TW201539745A - High voltage semiconductor device and method for manufacturing the same - Google Patents

High voltage semiconductor device and method for manufacturing the same Download PDF

Info

Publication number
TW201539745A
TW201539745A TW103112836A TW103112836A TW201539745A TW 201539745 A TW201539745 A TW 201539745A TW 103112836 A TW103112836 A TW 103112836A TW 103112836 A TW103112836 A TW 103112836A TW 201539745 A TW201539745 A TW 201539745A
Authority
TW
Taiwan
Prior art keywords
voltage semiconductor
high voltage
type
semiconductor transistor
region
Prior art date
Application number
TW103112836A
Other languages
Chinese (zh)
Other versions
TWI536562B (en
Inventor
Hsin-Liang Chen
Wing-Chor Chan
Shyi-Yuan Wu
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW103112836A priority Critical patent/TWI536562B/en
Publication of TW201539745A publication Critical patent/TW201539745A/en
Application granted granted Critical
Publication of TWI536562B publication Critical patent/TWI536562B/en

Links

Abstract

A high voltage semiconductor device is provided, comprising a high voltage metal-oxide-semiconductor transistor (HVMOS), and a normally-on low voltage metal-oxide-semiconductor transistor (LVMOS) electrically connected to the HVMOS. The HVMOS has a first collector and a first emitter, and the LVMOS has a second collector and a second emitter, wherein the second collector of the LVMOS is electrically connected to the first emitter of the HVMOS. The LVMOS electrically connected to the HVMOS provides an electro-static discharge bipolar transistor (ESD BJT), such as a NPN-type ESD BJT.

Description

高壓半導體元件及其製造方法High voltage semiconductor component and method of manufacturing same 【0001】【0001】

本發明是有關於一種高壓半導體元件及其製造方法,且特別是有關於一種具有靜電防護(ESD protection)之高壓半導體元件及其製造方法。The present invention relates to a high voltage semiconductor device and a method of fabricating the same, and more particularly to a high voltage semiconductor device having ESD protection and a method of fabricating the same.

【0002】【0002】

隨著半導體技術的發展,功率積體電路製程整合技術(Bipolar CMOS DMOS,BCD)已廣泛地應用於高壓半導體元件之製造。在功率積體電路製程整合技術製作之高壓半導體元件中,半導體元件的操作電壓越來越高,晶片上的靜電防護(electro-static discharge (ESD) protection)也因此變成一項相當重要的任務項目。With the development of semiconductor technology, power integrated circuit process integration technology (Bipolar CMOS DMOS, BCD) has been widely used in the manufacture of high voltage semiconductor components. In the high-voltage semiconductor components fabricated by the power integrated circuit process integration technology, the operating voltage of the semiconductor components is getting higher and higher, and the electrostatic-static discharge (ESD) protection on the wafer becomes a very important task item. .

【0003】[0003]

一般而言,高壓半導體元件通常具有低導通電阻(low on-state resistance,Rdson)的特性。因此,當靜電放電產生時,靜電電流容易集中在基板表面或者源極的邊緣。而高壓電流及高電場將於表面接面區域(surface junction region)造成物理性的破壞。基於高壓半導體元件需具低導通電阻的電性要求。不能增加高壓半導體元件的表面或側壁。因此,如何在符合基本電性要求的規格下設計出一更好的靜電防護結構,是一項嚴苛的挑戰。In general, high voltage semiconductor components typically have low on-state resistance (Rdson) characteristics. Therefore, when an electrostatic discharge is generated, the electrostatic current is easily concentrated on the surface of the substrate or the edge of the source. High voltage currents and high electric fields cause physical damage to the surface junction region. The electrical requirements of low on-resistance are required based on high voltage semiconductor components. The surface or sidewall of the high voltage semiconductor component cannot be increased. Therefore, how to design a better electrostatic protection structure in accordance with the basic electrical requirements is a serious challenge.

【0004】[0004]

再者,高壓半導體元件的崩潰電壓(breakdown voltage)總是高過於操作電壓(operation voltage)。而觸發電壓(trigger voltage)通常又比崩潰電壓高出很多。因此,在靜電放電的過程中,在高壓半導體元件啟動靜電防護之前,保護元件或是內部電路通常就有損壞的風險。為了降低觸發電壓,通常需要再建構一個額外的靜電防護電路。Furthermore, the breakdown voltage of the high voltage semiconductor component is always higher than the operation voltage. The trigger voltage is usually much higher than the breakdown voltage. Therefore, during electrostatic discharge, the protection component or internal circuitry is generally at risk of damage before the high voltage semiconductor component initiates electrostatic protection. In order to reduce the trigger voltage, it is usually necessary to construct an additional static protection circuit.

【0005】[0005]

另外,高壓半導體元件通常具有低保持電壓(holding voltage ) 的特性。高壓半導體元件有可能會被不想要的雜訊、或啟動態峰端電壓(power-on peak voltage)或浪湧電壓(serge voltage)所觸發,而在正常操作過程中發生閂鎖(latch-up)效 應。In addition, high voltage semiconductor components generally have a low holding voltage characteristic. High-voltage semiconductor components may be triggered by unwanted noise, or power-on peak voltage or serge voltage, and latch-up occurs during normal operation. )effect.

【0006】[0006]

再者,高壓半導體元件通常具有場板效應(field plate effect)。電場的分佈是很容易被擾亂的,因此在靜電放電事件產生時,靜電電流容易集中在表面或汲極邊緣。Furthermore, high voltage semiconductor components typically have a field plate effect. The distribution of the electric field is easily disturbed, so that electrostatic discharge currents tend to concentrate on the surface or the edge of the drain when an electrostatic discharge event occurs.

【0007】【0007】

目前所提出的一些靜電防護的方法,多需要增加額外的光罩或製程步驟。高壓半導體元件靜電防護的傳統方法其中之一是設置額外的元件,且這些增加的元件僅作為靜電防護之用。這些額外增設的元件通常是會增加表面或側壁的大尺寸的二極體(diode)、雙極性接面電晶體(bipolar transistor,BJT)、或金氧半電晶體(metal oxide semiconductor transistor,MOS) , 或是矽控整流器(Silicon Controlled Rectifier,SCR)。其中,矽控整流器具有低保持電壓之特性,所以閂鎖效應很容易地會在正常操作過程中發生。Some of the current methods of electrostatic protection require additional masking or processing steps. One of the traditional methods of electrostatic protection of high voltage semiconductor components is to provide additional components, and these added components are only used for electrostatic protection. These additional components are usually diodes, bipolar transistors (BJT), or metal oxide semiconductor transistors (MOS) that increase the size of the surface or sidewalls. , or a Silicon Controlled Rectifier (SCR). Among them, the controlled rectifier has the characteristics of low holding voltage, so the latch-up effect easily occurs during normal operation.

【0008】[0008]

本發明係有關於一種具有靜電防護(ESD protection)之高壓半導體元件及其製造方法。實施例之高壓半導體元件結合了一常開型低壓半導體電晶體和一高壓半導體電晶體以提供靜電防護,而不需要再額外增設提供靜電防護的元件。實施例之高壓半導體元件不僅提供了靜電防護,也改善了直流電流應用下高壓半導體元件的電子特性。The present invention relates to a high voltage semiconductor device having ESD protection and a method of fabricating the same. The high voltage semiconductor component of the embodiment incorporates a normally open low voltage semiconductor transistor and a high voltage semiconductor transistor to provide electrostatic protection without the need for additional components providing electrostatic protection. The high voltage semiconductor component of the embodiment not only provides electrostatic protection, but also improves the electronic characteristics of the high voltage semiconductor component under direct current application.

【0009】【0009】

根據一實施例,係提出一種高壓半導體元件,包括一高壓半導體電晶體(HVMOS)和一常開型低壓半導體電晶體(normally-on LVMOS)電性連接高壓半導體電晶體。HVMOS具有一第一集極(first collector)及一第一發射極(first emitter)。常開型LVMOS具有一第二集極(second collector)及一第二發射極(second emitter),其中常開型LVMOS之第二集極係電性連接至HVMOS之第一發射極,因而形成一靜電防護雙極電晶體(electro-static discharge bipolar transistor,ESD BJT),如一NPN型靜電防護雙極電晶體。According to an embodiment, a high voltage semiconductor device is provided comprising a high voltage semiconductor transistor (HVMOS) and a normally-on LVMOS electrically connected high voltage semiconductor transistor. The HVMOS has a first collector and a first emitter. The normally-on LVMOS has a second collector and a second emitter, wherein the second collector of the normally-on LVMOS is electrically connected to the first emitter of the HVMOS, thereby forming a second emitter Electro-static discharge bipolar transistor (ESD BJT), such as an NPN-type electrostatic protection bipolar transistor.

