TWI550713B - Method for manufacturing damascene structure - Google Patents

Method for manufacturing damascene structure Download PDF

Info

Publication number
TWI550713B
TWI550713B TW101101913A TW101101913A TWI550713B TW I550713 B TWI550713 B TW I550713B TW 101101913 A TW101101913 A TW 101101913A TW 101101913 A TW101101913 A TW 101101913A TW I550713 B TWI550713 B TW I550713B
Authority
TW
Taiwan
Prior art keywords
dummy
layer
via hole
manufacturing
substrate
Prior art date
Application number
TW101101913A
Other languages
Chinese (zh)
Other versions
TW201332014A (en
Inventor
劉恩銓
楊智偉
黃志森
胡展源
傅思逸
Original Assignee
聯華電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯華電子股份有限公司 filed Critical 聯華電子股份有限公司
Priority to TW101101913A priority Critical patent/TWI550713B/en
Publication of TW201332014A publication Critical patent/TW201332014A/en
Application granted granted Critical
Publication of TWI550713B publication Critical patent/TWI550713B/en

Links

Description

鑲嵌結構製作方法Mosaic structure

本發明係有關於一種具有鑲嵌結構之製作方法,尤指一種可改善化學機械研磨(chemical mechanical polishing,以下簡稱為CMP)製程結果之鑲嵌結構之製作方法。The invention relates to a manufacturing method with a mosaic structure, in particular to a method for manufacturing a mosaic structure which can improve the result of a chemical mechanical polishing (hereinafter referred to as CMP) process.

在目前半導體工業中,鑲嵌技術已經是半導體積體電路中多重金屬內連線(multi-level interconnects)的主要技術。鑲嵌技術係可簡述為首先在介電材料層中蝕刻出電路圖案,然後將導電材料如銅填入該電路圖案中,並利用CMP等全面性地的平坦化研磨製程移除多餘的導電材料,進而完成金屬內連線之製作。In the current semiconductor industry, damascene technology has become the main technology for multi-level interconnects in semiconductor integrated circuits. The damascene technique can be briefly described as first etching a circuit pattern in a dielectric material layer, then filling a conductive material such as copper into the circuit pattern, and removing excess conductive material by a comprehensive planarization polishing process such as CMP. And then complete the production of metal interconnects.

該領域中具通常知識之人士皆知,研磨膜層表面形狀以及研磨膜層表面的圖案密度對CMP製程的結果影響甚鉅。舉例來說,當研磨膜層表面上的圖案密度不均勻時,CMP製程的研磨速率會依圖案密度的不同而不同,導致研磨膜層表面發生均勻度(uniformity)不良,甚至淺碟(dishing)效應等問題。It is well known to those of ordinary skill in the art that the surface shape of the abrasive film layer and the pattern density of the surface of the abrasive film layer have a significant effect on the results of the CMP process. For example, when the pattern density on the surface of the abrasive film layer is not uniform, the polishing rate of the CMP process may vary depending on the pattern density, resulting in uniformity of the uniformity of the surface of the abrasive film layer, or even dishing. Effects and other issues.

然而,由於CMP製程早已成為半導體產業中達成全面性平坦化的主要途徑,因此如何改善上述因圖案密度不同而導致的均勻度與淺碟等問題,實為半導體製程中一重要的課題。However, since the CMP process has long been the main way to achieve comprehensive flattening in the semiconductor industry, how to improve the above-mentioned uniformity and shallow disc caused by different pattern densities is an important issue in the semiconductor process.

因此,本發明之一目的係在於提供一種可有效改善CMP製程結果之鑲嵌結構製作方法。Accordingly, it is an object of the present invention to provide a method of fabricating a damascene structure that can effectively improve the results of a CMP process.

本發明係提供一種鑲嵌結構之製作方法,該製作方法首先提供一基底,且該基底上形成有一介電層。接下來於該介電層內形成至少一溝渠(trench)、至少一介層洞(via)與至少一虛置介層洞(dummy via),隨後於該基底上形成一第一導電層,且該第一導電層填滿該溝渠、該介層洞、與該虛置介層洞。在形成該第一導電層之後,係進行一化學機械研磨製程,用以形成該鑲嵌結構,同時移除該虛置介層洞。The invention provides a method for fabricating a damascene structure. The fabrication method first provides a substrate, and a dielectric layer is formed on the substrate. Forming at least one trench, at least one via, and at least one dummy via in the dielectric layer, and then forming a first conductive layer on the substrate, and the The first conductive layer fills the trench, the via hole, and the dummy via hole. After forming the first conductive layer, a chemical mechanical polishing process is performed to form the damascene structure while removing the dummy via holes.

