TWI678790B - Electrostatic discharge protection device - Google Patents

Electrostatic discharge protection device Download PDF

Info

Publication number
TWI678790B
TWI678790B TW108112430A TW108112430A TWI678790B TW I678790 B TWI678790 B TW I678790B TW 108112430 A TW108112430 A TW 108112430A TW 108112430 A TW108112430 A TW 108112430A TW I678790 B TWI678790 B TW I678790B
Authority
TW
Taiwan
Prior art keywords
region
doped region
doped
electrostatic discharge
conductivity type
Prior art date
Application number
TW108112430A
Other languages
Chinese (zh)
Other versions
TW202038424A (en
Inventor
洪慈憶
Tzu-Yi Hung
Original Assignee
旺宏電子股份有限公司
Macronix International Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司, Macronix International Co., Ltd. filed Critical 旺宏電子股份有限公司
Priority to TW108112430A priority Critical patent/TWI678790B/en
Application granted granted Critical
Publication of TWI678790B publication Critical patent/TWI678790B/en
Publication of TW202038424A publication Critical patent/TW202038424A/en

Links

Abstract

一種靜電放電防護元件,包括:基底、高壓N井區與高壓P井區。基底具有第一區與第二區,第二區環繞所述第一區。高壓N井區配置於基底上,高壓P井區配置於高壓N井區上。第一區配置於高壓N井區上,包括具有第一導電型的第一摻雜區、具有第二導電型且環繞第一摻雜區的第二摻雜區、具有第一導電型且環繞第二摻雜區的第三摻雜區。第二區配置於高壓P井區上,包括具有第二導電型的多個第四摻雜區與具有第一導電型的第五摻雜區。多個第四摻雜區間隔排列並環繞第一區,第五摻雜區環繞第一區與多個第四摻雜區中的每一者。An electrostatic discharge protection element includes a substrate, a high-voltage N-well region, and a high-voltage P-well region. The substrate has a first region and a second region, and the second region surrounds the first region. The high-pressure N well area is arranged on the base, and the high-pressure P well area is arranged on the high-pressure N well area. The first region is configured on the high-voltage N-well region, and includes a first doped region having a first conductivity type, a second doped region having a second conductivity type and surrounding the first doped region, a first conductivity type and surrounding A third doped region of the second doped region. The second region is configured on the high-voltage P-well region and includes a plurality of fourth doped regions having a second conductivity type and a fifth doped region having a first conductivity type. The plurality of fourth doped regions are arranged at intervals and surround the first region, and the fifth doped region surrounds each of the first region and the plurality of fourth doped regions.

Description

靜電放電防護元件ESD protection components

本發明是有關於一種半導體裝置,且特別是有關於一種具有靜電放電防護功能的靜電放電防護元件。The present invention relates to a semiconductor device, and more particularly, to an electrostatic discharge protection element having an electrostatic discharge protection function.

以三井製程(Triple Well Process)設計的高壓靜電放電(Electrostatic Discharge,ESD)元件已被廣泛應用。應用於高壓靜電放電防護的元件中,高壓MOSFET (Metal-Oxide- Semiconductor Field-Effect Transistor)元件通常具有低導通電阻(Rdson)特性,因此在靜電放電事件期間,靜電放電電流可能集中在元件表面或汲極邊緣,導致高電流和高電場物理性地破壞元件的接面區域。並且,基於低導通電阻(Rdson)要求,在高壓製程上一般不會因靜電放電防護性能而改變表面或橫向佈局設計規則(Design Rule)。然而,高壓靜電放電元件的靜電放電防護性能通常取決於總寬度、表面和橫向佈局設計規則。High-voltage electrostatic discharge (ESD) components designed with the Triple Well Process have been widely used. Used in high-voltage electrostatic discharge protection components, high-voltage MOSFET (Metal-Oxide- Semiconductor Field-Effect Transistor) components usually have low on-resistance (Rdson) characteristics, so during an electrostatic discharge event, the electrostatic discharge current may be concentrated on the surface of the component or The drain edge causes high current and high electric field to physically destroy the junction area of the element. In addition, based on the low on-resistance (Rdson) requirements, the surface or lateral layout design rules are generally not changed due to electrostatic discharge protection performance in high-voltage processes. However, the electrostatic discharge protection performance of high-voltage electrostatic discharge components usually depends on the overall width, surface, and lateral layout design rules.

