TWI565024B - Electrostatic discharge protection structure - Google Patents

Electrostatic discharge protection structure Download PDF

Info

Publication number
TWI565024B
TWI565024B TW101151157A TW101151157A TWI565024B TW I565024 B TWI565024 B TW I565024B TW 101151157 A TW101151157 A TW 101151157A TW 101151157 A TW101151157 A TW 101151157A TW I565024 B TWI565024 B TW I565024B
Authority
TW
Taiwan
Prior art keywords
region
conductive
type
electrostatic discharge
protection structure
Prior art date
Application number
TW101151157A
Other languages
Chinese (zh)
Other versions
TW201426952A (en
Inventor
王暢資
陳俞均
唐天浩
Original Assignee
聯華電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯華電子股份有限公司 filed Critical 聯華電子股份有限公司
Priority to TW101151157A priority Critical patent/TWI565024B/en
Publication of TW201426952A publication Critical patent/TW201426952A/en
Application granted granted Critical
Publication of TWI565024B publication Critical patent/TWI565024B/en

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

靜電放電防護結構 Electrostatic discharge protection structure

本發明是有關於一種半導體結構,且特別是有關於一種靜電放電防護結構。 This invention relates to a semiconductor structure and, more particularly, to an electrostatic discharge protection structure.

在半導體元件製造或使用過程中,各種類型的靜電放電(Electrostatic Discharge,以下簡稱ESD)所產生的過大電流是造成半導體元件或功能電路損害的主要因素,並且影響製程的效率以及產品的良率。 During the manufacture or use of semiconductor components, excessive current generated by various types of electrostatic discharge (ESD) is a major factor causing damage to semiconductor components or functional circuits, and affects the efficiency of the process and the yield of the product.

在進入深次微米甚至奈米級製程後,由於尺寸微縮的半導體元件對於ESD耐受度相對變差,所以必須進一步提高ESD的防護能力。目前有許多ESD的防護設計雖能防止ESD,但是卻會影響其所保護的半導體元件或功能電路的效能。因此,如何提供良好的ESD防護能力且不影響半導體元件或功能電路的效能即是發展本發明之目的。 After entering the deep sub-micron or even nano-scale process, the resistance of the ESD is further improved because the semiconductor element of the reduced size is relatively inferior to ESD tolerance. There are many ESD protection designs that prevent ESD, but they affect the performance of the semiconductor components or functional circuits they protect. Therefore, it is the object of the present invention to provide a good ESD protection capability without affecting the performance of a semiconductor component or a functional circuit.

本發明的目的就是在提供一種靜電放電防護結構,其包含一半導體基底、一井區、一第一傳導區、一第二傳導區以及一第一摻雜區。半導體基底上完成有複數個隔離結構。井區具有第一型導電載子,配置於該等隔離結構間。第一傳導區及第二傳導區具有第二型導電載子,分別配置於井區中之半導體基底 表面。第一摻雜區配置於該第一傳導區下方,而於靜電放電防護結構中形成一高阻值區。 SUMMARY OF THE INVENTION It is an object of the present invention to provide an electrostatic discharge protection structure including a semiconductor substrate, a well region, a first conductive region, a second conductive region, and a first doped region. A plurality of isolation structures are completed on the semiconductor substrate. The well region has a first type of conductive carrier disposed between the isolation structures. The first conductive region and the second conductive region have second type conductive carriers, respectively disposed on the semiconductor substrate in the well region surface. The first doped region is disposed under the first conductive region to form a high resistance region in the electrostatic discharge protection structure.

本發明因在各種型式的靜電放電防護結構中形成一高阻值區,用以調整靜電放電防護結構的觸發電壓以及靜電放電電流通過靜電放電防護結構的分布路徑,因此能有效提升靜電放電防護結構的防護能力,達到保護各種電路元件並維持各種電路元件效能的功效。 The invention forms a high resistance zone in various types of electrostatic discharge protection structures, and is used for adjusting the trigger voltage of the electrostatic discharge protection structure and the distribution path of the electrostatic discharge current through the electrostatic discharge protection structure, thereby effectively improving the electrostatic discharge protection structure. The ability to protect various circuit components and maintain the performance of various circuit components.