根據本發明所提供之鑲嵌結構製作方法,係於基底上形成複數個虛置介層洞,以改善基底表面的圖案均勻度,並藉以改善CMP製程的結果,以及避免淺碟問題的發生,而獲得一具有良好平坦度的基底表面。而在利用CMP製程形成該鑲嵌結構的同時,係完全移除虛置介層洞,以避免虛置介層洞在後續製程中造成影響。更重要的是,本發明所提供之虛置介層洞更可設置於禁止設置虛置介層洞的虛置元件阻擋區(dummy-blocking region)區內,而由於該等虛置介層洞可藉由CMP製程移除,因此在CMP製程之後,虛置元件阻擋區內仍然符合製程或產品要求,而不包含任何虛置介層洞。換句話說,本發明所提供之鑲嵌結構之製作方法,係可在不影響產品要求的前提下,有效地改善CMP製程的結果,獲得具有優良平坦度的基底表面。According to the method for fabricating a mosaic structure provided by the present invention, a plurality of dummy via holes are formed on a substrate to improve pattern uniformity of the surface of the substrate, thereby improving the result of the CMP process and avoiding the problem of the shallow dish. A surface of the substrate having good flatness is obtained. When the damascene structure is formed by the CMP process, the dummy via holes are completely removed to avoid the influence of the dummy via holes in the subsequent process. More importantly, the dummy via hole provided by the present invention can be disposed in a dummy-blocking region where the dummy via hole is prohibited from being disposed, and due to the dummy via hole Can be removed by the CMP process, so after the CMP process, the dummy component barrier region still meets the process or product requirements without any dummy via holes. In other words, the method for fabricating the damascene structure provided by the present invention can effectively improve the result of the CMP process without obtaining the requirements of the product, and obtain the surface of the substrate having excellent flatness.