在靜電放電防護性能上,高壓靜電放電元件一般具有高崩潰電壓(Breakdown Voltage),但高壓靜電放電元件的觸發電壓(Trigger Voltage)通常比崩潰電壓高很多。因此在靜電放電事件期間,在高壓靜電放電元件被觸發以進行靜電放電防護之前,受保護的元件或內部電路通常具有損壞風險。習知技術設計額外的靜電放電檢測電路以降低觸發電壓,但靜電放電檢測電路會增加佈局面積。另一方面,在製程上增加額外光罩與步驟以降低觸發電壓的方式將提高製造成本。In terms of electrostatic discharge protection performance, high-voltage electrostatic discharge devices generally have a high breakdown voltage, but the trigger voltage of high-voltage electrostatic discharge devices is usually much higher than the breakdown voltage. Therefore, during an electrostatic discharge event, the protected component or internal circuit usually has a risk of damage before the high-voltage electrostatic discharge element is triggered for electrostatic discharge protection. Conventional techniques design additional electrostatic discharge detection circuits to reduce the trigger voltage, but electrostatic discharge detection circuits increase the layout area. On the other hand, adding additional masks and steps to the process to reduce the trigger voltage will increase manufacturing costs.

有鑒於此,本發明提供一種半導體裝置,可利用現有的三井製程製作出具有低觸發電壓、高承受電流、小佈局面積的靜電放電保護元件。In view of this, the present invention provides a semiconductor device that can use the existing Mitsui manufacturing process to produce an electrostatic discharge protection element with a low trigger voltage, a high withstand current, and a small layout area.

本發明的實施例提供一種靜電放電防護元件,其中靜電放電防護元件包含但不限於基底、高壓N井區與高壓P井區。基底具有第一區與第二區,第二區環繞第一區,基底具有第一導電型。高壓N井區具有第二導電型且配置於基底上,高壓P井區具有第一導電型且配置於高壓N井區上。第一區配置於高壓N井區上,第一區包括第一摻雜區、第二摻雜區與第三摻雜區。第一摻雜區具有第一導電型,第二摻雜區具有第二導電型且環繞第一摻雜區,第三摻雜區具有第一導電型且環繞第二摻雜區。第二區配置於高壓P井區上,第二區包括多個第四摻雜區與第五摻雜區。多個第四摻雜區具有第二導電型,多個第四摻雜區間隔排列並環繞第一區。第五摻雜區具有第一導電型,第五摻雜區環繞第一區與多個第四摻雜區中的每一者。An embodiment of the present invention provides an ESD protection element, wherein the ESD protection element includes, but is not limited to, a substrate, a high-voltage N-well region, and a high-voltage P-well region. The substrate has a first region and a second region, the second region surrounds the first region, and the substrate has a first conductivity type. The high-voltage N well region has a second conductivity type and is disposed on the substrate, and the high-voltage P well region has a first conductivity type and is disposed on the high-voltage N well region. The first region is disposed on the high-voltage N-well region. The first region includes a first doped region, a second doped region, and a third doped region. The first doped region has a first conductivity type, the second doped region has a second conductivity type and surrounds the first doped region, and the third doped region has a first conductivity type and surrounds the second doped region. The second region is disposed on the high-voltage P-well region, and the second region includes a plurality of fourth doped regions and fifth doped regions. The plurality of fourth doped regions have a second conductivity type, and the plurality of fourth doped regions are arranged at intervals and surround the first region. The fifth doped region has a first conductivity type, and the fifth doped region surrounds each of the first region and the plurality of fourth doped regions.

基於上述,本發明提出一種具低觸發電壓的靜電放電防護元件。在高壓N井區中的P+摻雜區外側配置具環狀結構的N+摻雜區與P+摻雜區,並在環繞高壓N井區的高壓P井區中配置多個被P+摻雜區環繞且間隔排列的N+摻雜區,以在靜電放電路徑中提供多個寄生雙極性電晶體,進一步降低靜電放電防護元件的觸發電壓,並提升靜電放電防護能力。Based on the above, the present invention provides an electrostatic discharge protection element with a low trigger voltage. A ring-shaped N + doped region and a P + doped region are arranged outside the P + doped region in the high-pressure N well region, and a plurality of P + doped regions are arranged in the high-pressure P well region surrounding the high-pressure N well region. The N + doped regions are arranged at intervals to provide multiple parasitic bipolar transistors in the ESD path, further reducing the trigger voltage of the ESD protection element, and improving the ESD protection capability.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above features and advantages of the present invention more comprehensible, embodiments are hereinafter described in detail with reference to the accompanying drawings.

在以下實施例中,是以第一導電型為P型,第二導電型為N型為例來說明之,但不用以限定本發明。在另一實施例中,第一導電型可為N型,第二導電型可為P型。In the following embodiments, the first conductivity type is a P-type and the second conductivity type is an N-type for illustration, but the present invention is not limited thereto. In another embodiment, the first conductivity type may be an N-type, and the second conductivity type may be a P-type.

圖1為依據本發明一實施例所繪示的一種靜電防護電路的簡化上視圖。圖2為沿圖1的剖面線A-A’所繪示的剖面示意圖。圖3為沿圖1的B-B’線所繪示的剖面示意圖。FIG. 1 is a simplified top view of an electrostatic protection circuit according to an embodiment of the present invention. Fig. 2 is a schematic cross-sectional view taken along a section line A-A 'of Fig. 1. Fig. 3 is a schematic cross-sectional view taken along the line B-B 'in Fig. 1.