【0010】[0010]

根據實施例,係提出一種高壓半導體元件之製造方法,包括:形成一高壓半導體電晶體(HVMOS)於一基板上,HVMOS具有一第一集極及一第一發射極;和形成一常開型低壓半導體電晶體(normally-on LVMOS)電性連接HVMOS,LVMOS具有一第二集極及一第二發射極,其中常開型LVMOS之第二集極係電性連接至HVMOS之第一發射極,因而形成一靜電防護雙極電晶體。According to an embodiment, a method for fabricating a high voltage semiconductor device includes: forming a high voltage semiconductor transistor (HVMOS) on a substrate, the HVMOS having a first collector and a first emitter; and forming a normally open type The low-voltage semiconductor transistor (normally-on LVMOS) is electrically connected to the HVMOS, and the LVMOS has a second collector and a second emitter, wherein the second collector of the normally-on LVMOS is electrically connected to the first emitter of the HVMOS Thus, an electrostatic protection bipolar transistor is formed.

【0011】[0011]

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式,作詳細說明如下。然而,本發明之保護範圍當視後附之申請專利範圍所界定者為準。
In order to better understand the above and other aspects of the present invention, the following detailed description of the embodiments and the accompanying drawings are set forth below. However, the scope of the invention is defined by the scope of the appended claims.

【0035】[0035]

100‧‧‧高壓半導體元件
110‧‧‧高壓半導體電晶體(HVMOS)
120‧‧‧常開型低壓半導體電晶體(normally-on LVMOS)
190‧‧‧內部電路
20‧‧‧P型基板
21‧‧‧高壓N型井
23‧‧‧厚氧化物
24‧‧‧薄氧化層
26‧‧‧空乏區或原生摻雜區
27‧‧‧圖案化多晶矽層
271‧‧‧第一孔洞
272‧‧‧第二孔洞
28‧‧‧NPN區
285‧‧‧多晶矽島體
C1‧‧‧第一集極
C2‧‧‧第二集極
E1‧‧‧第一發射極
E2‧‧‧第二發射極
P-body‧‧‧P型體
D1‧‧‧高壓汲極
D2‧‧‧低壓汲極
G1‧‧‧高壓閘極
G2‧‧‧低壓閘極
S/B‧‧‧源極/基極
FOX‧‧‧場氧化物
P+‧‧‧P型重摻雜區
N+、29‧‧‧N型重摻雜區
P1、P2‧‧‧觸發點
Vt1、Vt2‧‧‧觸發電壓
It1、It2‧‧‧觸發電流
(I)、(II)、C1、C2‧‧‧I-V曲線。
100‧‧‧High-voltage semiconductor components
110‧‧‧High Voltage Semiconductor Transistor (HVMOS)
120‧‧‧Normally open low voltage semiconductor transistor (normally-on LVMOS)
190‧‧‧Internal circuits
20‧‧‧P type substrate
21‧‧‧High pressure N-well
23‧‧‧ Thick oxides
24‧‧‧Thin oxide layer
26‧‧‧ Vacant or primary doped areas
27‧‧‧ patterned polycrystalline layer
271‧‧‧ first hole
272‧‧‧Second hole
28‧‧‧NPN District
285‧‧‧Poly Island
C1‧‧‧ first episode
C2‧‧‧Second episode
E1‧‧‧first emitter
E2‧‧‧second emitter
P-body‧‧‧P body
D1‧‧‧High voltage bungee
D2‧‧‧Low-voltage bungee
G1‧‧‧High voltage gate
G2‧‧‧ low voltage gate
S/B‧‧‧Source/base
FOX‧‧ field oxide
P+‧‧‧P type heavily doped area
N+, 29‧‧‧N type heavily doped area
P1, P2‧‧‧ trigger point
Vt1, Vt2‧‧‧ trigger voltage
It1, It2‧‧‧ trigger current
(I), (II), C1, C2‧‧‧ IV curves.

【0012】[0012]

第1A圖係為本發明實施例之一具靜電防護之高壓半導體元件之電路圖。Fig. 1A is a circuit diagram of a high voltage semiconductor element having electrostatic protection according to an embodiment of the present invention.

第1B圖係為第1A圖之等效電路圖。Fig. 1B is an equivalent circuit diagram of Fig. 1A.

第1C圖係為第1B圖之等效電路圖。Fig. 1C is an equivalent circuit diagram of Fig. 1B.

第2圖係為本發明實施例之一具靜電防護之高壓半導體元件之上視圖。Figure 2 is a top plan view of a high voltage semiconductor device with electrostatic protection according to an embodiment of the present invention.

第3A~3C圖係分別沿著如第2圖之剖面線A-A'、B-B'和C-C'位置之剖面圖。3A-3C are cross-sectional views along the line A-A', B-B', and C-C' of FIG. 2, respectively.

第4A圖係顯示分別代表傳統MOS元件和實施例高壓半導體元件的TLP曲線(I)和(II)。Fig. 4A shows TLP curves (I) and (II) representing conventional MOS elements and embodiment high voltage semiconductor elements, respectively.

第4B圖係為第4A圖中圈選區域之放大圖。Figure 4B is an enlarged view of the circled area in Figure 4A.

第5圖係為傳統MOS元件和實施例高壓半導體元件在導通態的直流電流(DC)I-V特性曲線(導通電阻)。Fig. 5 is a direct current (DC) I-V characteristic curve (on-resistance) of a conventional MOS device and an embodiment high voltage semiconductor device in an on state.

第6圖係為傳統MOS元件和實施例高壓半導體元件的汲極飽和電流(Idsat)之I-V特性曲線。Fig. 6 is an I-V characteristic curve of the gate saturation current (Idsat) of the conventional MOS device and the embodiment high voltage semiconductor device.

 

【0013】[0013]

在此揭露內容之實施例中,係提出具有靜電防護之一高壓半導體元件及其製造方法。實施例提出之一高壓半導體元件包括一高壓半導體電晶體(HVMOS)和一常開型低壓半導體電晶體(normally-on LVMOS)電性連接高壓半導體電晶體,因而形成一靜電防護雙極電晶體(electro-static discharge bipolar transistor,ESD BJT),如一NPN型靜電防護雙極電晶體。實施例之高壓半導體元件不僅提供了靜電防護,也改善了直流電流應用下高壓半導體元件的電子特性。根據實施例提出之高壓半導體元件,結合了常開型低壓半導體電晶體和高壓半導體電晶體,不需要再額外增設提供靜電防護的元件,因此不會增加高壓半導體元件總面積,而可以是和一傳統高壓半導體電晶體等面積。在正常操作時,常開型低壓半導體電晶體和高壓半導體電晶體在相同時間都是開啟的。再者,於正常操作時,實施例之高壓半導體元件可被一更高的觸發電流(higher trigger current)所觸發,因而可避免發生正常操作過程中不想要的閂鎖(latch-up)效應。In the embodiments disclosed herein, a high voltage semiconductor device having electrostatic protection and a method of fabricating the same are proposed. Embodiments suggest that a high voltage semiconductor device comprising a high voltage semiconductor transistor (HVMOS) and a normally-on low voltage semiconductor transistor (normally-on LVMOS) electrically connected to a high voltage semiconductor transistor, thereby forming an electrostatic protection bipolar transistor ( Electro-static discharge bipolar transistor (ESD BJT), such as an NPN type electrostatic protection bipolar transistor. The high voltage semiconductor component of the embodiment not only provides electrostatic protection, but also improves the electronic characteristics of the high voltage semiconductor component under direct current application. The high-voltage semiconductor component according to the embodiment combines a normally-open type low-voltage semiconductor transistor and a high-voltage semiconductor transistor, and does not need to additionally add an element for providing electrostatic protection, so that the total area of the high-voltage semiconductor element is not increased, and Traditional high voltage semiconductor transistors and other areas. In normal operation, the normally-on low-voltage semiconductor transistor and the high-voltage semiconductor transistor are turned on at the same time. Moreover, in normal operation, the high voltage semiconductor component of the embodiment can be triggered by a higher trigger current, thereby avoiding unwanted latch-up effects during normal operation.