請參閱第1圖至第5圖,第1圖至第5圖係為本發明所提供之鑲嵌結構製作方法之一第一較佳實施例之示意圖。如第1圖所示,本較佳實施例首先提供一基底100,如一矽基底、含矽基底、或矽覆絕緣(silicon-on-insulator,SOI)基底等。值得注意的是,本較佳實施例中基底100上係定義有一虛置元件阻擋區110與一般元件區112。虛置元件阻擋區110係為產品內,例如微機電系統(Micro Electro Mechanical Systems,MEMS)裝置內,特別定義之不容許任何虛置元件設置的區域。基底100內包含有一導電層102,而基底100上更包含一覆蓋導電層102的底層104。在本較佳實施例中,導電層102係包含金屬材料或含摻雜質的半導體材料所組成之導線、摻雜區、閘極等之導電構件,而底層104則包含氮摻雜碳化矽(nitrogen-doped silicon carbide,NDC)等介電材料。另外,基底100更包含一金屬層間介電(inter-metal dielectric,以下簡稱為IMD)層106或層間介電(inter-layer dielectric,ILD)層(圖未示),且如第1圖所示,IMD層106係覆蓋底層104。IMD層106可包含低介電常數(low dielectric constant,low-k)材料(介電常數值小於3.9)、超低介電常數(ultra low-k,ULK)材料(介電常數值小於2.6)、或多孔性超低介電常數(porous ULK)材料。由於低介電常數材料、ULK材料與多孔性ULK材料皆為較不緻密且結構強度較低的材料,因此本較佳實施例係選擇性地在IMD層106表面再形成一複合膜層108。複合膜層108至少包含一金屬硬遮罩(metal hard mask) 108a,此外複合膜層108更可如第1圖所示包含一氮氧化矽(silicon oxynitride,SiON)層108b與一氧化矽(silicon oxide,SiO)層108c。金屬硬遮罩108a可為一單層結構或一複合膜層結構,且係選自鈦(titanium,Ti)、氮化鈦(titanium nitride,TiN)、鉭(tantalum,Ta)、與氮化鉭(tantalum nitride,TaN)所組成之群組。舉例來說,本較佳實施例所提供金屬硬遮罩108a係可包含一Ti/TiN或Ta/TaN的複合膜層,但不限於此。另外值得注意的是,由於金屬硬遮罩108a具有相對於IMD層106的應力,因此本較佳實施例中,複合膜層108中的氧化矽層108c更可作為金屬硬遮罩108a與IMD層106之間的緩衝層,避免IMD層106直接受到金屬硬遮罩108a的應力的影響。此外,本較佳實施例亦可於金屬硬遮罩108a上形成一抗反射層(anti-reflective coating,ARC)(圖未示),其可包含介電材料如SiON或TEOS,但不限於此。Please refer to FIG. 1 to FIG. 5 . FIG. 1 to FIG. 5 are schematic diagrams showing a first preferred embodiment of a method for fabricating a mosaic structure according to the present invention. As shown in FIG. 1, the preferred embodiment first provides a substrate 100, such as a germanium substrate, a germanium-containing substrate, or a silicon-on-insulator (SOI) substrate. It should be noted that the dummy substrate blocking region 110 and the general component region 112 are defined on the substrate 100 in the preferred embodiment. The dummy element barrier region 110 is within the product, such as within a Micro Electro Mechanical Systems (MEMS) device, specifically defined as an area that does not allow for any dummy component placement. The substrate 100 includes a conductive layer 102 therein, and the substrate 100 further includes a bottom layer 104 covering the conductive layer 102. In the preferred embodiment, the conductive layer 102 comprises a conductive member of a metal material or a doped semiconductor material, a doped region, a gate, etc., and the bottom layer 104 comprises nitrogen-doped tantalum carbide ( Dielectric materials such as nitrogen-doped silicon carbide (NDC). In addition, the substrate 100 further includes an inter-metal dielectric (IMD) layer 106 or an inter-layer dielectric (ILD) layer (not shown), and as shown in FIG. The IMD layer 106 covers the bottom layer 104. The IMD layer 106 may comprise a low dielectric constant (low-k) material (dielectric constant value less than 3.9) and an ultra low-k (ULK) material (dielectric constant value less than 2.6). Or a porous ultra low dielectric constant (porous ULK) material. Since the low dielectric constant material, the ULK material and the porous ULK material are both less dense and less structurally strong, the preferred embodiment selectively forms a composite film layer 108 on the surface of the IMD layer 106. The composite film layer 108 includes at least a metal hard mask 108a. Further, the composite film layer 108 may further comprise a silicon oxynitride (SiON) layer 108b and silicon monoxide (silicon oxide) as shown in FIG. Oxide, SiO) layer 108c. The metal hard mask 108a may be a single layer structure or a composite film layer structure, and is selected from titanium (titanium, Ti), titanium nitride (TiN), tantalum (Ta), and tantalum nitride. Group of (tantalum nitride, TaN). For example, the metal hard mask 108a provided in the preferred embodiment may include a composite film layer of Ti/TiN or Ta/TaN, but is not limited thereto. It is also worth noting that since the metal hard mask 108a has a stress with respect to the IMD layer 106, in the preferred embodiment, the ruthenium oxide layer 108c in the composite film layer 108 can be used as the metal hard mask 108a and the IMD layer. The buffer layer between 106 prevents the IMD layer 106 from being directly affected by the stress of the metal hard mask 108a. In addition, the preferred embodiment may also form an anti-reflective coating (ARC) (not shown) on the metal hard mask 108a, which may include a dielectric material such as SiON or TEOS, but is not limited thereto. .

請繼續參閱第1圖。接下來,係於複合膜層108上形成一圖案化光阻120,圖案化光阻120係包含複數個開口,分別用以定義鑲嵌導線的溝渠圖案。在形成圖案化光阻120之後,係進行一蝕刻製程122,利用圖案化光阻120作為一蝕刻遮罩,透過圖案化光阻120的開口向下蝕刻複合膜層108與部分IMD層106,而於一般元件區223內的IMD層106的上半部形成溝渠126。Please continue to see Figure 1. Next, a patterned photoresist 120 is formed on the composite film layer 108. The patterned photoresist 120 includes a plurality of openings for defining a trench pattern of the embedded wires. After the patterned photoresist 120 is formed, an etching process 122 is performed, and the patterned photoresist 120 is used as an etch mask, and the composite film layer 108 and the portion of the IMD layer 106 are etched downward through the opening of the patterned photoresist 120. A trench 126 is formed in the upper half of the IMD layer 106 in the general component region 223.