請同時參照圖1、圖2與圖3。在一實施例中,靜電放電防護元件10包括基底110、高壓N井區120、高壓P井區130、第一摻雜區141、第二摻雜區142、第三摻雜區143、第四摻雜區144、第五摻雜區145、場氧化區150與多晶矽區160。Please refer to FIG. 1, FIG. 2 and FIG. 3 at the same time. In one embodiment, the ESD protection element 10 includes a substrate 110, a high-voltage N-well region 120, a high-voltage P-well region 130, a first doped region 141, a second doped region 142, a third doped region 143, and a fourth The doped region 144, the fifth doped region 145, the field oxide region 150, and the polycrystalline silicon region 160.

在一實施例中,基底110為具有第一導電型的P型矽基底。基底110具有第一區A1與第二區A2,且第二區A2環繞第一區A1,如圖1所示。在另一實施例中,基底也可以是P型磊晶層(P-epi)。In one embodiment, the substrate 110 is a P-type silicon substrate having a first conductivity type. The substrate 110 has a first region A1 and a second region A2, and the second region A2 surrounds the first region A1, as shown in FIG. 1. In another embodiment, the substrate may also be a P-epi layer.

在一實施例中,高壓N井區120配置於基底110上,高壓P井區130配置於高壓N井區120上。在一實施例中,高壓N井區120為具有第二導電型之摻雜區,高壓P井區130為具有第一導電型之摻雜區。在一實施例中,高壓N井區120 可以是N型磊晶層(N-epi)、單層N型埋層(N+ buried layer)或由多層N型埋層(multiple N+ buried layer) 堆疊構成,而高壓P井區130 可以是P型井(P type well)、P型埋層(P+ buried layer)或P型低摻雜區(P- implant)。In one embodiment, the high-pressure N-well region 120 is disposed on the substrate 110, and the high-pressure P-well region 130 is disposed on the high-pressure N-well region 120. In one embodiment, the high-voltage N-well region 120 is a doped region with a second conductivity type, and the high-voltage P-well region 130 is a doped region with a first conductivity type. In an embodiment, the high-pressure N-well region 120 may be an N-epi, a single N + buried layer, or a stack of multiple N + buried layers. The high-pressure P-well region 130 may be a P-type well, a P-type buried layer, or a P-type implanted region.

第一區A1配置於高壓N井區120上。第一區A1包括第一摻雜區141、第二摻雜區142、第三摻雜區143。請參照圖1,第一摻雜區141為具有第一導電型的高濃度摻雜區(P+)。第二摻雜區142為具有第二導電型的高濃度摻雜區(N+),且第二摻雜區142環繞第一摻雜區141。第三摻雜區143為具有第一導電型的高濃度摻雜區(P+),且第三摻雜區143環繞第二摻雜區142。參照圖2與圖3,第一摻雜區141、第二摻雜區142與第三摻雜區143電性連接至電源正極。The first region A1 is disposed on the high-pressure N-well region 120. The first region A1 includes a first doped region 141, a second doped region 142, and a third doped region 143. Referring to FIG. 1, the first doped region 141 is a high-concentration doped region (P +) having a first conductivity type. The second doped region 142 is a high-concentration doped region (N +) having a second conductivity type, and the second doped region 142 surrounds the first doped region 141. The third doped region 143 is a high-concentration doped region (P +) having a first conductivity type, and the third doped region 143 surrounds the second doped region 142. Referring to FIGS. 2 and 3, the first doped region 141, the second doped region 142, and the third doped region 143 are electrically connected to the positive electrode of the power source.

