TWI557425B - Optoelectronic structure with anti-reflection conductive film - Google Patents
Optoelectronic structure with anti-reflection conductive film Download PDFInfo
- Publication number
- TWI557425B TWI557425B TW104138929A TW104138929A TWI557425B TW I557425 B TWI557425 B TW I557425B TW 104138929 A TW104138929 A TW 104138929A TW 104138929 A TW104138929 A TW 104138929A TW I557425 B TWI557425 B TW I557425B
- Authority
- TW
- Taiwan
- Prior art keywords
- conductive film
- light
- photovoltaic
- porosity
- antireflection
- Prior art date
Links
Landscapes
- Photovoltaic Devices (AREA)
- Electroluminescent Light Sources (AREA)
Description
本發明關於一種具抗反射導電膜之光電結構,特別是一種同時具有抗反射及導電功能的光電結構。The invention relates to a photoelectric structure with an anti-reflection conductive film, in particular to a photoelectric structure having both anti-reflection and conductive functions.
由於光電元件(太陽能電池或LED)與空氣之間的界面具有明顯的折射率差異,當太陽光進入太陽能電池或LED光線進入空氣時,過大的折射率差異會形成反射現象而導致光損失,造成太陽能電池的入光量或LED的出光量不足,習知的光電元件係藉由非導電的奈米結構或抗反射薄膜所造成的散射或破壞性干涉來降低反射率,然而,非導電的奈米結構或抗反射薄膜與光電元件電極之間的連結會造成製程複雜化。Since the interface between the photovoltaic element (solar cell or LED) and the air has a significant refractive index difference, when the sunlight enters the solar cell or the LED light enters the air, an excessive refractive index difference will cause a reflection phenomenon and cause light loss, resulting in The amount of light entering the solar cell or the amount of light emitted by the LED is insufficient. Conventional photovoltaic elements reduce the reflectance by scattering or destructive interference caused by a non-conductive nanostructure or anti-reflective film. However, non-conductive nano-particles The connection between the structure or the antireflective film and the electrodes of the photovoltaic element can complicate the process.
本發明之主要目的在於提供一種具抗反射導電膜之光電結構,藉由孔隙率差異使相同的導電物質產生折射率差異,使得抗反射導電膜同時具有抗反射及導電功能。The main object of the present invention is to provide a photoelectric structure having an anti-reflection conductive film, wherein the difference in porosity causes the same conductive material to produce a refractive index difference, so that the anti-reflective conductive film has both anti-reflection and conductive functions.
本發明之一種具抗反射導電膜之光電結構,其包含一光電元件及一抗反射導電膜,該光電元件具有一表面,該抗反射導電膜設置於該表面,該抗反射導電膜具有一第一導電膜及一第二導電膜,該第一導電膜覆蓋於該光電元件的該表面,且該第一導電膜及該第二導電膜為相同之導電物質,該第一導電膜位於該光電元件及該第二導電膜之間,該第一導電膜具有一第一孔隙率,該第二導電膜具有一第二孔隙率,該第一孔隙率小於該第二孔隙率。The photoelectric structure of the antireflection conductive film of the present invention comprises a photovoltaic element and an antireflection conductive film, the photovoltaic element has a surface, the antireflection conductive film is disposed on the surface, and the antireflection conductive film has a first a conductive film and a second conductive film, the first conductive film covers the surface of the photovoltaic element, and the first conductive film and the second conductive film are the same conductive material, and the first conductive film is located at the photoelectric Between the element and the second conductive film, the first conductive film has a first porosity, and the second conductive film has a second porosity, the first porosity being less than the second porosity.
本發明藉由該第一導電膜及該第二導電膜之間的孔隙率差異,使該第一導電膜、該第二導電膜及該光電元件的折射率具有漸變式變化,因此使得該抗反射導電膜具抗反射特性,且該抗反射導電膜具有導電功能,當該抗反射導電膜使用於該光電元件時,無須設置電極,可簡化該光電結構之製程。According to the difference in porosity between the first conductive film and the second conductive film, the refractive index of the first conductive film, the second conductive film, and the photoelectric element has a gradual change, thereby making the resistance The reflective conductive film has anti-reflection characteristics, and the anti-reflective conductive film has a conductive function. When the anti-reflective conductive film is used for the photoelectric element, it is not necessary to provide an electrode, and the process of the photoelectric structure can be simplified.