為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下。 The above and other objects, features and advantages of the present invention will become more <RTIgt;

圖1A至圖1E繪示為本發明之一實施例部分步驟及結構剖面示意圖。 1A-1E are schematic cross-sectional views showing parts and structures of an embodiment of the present invention.

請參見圖1A所示,提供半導體基底100,半導體基底100上完成有複數個隔離結構101,部份隔離結構定義出靜電放電防護結構區110以及電路元件區120。靜電放電防護結構區110以及電路元件區120中已完成具有第一型導電載子之井區111、121;具有第二型導電載子之第一傳導區112、122及第二傳導區113、123。井區111、121配置於該等隔離結構101間,第一傳導區112、122及第二傳導區113、123分別配置於井區111、121中之半導體基底100表面,其中第一傳導區112、122及第二傳導區113、123中第二型導電載子濃度高於井區111、121中第一型導電載子濃度。 Referring to FIG. 1A, a semiconductor substrate 100 is provided. The semiconductor substrate 100 is formed with a plurality of isolation structures 101. The partial isolation structures define an ESD protection structure region 110 and a circuit component region 120. The well region 111, 121 having the first type of conductive carrier is completed in the ESD protection structure region 110 and the circuit component region 120; the first conduction region 112, 122 and the second conduction region 113 having the second type of conductive carrier, 123. The well regions 111, 121 are disposed between the isolation structures 101, and the first conductive regions 112, 122 and the second conductive regions 113, 123 are respectively disposed on the surface of the semiconductor substrate 100 in the well regions 111, 121, wherein the first conductive regions 112 The concentration of the second type conductive carrier in the 122 and the second conducting regions 113, 123 is higher than the concentration of the first type conductive carrier in the well regions 111, 121.

在本實施例中,半導體基底100為矽基底,同樣具有第一型導電載子的摻雜型式。製造靜電放電防護結構110係可整合 於製造功能元件區120之製程,例如;場效應電晶體、互補式場效應電晶體或雙載子互補式場效應電晶體(MOS,CMOS or Bi-CMOS)之製程。詳細來說,首先,於靜電放電防護結構區110以及電路元件區120中,進行多次第一型導電載子之摻雜製程而形成具有第一型導電載子之井區111、121。形成閘極結構115、125後,於基底100表面上形成遮罩而露出部分之靜電放電防護結構區110以及部分之電路元件區120表面,進行第二型導電載子之摻雜製程,其摻雜第二導電型載子之濃度高於井區111、121表面之第一型導電型載子之摻雜濃度,而於露出部分之靜電放電防護結構區110以及露出部分之電路元件區120中形成具有第二型導電載子之輕摻雜區。接著,形成閘極側壁115a、125a後,於基底100表面上形成遮罩而露出部分之輕摻雜區表面,再進行第二型導電載子之摻雜製程,其摻雜第二導電型載子之濃度高於輕摻雜區,而形成具有高濃度第二型導電載子之第一傳導區112、122、第二傳導區113、123以及低濃度第二型導電載子之輕摻雜區112a、122a、113a、123a(lightly doped drain,簡稱:LDD)。之後,還可於第一傳導區112、122、第二傳導區113、123、閘極結構115、125及閘極側壁115a、125a上形成遮罩而露出部分之靜電放電防護結構110及部分之電路元件區120表面,進行第一型導電載子之摻雜製程來提高部分井區111、121中之第一型導電載子濃度,進而形成具有高濃度第一型導電載子之第三傳導區114、124。 In the present embodiment, the semiconductor substrate 100 is a germanium substrate, which also has a doped version of the first type of conductive carrier. Manufacturing electrostatic discharge protection structure 110 can be integrated For the manufacturing process of the functional device region 120, for example, a field effect transistor, a complementary field effect transistor or a bipolar complementary field effect transistor (MOS, CMOS or Bi-CMOS) process. In detail, first, in the ESD protection structure region 110 and the circuit component region 120, a doping process of the first type of conductive carriers is performed a plurality of times to form well regions 111 and 121 having the first type of conductive carriers. After the gate structures 115 and 125 are formed, a mask is formed on the surface of the substrate 100 to expose a portion of the surface of the electrostatic discharge protection structure 110 and a portion of the circuit element region 120, and a doping process of the second type conductive carrier is performed. The doping concentration of the second conductivity type carrier is higher than the doping concentration of the first conductivity type carrier on the surface of the well regions 111, 121, and is in the exposed portion of the electrostatic discharge protection structure region 110 and the exposed portion of the circuit component region 120. A lightly doped region having a second type of conductive carrier is formed. Then, after the gate sidewalls 115a and 125a are formed, a mask is formed on the surface of the substrate 100 to expose a portion of the surface of the lightly doped region, and then a doping process of the second type conductive carrier is performed, and the second conductive type is doped. The concentration of the sub-concentration is higher than that of the lightly doped region, and light doping of the first conductive regions 112, 122, the second conductive regions 113, 123 and the low-concentration second-type conductive carriers having a high concentration of the second-type conductive carriers is formed. Areas 112a, 122a, 113a, 123a (lightly doped drain, abbreviated as LDD). Thereafter, a mask may be formed on the first conductive regions 112, 122, the second conductive regions 113, 123, the gate structures 115, 125, and the gate sidewalls 115a, 125a to expose portions of the electrostatic discharge protection structure 110 and portions thereof. On the surface of the circuit component region 120, a doping process of the first type of conductive carriers is performed to increase the concentration of the first type of conductive carriers in the partial well regions 111 and 121, thereby forming a third conduction having a high concentration of the first type of conductive carriers. Areas 114, 124.