請參閱第2圖。形成溝渠126之後,係可利用氧電漿等方式去除圖案化光阻120。接下來,係於基底100上再次形成一圖案化光阻130,圖案化光阻130係包含複數個開口132a、132b,其中開口132a係形成於基底100上的一般元件區112內,尤其是溝渠126內,用以定義鑲嵌導線的介層洞圖案。值得注意的是,本較佳實施例中的圖案化光阻130更利用開口132b於虛置元件阻擋區110內定義複數個虛置介層洞圖案。而在形成圖案化光阻130之後,係進行一蝕刻製程134,利用圖案化光阻130作為一蝕刻遮罩,透過圖案化光阻130的開口132a、132b向下蝕刻虛置元件阻擋區110內的複合膜層108與部分IMD層106以及溝渠126底部的IMD層106。Please refer to Figure 2. After the trench 126 is formed, the patterned photoresist 120 can be removed by means of oxygen plasma or the like. Next, a patterned photoresist 130 is formed on the substrate 100. The patterned photoresist 130 includes a plurality of openings 132a, 132b. The openings 132a are formed in the general component region 112 on the substrate 100, especially the trench. Within 126, a via pattern for defining the inlaid wires. It should be noted that the patterned photoresist 130 in the preferred embodiment further defines a plurality of dummy via patterns in the dummy element blocking region 110 by using the opening 132b. After forming the patterned photoresist 130, an etching process 134 is performed, and the patterned photoresist 130 is used as an etch mask, and the dummy element blocking region 110 is etched downward through the openings 132a and 132b of the patterned photoresist 130. The composite film layer 108 and a portion of the IMD layer 106 and the IMD layer 106 at the bottom of the trench 126.

請參閱第3圖。在蝕刻製程134之後,本較佳實施例係於各溝渠126底部的IMD層106內分別形成一介層洞136,並停止於底層104的表面,同時於虛置元件阻擋區110內的IMD層106上半部形成虛置介層洞138。最後,可利用氧電漿等方式去除圖案化光阻130。值得注意的是,在溝渠126底部的介層洞136具有一深度D;而在虛置元件阻擋區110內的虛置介層洞138具有一深度D’,由於介層洞136係藉由直接蝕刻IMD層106所得,而虛置介層洞138則需先蝕刻複合膜層108再蝕刻IMD層106,因此虛置介層洞深度D’係小於等於介層洞深度D。另外,如第3圖所示,虛置介層洞138與介層洞136不共平面。Please refer to Figure 3. After the etching process 134, the preferred embodiment forms a via 136 in the IMD layer 106 at the bottom of each trench 126, and stops at the surface of the bottom layer 104, while the IMD layer 106 in the dummy element barrier region 110. The upper half forms a dummy via 138. Finally, the patterned photoresist 130 can be removed by means of oxygen plasma or the like. It is worth noting that the via 136 at the bottom of the trench 126 has a depth D; and the dummy via 138 in the dummy barrier region 110 has a depth D', since the via 136 is directly The etched IMD layer 106 is obtained, and the dummy via 138 is first etched and the IMD layer 106 is etched, so that the dummy via depth D' is less than or equal to the via depth D. Additionally, as shown in FIG. 3, the dummy via 138 and the via 136 are not coplanar.

請參閱第4圖。在完成溝渠126與介層洞136之製作後,可藉由適合之蝕刻製程移除介層洞136底部的底層104,而於介層洞136的底部暴露出導電層102。隨後,係於溝渠126與介層洞136內形成一阻障層(圖未示)與一填滿溝渠126、介層洞136、與虛置介層洞138的導電層140。Please refer to Figure 4. After the fabrication of the trench 126 and the via 136 is completed, the bottom layer 104 at the bottom of the via 136 can be removed by a suitable etching process, and the conductive layer 102 is exposed at the bottom of the via 136. Subsequently, a barrier layer (not shown) and a conductive layer 140 filling the trench 126, the via 136, and the dummy via 138 are formed in the trench 126 and the via 136.

請參閱第4圖與第5圖。在形成導電層140之後,係進行一CMP製程150。CMP製程150首先移除基底100上多餘的導電層140,隨後繼續移除導電層140與複合膜層108。舉例來說,CMP製程150移除的導電層140與複合膜層108具有一研磨高度H1。值得注意的是,本較佳實施例所提供之CMP製程150在移除複合膜層108而暴露出IMD層106之後,更繼續移除部分的導電層140與部分IMD層106,直到將虛置元件阻擋區110內的虛置介層洞138如第5圖所示全部移除。詳細地說,CMP製程150所移除的部分導電層140與部分IMD層106具有一緩衝高度H2,且為確保虛置介層洞138被完全移除,緩衝高度H2係大於虛置介層洞深度D’。而在移除虛置介層洞138的同時,本較佳實施例更於一般元件區112內形成一鑲嵌導線160。Please refer to Figures 4 and 5. After forming the conductive layer 140, a CMP process 150 is performed. The CMP process 150 first removes the excess conductive layer 140 on the substrate 100 and then continues to remove the conductive layer 140 and the composite film layer 108. For example, the conductive layer 140 removed by the CMP process 150 and the composite film layer 108 have a polishing height H 1 . It should be noted that the CMP process 150 provided in the preferred embodiment further removes the portion of the conductive layer 140 and the portion of the IMD layer 106 after removing the composite film layer 108 to expose the IMD layer 106 until it is dummy. The dummy vias 138 in the element barrier region 110 are all removed as shown in FIG. In detail, the portion of the conductive layer 140 removed by the CMP process 150 and the portion of the IMD layer 106 have a buffer height H 2 , and to ensure that the dummy via 138 is completely removed, the buffer height H 2 is greater than the dummy dielectric. Hole depth D'. While the dummy via 138 is removed, the preferred embodiment forms a damascene conductor 160 in the general component region 112.