【0014】[0014]

相較於傳統的高壓半導體電晶體,實施例之高壓半導體元件係具有更低的導通電阻(on-state resistance,Rdson)、較高的汲極飽和電流(saturation current of the drain,Idsat)和較高的崩潰電壓(breakdown voltage)等特性。再者,實施例之高壓半導體元件可以利用標準的功率積體電路製程整合技術(Bipolar CMOS DMOS,BCD)和三井製程技術(triple well process)製作,無須增加光罩或額外製程。因此,實施例之高壓半導體元件可以利用簡單的方法製造,無須採用耗時和昂貴的過程。Compared with the conventional high voltage semiconductor transistor, the high voltage semiconductor device of the embodiment has a lower on-state resistance (Rdson), a higher saturation current of the drain (Idsat) and a comparison. High breakdown voltage and other characteristics. Furthermore, the high voltage semiconductor components of the embodiments can be fabricated using standard power integrated circuit process integration techniques (Bipolar CMOS DMOS, BCD) and triple well processes without the need for additional masks or additional processes. Therefore, the high voltage semiconductor element of the embodiment can be fabricated by a simple method without using a time consuming and expensive process.

【0015】[0015]

此揭露內容之實施例可應用在許多不同態樣的高壓半導體元件,本揭露並不以某應用態樣為限。以下係提出實施例,配合圖示以詳細說明本揭露所提出之其中一種具靜電防護之高壓半導體元件及其製造方法。然而本揭露並不僅限於此。實施例中之敘述,如細部結構和材料選擇等等,僅為舉例說明之用,並非對本揭露欲保護之範圍做限縮。The disclosed embodiments can be applied to many different types of high voltage semiconductor components, and the disclosure is not limited to a certain application. The following embodiments are presented in conjunction with the drawings to explain in detail one of the electrostatic protection high voltage semiconductor components and methods of fabricating the same as disclosed in the present disclosure. However, the disclosure is not limited to this. The descriptions of the embodiments, such as the details of the structure and the choice of materials, etc., are for illustrative purposes only and are not intended to limit the scope of the disclosure.

【0016】[0016]

再者,本揭露並非顯示出所有可能的實施例。可在不脫離本揭露之精神和範圍內對結構和製程加以變化與修飾,以符合實際應用之需要。因此,未於本揭露提出的其他實施態樣也可能可以應用。再者,圖式上的尺寸比例並非按照實際產品等比例繪製。因此,說明書和圖示內容僅作敘述實施例之用,而非作為限縮本揭露保護範圍之用。Furthermore, the disclosure does not show all possible embodiments. The structure and process may be modified and modified to meet the needs of the actual application without departing from the spirit and scope of the disclosure. Therefore, other implementations not presented in the present disclosure may also be applicable. Furthermore, the dimensional ratios on the drawings are not drawn in proportion to the actual product. Therefore, the description and illustration are for illustrative purposes only and are not intended to be limiting.

【0017】[0017]

第1A圖係為本發明實施例之一具靜電防護之高壓半導體元件之電路圖。一高壓半導體元件100包括一高壓半導體電晶體(HVMOS)110以及一常開型低壓半導體電晶體(normally-on LVMOS)120電性連接於高壓半導體電晶體110。高壓半導體電晶體110具有一第一集極(first collector)C1及一第一發射極(first emitter)E1。常開型低壓半導體電晶體120具有一第二集極(second collector)C2及一第二發射極(second emitter)E2,其中常開型低壓半導體電晶體120之第二集極C2係電性連接至高壓半導體電晶體110之第一發射極E1。其中,常開型低壓半導體電晶體120之一低壓閘極(LV gate)G2係與高壓半導體電晶體110之一高壓閘極(HV gate)G1連接,且並電性連接至一內部電路190。Fig. 1A is a circuit diagram of a high voltage semiconductor element having electrostatic protection according to an embodiment of the present invention. A high voltage semiconductor device 100 includes a high voltage semiconductor transistor (HVMOS) 110 and a normally-on low voltage semiconductor transistor (normally-on LVMOS) 120 electrically coupled to the high voltage semiconductor transistor 110. The high voltage semiconductor transistor 110 has a first collector C1 and a first emitter E1. The normally-open low-voltage semiconductor transistor 120 has a second collector C2 and a second emitter E2, wherein the second collector C2 of the normally-on low-voltage semiconductor transistor 120 is electrically connected. Up to the first emitter E1 of the high voltage semiconductor transistor 110. The low voltage gate LV gate G2 of the normally-on low-voltage semiconductor transistor 120 is connected to a high voltage HV gate G1 of the high voltage semiconductor transistor 110 and electrically connected to an internal circuit 190.

【0018】[0018]

請同時參照第1B圖和第1C圖。第1B圖係為第1A圖之等效電路圖。第1C圖係為第1B圖之等效電路圖。第1A圖和第1B圖中虛線圈選之部分是可合併之電路部分。根據實施例,結合了高壓半導體電晶體110和常開型低壓半導體電晶體120的高壓半導體元件可形成一靜電防護雙極電晶體(electro-static discharge bipolar transistor,ESD BJT),如一NPN型ESD BJT。Please refer to both Figure 1B and Figure 1C. Fig. 1B is an equivalent circuit diagram of Fig. 1A. Fig. 1C is an equivalent circuit diagram of Fig. 1B. The portions selected by the dotted circles in FIGS. 1A and 1B are part of the circuit that can be combined. According to an embodiment, a high voltage semiconductor component incorporating a high voltage semiconductor transistor 110 and a normally open low voltage semiconductor transistor 120 can form an electro-static discharge bipolar transistor (ESD BJT), such as an NPN type ESD BJT. .

【0019】[0019]

請同時參照第2圖和第3A~3C圖。第2圖係為本發明實施例之一具靜電防護之高壓半導體元件之上視圖。第3A~3C圖係分別為沿著如第2圖之剖面線A-A’、B-B’和C-C’位置之剖面圖。第2圖之剖面線A-A’位置係對應高壓半導體元件100的常開型低壓半導體電晶體(LVMOS)120之低壓閘極G2與高壓半導體電晶體(HVMOS)110之高壓閘極G1。第2圖之剖面線B-B’位置係對應高壓半導體元件100的常開型LVMOS 120的源極/基極 (S/B)。第2圖之剖面線C-C’位置係對應高壓半導體元件100的常開型LVMOS 120的汲極(D2)。Please refer to Figure 2 and Figure 3A~3C at the same time. Figure 2 is a top plan view of a high voltage semiconductor device with electrostatic protection according to an embodiment of the present invention. 3A to 3C are cross-sectional views taken along the line A-A', B-B', and C-C' of Fig. 2, respectively. The hatching A-A' position in Fig. 2 corresponds to the low voltage gate G2 of the normally open low voltage semiconductor transistor (LVMOS) 120 of the high voltage semiconductor device 100 and the high voltage gate G1 of the high voltage semiconductor transistor (HVMOS) 110. The position of the hatching B-B' in Fig. 2 corresponds to the source/base (S/B) of the normally-on LVMOS 120 of the high-voltage semiconductor device 100. The position of the hatching C-C' in Fig. 2 corresponds to the drain (D2) of the normally-on LVMOS 120 of the high-voltage semiconductor device 100.

【0020】[0020]

實施例中,一高壓半導體元件100係包括一圖案化多晶矽層(patterned polysilicon layer)27形成於一基板20上,圖案化多晶矽層27具有連續形成的一多晶矽閘極部(poly-gate portion)以作為常開型LVMOS 120之低壓閘極G2和HVMOS 110之高壓閘極G1,如第2圖所示。再者,圖案化多晶矽層27具有複數個第一孔洞(first hollows)271和複數個第二孔洞(second hollows)272交替地且分開地排列,並沿著一行(column)方向排列,例如沿著y-方向排列。其中第一孔洞271係對應常開型LVMOS 120之複數個源極/基極區域(S/B regions),第二孔洞272係對應常開型LVMOS 120之複數個汲極區域D2。一實施例中,常開型LVMOS 120以及HVMOS 110係共用相同之一源極/基極(S/B)。再者,HVMOS 110 的汲極區域D1 係位於常開型LVMOS 120之外側,並亦沿著行方向排列(例如沿著y-方向排列),且HVMOS 110 的汲極區域D1排列之行方向係與常開型LVMOS 120的汲極區域D2和源極/基極區域(S/B)平行。In an embodiment, a high voltage semiconductor device 100 includes a patterned polysilicon layer 27 formed on a substrate 20, and the patterned polysilicon layer 27 has a poly-gate portion formed continuously. As the low voltage gate G2 of the normally-on LVMOS 120 and the high voltage gate G1 of the HVMOS 110, as shown in FIG. Furthermore, the patterned polysilicon layer 27 has a plurality of first hollows 271 and a plurality of second hollows 272 alternately and separately arranged and arranged along a column direction, for example along Arranged in the y-direction. The first hole 271 corresponds to a plurality of source/base regions (S/B regions) of the normally-on LVMOS 120, and the second hole 272 corresponds to a plurality of drain regions D2 of the normally-on LVMOS 120. In one embodiment, the normally-on LVMOS 120 and HVMOS 110 share the same source/base (S/B). Furthermore, the drain region D1 of the HVMOS 110 is located on the outer side of the normally-on LVMOS 120, and is also arranged in the row direction (for example, arranged in the y-direction), and the row direction of the drain region D1 of the HVMOS 110 is arranged. It is parallel to the drain region D2 and the source/base region (S/B) of the normally-on LVMOS 120.

