for 16 hours, during which the reaction was continuously maintained by nitrogen. Step 4: Prepare an aqueous solution of the aqueous polymerization inhibitor and the surfactant, add the solution to a three-necked round bottom bottle, stir for several minutes at room temperature, transfer to a preheated 80 ° C oil pan, and stir for 16 hours. Nitrogen protection reaction. Step 5: The reaction is cooled to room temperature, and the white emulsified solution is placed in a centrifuge tube. The solid phase is separated by a suitable speed and time using a centrifuge. The upper liquid phase is poured out and discarded, and then the lower layer is washed with methanol and water. Powder, and placed in the ultrasonic chamber to oscillate, repeat the above steps of centrifuging and cleaning the white powder three times, the white emulsified solution is placed in a round bottle of appropriate size, and the methanol and water solvent are removed by vacuum concentration and vacuum drying. And collect the white powder in the sample bottle and store it at low temperature. Step 6: The white sample is placed in an optical microscope and a micro-particle mechanical property measuring machine to measure the particle size and the associated compression deformation recovery rate and compression elastic modulus information. The reagent formulations for the synthesis of crosslinked polymer microparticles by the above seed swelling polymerization method are shown in Table 3. Table 3 The particle size information (including the average particle diameter and the particle diameter variation coefficient Cv%), the compression deformation recovery ratio, and the compression elastic modulus of the crosslinked polymer microparticles obtained above are shown in Table 4. Table 4 After the cross-linked polymer microparticles were subjected to a compression recovery cycle of more than 250 times, the appearance and durability evaluation of the crosslinked polymer microparticles were as shown in Table 5. Table 5 Therefore, the present invention uses a uniform particle size seed polymer microparticles having a number average molecular weight of less than 50,000 as a mother particle, and further performs a seed swelling polymerization method with a crosslinking agent formulation under the action of a polymerization initiator to synthesize a crosslinked type. Molecular microparticles, the cross-linked polymer microparticles have insulating properties and outer soft and internal hard properties, and their mechanical properties are higher as the hardness of the microparticle core is higher, and the appearance can be prevented from cracking after 250 cycles of compression recovery. It is shown that the present invention can improve the compression recovery durability of the crosslinked polymer microparticles, and the crosslinked polymer microparticles having high durability can be widely applied to coatings and electronic chemicals. In summary, the present invention is a high-strength cross-linking type polymer microparticle, which can effectively improve various disadvantages of the conventional use, and utilizes a monomer polymerization method to control the molecular weight of the seed polymer microparticles and the cross-linking agent compound. Linked polymer microparticles have insulating properties and soft outer and inner hard properties, and their mechanical properties are closer to the microparticle core hardness. After compression recovery cycle test, it shows good durability, making it in coating and electronic chemistry. The application of the product is more extensive, and thus the life of the invention is more progressive, more practical, and more in line with the needs of the user. It has indeed met the requirements of the invention patent application, and the patent application is filed according to law. However, the above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto; therefore, the simple equivalent changes and modifications made in accordance with the scope of the present invention and the contents of the invention are modified. All should remain within the scope of the invention patent.

no

no

no

Claims (10)