根據本較佳實施例所提供之鑲嵌導線之製作方法,係採用溝渠優先(trench first)製程。而在製作介層洞136時,同時於虛置元件阻擋區110內形成複數個虛置介層洞138,因此在進行CMP製程150製作鑲嵌導線160時,虛置介層洞138可用改善IMD層106表面圖案密度不均的問題,並藉以改善CMP製程150的結果,以避免淺碟問題的發生,尤其是避免虛置元件阻擋區110內發生淺碟的問題,進而獲得一具有良好平坦度的基底表面。According to the method for fabricating the inlaid wire provided by the preferred embodiment, a trench first process is employed. When the via hole 136 is formed, a plurality of dummy via holes 138 are simultaneously formed in the dummy device barrier region 110. Therefore, when the damascene wire 160 is formed in the CMP process 150, the dummy via hole 138 can be used to improve the IMD layer. 106 The problem of uneven surface pattern density, and thereby improving the result of the CMP process 150, to avoid the occurrence of the problem of the shallow dish, especially to avoid the problem of the occurrence of the shallow dish in the dummy element blocking region 110, thereby obtaining a good flatness. The surface of the substrate.

請參閱第6圖至第10圖,第6圖至第10圖係為本發明所提供之半導體積體電路之製作方法之一第二較佳實施例之示意圖。首先需注意的是,第二較佳實施例中與第一較佳實施例相同之元件可採用相同之材料,故以下係不再贅述。如第6圖所示,本較佳實施例首先提供一基底200,且基底200上亦定義有一虛置元件阻擋區210與一般元件區212。基底200內包含有一導電層202,而基底200上則依序包含一底層204與一IMD層206。本較佳實施例亦可在IMD層206表面再形成一複合膜層208。複合膜層208至少包含一金屬硬遮罩208a,此外複合膜層208更可如第6圖所示包含一氮氧化矽層208b與一氧化矽208c。由於金屬硬遮罩208a具有相對於IMD層206的應力,因此本較佳實施例中,複合膜層208中的氧化矽層208c更可作為金屬硬遮罩208a與IMD層206之間的緩衝層,避免IMD層206直接受到金屬硬遮罩208a的應力的影響。此外,本較佳實施例亦可於金屬硬遮罩208a上形成一抗反射層(圖未示)。Please refer to FIG. 6 to FIG. 10 . FIG. 6 to FIG. 10 are schematic diagrams showing a second preferred embodiment of a method for fabricating a semiconductor integrated circuit according to the present invention. It should be noted that the same components of the second preferred embodiment as those of the first preferred embodiment may be the same materials, and therefore will not be further described below. As shown in FIG. 6, the preferred embodiment first provides a substrate 200, and a dummy element blocking region 210 and a general device region 212 are defined on the substrate 200. The substrate 200 includes a conductive layer 202 therein, and the substrate 200 includes a bottom layer 204 and an IMD layer 206 in sequence. The preferred embodiment can also form a composite film layer 208 on the surface of the IMD layer 206. The composite film layer 208 includes at least one metal hard mask 208a. Further, the composite film layer 208 further includes a ruthenium oxynitride layer 208b and a ruthenium oxide 208c as shown in FIG. Since the metal hard mask 208a has a stress with respect to the IMD layer 206, in the preferred embodiment, the ruthenium oxide layer 208c in the composite film layer 208 can serve as a buffer layer between the metal hard mask 208a and the IMD layer 206. The IMD layer 206 is prevented from being directly affected by the stress of the metal hard mask 208a. In addition, the preferred embodiment can also form an anti-reflection layer (not shown) on the metal hard mask 208a.