為了便於說明本發明之技術方案,圖1B至1E僅繪示圖1A中靜電放電防護結構區110之剖面圖。 1B to 1E are only cross-sectional views of the electrostatic discharge protection structure region 110 of FIG. 1A.

請參見圖1B,於半導體基底100表面上形成遮罩130, 遮罩130具有開口130a而僅露出靜電放電防護結構區110中部份之第一傳導區112表面。接著,利用遮罩130進行第一摻雜製程以摻雜可提供第二型導電載子之摻質來電性中和部分之井區111中第一型導電載子。在本實施例中,第一型導電載子為電洞載子(P type carrier),第二型導電載子為電子載子(N type carrier),第一摻雜製程係以具有電子載子之摻質,例如:磷原子(P)或砷原子(As),來電性中和部分之P井區中電洞載子之濃度。值得一提的是,在其他實施例中,第一型導電載子可為電子,第二型導電載子可為電洞,第一摻雜製程則以可提供電洞載子之摻質,例如:硼原子(B)或鎵原子(Ga),來電性中和部分之N井區中之電子載子。本發明對於第一型導電載子及第二型導電載子間相對應之導電載子型式不做限制。 Referring to FIG. 1B, a mask 130 is formed on the surface of the semiconductor substrate 100, The mask 130 has an opening 130a to expose only a portion of the first conductive region 112 surface of the portion of the ESD protection structure region 110. Next, a first doping process is performed using the mask 130 to dope the first type of conductive carriers in the well region 111 that provides the dopant neutralization portion of the second type of conductive carrier. In this embodiment, the first type of conductive carrier is a P type carrier, the second type of conductive carrier is an N type carrier, and the first doping process has an electron carrier. The dopant, for example, a phosphorus atom (P) or an arsenic atom (As), the concentration of a hole carrier in the P well region of the radical neutralizing portion. It is worth mentioning that in other embodiments, the first type of conductive carrier can be an electron, the second type of conductive carrier can be a hole, and the first doping process can provide a dopant for the hole carrier. For example: a boron atom (B) or a gallium atom (Ga), an electron carrier in the N-well region of the neutralizing portion. The present invention does not limit the corresponding conductive carrier type between the first type of conductive carrier and the second type of conductive carrier.