請參閱第1圖,其為本發明之一實施例,一種具抗反射導電膜之光電結構100包含一光電元件110及一抗反射導電膜120,該光電元件110具有一表面111,該抗反射導電膜120設置於該表面111, 在本實施例中,該光電元件110為一收光元件,該表面111為該收光元件之入光面,該收光元件可吸收波長400nm至1000nm的光線,較佳地,該收光元件選自於有機太陽能電池、無機太陽能電池或光檢測器。Referring to FIG. 1 , an embodiment of the present invention, a photovoltaic structure 100 having an anti-reflective conductive film includes a photovoltaic element 110 and an anti-reflective conductive film 120. The photovoltaic element 110 has a surface 111, and the anti-reflection The conductive film 120 is disposed on the surface 111. In the embodiment, the photo-electric component 110 is a light-receiving component, and the surface 111 is a light-incident surface of the light-receiving component, and the light-receiving component can absorb light having a wavelength of 400 nm to 1000 nm. Preferably, the light collecting element is selected from an organic solar cell, an inorganic solar cell or a photodetector.
請參閱第1圖,該抗反射導電膜120具有一第一導電膜121及一第二導電膜122,該第一導電膜121覆蓋於該光電元件110的該表面111,且該第一導電膜121位於該光電元件110及該第二導電膜122之間,該第一導電膜121及該第二導電膜122為相同之導電物質,較佳地,該第一導電膜121及該第二導電膜122之材料選自於氧化錫(SnO)、氧化銦錫(ITO)、氧化鋅鋁(AZO)、氧化鋅(ZnO)、氧化錫銻(ATO)、氧化錫鎵(GZO)、氧化銦(InO)、氧化釕(RuO)或氧化鈦(TiO)之任一透明導電材料,在本實施例中,該第一導電膜121及該第二導電膜122之材料為氧化銦錫(ITO),而該抗反射導電膜120之電阻率小於10 -3Ω-cm。 Referring to FIG. 1 , the anti-reflective conductive film 120 has a first conductive film 121 and a second conductive film 122 . The first conductive film 121 covers the surface 111 of the photovoltaic element 110 , and the first conductive film The first conductive film 121 and the second conductive film 122 are the same conductive material. Preferably, the first conductive film 121 and the second conductive layer are located between the photo-electric element 110 and the second conductive film 122. The material of the film 122 is selected from the group consisting of tin oxide (SnO), indium tin oxide (ITO), zinc aluminum oxide (AZO), zinc oxide (ZnO), antimony tin oxide (ATO), gallium tin oxide (GZO), indium oxide ( In any one of the transparent conductive materials of InO), ruthenium oxide (RuO) or titanium oxide (TiO), in the embodiment, the material of the first conductive film 121 and the second conductive film 122 is indium tin oxide (ITO). The resistivity of the anti-reflective conductive film 120 is less than 10 -3 Ω-cm.
請參閱第2圖,其為該具抗反射導電膜之光電結構100之掃描式電子顯微鏡影像(SEM),該第一導電膜121具有一第一孔隙率,該第二導電膜122具有一第二孔隙率,該第一導電膜121之該第一孔隙率小於該第二導電膜122之該第二孔隙率,較佳地,該第一孔隙率小於30%,而該第二孔隙率介於30%至90%之間,在本實施例中,該第一孔隙率約為5%,該第二孔隙率約為60%。Please refer to FIG. 2 , which is a scanning electron microscope image (SEM) of the photoelectric structure 100 with an anti-reflective conductive film, the first conductive film 121 has a first porosity, and the second conductive film 122 has a first The second porosity of the first conductive film 121 is smaller than the second porosity of the second conductive film 122. Preferably, the first porosity is less than 30%, and the second porosity is Between 30% and 90%, in the present embodiment, the first porosity is about 5% and the second porosity is about 60%.