請繼續參閱第6圖。接下來,係於複合膜層208上形成一圖案化光阻220,圖案化光阻220係包含複數個開口。值得注意的是,一般元件區212內的開口係用以定義鑲嵌導線的介層洞圖案;而本較佳實施例更利用虛置元件阻擋區210內的開口定義複數個虛置介層洞圖案。在形成圖案化光阻220之後,即進行一蝕刻製程222,利用圖案化光阻220作為一蝕刻遮罩,透過圖案化光阻220的開口向下蝕刻複合膜層208與部分IMD層206,而於一般元件區212內的IMD層206上半部形成一介層洞開口226a,同時於虛置元件阻擋區210內的IMD層206上半部形成虛置介層洞228。值得注意的是,本較佳實施例中的介層洞開口226a具有一深度D”;而在虛置元件阻擋區210內的虛置介層洞228具有一深度D’,且虛置介層洞深度D’係等於介層洞開口深度D”。另外,如第6圖所示,虛置介層洞228與介層洞開口226a共平面。Please continue to see Figure 6. Next, a patterned photoresist 220 is formed on the composite film layer 208, and the patterned photoresist 220 includes a plurality of openings. It should be noted that the openings in the general device region 212 are used to define the via pattern of the embedded wires; and the preferred embodiment further defines a plurality of dummy via patterns in the openings in the dummy barrier region 210. . After forming the patterned photoresist 220, an etching process 222 is performed, and the patterned photoresist 42 is used as an etch mask, and the composite film layer 208 and the portion of the IMD layer 206 are etched downward through the opening of the patterned photoresist 220. A via opening 226a is formed in the upper half of the IMD layer 206 in the general device region 212, and a dummy via hole 228 is formed in the upper half of the IMD layer 206 in the dummy device blocking region 210. It should be noted that the via opening 226a in the preferred embodiment has a depth D"; and the dummy via 228 in the dummy barrier region 210 has a depth D' and a dummy via The hole depth D' is equal to the opening depth D" of the via hole. In addition, as shown in FIG. 6, the dummy via hole 228 is coplanar with the via hole opening 226a.

請參閱第7圖。在形成介層洞開口226a與虛置介層洞228之後,係用氧電漿等方式去除圖案化光阻220。接下來,係於基底200上再次形成一圖案化光阻230,圖案化光阻230係包含複數個開口232,用以於一般元件區212內定義出鑲嵌導線的溝渠圖案。值得注意的是,圖案化光阻230係覆蓋虛置元件阻擋區210,尤其填滿虛置介層洞228。而在形成圖案化光阻230之後,係進行一蝕刻製程234,利用圖案化光阻230作為一蝕刻遮罩,透過圖案化光阻230的開口232向下蝕刻一般元件區212內的複合膜層208與暴露於介層洞開口226a內的部分IMD層206。Please refer to Figure 7. After the via opening 226a and the dummy via 228 are formed, the patterned photoresist 220 is removed by means of oxygen plasma or the like. Next, a patterned photoresist 230 is formed on the substrate 200. The patterned photoresist 230 includes a plurality of openings 232 for defining a trench pattern of the embedded wires in the general device region 212. It is worth noting that the patterned photoresist 230 covers the dummy element barrier region 210, and in particular fills the dummy via hole 228. After forming the patterned photoresist 230, an etching process 234 is performed, and the patterned photoresist is used as an etch mask to etch the composite film layer in the general device region 212 through the opening 232 of the patterned photoresist 230. 208 is exposed to a portion of the IMD layer 206 within the via opening 226a.

請參閱第7圖與第8圖。在蝕刻製程234之後,本較佳實施例係於一般元件區212內IMD層206中分別形成一如第8圖所示之溝渠236,其分別對應於開口232。另外,蝕刻製程234更將開介層洞開口226a轉移至IMD層206的下半部,因此於溝渠236的底部形成如第7圖所示之介層洞226。值得注意的是,在進行蝕刻製程234時,虛置元件阻擋區210內的虛置介層洞228係被圖案化光阻230覆蓋保護,因此並未受到影響。最後,可利用氧電漿等方式去除圖案化光阻230。如第8圖所示,虛置元件阻擋區210內的虛置介層洞228具有一深度D’,而一般元件區212內的介層洞226則獲得一深度D,且虛置介層洞深度D’係小於等於介層洞深度D。另外,如第8圖所示,虛置介層洞228與介層洞226不共平面。Please refer to Figure 7 and Figure 8. After the etching process 234, the preferred embodiment forms a trench 236 as shown in FIG. 8 in the IMD layer 206 in the general component region 212, which corresponds to the opening 232, respectively. In addition, the etching process 234 transfers the via opening 226a to the lower half of the IMD layer 206, thereby forming a via 226 as shown in FIG. 7 at the bottom of the trench 236. It should be noted that when the etching process 234 is performed, the dummy via holes 228 in the dummy element blocking region 210 are covered and protected by the patterned photoresist 230, and thus are not affected. Finally, the patterned photoresist 230 can be removed by means of oxygen plasma or the like. As shown in FIG. 8, the dummy via hole 228 in the dummy element barrier region 210 has a depth D', and the via hole 226 in the general device region 212 obtains a depth D and a dummy via hole. The depth D' is less than or equal to the depth D of the via. In addition, as shown in FIG. 8, the dummy via 228 and the via 226 are not coplanar.