請參見圖1C,完成第一摻雜製程後,於露出部份之N+第一傳導區112下方形成第一摻雜區116,其中第一摻雜區116及N+第一傳導區112之間相隔有未被電性中和之P井區111。進一步來說,本發明可藉由調整第一摻雜製程之製程條件,例如:摻質濃度、摻雜時間、摻雜角度、摻雜能量、退火擴散等,來控制形成第一摻雜區116之導電載子之型式、濃度或摻雜範圍、位置。在本實施例中,第一摻雜製程電性中和部分之P井區中之電洞載子後,形成第一摻雜區116具有低濃度之電子載子區(N-),在其他實施例中,第一摻雜區116中可為載子中和區(electrically neutral)或低濃度之電洞載子區(P-)。綜合而言,藉由第一摻雜區之導電載子濃度低於井區之導電載子濃度,在靜電放電防護結構被觸發而導通靜電放電電流(簡稱:ESD current)時,第一摻雜區116形成一高阻值區,利用靜電放電防護結構中不同的阻值分布形態(resistance profile),可調整靜 電放電防護結構導通ESD current之路徑。 Referring to FIG. 1C, after the first doping process is completed, a first doping region 116 is formed under the exposed portion of the N+ first conducting region 112, wherein the first doping region 116 and the N+ first conducting region 112 are separated from each other. There is a P well area 111 that is not electrically neutralized. Further, the present invention can control the formation of the first doping region 116 by adjusting process conditions of the first doping process, such as dopant concentration, doping time, doping angle, doping energy, annealing diffusion, and the like. The type, concentration or doping range and position of the conductive carrier. In this embodiment, after the first doping process electrically neutralizes the hole carrier in the P well region, the first doping region 116 is formed to have a low concentration of the electron carrier region (N-), in other In an embodiment, the first doped region 116 may be an electrically neutral or low concentration hole carrier region (P-). In general, when the concentration of the conductive carrier in the first doping region is lower than the concentration of the conductive carrier in the well region, when the electrostatic discharge protection structure is triggered to turn on the electrostatic discharge current (abbreviation: ESD current), the first doping The region 116 forms a high resistance region, which can be adjusted by using different resistance profiles in the electrostatic discharge protection structure. The electric discharge protection structure turns on the path of the ESD current.

請參見圖1D,在本發明中,還可利用同一遮罩130選擇性進行第二摻雜製程來增加部分未被電性中和之井區中第一型導電載子,而於露出部份之第一傳導區112及第一摻雜區116之間形成第二摻雜區117。簡要來說,在靜電放電防護結構110中,第一傳導區112、井區111及第二傳導區113構成一寄生雙極電晶體111a(parasitic bipolar junction transistor,簡稱:BJT);第一傳導區112、井區111及第三傳導區構成一串連電阻的寄生二極體111b(parasitic diode,圖中點線電路符號所示)。在本實施例中,上述寄生雙極電晶體為NPN型BJT。第二摻雜製程係以摻雜P type摻質來增加部分未被電性中和之P井區111中之電洞載子,因為形成P+第二摻雜區117接合於N+第一傳導區下方,P+第二摻雜區117與N+第一傳導區112所形成高濃度之PN接合界面(PN junction),可適度降低上述BJT的觸發電壓(breakdown voltage)。 Referring to FIG. 1D, in the present invention, the second masking process may be selectively performed by the same mask 130 to increase the first type of conductive carriers in the well region that is not electrically neutralized, and the exposed portion is exposed. A second doped region 117 is formed between the first conductive region 112 and the first doped region 116. Briefly, in the electrostatic discharge protection structure 110, the first conductive region 112, the well region 111 and the second conductive region 113 constitute a parasitic bipolar junction transistor (abbreviated as BJT); the first conductive region 112. The well region 111 and the third conductive region form a series of parasitic diodes 111b (parasitic diodes, as indicated by the dotted line circuit symbols). In this embodiment, the parasitic bipolar transistor is an NPN type BJT. The second doping process is doped with a P type dopant to increase a portion of the hole carrier in the P well region 111 that is not electrically neutralized, because the P+ second doping region 117 is bonded to the N+ first conduction region. Below, the P+ second doped region 117 and the N+ first conductive region 112 form a high concentration PN junction interface (PN junction), which can moderately reduce the breakdown voltage of the BJT.