【0021】[0021]

實施例中,以下係以在第一導電態基板上,如P型基板20,製作一高壓半導體元件為例做說明。第3A圖繪示了高壓半導體元件100的常開型LVMOS 120之低壓閘極G2的位置以及HVMOS 110之高壓閘極G1的位置。如第3A圖所示,HVMOS 110和 LVMOS 120係設置於P型基板20之一高壓N型井(HVNW)21中。HVMOS 110更包括N型井(NWs)、部分重疊於N型井之P型井(PWs)、鄰近於LVMOS 120之絕緣物如場氧化物(FOX)、場氧化物上方之厚氧化物23、N型重摻雜區(N+)對應汲極D1以及高壓閘極G1。常開型LVMOS 120包括一P型體(P-body)於高壓N型井(HVNW)21中、一薄氧化層24連接厚氧化物23以及低壓閘極G2,其中P型體係自P型基板20之表面向下延伸。如第3A圖所示,常開型LVMOS 120之低壓閘極G2係包括一多晶矽部分覆蓋P型體(P-body)並連接HVMOS 110之高壓閘極G1。In the embodiment, the following is an example of fabricating a high voltage semiconductor device on a first conductive substrate, such as a P-type substrate 20. FIG. 3A illustrates the position of the low voltage gate G2 of the normally-on LVMOS 120 of the high voltage semiconductor device 100 and the position of the high voltage gate G1 of the HVMOS 110. As shown in Fig. 3A, HVMOS 110 and LVMOS 120 are disposed in a high voltage N-type well (HVNW) 21 of a P-type substrate 20. HVMOS 110 further includes N-type wells (NWs), P-type wells (PWs) partially overlapping N-type wells, insulators adjacent to LVMOS 120 such as field oxides (FOX), thick oxides above field oxides, The N-type heavily doped region (N+) corresponds to the drain D1 and the high voltage gate G1. The normally-on LVMOS 120 includes a P-body in a high-voltage N-well (HVNW) 21, a thin oxide layer 24 connected to a thick oxide 23, and a low-voltage gate G2, wherein the P-type system is self-P-type substrate. The surface of 20 extends downward. As shown in FIG. 3A, the low voltage gate G2 of the normally-on LVMOS 120 includes a polysilicon portion partially covering the P-body and connected to the high voltage gate G1 of the HVMOS 110.

【0022】[0022]

一實施例中,常開型LVMOS 110 可適當地形成一空乏區(depletion region)或一原生摻雜區(native implant region)26於高壓N型井21中,其中空乏區或原生摻雜區26係自P型基板20之表面向下延伸,且P型體(P-body)位於空乏區或原生摻雜區26之中。當相同的閘極電壓施加於具有和不具有空乏區或原生摻雜區26的實施例元件時,前者(具有空乏區或原生摻雜區26)之實施例元具有更低的導通電阻(Rdson)和更高的汲極飽和電流(Idsat)等良好電子特性。In one embodiment, the normally-on LVMOS 110 may suitably form a depletion region or a native implant region 26 in the high-pressure N-well 21, wherein the depletion region or the native doping region 26 The surface extends downward from the surface of the P-type substrate 20, and the P-body is located in the depletion region or the native doping region 26. When the same gate voltage is applied to an embodiment element having and without a depletion region or a native doping region 26, the former embodiment (having a depletion region or a native doping region 26) has a lower on-resistance (Rdson) Good electrical properties such as higher buckling saturation current (Idsat).

【0023】[0023]

第3B圖不僅繪示了高壓半導體元件100的HVMOS 110位置,還有常開型LVMOS 120之源極/基極(S/B)的位置。第3B圖之HVMOS 110的元件係與第3A圖相同,在此不再重述。實施例之常開型LVMOS 120之源極/基極(S/B)區域,除了在空乏區或原生摻雜區26之中的P型體、連接厚氧化物23的薄氧化層24和圖案化多晶矽層27(形成第3A圖之低壓閘極G2)以外,更包括一NPN區28於P型體內,且NPN區28係自P型基板20之表面向下延伸,NPN區28包括兩N型重摻雜區(N+)和位於兩N型重摻雜區之間的一P型重摻雜區(P+)。再者,實施例之常開型LVMOS 120之源極/基極(S/B)區域更包括一多晶矽島體(polysilicon island)285和圖案化多晶矽層27之第一孔洞271圍繞此多晶矽島體285。多晶矽島體285係形成於NPN區28之P型重摻雜區(P+)上並與之連接,且圍繞多晶矽島體285的第一孔洞271係暴露至少NPN區28的兩N型重摻雜區(N+)。一實施例中,第一孔洞271係暴露NPN區28的兩N型重摻雜區以及一部份的P型重摻雜區(P+),如第3B圖所示。Fig. 3B shows not only the position of the HVMOS 110 of the high voltage semiconductor device 100 but also the source/base (S/B) of the normally open LVMOS 120. The components of the HVMOS 110 of FIG. 3B are the same as those of FIG. 3A and will not be repeated here. The source/base (S/B) region of the normally-on LVMOS 120 of the embodiment, except for the P-type body in the depletion region or the native doping region 26, the thin oxide layer 24 and the pattern connecting the thick oxide 23 In addition to the polysilicon layer 27 (forming the low voltage gate G2 of FIG. 3A), an NPN region 28 is further included in the P-type body, and the NPN region 28 extends downward from the surface of the P-type substrate 20, and the NPN region 28 includes two N layers. A heavily doped region (N+) and a P-type heavily doped region (P+) between the two N-type heavily doped regions. Furthermore, the source/base (S/B) region of the normally-on LVMOS 120 of the embodiment further includes a polysilicon island 285 and a first hole 271 of the patterned polysilicon layer 27 surrounding the polycrystalline island. 285. A polycrystalline germanium island 285 is formed on and connected to the P-type heavily doped region (P+) of the NPN region 28, and the first hole 271 surrounding the polycrystalline germanium island 285 exposes at least two N-type heavily doped regions of the NPN region 28. District (N+). In one embodiment, the first hole 271 exposes two N-type heavily doped regions of the NPN region 28 and a portion of the P-type heavily doped region (P+), as shown in FIG. 3B.

【0024】[0024]

第3C圖不僅繪示了高壓半導體元件100的HVMOS 110位置,還有常開型LVMOS 120之汲極(D2)的位置。第3C圖之HVMOS 110的元件係與第3A圖相同,在此不再重述。實施例之常開型LVMOS 120之汲極區域,除了在空乏區或原生摻雜區26中的P型體、連接厚氧化物23的薄氧化層24和圖案化多晶矽層27(形成第3A圖之低壓閘極G2)以外,更包括一N型重摻雜區29於P型體內和圖案化多晶矽層27中之第二孔洞272。N型重摻雜區29係自P型基板20之表面向下延伸,第二孔洞272暴露至少N型重摻雜區29。The 3C diagram shows not only the position of the HVMOS 110 of the high voltage semiconductor device 100 but also the position of the drain (D2) of the normally open LVMOS 120. The components of the HVMOS 110 of FIG. 3C are the same as those of FIG. 3A and will not be repeated here. The drain region of the normally-on LVMOS 120 of the embodiment, except for the P-type body in the depletion region or the native doping region 26, the thin oxide layer 24 connecting the thick oxide 23, and the patterned polysilicon layer 27 (forming FIG. 3A) In addition to the low voltage gate G2), an N-type heavily doped region 29 is further included in the P-type body and the second hole 272 in the patterned polysilicon layer 27. The N-type heavily doped region 29 extends downward from the surface of the P-type substrate 20, and the second hole 272 exposes at least the N-type heavily doped region 29.