請參閱第3圖,其為該抗反射導電膜120之光線穿透率曲線圖,由第3圖可知,該抗反射導電膜120對於波長介於400nm至1000nm的光線穿透率大於80%,因此該抗反射導電膜120足以達到商業化應用之要求。Please refer to FIG. 3 , which is a graph of light transmittance of the anti-reflective conductive film 120. As can be seen from FIG. 3 , the anti-reflective conductive film 120 has a light transmittance of more than 80% for wavelengths between 400 nm and 1000 nm. Therefore, the anti-reflective conductive film 120 is sufficient to meet the requirements of commercial applications.
在本實施例中,該光電元件110之等效折射率介於2.4至5之間,該第一導電膜121之等效折射率介於1.9至2.3之間,該第二導電膜122之等效折射率介於1.3至1.8之間,而空氣之折射率約為1,因此藉由該第一導電膜121及該第二導電膜122使該發光元件及空氣之間具有漸變式折射率變化,當太陽光由空氣進入該收光元件時,該抗反射導電膜120可有效降低太陽光之反射率,進而提高該收光元件之入光量。In this embodiment, the equivalent refractive index of the photovoltaic element 110 is between 2.4 and 5. The equivalent refractive index of the first conductive film 121 is between 1.9 and 2.3, and the second conductive film 122 is equal to The refractive index of the light is between 1.3 and 1.8, and the refractive index of the air is about 1, so that the first conductive film 121 and the second conductive film 122 have a graded refractive index change between the light-emitting element and the air. When the sunlight enters the light-receiving element from the air, the anti-reflective conductive film 120 can effectively reduce the reflectance of the sunlight, thereby increasing the amount of light entering the light-receiving element.
請參考第4圖,在本實施例中,具有該抗反射導電膜120的該收光元件對於波長介於400nm至1000nm的光線反射率小於10%,由於不具有該抗反射導電膜120之該收光元件對於波長介於400nm至1000nm的光線反射率大於35%,因此可知,該抗反射導電膜120可有效降低太陽光反射率而增加該收光元件之入光量。Referring to FIG. 4, in the embodiment, the light-receiving element having the anti-reflective conductive film 120 has a reflectance of less than 10% for light having a wavelength between 400 nm and 1000 nm, because the anti-reflective conductive film 120 is not provided. The light-receiving element has a light reflectance of more than 35% for a wavelength of 400 nm to 1000 nm. Therefore, the anti-reflective conductive film 120 can effectively reduce the solar reflectance and increase the amount of light entering the light-receiving element.
在本發明之另一實施例中,該光電元件110為一發光元件,該光電元件110之該表面111為該發光元件之出光面,該發光元件可發出波長300nm至1500nm的光線,較佳地,該發光元件選自於有機發光二極體、無機發光二極體或雷射。In another embodiment of the present invention, the photo-electric component 110 is a light-emitting component, and the surface 111 of the photo-electric component 110 is a light-emitting surface of the light-emitting component, and the light-emitting component emits light having a wavelength of 300 nm to 1500 nm, preferably The light-emitting element is selected from the group consisting of an organic light-emitting diode, an inorganic light-emitting diode, or a laser.
相同地,該發光元件及空氣之間藉由該第一導電膜121及該第二導電膜122而具有漸變式折射率變化,當該發光元件所發出的光線經由該抗反射導電膜120進入空氣時,該抗反射導電膜120可有效降低光線反射率,因此可提高該發光元件之出光率,在本實施例中,具有該抗反射導電膜120的該發光元件對於波長介於400nm至1000nm的光線出光率為70%至95%,由於不具有該抗反射導電膜120的該發光元件對於波長介於400nm至1000nm的光線出光率小於70%,因此可知,該抗反射導電膜120可藉由降低光線反射率而增加該發光元件之出光率。Similarly, the light-emitting element and the air have a gradual refractive index change by the first conductive film 121 and the second conductive film 122, and the light emitted by the light-emitting element enters the air through the anti-reflective conductive film 120. The anti-reflective conductive film 120 can effectively reduce the light reflectance, thereby improving the light-emitting rate of the light-emitting element. In the embodiment, the light-emitting element having the anti-reflective conductive film 120 has a wavelength between 400 nm and 1000 nm. The light-emitting rate is 70% to 95%. Since the light-emitting element having the anti-reflective conductive film 120 has a light-emitting rate of less than 70% for a wavelength of 400 nm to 1000 nm, it can be seen that the anti-reflective conductive film 120 can be used. The light reflectance is lowered to increase the light extraction rate of the light-emitting element.