請參閱第9圖。在完成溝渠236與介層洞226之製作後,可藉由適合之蝕刻製程移除介層洞226底部的底層204,而暴露出導電層202。隨後,係於溝渠236與介層洞226內形成一阻障層(圖未示)與一填滿溝渠236、介層洞226、與虛置介層洞228的導電層240。Please refer to Figure 9. After the fabrication of the trench 236 and the via 226 is completed, the conductive layer 202 can be exposed by removing the underlayer 204 at the bottom of the via 226 by a suitable etching process. Subsequently, a barrier layer (not shown) and a conductive layer 240 filling the trench 236, the via 226, and the dummy via 228 are formed in the trench 236 and the via 226.

請參閱第9圖與第10圖。在形成導電層240之後,係進行一CMP製程250。CMP製程250首先移除基底200上多餘的導電層240,隨後繼續移除導電層240與複合膜層208。舉例來說,CMP製程250移除的導電層240與複合膜層208具有一研磨高度H1。值得注意的是,本較佳實施例所提供之CMP製程250在移除複合膜層208而暴露出IMD層206之後,更繼續移除部分的導電層240與部分IMD層206,直到將虛置元件阻擋區210內的虛置介層洞228如第10圖所示全部移除。詳細地說,CMP製程250所移除的部分導電層240與部分IMD層206具有一緩衝高度H2,且為確保虛置介層洞228被完全移除,緩衝高度H2係大於虛置介層洞深度D’。而在移除虛置介層洞228的同時,本較佳實施例更於一般元件區212內形成一鑲嵌導線260。Please refer to Figure 9 and Figure 10. After forming the conductive layer 240, a CMP process 250 is performed. The CMP process 250 first removes the excess conductive layer 240 on the substrate 200 and then continues to remove the conductive layer 240 and the composite film layer 208. For example, the conductive layer 240 removed from the CMP process 250 and the composite film layer 208 have a polishing height H 1 . It should be noted that the CMP process 250 provided in the preferred embodiment further removes the portion of the conductive layer 240 and the portion of the IMD layer 206 after removing the composite film layer 208 to expose the IMD layer 206 until the dummy layer is removed. The dummy via holes 228 in the element barrier region 210 are all removed as shown in FIG. In detail, the portion of the conductive layer 240 removed from the CMP process 250 and the portion of the IMD layer 206 have a buffer height H 2 , and to ensure that the dummy via hole 228 is completely removed, the buffer height H 2 is greater than the dummy dielectric. Hole depth D'. While the dummy via 228 is removed, the preferred embodiment further forms a damascene conductor 260 in the general component region 212.

根據本較佳實施例所提供之鑲嵌導線之製作方法,係採用部分介層洞優先(partial-via first)製程。而在製作介層洞開口226a時,同時於虛置元件阻擋區110內形成複數個虛置介層洞228,因此在進行CMP製程250製作鑲嵌導線260時,虛置介層洞228可用改善IMD層206表面圖案密度不均的問題,並藉以改善CMP製程250的結果,以避免淺碟問題的發生,尤其是避免虛置元件阻擋區110內發生淺碟的問題,進而獲得一具有良好平坦度的基底表面。According to the method for fabricating the inlaid wire provided by the preferred embodiment, a partial-via first process is employed. When the via hole opening 226a is formed, a plurality of dummy via holes 228 are simultaneously formed in the dummy device blocking region 110. Therefore, when the damascene wire 260 is formed in the CMP process 250, the dummy via hole 228 can be used to improve the IMD. The problem that the surface pattern density of the layer 206 is uneven, and the result of the CMP process 250 is improved, so as to avoid the problem of the shallow dish, especially the problem of the occurrence of the shallow dish in the dummy element blocking region 110, thereby obtaining a good flatness. The surface of the substrate.

此外需注意的是,本發明雖僅揭露溝渠優先製程與介層洞優先製程,然而熟悉該項技藝之人士應知鑲嵌製程中常用的其他製程如介層洞優先(via-first)製程與自行對準(self-aligned)製程等亦可採用上述揭露之步驟,以改善CMP製程結果。In addition, it should be noted that although the present invention only discloses the trench priority process and the via hole priority process, those skilled in the art should be aware of other processes commonly used in the damascene process, such as via-first process and self-management. The self-aligned process, etc., may also employ the steps disclosed above to improve the CMP process results.