第二區A2配置於高壓P井區130上。第二區A2包括多個第四摻雜區144與第五摻雜區145。請參照圖1,多個第四摻雜區144為具有第二導電型的高濃度摻雜區(N+),多個第四摻雜區144間隔排列並環繞第一區A1。多個第四摻雜區144具有相同尺寸,舉例來說,圖1上下兩側的多個第四摻雜區144具有相同的寬度a,圖1左右兩側的多個第四摻雜區144具有相同的寬度x,在一實施例中,寬度a與寬度x例如是7.2μm。在另一實施例中,寬度a也可以不等於寬度x,視實際設計需求而定。多個第四摻雜區144在相同排列方向的間隔距離相同。舉例來說,圖1上下兩側的多個第四摻雜區彼此之間的間隔距離為間距c,圖1左右兩側的多個第四摻雜區彼此之間的間隔距離為間距z,在一實施例中,間距c與間距z例如是1.2μm。在另一實施例中,間距c也可以不等於間距z,視實際設計需求而定。此外,雖然圖1上下兩側各具有4個第四摻雜區144,而圖1左右兩側各具有8個第四摻雜區144,但本發明並未限制多個第四摻雜區144的實際配置方式,視實際設計需求而定。第五摻雜區145為具有第一導電型的高濃度摻雜區(P+)。第五摻雜區145環繞第一區A1,並且第五摻雜區145也環繞多個第四摻雜區144中的每一個。參照圖2與圖3,第四摻雜區144與第五摻雜區145電性連接至電源負極。The second area A2 is disposed on the high-pressure P-well area 130. The second region A2 includes a plurality of fourth doped regions 144 and fifth doped regions 145. Referring to FIG. 1, the plurality of fourth doped regions 144 are high-concentration doped regions (N +) having the second conductivity type. The plurality of fourth doped regions 144 are arranged at intervals and surround the first region A1. The plurality of fourth doped regions 144 have the same size. For example, the plurality of fourth doped regions 144 on the upper and lower sides of FIG. 1 have the same width a, and the plurality of fourth doped regions 144 on the left and right sides of FIG. 1. They have the same width x. In one embodiment, the width a and the width x are, for example, 7.2 μm. In another embodiment, the width a may not be equal to the width x, depending on the actual design requirements. The plurality of fourth doped regions 144 have the same spacing distance in the same arrangement direction. For example, a distance c between the plurality of fourth doped regions on the upper and lower sides of FIG. 1 is a distance c, and a distance c between the plurality of fourth doped regions on the left and right sides of FIG. 1 is a distance z, In one embodiment, the pitch c and the pitch z are, for example, 1.2 μm. In another embodiment, the distance c may not be equal to the distance z, which depends on the actual design requirements. In addition, although there are four fourth doped regions 144 on the upper and lower sides of FIG. 1 and eight fourth doped regions 144 on the left and right sides of FIG. 1, the present invention does not limit the plurality of fourth doped regions 144. The actual configuration method depends on the actual design requirements. The fifth doped region 145 is a high-concentration doped region (P +) having a first conductivity type. The fifth doped region 145 surrounds the first region A1, and the fifth doped region 145 also surrounds each of the plurality of fourth doped regions 144. Referring to FIGS. 2 and 3, the fourth doped region 144 and the fifth doped region 145 are electrically connected to the negative electrode of the power source.

必須說明的是,圖2與圖3的差異在於,剖面線A-A’包括圖1上下兩側的多個第四摻雜區144與第五摻雜區145,而剖面線B-B’僅包含上下兩側的第五摻雜區145。此外,前文所述第一摻雜區141、第二摻雜區142、第三摻雜區143、第四摻雜區144與第五摻雜區145為高濃度摻雜區乃是指其摻雜濃度高於基底110、高壓N井區120與高壓P井區130的摻雜濃度。It must be noted that the difference between FIG. 2 and FIG. 3 is that the section line AA ′ includes a plurality of fourth doped regions 144 and fifth doped regions 145 on the upper and lower sides of FIG. 1, and the section line B-B ′ Only the fifth doped regions 145 on the upper and lower sides are included. In addition, the above-mentioned first doped region 141, second doped region 142, third doped region 143, fourth doped region 144, and fifth doped region 145 are high-concentration doped regions, which means that their doped regions The impurity concentration is higher than the doping concentration of the substrate 110, the high-pressure N-well region 120, and the high-pressure P-well region 130.

參照圖2與圖3, 靜電放電防護元件10更包括場氧化區150與多晶矽區160。場氧化區150配置在第三摻雜區143與第五摻雜區145之間。多晶矽區160配置在場氧化區150上,多晶矽區160電性連接至電源正極,多晶矽可以由單層多晶矽(single-poly)製程或者雙層多晶矽(double-poly)製程製作,本發明不限於此。Referring to FIGS. 2 and 3, the ESD protection device 10 further includes a field oxide region 150 and a polycrystalline silicon region 160. The field oxidation region 150 is disposed between the third doped region 143 and the fifth doped region 145. The polycrystalline silicon region 160 is configured on the field oxidation region 150. The polycrystalline silicon region 160 is electrically connected to the positive electrode of the power source. The polycrystalline silicon can be made by a single-layer single-poly process or a double-poly process. The present invention is not limited thereto. .