【0025】[0025]

實施例中,常開型LVMOS 120之低壓閘極G2係與HVMOS 110之高壓閘極G1連接。再者,常開型LVMOS 120之低壓汲極(LV drain,D2)係與HVMOS 110之高壓源極(HV source)共接。實施例中,常開型LVMOS 120係垂直於HVMOS 110設置(如:90度旋轉)以減少應用本揭露之高壓半導體元件100的尺寸。In the embodiment, the low voltage gate G2 of the normally-on LVMOS 120 is connected to the high voltage gate G1 of the HVMOS 110. Furthermore, the low voltage drain (LV drain, D2) of the normally open LVMOS 120 is connected to the high voltage source (HV source) of the HVMOS 110. In the embodiment, the normally-on LVMOS 120 is disposed perpendicular to the HVMOS 110 (eg, 90-degree rotation) to reduce the size of the high-voltage semiconductor device 100 to which the present disclosure is applied.

【0026】[0026]

根據實施例揭露之高壓半導體元件,一HVMOS 110和一常開型LVMOS 120電性連接HVMOS 110,而形成一靜電防護雙極電晶體(ESD BJT),例如一NPN型靜電防護雙極電晶體。其等效電路圖如第1A、1B或1C圖所示。在正常操作時,常開型低壓半導體電晶體和高壓半導體電晶體在相同時間都是開啟的。當實施例之高壓半導體元件有靜電放電事件產生時,靜電放電之電流會自BJT更深路徑排空,因而達到靜電防護效果。再者,實施例之高壓半導體元件結合了常開型LVMOS 120和HVMOS 110,不需要再額外增設提供靜電防護的元件,因此不會增加高壓半導體元件總面積,而可以和傳統HVMOS相同面積。再者,於正常操作時,實施例之高壓半導體元件可被一更高的觸發電流(higher trigger current)所觸發,因而避免發生閂鎖(latch-up)效應。According to the high voltage semiconductor device disclosed in the embodiment, a HVMOS 110 and a normally open LVMOS 120 are electrically connected to the HVMOS 110 to form an electrostatic protection bipolar transistor (ESD BJT), such as an NPN type electrostatic protection bipolar transistor. The equivalent circuit diagram is shown in Figure 1A, 1B or 1C. In normal operation, the normally-on low-voltage semiconductor transistor and the high-voltage semiconductor transistor are turned on at the same time. When the high-voltage semiconductor device of the embodiment is generated by an electrostatic discharge event, the current of the electrostatic discharge is evacuated from the deeper path of the BJT, thereby achieving an electrostatic protection effect. Furthermore, the high-voltage semiconductor device of the embodiment incorporates the normally-on LVMOS 120 and the HVMOS 110, and there is no need to additionally provide an element for providing electrostatic protection, so that the total area of the high-voltage semiconductor element is not increased, and the same area as the conventional HVMOS can be used. Moreover, in normal operation, the high voltage semiconductor component of the embodiment can be triggered by a higher trigger current, thereby avoiding a latch-up effect.

【0027】[0027]

本揭露更進一步進行傳輸線脈衝(Transmission Line Pulse,TLP)測試,以觀測實施例和傳統MOS元件在靜電轟擊下的靜電放電防護之特性。進行傳輸線脈衝測試時,係使元件承受連續的瞬時脈衝,並取得一I-V (電流-電壓)曲線。The present disclosure further performs a Transmission Line Pulse (TLP) test to observe the characteristics of the electrostatic discharge protection of the embodiment and the conventional MOS element under electrostatic bombardment. When performing a transmission line pulse test, the component is subjected to continuous transient pulses and an I-V (current-voltage) curve is obtained.

【0028】[0028]

第4A圖係顯示分別代表傳統MOS元件和實施例高壓半導體元件的TLP曲線(I)和(II)。第4B圖係為第4A圖中圈選區域之放大圖。TLP曲線(I)和(II)的點P1和點P2分別代表傳統MOS元件和實施例高壓半導體元件的觸發點(trigger points)。一旦元件被觸發,傳統MOS元件和實施例高壓半導體元件的電壓都會被拉回,且在一線性導通電阻(a linear on-resistance)下流通電流。第4A圖和第4B圖中亦標示出傳統MOS元件觸發點P1的觸發電壓Vt1和觸發電流It1,以及實施例高壓半導體元件觸發點P2的觸發電壓Vt2和觸發電流It2。第4A圖和第4B圖係清楚顯示:實施例之高壓半導體元件是被更高的觸發電流It2 (例如約400-500mA)所觸發,大約是傳統MOS元件的觸發電流It1的3到4倍。第4B圖中亦標示出一閂鎖雜訊的位置(例如約100-200mA)。實施例之高壓半導體元件的觸發電流It2係高過閂鎖雜訊許多。因此,實施例之高壓半導體元件在正常操作時可被一更高的觸發電流所觸發,解決了傳統MOS元件會產生的閂鎖問題。Fig. 4A shows TLP curves (I) and (II) representing conventional MOS elements and embodiment high voltage semiconductor elements, respectively. Figure 4B is an enlarged view of the circled area in Figure 4A. The points P1 and P2 of the TLP curves (I) and (II) represent the trigger points of the conventional MOS element and the embodiment high voltage semiconductor element, respectively. Once the component is triggered, the voltages of the conventional MOS component and the embodiment high voltage semiconductor component are pulled back and a current flows under a linear on-resistance. The trigger voltage Vt1 and the trigger current It1 of the conventional MOS device trigger point P1, and the trigger voltage Vt2 and the trigger current It2 of the embodiment high-voltage semiconductor element trigger point P2 are also indicated in FIGS. 4A and 4B. 4A and 4B clearly show that the high voltage semiconductor component of the embodiment is triggered by a higher trigger current It2 (e.g., about 400-500 mA), which is about 3 to 4 times the trigger current It1 of the conventional MOS device. The location of a latching noise (e.g., about 100-200 mA) is also indicated in Figure 4B. The trigger current It2 of the high voltage semiconductor device of the embodiment is much higher than the latch noise. Therefore, the high voltage semiconductor device of the embodiment can be triggered by a higher trigger current during normal operation, solving the latch problem that the conventional MOS device can generate.

【0029】[0029]

再者,實施例之高壓半導體元件不僅提供了靜電防護,也改善了直流電流應用下高壓半導體元件的電子特性。在正常操作時,常開型LVMOS和HVMOS都是同時開啟的。相較於傳統的高壓半導體電晶體,實施例之高壓半導體元件係具有更低的導通電阻(Rdson)、較高的汲極飽和電流(Idsat)和較高的崩潰電壓(breakdown voltage)等特性。Furthermore, the high voltage semiconductor device of the embodiment not only provides electrostatic protection, but also improves the electronic characteristics of the high voltage semiconductor device under direct current application. In normal operation, the normally open LVMOS and HVMOS are both turned on at the same time. The high voltage semiconductor device of the embodiment has lower on-resistance (Rdson), higher drain saturation current (Idsat), and higher breakdown voltage than conventional high voltage semiconductor transistors.

【0030】[0030]

第5圖係為傳統MOS元件和實施例高壓半導體元件在導通態的直流電流(DC)I-V特性曲線(導通電阻)。第5圖中,曲線C1(符號-◆-)為傳統MOS元件的導通電阻(Rdson),曲線C2(符號-■-)為實施例高壓半導體元件的導通電阻。第5圖的結果顯示:實施例高壓半導體元件的導通電阻(C2)係低於傳統MOS元件的導通電阻(C1)。Fig. 5 is a direct current (DC) I-V characteristic curve (on-resistance) of a conventional MOS device and an embodiment high voltage semiconductor device in an on state. In Fig. 5, the curve C1 (symbol -◆-) is the on-resistance (Rdson) of the conventional MOS device, and the curve C2 (symbol -■-) is the on-resistance of the high voltage semiconductor device of the embodiment. The results of Fig. 5 show that the on-resistance (C2) of the high voltage semiconductor device of the embodiment is lower than the on-resistance (C1) of the conventional MOS device.

【0031】[0031]

第6圖係為傳統MOS元件和實施例高壓半導體元件的汲極飽和電流(Idsat)之I-V特性曲線。同樣的,曲線C1(符號-◆-)為傳統MOS元件的汲極飽和電流,曲線C2(符號-■-)為實施例高壓半導體元件的汲極飽和電流。第6圖的結果指出:實施例高壓半導體元件具有更高的汲極飽和電流(C2)。Fig. 6 is an I-V characteristic curve of the gate saturation current (Idsat) of the conventional MOS device and the embodiment high voltage semiconductor device. Similarly, the curve C1 (symbol -◆-) is the gate saturation current of the conventional MOS device, and the curve C2 (symbol -■-) is the gate saturation current of the high voltage semiconductor device of the embodiment. The results of Fig. 6 indicate that the embodiment high voltage semiconductor device has a higher drain saturation current (C2).