請參見圖1E,去除遮罩130後,靜電放電防護結構110可配合電路元件區中矽金屬化製程(salicide process),於第一傳導區112、第二傳導區113、第三傳導區114及閘極結構115中形成金屬矽化物層112b、113b、114b及115b,形成於矽基底表面之各金屬矽化物層可做為內部電路連線的接觸區。在本實施例中,還可選擇性形成金屬矽化物層112b之長度尺寸,例如:進行遮蔽矽金屬化製程(sacilide blocking process),用以調整第一傳導區112的傳導阻值(如圖第一傳導區112中點線電阻符號112c)。之後,進行各種內部電路連線製程,其中N+第一傳導區112可電連接至汲極電壓V1;N+第二傳導區112及P+第三傳導區可電連接至接地電壓V2。完成各種內部電路 連線後,當ESD current發生時,ESD current可迅速經由靜電放電防護結構110中寄生BJT111a及寄生二極體111b等路徑導通至接地,平均分散ESD current所釋放的能量進而減低靜電放電防護結構及電路元件區被破壞的風險;當正常訊號輸出/輸入時,靜電放電防護結構處於關閉狀態,因為靜電放電防護結構110中配置有高阻值之第一摻雜區116,不會不正常導通而產生漏電流。 Referring to FIG. 1E, after the mask 130 is removed, the ESD protection structure 110 can cooperate with a salicide process in the circuit component region, in the first conductive region 112, the second conductive region 113, and the third conductive region 114. Metal halide layers 112b, 113b, 114b, and 115b are formed in the gate structure 115, and each of the metal halide layers formed on the surface of the germanium substrate can serve as a contact region for internal circuit wiring. In this embodiment, the length dimension of the metal telluride layer 112b may also be selectively formed, for example, a sacilide blocking process is performed to adjust the conduction resistance of the first conductive region 112 (as shown in FIG. A line resistance symbol 112c) in a conduction region 112. Thereafter, various internal circuit wiring processes are performed in which the N+ first conduction region 112 can be electrically connected to the drain voltage V1; the N+ second conduction region 112 and the P+ third conduction region can be electrically connected to the ground voltage V2. Complete various internal circuits After the connection, when the ESD current occurs, the ESD current can be quickly turned to the ground through the parasitic BJT111a and the parasitic diode 111b in the electrostatic discharge protection structure 110, and the energy released by the ESD current is evenly dispersed to reduce the electrostatic discharge protection structure and The risk of the circuit component area being destroyed; when the normal signal is output/input, the electrostatic discharge protection structure is in a closed state, because the first doping region 116 having a high resistance value is disposed in the electrostatic discharge protection structure 110, and is not abnormally turned on. A leakage current is generated.

再請參見圖2,圖2繪示本發明另一實施例部分結構剖面示意圖。靜電放電防護結構210為雙極電晶體(BJT)型式之結構,如圖1中實施例所述,靜電放電防護結構210同樣可整合於各種電路元件之製程中,靜電放電防護結構210與靜電放電防護結構110之差異處在於,第一傳導區112及第二傳導區113間配置有一隔離結構101,靜電放電防護結構210中不形成閘極結構及輕摻雜區。 Referring to FIG. 2, FIG. 2 is a cross-sectional view showing a portion of a structure of another embodiment of the present invention. The electrostatic discharge protection structure 210 is a bipolar transistor (BJT) type structure. As shown in the embodiment of FIG. 1, the electrostatic discharge protection structure 210 can also be integrated into the process of various circuit components, and the electrostatic discharge protection structure 210 and the electrostatic discharge. The difference between the first conductive region 112 and the second conductive region 113 is that an isolation structure 101 is disposed between the first conductive region 112 and the second conductive region 113. The gate structure and the lightly doped region are not formed in the electrostatic discharge protection structure 210.

最後請參見圖3,圖3繪示本發明又一實施例部分結構剖面示意圖。靜電放電防護結構310為矽整流控制器(silicon controller rectifier,簡稱:SCR)型式之結構。如圖2中實施例所述,第一傳導區112及第二傳導區113間配置有一隔離結構101,靜電放電防護結構310與靜電放電防護結構210之差異處在於,第二摻雜區117分別接合於第一傳導區112及第一摻雜區116,第一掺雜區包覆第二掺雜區117外圍而使第一傳導區112、第二掺雜區117及第一掺雜區116之間形成兩個PN接合面。第一傳導區112、第二掺雜區117、第一掺雜區116及第三傳導區114構成矽整流控制器。當ESD current發生時,ESD current可經由上述矽整流控制器之路徑導通至接地。 Finally, please refer to FIG. 3. FIG. 3 is a cross-sectional view showing a partial structure of another embodiment of the present invention. The electrostatic discharge protection structure 310 is a structure of a silicon controller rectifier (SCR) type. As shown in the embodiment of FIG. 2, an isolation structure 101 is disposed between the first conductive region 112 and the second conductive region 113. The difference between the electrostatic discharge protection structure 310 and the electrostatic discharge protection structure 210 is that the second doping region 117 is respectively Bonding to the first conductive region 112 and the first doping region 116, the first doping region covers the periphery of the second doping region 117 to make the first conductive region 112, the second doping region 117 and the first doping region 116 Two PN joint faces are formed between them. The first conductive region 112, the second doped region 117, the first doped region 116, and the third conductive region 114 constitute a germanium rectifier controller. When ESD current occurs, the ESD current can be conducted to ground via the path of the above-described 矽 rectification controller.