一種交聯型高分子微粒子,係由絕緣性樹脂組成,其硬度愈接近核心越高之機械特性中,具有40~99%之壓縮變形回復率,且經壓縮10%之壓縮彈性模數(K10)與壓縮20%時之壓縮彈性模數(K20)均介於200~1,500kgf/mm2之間,其中,K20/K10之比值係大於1,且該絕緣性樹脂組成包含選自苯乙烯系樹脂、丙烯酸系樹脂、甲基丙烯酸系樹脂、聚乙烯系樹脂、聚丙烯系樹脂、聚矽氧系樹脂、聚酯系樹脂、聚尿烷系樹脂、聚醯胺系樹脂、環氧系樹脂、聚乙烯基丁縮醛系樹脂、松香系樹脂、萜系樹脂、酚系樹脂、三聚氰胺系樹脂、鳥糞胺系樹脂、噁唑啉系樹脂、碳化二亞胺系樹脂、或將這些經交聯反應所得之硬化樹脂,而上述絕緣性樹脂組成可單獨使用其中任一種或組合二種以上使用。 A cross-linked polymer microparticle consisting of an insulating resin, the hardness of which is closer to the core, the mechanical property, the compression recovery rate of 40 to 99%, and the compression elastic modulus of 10% after compression (K10) And the compression elastic modulus (K20) at 20% compression is between 200 and 1,500 kgf/mm 2 , wherein the ratio of K20/K10 is greater than 1, and the insulating resin composition comprises a selected from the group consisting of styrene Resin, acrylic resin, methacrylic resin, polyethylene resin, polypropylene resin, polyoxyn resin, polyester resin, polyurethane resin, polyamine resin, epoxy resin, Polyvinyl butyral resin, rosin resin, lanthanum resin, phenol resin, melamine resin, guanamine resin, oxazoline resin, carbodiimide resin, or cross-linking these The hardening resin obtained by the reaction may be used alone or in combination of two or more kinds thereof. 依申請專利範圍第1項所述之交聯型高分子微粒子,其中,該交聯型高分子微粒子外觀係為圓球型。 The crosslinked polymer microparticles according to the first aspect of the invention, wherein the crosslinked polymer microparticles have a spherical shape. 依申請專利範圍第1項所述之交聯型高分子微粒子,其中,該交聯型高分子微粒子係藉由分散聚合反應搭配種子溶脹聚合反應製得。 The crosslinked polymer microparticles according to the first aspect of the invention, wherein the crosslinked polymer microparticles are obtained by a dispersion polymerization reaction with a seed swelling polymerization reaction. 依申請專利範圍第1或3項所述之交聯型高分子微粒子,其中,該交聯型高分子微粒子之粒徑變異係數Cv%(coefficient variation)係小於8%,其平均粒徑係介於0.1微米至10微米之間。 The cross-linked polymer microparticles according to claim 1 or 3, wherein the cross-linking polymer microparticles have a coefficient of variation of Cv% (coefficient variation) of less than 8%, and the average particle size thereof is Between 0.1 microns and 10 microns. 依申請專利範圍第1項所述之交聯型高分子微粒子,其中,該交聯型高分子微粒子係經過壓縮回復250次以上壓縮回復循環試驗之後,其平均粒徑在測試前後變化量小於5%而無破裂,且機械特性K10與K20在測試前後變化量小於10%者。 According to the cross-linked polymer microparticles according to the first aspect of the patent application, wherein the cross-linked polymer microparticles undergo a compression recovery cycle of more than 250 compression recovery cycles, the average particle diameter of the microparticles before and after the test is less than 5 % without cracking, and the mechanical properties K10 and K20 were less than 10% before and after the test. 依申請專利範圍第5項所述之交聯型高分子微粒子,其中,該壓縮回復循環試驗係指單顆交聯型高分子微粒子在經過壓縮後,產生粒徑變型量大於50%之變形後,卸載壓縮力道,為一次循環。 According to the fifth aspect of the patent application, the cross-linking type polymer microparticles, wherein the compression-recovery cycle test means that after the single cross-linked polymer microparticles are compressed, a particle size modification amount of more than 50% is deformed. , unload the compression force, for one cycle. 依申請專利範圍第1項所述之交聯型高分子微粒子,其中,該交聯型高分子微粒子在平均粒徑小於4微米時,其壓縮變形回復率係大於40%。 The crosslinked polymer microparticles according to claim 1, wherein the crosslinked polymer microparticles have a compression set recovery ratio of more than 40% when the average particle diameter is less than 4 μm. 