【0032】[0032]

一般而言,高壓靜電防護通常是在電路中設置高壓靜電元件,而低壓金氧半導體通常是用在低壓元件之應用。根據上述,實施例之高壓半導體元件具有一HVMOS和一常開型LVMOS電性連接至HVMOS,而形成一靜電防護雙極電晶體(例如一NPN型ESD BJT)。實施例之高壓半導體元件不僅提供了靜電防護,也改善了直流電流應用下高壓半導體元件的電子特性。在正常操作時,常開型LVMOS和HVMOS同時開啟。相較於傳統的MOS元件,實施例之高壓半導體元件可被更高的觸發電流所觸發,因而避免發生閂鎖(latch-up)效應。再者,實施例之高壓半導體元件不需要再額外增設提供靜電防護的元件,因此不會增加高壓半導體元件總面積,而可以和傳統HVMOS相同面積。另外,實施例之高壓半導體元件係具有更低的導通電阻(Rdson)、較高的汲極飽和電流(Idsat)和較高的崩潰電壓等特性。一實施例中,雖然實施例元件的表面或側面面積增加以達到靜電放電防護,但實施例元件的有效寬度僅為標準高壓MOS的33%~50%,實施例元件仍具有低的導通電阻和相同的汲極飽和電流之電子特性。再者,實施例之高壓半導體元件可以透過標準的功率積體電路製程整合技術(BCD)和三井製程技術(triple well process)製作,無須增加光罩或額外製程。因此,實施例之高壓半導體元件可以利用簡單的方法製造,無須採用耗時和昂貴的過程。In general, high voltage ESD protection is usually the placement of high voltage electrostatic components in the circuit, while low voltage MOS semiconductors are commonly used in low voltage components. According to the above, the high voltage semiconductor device of the embodiment has an HVMOS and a normally-on LVMOS electrically connected to the HVMOS to form an electrostatic protection bipolar transistor (for example, an NPN type ESD BJT). The high voltage semiconductor component of the embodiment not only provides electrostatic protection, but also improves the electronic characteristics of the high voltage semiconductor component under direct current application. In normal operation, the normally open LVMOS and HVMOS are turned on at the same time. Compared to conventional MOS devices, the high voltage semiconductor device of the embodiment can be triggered by a higher trigger current, thereby avoiding a latch-up effect. Furthermore, the high-voltage semiconductor device of the embodiment does not need to additionally add an element for providing electrostatic protection, so that the total area of the high-voltage semiconductor element is not increased, and the same area as the conventional HVMOS can be used. In addition, the high voltage semiconductor device of the embodiment has characteristics such as lower on-resistance (Rdson), higher gate saturation current (Idsat), and higher breakdown voltage. In one embodiment, although the surface or side area of the embodiment elements is increased to achieve electrostatic discharge protection, the effective width of the embodiment elements is only 33% to 50% of the standard high voltage MOS, and the embodiment elements still have low on-resistance and The same electronic properties of the bungee saturation current. Furthermore, the high voltage semiconductor components of the embodiments can be fabricated by standard power integrated circuit process integration technology (BCD) and triple well process without the need for additional masks or additional processes. Therefore, the high voltage semiconductor element of the embodiment can be fabricated by a simple method without using a time consuming and expensive process.

【0033】[0033]

再者,本揭露之實施例可應用在許多不同態樣的高壓半導體元件,並不以某特定應用態樣或方式為限。例如,實施例之高壓半導體元件可應用於任何製程和任何操作電壓。實施例之高壓半導體元件可不用增加任何光罩以任一標準製程製作。實施例之具靜電防護之高壓半導體元件,若移除N+型埋層可應用於雙井製程技術(twin well process),也可應用在非磊晶製程(non-EPI process)搭配三井製程技術。實施例亦可應用在單或雙多晶矽製程。再者,實施例中之敘述內容,例如細部結構和材料選擇等,僅為舉例說明之用,而可因而實際應用所需做適當的調整或變化。例如,在三井製程技術應用中,N+型埋層可以用N型磊晶、或深N型井、或多層堆疊的N+型埋層進行製作。在 雙井製程技術應用中,也可移除N+型埋層。區域氧化矽(local oxidation of silicon,LOCOS)可以是淺溝槽隔離(shallow trench isolation,STI)。P型井(PW)可以是P型井和P+型埋層或和P-型摻雜所形成之一堆疊。N型井(NW)可以是N-型摻雜。HVMOS 110可以是用於直流電流應用(DC application)之任何高壓元件。Furthermore, the embodiments of the present disclosure can be applied to many different types of high voltage semiconductor components, and are not limited to a particular application or manner. For example, the high voltage semiconductor component of the embodiment can be applied to any process and any operating voltage. The high voltage semiconductor component of the embodiment can be fabricated in any standard process without adding any photomask. The high-voltage semiconductor component with electrostatic protection in the embodiment can be applied to the twin well process if the N+ buried layer is removed, and can also be applied to the non-EPI process with the Mitsui process technology. Embodiments can also be applied to single or dual polysilicon processes. Furthermore, the description in the embodiments, such as the detailed structure and material selection, are for illustrative purposes only, and may be appropriately adjusted or changed as needed for practical application. For example, in Mitsui process technology applications, the N+ buried layer can be fabricated using N-type epitaxial, or deep N-type wells, or multi-layer stacked N+ buried layers. In the case of dual well process technology, the N+ buried layer can also be removed. The local oxidation of silicon (LOCOS) may be shallow trench isolation (STI). The P-well (PW) may be a P-well and a P+ buried layer or a stack formed with P-type doping. The N-type well (NW) can be N-type doped. HVMOS 110 can be any high voltage component for DC application.

【0034】[0034]

綜上所述,雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。In conclusion, the present invention has been disclosed in the above embodiments, but it is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

110‧‧‧高壓半導體電晶體(HVMOS) 110‧‧‧High Voltage Semiconductor Transistor (HVMOS)

120‧‧‧常開型低壓半導體電晶體(normally-on LVMOS) 120‧‧‧Normally open low voltage semiconductor transistor (normally-on LVMOS)

20‧‧‧P型基板 20‧‧‧P type substrate

27‧‧‧圖案化多晶矽層 27‧‧‧ patterned polycrystalline layer

271‧‧‧第一孔洞 271‧‧‧ first hole

272‧‧‧第二孔洞 272‧‧‧Second hole

D1‧‧‧高壓汲極 D1‧‧‧High voltage bungee

D2‧‧‧低壓汲極 D2‧‧‧Low-voltage bungee

G1‧‧‧高壓閘極 G1‧‧‧High voltage gate

G2‧‧‧低壓閘極 G2‧‧‧ low voltage gate

S/B‧‧‧源極/基極 S/B‧‧‧Source/base

Claims (10)