圖4為沿圖1的剖面線A-A’所繪示的剖面示意圖的等效電路圖。參照圖4,圖4顯示靜電放電防護元件10在剖面線A-A’中的等效電路,等效電路包括寄生雙極性電晶體B1-B10。以圖4左側為例,第二摻雜區142(N+)、高壓N井區120、高壓P井區130以及第四摻雜區144(N+)構成寄生雙極性電晶體B1,其中寄生雙極性電晶體B1屬於NPN電晶體。第三摻雜區143(P+)、高壓N井區120、高壓P井區130以及第五摻雜區145(P+)構成兩個寄生雙極性電晶體B2與B3,其中寄生雙極性電晶體B2與B3屬於PNP電晶體。參照圖1與圖4,第五摻雜區145包括遠離A1側與靠近A1側的部分,遠離A1側的第五摻雜區145成為寄生雙極性電晶體B2的集極,靠近A1側的第五摻雜區145成為寄生雙極性電晶體B3的集極。相似地,第一摻雜區141(P+)、高壓N井區120、高壓P井區130以及第五摻雜區145(P+)構成兩個寄生雙極性電晶體B4與B5,其中寄生雙極性電晶體B4與B5屬於PNP電晶體。參照圖1與圖4,第五摻雜區145包括遠離A1側與靠近A1側的部分,靠近A1側的第五摻雜區145成為寄生雙極性電晶體B4的集極,遠離A1側的第五摻雜區145成為寄生雙極性電晶體B5的集極。以此類推,圖4右側的寄生雙極性電晶體B6-B10如前文所述,不再贅述。FIG. 4 is an equivalent circuit diagram of a schematic cross-sectional view taken along a section line A-A 'of FIG. 1. FIG. Referring to FIG. 4, FIG. 4 shows an equivalent circuit of the ESD protection element 10 in a section line A-A '. The equivalent circuit includes parasitic bipolar transistors B1-B10. Taking the left side of FIG. 4 as an example, the second doped region 142 (N +), the high-voltage N well region 120, the high-voltage P well region 130, and the fourth doped region 144 (N +) constitute a parasitic bipolar transistor B1, where the parasitic bipolar Transistor B1 is an NPN transistor. The third doped region 143 (P +), the high-voltage N well region 120, the high-voltage P well region 130, and the fifth doped region 145 (P +) constitute two parasitic bipolar transistors B2 and B3, among which the parasitic bipolar transistor B2 And B3 belongs to PNP transistor. 1 and 4, the fifth doped region 145 includes a portion far from the A1 side and a portion near the A1 side, and the fifth doped region 145 far from the A1 side becomes a collector of the parasitic bipolar transistor B2, The five-doped region 145 becomes the collector of the parasitic bipolar transistor B3. Similarly, the first doped region 141 (P +), the high-voltage N-well region 120, the high-voltage P-well region 130, and the fifth doped region 145 (P +) constitute two parasitic bipolar transistors B4 and B5, where the parasitic bipolar Transistors B4 and B5 are PNP transistors. 1 and 4, the fifth doped region 145 includes a portion far from the A1 side and a portion near the A1 side, and the fifth doped region 145 near the A1 side becomes a collector of the parasitic bipolar transistor B4, and the first portion far from the A1 side. The five-doped region 145 becomes the collector of the parasitic bipolar transistor B5. By analogy, the parasitic bipolar transistors B6-B10 on the right side of FIG. 4 are as described above, and will not be described again.

圖5為圖4的等效電路的簡化圖。同時參照圖4與圖5,寄生雙極性電晶體B1與寄生雙極性電晶體B6可以等效為寄生雙極性電晶體NPN1,寄生雙極性電晶體B2-5與寄生雙極性電晶體B7-10可以等效為寄生雙極性電晶體PNP2-5。也就是說,靜電放電防護元件10可以等效為包括寄生雙極性電晶體NPN1以及寄生雙極性電晶體PNP2-5的等效電路,換句話說,當從電源正極到電源負極提供一靜電放電源時,靜電放電防護元件10可藉由寄生雙極性電晶體NPN1以及寄生雙極性電晶體PNP2-5導通後所產生多條靜電放電路徑進行靜電電流的洩放。相較於習知技術,寄生雙極性電晶體NPN1與寄生雙極性電晶體PNP2-5可進一步降低靜電放電防護元件10的觸發電壓(Trigger Voltage)以及導通電阻,並提升靜電放電的防護能力。FIG. 5 is a simplified diagram of the equivalent circuit of FIG. 4. Referring to FIG. 4 and FIG. 5 at the same time, parasitic bipolar transistor B1 and parasitic bipolar transistor B6 can be equivalent to parasitic bipolar transistor NPN1, and parasitic bipolar transistor B2-5 and parasitic bipolar transistor B7-10 can Equivalent to parasitic bipolar transistor PNP2-5. That is, the electrostatic discharge protection element 10 can be equivalent to an equivalent circuit including a parasitic bipolar transistor NPN1 and a parasitic bipolar transistor PNP2-5. In other words, when an electrostatic discharge power is provided from the positive pole of the power supply to the negative pole of the power At this time, the electrostatic discharge protection element 10 can discharge the electrostatic current through a plurality of electrostatic discharge paths generated after the parasitic bipolar transistor NPN1 and the parasitic bipolar transistor PNP2-5 are turned on. Compared with the conventional technology, the parasitic bipolar transistor NPN1 and the parasitic bipolar transistor PNP2-5 can further reduce the trigger voltage and the on-resistance of the electrostatic discharge protection element 10 and improve the protection ability of the electrostatic discharge.