一種交聯型高分子微粒子製備方法,其至少包含下列步驟:(A)使用單官能基單體經分散聚合法合成種子高分子微粒子,其中該種子高分子微粒子之數量平均分子量(Number Average Molecular Weight)係介於20,000~50,000之間,其中該單官能基單體係選自苯乙烯、o-甲基苯乙烯、m-甲基苯乙烯、p-甲基苯乙烯、α-甲基苯乙烯、o-乙基苯乙烯、m-乙基苯乙烯、p-乙基苯乙烯、2,4-二甲基苯乙烯、p-n-丁基苯乙烯、p-t-丁基苯乙烯、p-n-己基苯乙烯、p-n-辛基苯乙烯、p-n-壬基苯乙烯、p-n-癸基苯乙烯、p-n-十二烷基苯乙烯、p-甲氧基苯乙烯、p-苯基苯乙烯、p-氯苯乙烯及3,4-二氯苯乙烯之苯乙烯或其衍生物;丙烯酸甲酯、丙烯酸乙酯、丙烯酸丙酯、丙烯酸n-丁酯、丙烯酸異丁酯、丙烯酸己酯、丙烯酸2-乙基己酯、丙烯酸n-辛酯、丙烯酸十二烷酯、丙烯酸月桂酯、丙烯酸硬脂醯酯、丙烯酸2-氯乙酯、丙烯酸苯酯、α-氯丙烯酸甲酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸丙酯、甲基丙烯酸n-丁酯、甲基丙烯酸異丁酯、甲基丙烯酸己酯、甲基丙烯酸2-乙基己酯、甲基丙烯酸n-辛酯、甲基丙烯酸十二烷酯、甲基丙烯酸月桂酯及甲基丙烯酸硬脂醯酯之(甲基)丙烯酸酯;乙酸乙烯酯、丙酸乙烯酯、安息香酸乙烯基及酪酸乙烯酯之乙烯基酯; N-乙烯基吡咯、N-乙烯基咔唑、N-乙烯基吲哚及N-乙烯基吡咯烷酮之N-乙烯基化合物;氟化乙烯基、氟化亞乙烯、四氟伸乙基、六氟丙烯、丙烯酸三氟乙基及丙烯酸四氟丙基之含有氟化烷基之(甲基)丙烯酸酯;丁二烯及異戊二烯之共軛二烯,且上述所舉單官能基單體可單獨使用其中任一種或組合二種以上使用;以及上述(B)以上述均一粒徑之種子高分子微粒子為母粒子,在聚合起始劑作用下進一步與交聯劑配方並搭配使用水性聚合抑制劑進行種子溶脹聚合法,合成出交聯型高分子微粒子,該交聯型高分子微粒子為外軟內硬型,具備壓縮回復耐用性,具有40~99%之壓縮變形回復率,且K10與K20均介於200~1,500kgf/mm2之間,其中,K20/K10之比值係大於1。 A method for preparing crosslinked polymer microparticles, comprising at least the following steps: (A) synthesizing seed polymer microparticles by a dispersion polymerization method using a monofunctional monomer, wherein the number average molecular weight of the seed polymer microparticles (Number Average Molecular Weight The system is between 20,000 and 50,000, wherein the monofunctional single system is selected from the group consisting of styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, alpha-methylstyrene , o-ethylstyrene, m-ethylstyrene, p-ethylstyrene, 2,4-dimethylstyrene, pn-butylstyrene, pt-butylstyrene, pn-hexylbenzene Ethylene, pn-octyl styrene, pn-mercaptostyrene, pn-mercaptostyrene, pn-dodecylstyrene, p-methoxystyrene, p-phenylstyrene, p-chloride Styrene or its derivatives of styrene and 3,4-dichlorostyrene; methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, hexyl acrylate, 2-ethyl acrylate Hexyl hexyl ester, n-octyl acrylate, lauryl acrylate, lauryl acrylate, stearyl acrylate, 2-chloroethyl acrylate , phenyl acrylate, methyl α-chloro acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, hexyl methacrylate , 2-ethylhexyl methacrylate, n-octyl methacrylate, dodecyl methacrylate, lauryl methacrylate and (meth) acrylate of stearyl methacrylate; vinyl acetate Vinyl esters of vinyl esters, vinyl propionate, vinyl benzoic acid and vinyl butyrate; N-vinyl esters of N-vinylpyrrole, N-vinylcarbazole, N-vinyl anthracene and N-vinylpyrrolidone a compound; a fluorinated vinyl group, a vinyl fluoride, a tetrafluoroexetyl ethyl group, a hexafluoropropylene, a trifluoroethyl acrylate, and a tetrafluoropropyl acrylate containing a fluorinated alkyl (meth) acrylate; butadiene And a conjugated diene of isoprene, and the above-mentioned monofunctional monomer may be used singly or in combination of two or more kinds thereof; and (B) the seed polymer fine particles having the above uniform particle diameter as a mother The particles are further combined with the crosslinking agent formulation under the action of a polymerization initiator The use of an aqueous polymerization inhibitor for seed swelling polymerization to synthesize cross-linked polymer microparticles, which are external soft and hard type, have compression recovery durability, and have a compression deformation recovery of 40 to 99%. The ratio, and K10 and K20 are between 200 and 1,500 kgf/mm 2 , wherein the ratio of K20/K10 is greater than 1. 