【第1項】[Item 1] 一種高壓半導體元件,包括:
一高壓半導體電晶體(HVMOS),具有一第一集極(first collector)及一第一發射極(first emitter);以及
一常開型低壓半導體電晶體(LVMOS),電性連接於該高壓半導體電晶體,且該常開型低壓半導體電晶體具有一第二集極(second collector)及一第二發射極(second emitter),其中該常開型低壓半導體電晶體之該第二集極係電性連接至該高壓半導體電晶體之該第一發射極。
A high voltage semiconductor component comprising:
a high voltage semiconductor transistor (HVMOS) having a first collector and a first emitter; and a normally open low voltage semiconductor transistor (LVMOS) electrically connected to the high voltage semiconductor a transistor, and the normally-on low-voltage semiconductor transistor has a second collector and a second emitter, wherein the second collector of the normally-on low-voltage semiconductor transistor Optionally connected to the first emitter of the high voltage semiconductor transistor.
【第2項】[Item 2] 如申請專利範圍第1項所述之高壓半導體元件,其中電性連接的該高壓半導體電晶體和該常開型低壓半導體電晶體係形成一NPN型靜電防護雙極電晶體(NPN ESD BJT ), 該常開型低壓半導體電晶體之一低壓閘極(LV gate)係與該高壓半導體電晶體之一高壓閘極(HV gate)連接 , 該常開型低壓半導體電晶體之一低壓汲極係與該高壓半導體電晶體之一高壓源極共接,該常開型低壓半導體電晶體以及該高壓半導體電晶體係共用相同之一源極/基極(S/B) ,且該常開型低壓半導體電晶體係垂直於該高壓半導體電晶體設置。The high voltage semiconductor device according to claim 1, wherein the high voltage semiconductor transistor electrically connected to the normally open low voltage semiconductor crystal system forms an NPN type electrostatic protection bipolar transistor (NPN ESD BJT), A low voltage gate (LV gate) of the normally-on low-voltage semiconductor transistor is connected to a high voltage gate (HV gate) of the high voltage semiconductor transistor, and a low voltage drain system of the normally-open low-voltage semiconductor transistor a high voltage source of the high voltage semiconductor transistor is commonly connected, the normally open low voltage semiconductor transistor and the high voltage semiconductor transistor system share the same source/base (S/B), and the normally open low voltage semiconductor The electro-crystalline system is disposed perpendicular to the high voltage semiconductor transistor. 【第3項】[Item 3] 如申請專利範圍第1項所述之高壓半導體元件,其中該高壓半導體電晶體和該常開型低壓半導體電晶體係設置於一P型基板之一高壓N型井(HVNW)中,且該常開型低壓半導體電晶體更包括:
一P型體(P-body)於該高壓N型井中,且該P型體係自該P型基板之一表面向下延伸;
一空乏區(depletion region)或一原生摻雜區(native implant region)於該高壓N型井中,其中該空乏區或該原生摻雜區係自該P型基板之該表面向下延伸,且該P型體位於該空乏區或該原生摻雜區之中;和
一低壓閘極係包括一多晶矽部分,該多晶矽部分係覆蓋該P型體並連接該高壓半導體電晶體之一高壓閘極。
The high voltage semiconductor device according to claim 1, wherein the high voltage semiconductor transistor and the normally open low voltage semiconductor crystal system are disposed in a high voltage N-type well (HVNW) of a P-type substrate, and the The open type low voltage semiconductor transistor further includes:
a P-body is in the high-pressure N-type well, and the P-type system extends downward from a surface of the P-type substrate;
a depletion region or a native implant region in the high voltage N-type well, wherein the depletion region or the native doped region extends downward from the surface of the P-type substrate, and the A P-type body is located in the depletion region or the native doped region; and a low-voltage gate system includes a polysilicon portion covering the P-type body and connecting a high voltage gate of the high voltage semiconductor transistor.
【第4項】[Item 4] 如申請專利範圍第1項所述之高壓半導體元件,其中該高壓半導體電晶體和該常開型低壓半導體電晶體係設置於一P型基板之一高壓N型井(HVNW)中,且該常開型低壓半導體電晶體更包括:
一P型體(P-body)於該高壓N型井中,且該P型體係自該P型基板之一表面向下延伸;
一低壓源極/基極(source/bulk, S/B) 區域,包括:
一NPN區於該P型體內,且該NPN區係自該P型基板之該表面向下延伸,該NPN區包括兩N型重摻雜 區,和位於該 兩N型重摻雜 區之間之 一P型重摻雜 區 ;和
一多晶矽島體和一第一孔洞圍繞該多晶矽島體,其中該多晶矽島體係形成於該NPN區之該P型重摻雜 區 上,且該第一孔洞暴露至少該NPN區之該些N型重摻雜 區 ;以及
一低壓汲極區域,包括:
一N型重摻雜 區 於該P型體內,且該N型重摻雜 區 係自該P型基板之該表面向下延伸;和
一第二孔洞形成於一多晶矽層中,且該第二孔洞暴露至少該N型重摻雜 區。
The high voltage semiconductor device according to claim 1, wherein the high voltage semiconductor transistor and the normally open low voltage semiconductor crystal system are disposed in a high voltage N-type well (HVNW) of a P-type substrate, and the The open type low voltage semiconductor transistor further includes:
a P-body is in the high-pressure N-type well, and the P-type system extends downward from a surface of the P-type substrate;
A low voltage source/bulk (S/B) region, including:
An NPN region is in the P-type body, and the NPN region extends downward from the surface of the P-type substrate, the NPN region includes two N-type heavily doped regions, and is located between the two N-type heavily doped regions a P-type heavily doped region; and a polycrystalline germanium body and a first hole surrounding the polycrystalline germanium island, wherein the polycrystalline germanium island system is formed on the P-type heavily doped region of the NPN region, and the first hole Exposing at least the N-type heavily doped regions of the NPN region; and a low-voltage drain region, comprising:
An N-type heavily doped region is in the P-type body, and the N-type heavily doped region extends downward from the surface of the P-type substrate; and a second hole is formed in a polysilicon layer, and the second The hole exposes at least the N-type heavily doped region.
【第5項】[Item 5] 如申請專利範圍第1項所述之高壓半導體元件,更包括一圖案化多晶矽層形成於一基板上,其中該圖案化多晶矽層包括:
連續形成的一多晶矽閘極部 , 以作為該常開型低壓半導體電晶體之一低壓閘極和該高壓半導體電晶體之一高壓閘極;
複數個第一孔洞和複數個第二孔洞交替地且分開地排列,其中該些第一孔洞係對應該常開型低壓半導體電晶體之複數個源極/基極區域(S/B regions),該些第二孔洞係對應該常開型低壓半導體電晶體之複數個汲極區域,
其中,各該源極/基極區域包括一多晶矽島體和該些第一孔洞之一圍繞該多晶矽島體,該多晶矽島體連接至一P型體(P-body)中之一P型重摻雜 區,而 該第一孔洞暴露至少位於該P型重摻雜 區兩側之 兩N型重摻雜區;
其中,各該汲極區域包括一N型重摻雜 區 位於自該基板之該表面向下延伸的一P型體中 , 其中該第二孔洞係暴露 該 N型重摻雜 區。
The high voltage semiconductor device of claim 1, further comprising a patterned polysilicon layer formed on a substrate, wherein the patterned polysilicon layer comprises:
a polysilicon gate portion continuously formed as one of the low voltage gate of the normally-on low voltage semiconductor transistor and one of the high voltage gate of the high voltage semiconductor transistor;
The plurality of first holes and the plurality of second holes are alternately and separately arranged, wherein the first holes are opposite to a plurality of source/base regions of the normally open low voltage semiconductor transistor, The second holes are opposite to a plurality of drain regions of the normally open low voltage semiconductor transistor.
Wherein each of the source/base regions comprises a polycrystalline island and one of the first holes surrounds the polycrystalline island, the polycrystalline island being connected to one of the P-types a doped region, wherein the first hole exposes at least two N-type heavily doped regions on both sides of the P-type heavily doped region;
Each of the drain regions includes an N-type heavily doped region located in a P-type body extending downward from the surface of the substrate, wherein the second hole exposes the N-type heavily doped region.
【第6項】[Item 6] 一種高壓半導體元件之製造方法,包括:
形成一高壓半導體電晶體(HVMOS)於一基板上,且該高壓半導體電晶體具有一第一集極(first collector)及一第一發射極(first emitter);以及
形成一常開型低壓半導體電晶體(LVMOS)電性連接於該高壓半導體電晶體,且該常開型低壓半導體電晶體具有一第二集極(second collector)及一第二發射極(second emitter),其中該常開型低壓半導體電晶體之該第二集極係電性連接至該高壓半導體電晶體之該第一發射極,因而形成一靜電防護雙極電晶體。
A method of manufacturing a high voltage semiconductor device, comprising:
Forming a high voltage semiconductor transistor (HVMOS) on a substrate, the high voltage semiconductor transistor having a first collector and a first emitter; and forming a normally open low voltage semiconductor The crystal (LVMOS) is electrically connected to the high voltage semiconductor transistor, and the normally open low voltage semiconductor transistor has a second collector and a second emitter, wherein the normally open low voltage The second collector of the semiconductor transistor is electrically coupled to the first emitter of the high voltage semiconductor transistor, thereby forming an electrostatic protection bipolar transistor.
【第7項】[Item 7] 如申請專利範圍第6項所述之製造方法,其中該常開型低壓半導體電晶體之一低壓閘極係與該高壓半導體電晶體之一高壓閘極連接,該常開型低壓半導體電晶體之一低壓汲極係與該高壓半導體電晶體之一高壓源極共接,該常開型低壓半導體電晶體以及該高壓半導體電晶體係共用相同之一源極/基極(S/B),形成之該常開型低壓半導體電晶體係垂直於該高壓半導體電晶體設 置 。The manufacturing method of claim 6, wherein a low-voltage gate of the normally-on low-voltage semiconductor transistor is connected to a high-voltage gate of the high-voltage semiconductor transistor, the normally-on low-voltage semiconductor transistor A low voltage drain is connected to a high voltage source of the high voltage semiconductor transistor, and the normally open low voltage semiconductor transistor and the high voltage semiconductor crystal system share the same source/base (S/B). The normally open low voltage semiconductor electro-crystalline system is disposed perpendicular to the high voltage semiconductor transistor. 【第8項】[Item 8] 如申請專利範圍第6項所述之製造方法,其中該高壓半導體電晶體和該常開型低壓半導體電晶體係形成於一P型基板之一高壓N型井(HVNW)中,且該常開型低壓半導體電晶體更包括:
一P型體(P-body)於該高壓N型井中,且該P型體係自該P型基板之一表面向下延伸;和
一空乏區(depletion region)或一原生摻雜區(native implant region)於該高壓N型井中,其中該空乏區或該原生摻雜區係自該P型基板之該表面向下延伸,且該P型體係形成於該空乏區或該原生摻雜區之中。
The manufacturing method of claim 6, wherein the high voltage semiconductor transistor and the normally-open low-voltage semiconductor electro-crystal system are formed in a high-pressure N-well (HVNW) of a P-type substrate, and the normally-on Type low voltage semiconductor transistors further include:
a P-body in the high-pressure N-type well, and the P-type system extends downward from a surface of the P-type substrate; and a depletion region or a native implant a region in the high-pressure N-type well, wherein the depletion region or the native doped region extends downward from the surface of the P-type substrate, and the P-type system is formed in the depletion region or the native doped region .
【第9項】[Item 9] 如申請專利範圍第8項所述之製造方法,其中該常開型低壓半導體電晶體之一低壓源極/基極(S/B)區域更包括:
一NPN區形成於該P型體內,且該NPN區係自該P型基板之該表面向下延伸,其中該NPN區包括兩N型重摻雜 區,和 一P型重摻雜 區位於該 兩N型重摻雜 區之間;以及
一多晶矽島體和一第一孔洞圍繞該多晶矽島體,其中該多晶矽島體係形成於該NPN區之該P型重摻雜 區 上,且該第一孔洞暴露至少該NPN區之該些N型重摻雜區;
其中該常開型低壓半導體電晶體之一低壓汲極區域包括:
一N型重摻雜 區 於該P型體內,且該N型重摻雜區係自該P型基板之該表面向下延伸;和
一第二孔洞形成於一多晶矽層中,且該第二孔洞暴露至少該N型重摻雜區。
The manufacturing method of claim 8, wherein the low voltage source/base (S/B) region of the normally-on low-voltage semiconductor transistor further comprises:
An NPN region is formed in the P-type body, and the NPN region extends downward from the surface of the P-type substrate, wherein the NPN region comprises two N-type heavily doped regions, and a P-type heavily doped region is located Between the two N-type heavily doped regions; and a polycrystalline germanium body and a first hole surrounding the polycrystalline germanium island, wherein the polycrystalline germanium island system is formed on the P-type heavily doped region of the NPN region, and the first The holes expose at least the N-type heavily doped regions of the NPN region;
Wherein the low voltage drain region of the normally open low voltage semiconductor transistor comprises:
An N-type heavily doped region is in the P-type body, and the N-type heavily doped region extends downward from the surface of the P-type substrate; and a second hole is formed in a polysilicon layer, and the second The hole exposes at least the N-type heavily doped region.
【第10項】[Item 10] 如申請專利範圍第6項所述之製造方法,更包括一圖案化多晶矽層形成於一基板中,其中該圖案化多晶矽層包括:
連續形成的一多晶矽閘極部 , 以作為該常開型低壓半導體電晶體之一低壓閘極和該高壓半導體電晶體之一高壓閘極;
複數個第一孔洞和複數個第二孔洞交替地且分開地形成排列,其中該些第一孔洞係對應該常開型低壓半導體電晶體之複數個源極/基極區域,該些第二孔洞係對應該常開型低壓半導體電晶體之複數個汲極區域,
其中各該源極/基極區域包括一多晶矽島體和該些第一孔洞之一圍繞該多晶矽島體,該多晶矽島體連接至一P型體(P-body)中之一P型重摻雜 區,而 該第一孔洞暴露至少位於該P型重摻雜 區兩側之 兩N型重摻雜 區 ,
其中各該汲極區域包括一N型重摻雜 區 位於自該基板之該表面向下延伸的一P型體中 , 其中該第二孔洞係暴露 該 N型重摻雜 區。
The manufacturing method of claim 6, further comprising forming a patterned polysilicon layer in a substrate, wherein the patterned polysilicon layer comprises:
a polysilicon gate portion continuously formed as one of the low voltage gate of the normally-on low voltage semiconductor transistor and one of the high voltage gate of the high voltage semiconductor transistor;
The plurality of first holes and the plurality of second holes are alternately and separately arranged, wherein the first holes are opposite to a plurality of source/base regions of the normally open low voltage semiconductor transistor, and the second holes a plurality of drain regions corresponding to a normally open low voltage semiconductor transistor,
Each of the source/base regions includes a polycrystalline germanium body and one of the first holes surrounds the polycrystalline germanium island, and the polycrystalline germanium island is connected to one of the p-type P-types. a dummy region, wherein the first hole exposes at least two N-type heavily doped regions on both sides of the P-type heavily doped region,
Each of the drain regions includes an N-type heavily doped region located in a P-type body extending downward from the surface of the substrate, wherein the second hole exposes the N-type heavily doped region.
TW103112836A 2014-04-08 2014-04-08 High Voltage Semiconductor Device And Method For Manufacturing The Same TWI536562B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103112836A TWI536562B (en) 2014-04-08 2014-04-08 High Voltage Semiconductor Device And Method For Manufacturing The Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103112836A TWI536562B (en) 2014-04-08 2014-04-08 High Voltage Semiconductor Device And Method For Manufacturing The Same