圖6為沿圖1的剖面線B-B’所繪示的剖面示意圖的等效電路圖。與圖4相似,圖6顯示靜電放電防護元件10在剖面線B-B’中的等效電路。參照圖6,剖面線B-B’中的等效電路包括寄生雙極性電晶體B11-B14。以圖6左側為例,第三摻雜區143(P+)、第二摻雜區142(N+)與高壓N井區120、高壓P井區130與第五摻雜區145(P+)構成寄生雙極性電晶體B11。第一摻雜區141(P+)、第二摻雜區142(N+)與高壓N井區120、高壓P井區130與第五摻雜區145(P+)構成寄生雙極性電晶體B12,其中寄生雙極性電晶體B11與B12屬於PNP電晶體。以此類推,圖4右側的寄生雙極性電晶體B13-B14如前文所述,不再贅述。FIG. 6 is an equivalent circuit diagram of a schematic cross-sectional view taken along a section line B-B 'of FIG. 1. FIG. Similar to FIG. 4, FIG. 6 shows an equivalent circuit of the ESD protection element 10 in a section line B-B '. Referring to Fig. 6, the equivalent circuit in section line B-B 'includes parasitic bipolar transistors B11-B14. Taking the left side of FIG. 6 as an example, the third doped region 143 (P +), the second doped region 142 (N +) and the high-pressure N-well region 120, the high-pressure P-well region 130, and the fifth doped region 145 (P +) constitute parasitics. Bipolar transistor B11. The first doped region 141 (P +), the second doped region 142 (N +) and the high-voltage N well region 120, the high-voltage P well region 130 and the fifth doped region 145 (P +) constitute a parasitic bipolar transistor B12, where Parasitic bipolar transistors B11 and B12 are PNP transistors. By analogy, the parasitic bipolar transistors B13-B14 on the right side of FIG. 4 are as described above, and will not be described again.

綜上所述,本發明提出一種具低觸發電壓的靜電放電防護元件。在高壓N井區中的P+摻雜區外側配置具環狀結構的N+摻雜區與P+摻雜區,並在環繞高壓N井區的高壓P井區中配置多個被P+摻雜區環繞且間隔排列的N+摻雜區,以在靜電放電路徑中提供多個寄生雙極性電晶體,進一步降低靜電放電防護元件的觸發電壓,並提升靜電放電防護能力。In summary, the present invention provides an electrostatic discharge protection element with a low trigger voltage. A ring-shaped N + doped region and a P + doped region are arranged outside the P + doped region in the high-pressure N well region, and a plurality of P + doped regions are arranged in the high-pressure P well region surrounding the high-pressure N well region The N + doped regions are arranged at intervals to provide multiple parasitic bipolar transistors in the ESD path, further reducing the trigger voltage of the ESD protection element, and improving the ESD protection capability.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed as above with the examples, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can make some modifications and retouching without departing from the spirit and scope of the present invention. The protection scope of the present invention shall be determined by the scope of the attached patent application.

10‧‧‧靜電放電防護元件10‧‧‧ Electrostatic discharge protection element

110‧‧‧基底 110‧‧‧ substrate

120‧‧‧高壓N井區 120‧‧‧High-pressure N well area

130‧‧‧高壓P井區 130‧‧‧High-pressure P well area

141‧‧‧第一摻雜區 141‧‧‧first doped region

142‧‧‧第二摻雜區 142‧‧‧second doped region

143‧‧‧第三摻雜區 143‧‧‧third doped region

144‧‧‧第四摻雜區 144‧‧‧ Fourth doped region

145‧‧‧第五摻雜區 145‧‧‧ fifth doped region

150‧‧‧場氧化區 150‧‧‧field oxidation zone

160‧‧‧多晶矽區 160‧‧‧Polycrystalline silicon area

A1‧‧‧第一區 A1‧‧‧ District 1

A2‧‧‧第二區 A2‧‧‧Second District

B1-B14、NPN1、PNP2、PNP3、PNP4、PNP5‧‧‧寄生雙極性電晶體 B1-B14, NPN1, PNP2, PNP3, PNP4, PNP5‧‧‧parasitic bipolar transistor

A-A’、B-B’‧‧‧剖面線 A-A ’, B-B’‧‧‧ hatching

a、b、x、y‧‧‧寬度 a, b, x, y‧‧‧width

c、z‧‧‧間距 c, z‧‧‧ pitch

圖1為依據本發明一實施例所繪示的一種靜電防護電路的簡化上視圖。
圖2為沿圖1的剖面線A-A’所繪示的剖面示意圖。
圖3為沿圖1的剖面線B-B’所繪示的剖面示意圖。
圖4為沿圖1的剖面線A-A’所繪示的剖面示意圖的等效電路圖。
圖5為圖4的等效電路的簡化圖。
圖6為沿圖1的剖面線B-B’所繪示的剖面示意圖的等效電路圖。
FIG. 1 is a simplified top view of an electrostatic protection circuit according to an embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view taken along a section line AA ′ of FIG. 1.
FIG. 3 is a schematic cross-sectional view taken along a section line BB ′ in FIG. 1.
FIG. 4 is an equivalent circuit diagram of a schematic cross-sectional view taken along a section line AA ′ of FIG. 1.
FIG. 5 is a simplified diagram of the equivalent circuit of FIG. 4.
FIG. 6 is an equivalent circuit diagram of a schematic cross-sectional view taken along a section line BB ′ in FIG. 1.