依申請專利範圍第8項所述之交聯型高分子微粒子製備方法,其中,該交聯型高分子微粒子之粒徑變異係數Cv%係小於8%,其平均粒徑係介於0.1微米至10微米之間。 The method for preparing a crosslinked polymer microparticle according to claim 8, wherein the crosslinked polymer microparticle has a particle size variation coefficient Cv% of less than 8% and an average particle diameter of 0.1 micron to Between 10 microns. 依申請專利範圍第8項所述之交聯型高分子微粒子製備方法,其中,該交聯劑配方包含單官能基單體與多官能基單體,該單官能基單體占總單體比例係介於10~80質量%,而該多官能基單體占總單體比例係介於20~90質量%,其中該多官能基單體係選自二乙烯基苯;二乙烯基聯苯基;二乙烯基萘;(聚)乙二醇二(甲基)丙烯酸酯、(聚)丙二醇二(甲基)丙烯酸酯及(聚)四甲二醇二(甲基)丙烯酸酯之(聚)烷二醇系二(甲基)丙烯酸酯;1,6-己二醇二丙烯酸酯;1,6-己二醇二(甲基)丙烯酸酯、1,8-辛二醇二(甲基)丙烯酸酯、1,9-壬二醇二(甲基)丙烯酸酯、1,10-癸二醇二(甲基)丙烯酸酯、1,12-十二烷 二醇二(甲基)丙烯酸酯、3-甲基-1,5-戊二醇二(甲基)丙烯酸酯、2,4-二乙基-1,5-戊二醇二(甲基)丙烯酸酯、丁基乙基丙二醇二(甲基)丙烯酸酯、3-甲基-1,7-辛二醇二(甲基)丙烯酸酯及2-甲基-1,8-辛二醇二(甲基)丙烯酸酯之烷二醇系二(甲基)丙烯酸酯;新戊二醇二(甲基)丙烯酸酯、三羥甲基丙烷三(甲基)丙烯酸酯、四羥甲基甲烷三(甲基)丙烯酸酯、四羥甲基丙烷四(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、乙氧基化環己烷二甲醇二(甲基)丙烯酸酯、乙氧基化雙酚A二(甲基)丙烯酸酯、三環癸烷二甲醇二(甲基)丙烯酸酯、丙氧基化乙氧基化雙酚二甲基丙烯酸酯、參羥基甲基乙烷二甲基丙烯酸酯、參羥基甲基乙烷三(甲基)丙烯酸酯、1,1,1-參羥基甲基丙烷三丙烯酸酯、二烯丙基苯二甲酸酯及其異構物、以及三烯丙基三聚異氰酸酯及其衍生物,且上述所舉多官能單體可單獨使用其中任一種或組合二種以上使用。 The method for preparing a crosslinked type polymer microparticle according to claim 8, wherein the crosslinking agent formulation comprises a monofunctional monomer and a polyfunctional monomer, and the monofunctional monomer accounts for a total monomer ratio. The system is between 10 and 80% by mass, and the polyfunctional monomer accounts for 20 to 90% by mass of the total monomer, wherein the polyfunctional single system is selected from the group consisting of divinylbenzene; divinylbiphenyl Divinylnaphthalene; (poly)ethylene glycol di(meth)acrylate, (poly)propylene glycol di(meth)acrylate and (poly)tetramethyl glycol di(meth)acrylate Alkanediol di(meth)acrylate; 1,6-hexanediol diacrylate; 1,6-hexanediol di(meth)acrylate, 1,8-octanediol di(methyl) Acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-nonanediol di(meth)acrylate, 1,12-dodecane Diol (meth) acrylate, 3-methyl-1,5-pentanediol di(meth) acrylate, 2,4-diethyl-1,5-pentanediol di(methyl) Acrylate, butyl ethyl propylene glycol di(meth) acrylate, 3-methyl-1,7-octanediol di(meth) acrylate and 2-methyl-1,8-octanediol di Methyl) acrylate alkanediol di(meth) acrylate; neopentyl glycol di(meth) acrylate, trimethylolpropane tri(meth) acrylate, tetramethylol methane tri Methyl) acrylate, tetramethylolpropane tetra(meth) acrylate, pentaerythritol tri(meth) acrylate, ethoxylated cyclohexane dimethanol di(meth) acrylate, ethoxylated double Phenol A di(meth)acrylate, tricyclodecane dimethanol di(meth)acrylate, propoxylated ethoxylated bisphenol dimethacrylate, hydroxymethylethane dimethacrylate Esters, hydroxymethylethane tris(meth)acrylate, 1,1,1-paraxylmethylpropane triacrylate, diallyl phthalate and isomers thereof, and triene Trimeric isocyanate and its derivatives, and the above-mentioned polyfunctional monomer can be used alone Wherein two or more kinds with any one or combination.
TW104137086A 2015-11-10 2015-11-10 High durability cross-linked polymer particles TWI565734B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104137086A TWI565734B (en) 2015-11-10 2015-11-10 High durability cross-linked polymer particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104137086A TWI565734B (en) 2015-11-10 2015-11-10 High durability cross-linked polymer particles