本發明整合既有電路元件製程,不需增加製程成本,僅利 用一道遮罩進行掺雜製程,即可在各種型式的靜電放電防護結構中形成一高阻值區,用以調整靜電放電防護結構的觸發電壓以及ESD current通過靜電放電防護結構的分布路徑,即時導通各種型態的ESD current。綜上所述,實施本發明之技術方案,能有效提升靜電放電防護結構的防護能力,達到保護各種電路元件並維持各種電路元件效能的功效。 The invention integrates the process of the existing circuit components, and does not need to increase the process cost, only benefit By using a mask to do the doping process, a high resistance region can be formed in various types of ESD protection structures to adjust the trigger voltage of the ESD protection structure and the distribution path of the ESD current through the ESD protection structure. Turn on various types of ESD current. In summary, the technical solution of the present invention can effectively improve the protection capability of the electrostatic discharge protection structure, and achieve the effects of protecting various circuit components and maintaining the performance of various circuit components.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.

100‧‧‧半導體基底 100‧‧‧Semiconductor substrate

101‧‧‧隔離結構 101‧‧‧Isolation structure

110、210、310‧‧‧靜電放電防護結構 110, 210, 310‧‧‧ Electrostatic discharge protection structure

111、121‧‧‧井區 111, 121‧‧‧ Well Area

111a‧‧‧雙極電晶體 111a‧‧‧Bipolar transistor

111b‧‧‧二極體 111b‧‧‧ diode

112、122‧‧‧第一傳導區 112, 122‧‧‧ first conduction zone

112a、113a、122a、123a‧‧‧輕摻雜區 112a, 113a, 122a, 123a‧‧‧lightly doped areas

112b、113b、114b、115b‧‧‧金屬矽化物層 112b, 113b, 114b, 115b‧‧‧ metal telluride layer

112c‧‧‧電阻 112c‧‧‧resistance

113、123‧‧‧第二傳導區 113, 123‧‧‧Second conduction zone

114、124‧‧‧第三傳導區 114, 124‧‧‧ third conduction zone

115、125‧‧‧閘極結構 115, 125‧‧ ‧ gate structure

115a、125a‧‧‧閘極側壁 115a, 125a‧‧‧ gate sidewall

116‧‧‧第一摻雜區 116‧‧‧First doped area

117‧‧‧第二摻雜區 117‧‧‧Second doped area

120‧‧‧電路元件區 120‧‧‧Circuit component area

130‧‧‧遮罩 130‧‧‧ mask

130a‧‧‧遮罩開口 130a‧‧‧Mask opening

V1‧‧‧汲極電壓 V1‧‧‧汲polar voltage

V2‧‧‧接地電壓 V2‧‧‧ Grounding voltage

圖1A至圖1E繪示為本發明之一實施例部分步驟及結構剖面示意圖。 1A-1E are schematic cross-sectional views showing parts and structures of an embodiment of the present invention.

圖2繪示為本發明另一實施例部分結構剖面示意圖。 2 is a cross-sectional view showing a portion of a structure of another embodiment of the present invention.

圖3繪示為本發明又一實施例部分結構剖面示意圖。 3 is a cross-sectional view showing a portion of a structure according to still another embodiment of the present invention.