本發明係藉由該第一孔隙率及該第二孔隙率調整該第一導電膜121及該第二導電膜122之折射率,使該具抗反射導電膜之光電結構100的折射率呈現漸變式變化,以有效降低光線反射率,並藉由該第一導電膜121及該第二導電膜122之導電特性,使該抗反射導電膜120同時具有抗反射及導電功能。According to the present invention, the refractive index of the first conductive film 121 and the second conductive film 122 is adjusted by the first porosity and the second porosity, so that the refractive index of the photoelectric structure 100 with the anti-reflective conductive film is gradually changed. The anti-reflective conductive film 120 has both anti-reflection and conductive functions simultaneously by the conductive characteristics of the first conductive film 121 and the second conductive film 122.
本發明之保護範圍當視後附之申請專利範圍所界定者為準,任何熟知此項技藝者,在不脫離本發明之精神和範圍內所作之任何變化與修改,均屬於本發明之保護範圍。The scope of the present invention is defined by the scope of the appended claims, and any changes and modifications made by those skilled in the art without departing from the spirit and scope of the invention are within the scope of the present invention. .
100‧‧‧抗反射導電膜之光電結構
110‧‧‧光電元件
111‧‧‧表面
120‧‧‧抗反射導電膜
121‧‧‧第一導電膜
122‧‧‧第二導電膜100‧‧‧Photoelectric structure of anti-reflective conductive film
110‧‧‧Optoelectronic components
111‧‧‧ surface
120‧‧‧Anti-reflective conductive film
121‧‧‧First conductive film
122‧‧‧Second conductive film
第1圖:依據本發明之一實施例,一種具抗反射導電膜之光電結構示意圖。 第2圖:依據本發明之一實施例,該具抗反射導電膜之光電結構之掃描式電子顯微鏡影像(SEM)。 第3圖:依據本發明之一實施例,一抗反射導電膜之光線穿透率曲線圖。 第4圖:依據本發明之一實施例,該具抗反射導電膜之光電結構之反射率曲線圖。Fig. 1 is a schematic view showing a photoelectric structure of an antireflection conductive film according to an embodiment of the present invention. 2 is a scanning electron microscope image (SEM) of the photoelectric structure of the antireflection conductive film according to an embodiment of the present invention. Fig. 3 is a graph showing the light transmittance of an anti-reflective conductive film according to an embodiment of the present invention. Fig. 4 is a graph showing the reflectance of the photoelectric structure of the antireflection conductive film according to an embodiment of the present invention.
100‧‧‧抗反射導電膜之光電結構 100‧‧‧Photoelectric structure of anti-reflective conductive film
110‧‧‧光電元件 110‧‧‧Optoelectronic components
111‧‧‧表面 111‧‧‧ surface
120‧‧‧抗反射導電膜 120‧‧‧Anti-reflective conductive film
121‧‧‧第一導電膜 121‧‧‧First conductive film
122‧‧‧第二導電膜 122‧‧‧Second conductive film
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104138929A TWI557425B (en) | 2015-11-24 | 2015-11-24 | Optoelectronic structure with anti-reflection conductive film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104138929A TWI557425B (en) | 2015-11-24 | 2015-11-24 | Optoelectronic structure with anti-reflection conductive film |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI557425B true TWI557425B (en) | 2016-11-11 |
TW201719196A TW201719196A (en) | 2017-06-01 |
Family
ID=57851529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104138929A TWI557425B (en) | 2015-11-24 | 2015-11-24 | Optoelectronic structure with anti-reflection conductive film |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI557425B (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1809764A (en) * | 2003-06-18 | 2006-07-26 | 旭化成株式会社 | Antireflective film |
TW201139149A (en) * | 2009-12-22 | 2011-11-16 | Agc Flat Glass Na Inc | Anti-reflective coatings and methods of making the same |
CN102024790B (en) * | 2009-09-22 | 2012-08-22 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor device, manufacturing method, and integrated circuit and electronic equipment including the same |
CN101698572B (en) * | 2009-10-29 | 2012-12-12 | 中国科学院长春应用化学研究所 | Method for preparing gradient polymer porosity broadband antireflection film |