Publications (2)

Publication Number Publication Date
TWI565734B true TWI565734B (en) 2017-01-11
TW201716474A TW201716474A (en) 2017-05-16

Family

ID=58408094

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104137086A TWI565734B (en) 2015-11-10 2015-11-10 High durability cross-linked polymer particles

Country Status (1)

Country Link
TW (1) TWI565734B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109384886A (en) * 2017-08-02 2019-02-26 镇江爱邦电子科技有限公司 A kind of high cross-linking supports microballoon of New type LCD frame adhesive

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI668238B (en) * 2018-05-29 2019-08-11 台灣中油股份有限公司 Method of fabricating cross-linked polymer microparticles using low quantity of surfactant

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200948881A (en) * 2008-03-27 2009-12-01 Sekisui Chemical Co Ltd Polymer particle, conductive particle, anisotropic conductive material, and connection structure
TW201302894A (en) * 2011-07-05 2013-01-16 Jsr Corp Resin composition, polymer, curable film, electronic component

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200948881A (en) * 2008-03-27 2009-12-01 Sekisui Chemical Co Ltd Polymer particle, conductive particle, anisotropic conductive material, and connection structure
TW201302894A (en) * 2011-07-05 2013-01-16 Jsr Corp Resin composition, polymer, curable film, electronic component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109384886A (en) * 2017-08-02 2019-02-26 镇江爱邦电子科技有限公司 A kind of high cross-linking supports microballoon of New type LCD frame adhesive

Also Published As

Publication number Publication date
TW201716474A (en) 2017-05-16

Similar Documents

Publication Publication Date Title
US7923517B2 (en) Polymer microparticles and production method for the same
US9180486B2 (en) Method for preparing a porous anti-reflection thin film composed of hollow polymeric nanoparticles
Han et al. Synthesis and characterization of acrylic latex: Effects of fluorine and silicon components on properties of the latex copolymers
JPH0627123B2 (en) Aqueous dispersion
Xiong et al. Bifunctional core–shell–corona particles for amphiphobic coatings
Zhang et al. Synthesis and characterization of crosslinkable latex with interpenetrating network structure based on polystyrene and polyacrylate
TWI565734B (en) High durability cross-linked polymer particles
JP2004018557A (en) Polymer fine particle having initiating group for living radical polymerization and method for producing the same
TWI289686B (en) Composition for light-reflecting film and light-reflecting film using the same
TW201109865A (en) Copolymer for lithography and evaluation method for the same
JPH107704A (en) Resin particle, its production method, and paints and cosmetics using the same
JP2004018556A (en) Polymer particle having living initiating species and method for producing the same
US9493644B2 (en) Resin blend
JP2018048309A (en) Core-shell particle
JP4957871B2 (en) Crosslinked polymer particles and method for producing the same
JP2008239935A (en) Method for producing monodisperse minute particles
TWI618718B (en) Cross-linked polymer microparticle with temperature-regulatable mechanical properties and method of fabricating the same
JP2002363205A (en) Fine particle and electroconductive fine particle
Zang et al. Synthesis and characterization of fluorine‐containing polyacrylate latex with core–shell structure by UV‐initiated seeded emulsion polymerization
JP5375961B2 (en) Crosslinked polymer particles, production method thereof, and conductive particles
Wang et al. Convenient synthesis and morphology of latex particles composed of poly (methyl methacrylate)-b-poly (n-butyl acrylate) by 1, 1-diphenylethylene (DPE) seeded emulsion polymerization
TWI363070B (en)
Pan et al. Self-assembled micelle and film surface of fluorine/silicon-containing triblock copolymer
JP4178872B2 (en) Method for producing crosslinked polymer particles
Tang et al. Apparent kinetic study of latex interpenetrating polymer networks P (ethyl acrylate)/P (styrene) and P (styrene)/P (ethyl acrylate) by two stage emulsion polymerization