100‧‧‧半導體基底 100‧‧‧Semiconductor substrate

101‧‧‧隔離結構 101‧‧‧Isolation structure

110‧‧‧靜電放電防護結構 110‧‧‧Electrostatic discharge protection structure

111‧‧‧井區 111‧‧‧ Well Area

111a‧‧‧雙極電晶體 111a‧‧‧Bipolar transistor

111b‧‧‧二極體 111b‧‧‧ diode

112‧‧‧第一傳導區 112‧‧‧First conduction zone

112a、113a‧‧‧輕摻雜區 112a, 113a‧‧‧lightly doped areas

112b、113b、114b、115b‧‧‧金屬矽化物層 112b, 113b, 114b, 115b‧‧‧ metal telluride layer

112c‧‧‧電阻 112c‧‧‧resistance

113‧‧‧第二傳導區 113‧‧‧Second conduction zone

114‧‧‧第三傳導區 114‧‧‧ third conduction zone

115‧‧‧閘極結構 115‧‧‧ gate structure

115a‧‧‧閘極側壁 115a‧‧‧ gate sidewall

116‧‧‧第一摻雜區 116‧‧‧First doped area

117‧‧‧第二摻雜區 117‧‧‧Second doped area

V1‧‧‧汲極電壓 V1‧‧‧汲polar voltage

V2‧‧‧接地電壓 V2‧‧‧ Grounding voltage

Claims (8)

一種靜電放電防護結構,其包含:一半導體基底,該半導體基底上完成有複數個隔離結構;一閘極結構,形成在該半導體基底表面上;一井區,具有第一型導電載子,形成於該半導體基底中配置於該等隔離結構間;一第一傳導區及一第二傳導區,具有第二型導電載子,分別配置於該井區中之該半導體基底表面上的該閘極結構的兩側;以及一第一摻雜區,配置於該第一傳導區下方,且從橫剖面視之時,該第一摻雜區並不位在該閘極結構之正下方,其中該第一摻雜區具有第一型導電載子,該第一摻雜區中第一型導電載子濃度小於該井區中第一型導電載子濃度。 An electrostatic discharge protection structure comprising: a semiconductor substrate having a plurality of isolation structures formed thereon; a gate structure formed on a surface of the semiconductor substrate; and a well region having a first type of conductive carrier formed Disposed between the isolation structures in the semiconductor substrate; a first conductive region and a second conductive region, having second conductivity carriers, respectively disposed on the surface of the semiconductor substrate in the well region Two sides of the structure; and a first doped region disposed under the first conductive region, and the first doped region is not located directly under the gate structure when viewed from a cross section, wherein the The first doped region has a first type of conductive carrier, and the concentration of the first type of conductive carrier in the first doped region is less than the concentration of the first type of conductive carrier in the well region. 如申請專利範圍第1項所述靜電放電防護結構,其中該第一摻雜區及該第一傳導區之間相隔有該井區。 The electrostatic discharge protection structure of claim 1, wherein the first doped region and the first conductive region are separated by the well region. 如申請專利範圍第1項所述靜電放電防護結構,其更包含一第二摻雜區具有第一型導電載子,配置於該第一摻雜區以及該第一傳導區之間,其中該第二摻雜區中第一導電型載子濃度高於該井區中第一導電載子濃度。 The electrostatic discharge protection structure of claim 1, further comprising a second doped region having a first type of conductive carrier disposed between the first doped region and the first conductive region, wherein the The concentration of the first conductivity type carrier in the second doping region is higher than the concentration of the first conductive carrier in the well region. 如申請專利範圍第3項所述靜電放電防護結構,其中該第二摻雜區接合於該第一傳導區下方。 The electrostatic discharge protection structure of claim 3, wherein the second doped region is bonded below the first conductive region. 如申請專利範圍第4項所述靜電放電防護結構,其中該第一摻雜區及該第二摻雜區之間相隔有該井區。 The electrostatic discharge protection structure of claim 4, wherein the first doped region and the second doped region are separated by the well region. 如申請專利範圍第1項所述靜電放電防護結構,其中第一型導電載子為電洞,第二型導電載子為電子。 The electrostatic discharge protection structure according to claim 1, wherein the first type of conductive carrier is a hole, and the second type of conductive carrier is an electron. 如申請專利範圍第6項所述靜電放電防護結構,其更包含一第三傳導區具有第一型導電載子,配置於該井區中之該半導體基底表面,該第一傳導區、該第二傳導區及該第三傳導區之間相隔有該井區,其中該第三傳導區中第一型導電載子濃度高於該井區中第一型導電載子濃度。 The electrostatic discharge protection structure of claim 6, further comprising a third conductive region having a first type of conductive carrier disposed on the surface of the semiconductor substrate in the well region, the first conductive region, the first The well region is separated from the second conductive region and the third conductive region, wherein the concentration of the first type conductive carrier in the third conductive region is higher than the concentration of the first type conductive carrier in the well region. 如申請專利範圍第7項所述靜電放電防護結構,其中該第一傳導區適於耦接一高電壓源,該第二傳導區及該第三傳導區適於耦接一低電壓源。 The electrostatic discharge protection structure of claim 7, wherein the first conductive region is adapted to be coupled to a high voltage source, and the second conductive region and the third conductive region are adapted to be coupled to a low voltage source.
TW101151157A 2012-12-28 2012-12-28 Electrostatic discharge protection structure TWI565024B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101151157A TWI565024B (en) 2012-12-28 2012-12-28 Electrostatic discharge protection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101151157A TWI565024B (en) 2012-12-28 2012-12-28 Electrostatic discharge protection structure