TWI408821B (en) * | 2009-12-11 | 2013-09-11 | ||
TW201348356A (en) * | 2012-05-24 | 2013-12-01 | Eternal Chemical Co Ltd | Anti-reflection composition and its manufacturing process and uses |
TW201427058A (en) * | 2012-12-18 | 2014-07-01 | Sunpower Corp | Solar cell emitter region fabrication using N-type doped silicon nano-particles |
CN204558502U (en) * | 2014-12-22 | 2015-08-12 | 泉州市博泰半导体科技有限公司 | A kind of HIT solar cell |
-
2015
- 2015-11-24 TW TW104138929A patent/TWI557425B/en active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1809764A (en) * | 2003-06-18 | 2006-07-26 | 旭化成株式会社 | Antireflective film |
CN102024790B (en) * | 2009-09-22 | 2012-08-22 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor device, manufacturing method, and integrated circuit and electronic equipment including the same |
CN101698572B (en) * | 2009-10-29 | 2012-12-12 | 中国科学院长春应用化学研究所 | Method for preparing gradient polymer porosity broadband antireflection film |
TWI408821B (en) * | 2009-12-11 | 2013-09-11 | ||
TW201139149A (en) * | 2009-12-22 | 2011-11-16 | Agc Flat Glass Na Inc | Anti-reflective coatings and methods of making the same |
TW201348356A (en) * | 2012-05-24 | 2013-12-01 | Eternal Chemical Co Ltd | Anti-reflection composition and its manufacturing process and uses |
TW201427058A (en) * | 2012-12-18 | 2014-07-01 | Sunpower Corp | Solar cell emitter region fabrication using N-type doped silicon nano-particles |
CN204558502U (en) * | 2014-12-22 | 2015-08-12 | 泉州市博泰半导体科技有限公司 | A kind of HIT solar cell |
Also Published As
Publication number | Publication date |
---|---|
TW201719196A (en) | 2017-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Aé et al. | ZnO nanorod arrays as an antireflective coating for Cu (In, Ga) Se2 thin film solar cells | |
US20130194669A1 (en) | Nanoparticle antireflection layer | |
JP6688230B2 (en) | Solar cell, manufacturing method thereof, and solar cell module | |
US8941097B2 (en) | Organic luminance device, method for manufacturing same and lighting apparatus including same | |
TW201503336A (en) | Optical sensor | |
US20140139410A1 (en) | Multiple light management textures | |
CN204558502U (en) | A kind of HIT solar cell | |
TWI557425B (en) | Optoelectronic structure with anti-reflection conductive film | |
EP3361514B1 (en) | Pane for a pv-module and pv-module | |
KR101687991B1 (en) | Heat rejection semi-transparent solar cell | |
KR101814821B1 (en) | Solar cell module | |
JP5490031B2 (en) | Photovoltaic device and photovoltaic module | |
CN104471738A (en) | Transparent supporting electrode for OLED | |
TW201526263A (en) | Solar cell | |
JP2012089712A (en) | Thin film solar cell and method for manufacturing the same | |
JPWO2016043014A1 (en) | Solar cell module | |
KR101559353B1 (en) | Sunlight concentration lens for outdoor having enhanced endurance | |
CN205941954U (en) | Glass with readable ability of sunshine and electromagnetic shielding performance | |
RU172493U1 (en) | High Efficiency Light Emitting Multilayer Semiconductor LED | |
KR20160078047A (en) | solar cell module | |
US20150318412A1 (en) | Microstructured ZnO coatings for improved performance in Cu(In, Ga)Se2 photovoltaic devices | |
KR20120116806A (en) | Solar cell | |
Hwang et al. | 3D simulations for the optimization of antireflection subwavelength structures in CIGS solar cells | |
Jeong et al. | P‐185: Flexible Organic Light‐Emitting Diodes with Improved Outcoupling Efficiency | |
TWI615988B (en) | Optoelectronic component with anti-reflection spectrum increasing structure |