Claims (10)

一種靜電放電防護元件,包括:
基底,具有第一區與第二區,所述第二區環繞所述第一區,所述基底具有第一導電型;
高壓N井區,具有第二導電型且配置於所述基底上;以及
高壓P井區,具有所述第一導電型且配置於所述高壓N井區上;
其中所述第一區配置於所述高壓N井區上,包括:
第一摻雜區,具有所述第一導電型;
第二摻雜區,具有所述第二導電型且環繞所述第一摻雜區;以及
第三摻雜區,具有所述第一導電型且環繞所述第二摻雜區,
其中所述第二區配置於所述高壓P井區上,包括:
多個第四摻雜區,具有所述第二導電型,所述多個第四摻雜區間隔排列並環繞所述第一區;以及
第五摻雜區,具有所述第一導電型,所述第五摻雜區環繞所述第一區與所述多個第四摻雜區中的每一者。
An electrostatic discharge protection element includes:
A substrate having a first region and a second region, the second region surrounding the first region, and the substrate having a first conductivity type;
A high-pressure N-well region having a second conductivity type and being disposed on the substrate; and a high-pressure P-well region having the first conductivity type and being disposed on the high-pressure N-well region;
The first area is configured on the high-pressure N-well area and includes:
A first doped region having the first conductivity type;
A second doped region having the second conductivity type and surrounding the first doped region; and a third doped region having the first conductivity type and surrounding the second doped region,
The second zone is configured on the high-pressure P-well zone and includes:
A plurality of fourth doped regions have the second conductivity type, the plurality of fourth doped regions are arranged at intervals and surround the first region; and a fifth doped region has the first conductivity type, The fifth doped region surrounds each of the first region and the plurality of fourth doped regions.
如申請專利範圍第1項所述的靜電放電防護元件,其中所述多個第四摻雜區具有相同尺寸。The electrostatic discharge protection element according to item 1 of the scope of patent application, wherein the plurality of fourth doped regions have the same size. 如申請專利範圍第1項所述的靜電放電防護元件,其中所述多個第四摻雜區在相同排列方向上的間隔距離相同。The electrostatic discharge protection element according to item 1 of the scope of patent application, wherein the plurality of fourth doped regions have the same separation distance in the same arrangement direction. 如申請專利範圍第1項所述的靜電放電防護元件,其中所述第一摻雜區、所述第二摻雜區與所述第三摻雜區電性連接至電源正極,所述第四摻雜區與所述第五摻雜區電性連接至電源負極。The electrostatic discharge protection element according to item 1 of the patent application scope, wherein the first doped region, the second doped region, and the third doped region are electrically connected to a positive electrode of a power source, and the fourth The doped region and the fifth doped region are electrically connected to the negative electrode of the power source. 如申請專利範圍第1項所述的靜電放電防護元件,更包括:
場氧化區,配置在所述第三摻雜區與所述第五摻雜區之間;以及
多晶矽區,配置在所述場氧化區上,所述多晶矽區電性連接至電源正極。
The electrostatic discharge protection element according to item 1 of the patent application scope further includes:
A field oxidation region is disposed between the third doped region and the fifth doped region; and a polycrystalline silicon region is disposed on the field oxidation region, and the polycrystalline silicon region is electrically connected to a positive electrode of a power source.
如申請專利範圍第5項所述的靜電放電防護元件,其中所述多晶矽區是單多晶矽或雙多晶矽。The electrostatic discharge protection element according to item 5 of the scope of the patent application, wherein the polycrystalline silicon region is a single polycrystalline silicon or a double polycrystalline silicon. 如申請專利範圍第1項所述的靜電放電防護元件,其中所述基底是P型矽基底或P型磊晶層。The electrostatic discharge protection element according to item 1 of the patent application scope, wherein the substrate is a P-type silicon substrate or a P-type epitaxial layer. 如申請專利範圍第1項所述的靜電放電防護元件,其中所述高壓N井區是N型磊晶層、單個N型埋層或多個N型埋層,且所述高壓P井區是P型井、P型埋層或P型低摻雜區。The electrostatic discharge protection element according to item 1 of the scope of patent application, wherein the high-voltage N-well area is an N-type epitaxial layer, a single N-type buried layer or multiple N-type buried layers, and the high-voltage P-well area is P-type well, P-type buried layer, or P-type low-doped region. 如申請專利範圍第1項所述的靜電放電防護元件,其中所述第一導電型與所述第二導電型的電性相反。The electrostatic discharge protection element according to item 1 of the scope of patent application, wherein the first conductivity type and the second conductivity type have opposite electrical properties. 如申請專利範圍第1項所述的靜電放電防護元件,其中所述第一摻雜區、所述第二摻雜區、所述第三摻雜區、所述第四摻雜區與所述第五摻雜區的摻雜濃度高於所述基底、所述高壓N井區與所述高壓P井區的摻雜濃度。The electrostatic discharge protection element according to item 1 of the scope of patent application, wherein the first doped region, the second doped region, the third doped region, the fourth doped region, and the The doping concentration of the fifth doped region is higher than that of the substrate, the high-pressure N-well region, and the high-pressure P-well region.
TW108112430A 2019-04-10 2019-04-10 Electrostatic discharge protection device TWI678790B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108112430A TWI678790B (en) 2019-04-10 2019-04-10 Electrostatic discharge protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108112430A TWI678790B (en) 2019-04-10 2019-04-10 Electrostatic discharge protection device