Publications (2)

Publication Number Publication Date
TW201426952A TW201426952A (en) 2014-07-01
TWI565024B true TWI565024B (en) 2017-01-01

Family

ID=51725673

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101151157A TWI565024B (en) 2012-12-28 2012-12-28 Electrostatic discharge protection structure

Country Status (1)

Country Link
TW (1) TWI565024B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116247007B (en) * 2023-05-09 2023-09-12 合肥晶合集成电路股份有限公司 Method for manufacturing semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030227053A1 (en) * 2002-06-11 2003-12-11 Fujitsu Limited ESD protection circuit
US20080237706A1 (en) * 2007-03-28 2008-10-02 Advanced Analogic Technologies, Inc. Lateral MOSFET
US20130105904A1 (en) * 2011-11-01 2013-05-02 Texas Instruments Incorporated Radiation hardened integrated circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030227053A1 (en) * 2002-06-11 2003-12-11 Fujitsu Limited ESD protection circuit
US20080237706A1 (en) * 2007-03-28 2008-10-02 Advanced Analogic Technologies, Inc. Lateral MOSFET
US20130105904A1 (en) * 2011-11-01 2013-05-02 Texas Instruments Incorporated Radiation hardened integrated circuit

Also Published As

Publication number Publication date
TW201426952A (en) 2014-07-01

Similar Documents

Publication Publication Date Title
US11127734B2 (en) Vertical nanowire transistor for input/output structure
US9331064B2 (en) Fin diode structure
JP5703790B2 (en) Semiconductor device and manufacturing method thereof
TWI529902B (en) System and structure for electrostatic discharge (esd) protection and method for forming the same
JP2010129893A (en) Semiconductor integrated circuit
US9362420B2 (en) Transistor structure for electrostatic discharge protection
KR20120055139A (en) Ldmos semiconductor device
TWI704670B (en) Semiconductor device for electrostatic discharge protection
KR101668885B1 (en) ESD protection circuit
US9627210B2 (en) Method of fabricating electrostatic discharge protection structure
TWI508256B (en) Integrated circuit structure
TWI697092B (en) Semiconductor electrostatic discharge protection circuit, esd protection semiconductor device, and layout structure of esd protection semiconductor device
TWI565024B (en) Electrostatic discharge protection structure
TW201539745A (en) High voltage semiconductor device and method for manufacturing the same
TWI652768B (en) Layout structure of esd protection device with high esd tolerance
TWI703702B (en) Field effect transistor and semiconductor device
CN110600465A (en) Semiconductor structure
CN113192949B (en) Semiconductor device with a semiconductor layer having a plurality of semiconductor layers
US11837600B2 (en) Electrostatic discharge protection apparatus and its operating method
KR20100111022A (en) Electro-static discharge circuits and method for manufacturing the same
TWI609474B (en) Electrostatic Discharge Protective Circuit and Electrostatic Discharge Protective Deep Submicron Device Thereof
US20110233624A1 (en) Semiconductor device and manufacturing method of the same
CN114171513A (en) Electrostatic discharge protection structure and forming method thereof
CN114171514A (en) Electrostatic discharge protection structure and forming method thereof
TWI536534B (en) Electrostatic discharge protection device