Publications (2)

Publication Number Publication Date
TW201539745A true TW201539745A (en) 2015-10-16
TWI536562B TWI536562B (en) 2016-06-01

Family

ID=54851459

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103112836A TWI536562B (en) 2014-04-08 2014-04-08 High Voltage Semiconductor Device And Method For Manufacturing The Same

Country Status (1)

Country Link
TW (1) TWI536562B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI708394B (en) * 2019-11-05 2020-10-21 旺宏電子股份有限公司 Seimiconductor device with separate active region and method of fabricating the same
US11942472B2 (en) 2021-09-15 2024-03-26 Globalfoundries Singapore Pte. Ltd. High-voltage electrostatic discharge devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI708394B (en) * 2019-11-05 2020-10-21 旺宏電子股份有限公司 Seimiconductor device with separate active region and method of fabricating the same
US11942472B2 (en) 2021-09-15 2024-03-26 Globalfoundries Singapore Pte. Ltd. High-voltage electrostatic discharge devices

Also Published As

Publication number Publication date
TWI536562B (en) 2016-06-01

Similar Documents

Publication Publication Date Title
US8569836B2 (en) Semiconductor device
US8963253B2 (en) Bi-directional bipolar junction transistor for high voltage electrostatic discharge protection
US8022446B2 (en) Integrated Schottky diode and power MOSFET
US9263432B2 (en) High voltage semiconductor device and method for manufacturing the same
US9601627B2 (en) Diode structure compatible with FinFET process
US9054524B2 (en) Bi-directional bipolar junction transistor for high voltage electrostatic discharge protection
US10978870B2 (en) Electrostatic discharge protection device
US9613952B2 (en) Semiconductor ESD protection device
US9397090B1 (en) Semiconductor device
TWI536562B (en) High Voltage Semiconductor Device And Method For Manufacturing The Same
TWI500156B (en) Bi-directional bipolar junction transistor for high voltage electrostatic discharge protection
JP2012094797A (en) Semiconductor device and method of manufacturing the same
US8669639B2 (en) Semiconductor element, manufacturing method thereof and operating method thereof
US9281304B2 (en) Transistor assisted ESD diode
TW201913816A (en) High holding high voltage (hhhv) fet for esd protection with modified source and method for producing the same
TWI566376B (en) Semiconductor device and manufacturing method for the same
JP2005259953A (en) Semiconductor device
TWI652768B (en) Layout structure of esd protection device with high esd tolerance
TWI678787B (en) Esd protection circuit and method of making the same
US8916935B2 (en) ESD clamp in integrated circuits
TWI678790B (en) Electrostatic discharge protection device
CN105097796B (en) High-voltage semiconductor element and its manufacturing method
TWI565073B (en) Active device and high voltage-semiconductor device with the same
TWI655746B (en) Diode and diode string circuit
TWI491011B (en) Bi-directional triode thyristor for high voltage electrostatic discharge protection