Publications (2)

Publication Number Publication Date
TWI678790B true TWI678790B (en) 2019-12-01
TW202038424A TW202038424A (en) 2020-10-16

Family

ID=69582556

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108112430A TWI678790B (en) 2019-04-10 2019-04-10 Electrostatic discharge protection device

Country Status (1)

Country Link
TW (1) TWI678790B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201030932A (en) * 2009-02-06 2010-08-16 Taiwan Semiconductor Mfg Electrostatic discharge protection device and method
US20140001548A1 (en) * 2012-06-29 2014-01-02 Freescale Semiconductor, Inc. Semiconductor device and driver circuit with an active device and isolation structure interconnected through a diode circuit, and method of manufacture thereof
US20140367830A1 (en) * 2013-06-13 2014-12-18 Freescale Semiconductor, Inc. Esd protection device
TW201505157A (en) * 2013-07-22 2015-02-01 Macronix Int Co Ltd Semiconductor device and manufacturing method for the same
US20170338218A1 (en) * 2009-05-15 2017-11-23 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for forming integrated circuit having guard rings

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201030932A (en) * 2009-02-06 2010-08-16 Taiwan Semiconductor Mfg Electrostatic discharge protection device and method
US20170338218A1 (en) * 2009-05-15 2017-11-23 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for forming integrated circuit having guard rings
US20140001548A1 (en) * 2012-06-29 2014-01-02 Freescale Semiconductor, Inc. Semiconductor device and driver circuit with an active device and isolation structure interconnected through a diode circuit, and method of manufacture thereof
US20140367830A1 (en) * 2013-06-13 2014-12-18 Freescale Semiconductor, Inc. Esd protection device
TW201505157A (en) * 2013-07-22 2015-02-01 Macronix Int Co Ltd Semiconductor device and manufacturing method for the same

Also Published As

Publication number Publication date
TW202038424A (en) 2020-10-16

Similar Documents

Publication Publication Date Title
US10276557B2 (en) Electrostatic discharge protection device
US8513774B2 (en) Low-voltage structure for high-voltage electrostatic discharge protection
US20180069111A1 (en) Esd protection scr device
JP2004047959A (en) Electrostatic discharge protection element
US10978870B2 (en) Electrostatic discharge protection device
US9054524B2 (en) Bi-directional bipolar junction transistor for high voltage electrostatic discharge protection
TWI721140B (en) Semiconductor device and semiconductor device manufacturing method
US9613952B2 (en) Semiconductor ESD protection device
JP2017212298A (en) Semiconductor device
US10700053B2 (en) Electrostatic protection element
TWI431756B (en) Low-voltage structure for high-voltage electrostatic discharge protection
TWI678790B (en) Electrostatic discharge protection device
USRE47390E1 (en) Semiconductor device with a protection diode
JP4423466B2 (en) Semiconductor device
TWI536562B (en) High Voltage Semiconductor Device And Method For Manufacturing The Same
JP2015012020A (en) Semiconductor device
TWI680579B (en) Transistor device
TWI652768B (en) Layout structure of esd protection device with high esd tolerance
US10741542B2 (en) Transistors patterned with electrostatic discharge protection and methods of fabrication
TWI557869B (en) Semiconductor device
WO2014196223A1 (en) Semiconductor chip and semiconductor device
TWI708364B (en) Semiconductor device and manufacturing method thereof
TWI559502B (en) Semiconductor device
US11837600B2 (en) Electrostatic discharge protection apparatus and its operating method
TW201916314A (en) Integrated circuit device having esd protection