根據本發明所提供之鑲嵌結構製作方法,係於基底上絕對不允許設置任何元件之區域形成複數個虛置介層洞,以改善基底表面的圖案均勻度,並藉以改善該處大面積的空曠區域進行CMP製程的結果,以及避免淺碟問題的發生,並獲得一具有良好平坦度的基底表面。而在利用CMP製程形成該鑲嵌結構的同時,移除虛置介層洞,以避免虛置介層洞在後續製程中造成影響。更重要的是,本發明所提供之虛置介層洞更可設置於禁止設置虛置介層洞的虛置元件阻擋區內,例如包含微機電系統(MEMS)的晶圓上所定義的虛置元件阻擋區內,而由於該等虛置介層洞可藉由CMP製程移除,因此在CMP製程之後,虛置元件阻擋區內仍然符合製程或產品要求,而不包含任何虛置介層洞。換句話說,本發明所提供之鑲嵌結構之製作方法,係可在不影響產品要求的前提下,有效地改善CMP製程的結果,獲得具有優良平坦度的基底表面。According to the method for fabricating the mosaic structure provided by the present invention, a plurality of dummy via holes are formed on the substrate on the substrate, so as to improve the pattern uniformity of the surface of the substrate, thereby improving the large area of the space. The area is the result of the CMP process, as well as avoiding the occurrence of shallow dish problems and obtaining a substrate surface with good flatness. While forming the damascene structure by using the CMP process, the dummy via holes are removed to avoid the influence of the dummy via holes in the subsequent process. More importantly, the dummy via hole provided by the present invention can be disposed in a dummy element blocking region where the dummy via hole is prohibited from being disposed, for example, a dummy defined on a wafer including a microelectromechanical system (MEMS). The component is in the barrier region, and since the dummy via holes can be removed by the CMP process, after the CMP process, the dummy component barrier region still meets the process or product requirements without including any dummy vias. hole. In other words, the method for fabricating the damascene structure provided by the present invention can effectively improve the result of the CMP process without obtaining the requirements of the product, and obtain the surface of the substrate having excellent flatness.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

100...基底100. . . Base

102...導電層102. . . Conductive layer

104...底層104. . . Bottom layer

106...金屬層間介電層106. . . Metal interlayer dielectric layer

108...複合膜層108. . . Composite film

108a...金屬硬遮罩108a. . . Metal hard mask

108b...氮氧化矽層108b. . . Niobium oxynitride layer

108c...氧化矽層108c. . . Cerium oxide layer

110...虛置元件阻擋區110. . . Virtual component barrier

112...一般元件區112. . . General component area

120...圖案化光阻120. . . Patterned photoresist

122...蝕刻製程122. . . Etching process

126...溝渠126. . . ditch

130...圖案化光阻130. . . Patterned photoresist

132a...開口132a. . . Opening

132b...開口132b. . . Opening

134...蝕刻製程134. . . Etching process

136...介層洞136. . . Via hole

138...虛置介層洞138. . . Virtual interlayer hole

140...導電層140. . . Conductive layer

150...化學機械研磨製程150. . . Chemical mechanical polishing process

160...鑲嵌導線160. . . Mosaic wire

200...基底200. . . Base

202...導電層202. . . Conductive layer

204...底層204. . . Bottom layer

206...金屬層間介電層206. . . Metal interlayer dielectric layer

208...複合膜層208. . . Composite film

208a...金屬硬遮罩208a. . . Metal hard mask

208b...氮氧化矽層208b. . . Niobium oxynitride layer

208c...氧化矽層208c. . . Cerium oxide layer

210...虛置元件阻擋區210. . . Virtual component barrier

212...一般元件區212. . . General component area

220...圖案化光阻220. . . Patterned photoresist

222...蝕刻製程222. . . Etching process

226...介層洞226. . . Via hole

226a...介層洞開口226a. . . Interlayer opening

228...虛置介層洞228. . . Virtual interlayer hole

230...圖案化光阻230. . . Patterned photoresist

232...開口232. . . Opening

234...蝕刻製程234. . . Etching process

236...溝渠236. . . ditch

240...導電層240. . . Conductive layer

250...化學機械研磨製程250. . . Chemical mechanical polishing process

260...鑲嵌導線260. . . Mosaic wire

D...介層洞深度D. . . Via depth

D’...虛置介層洞深度D’. . . Virtual interlayer depth

D”...介層洞開口深度D"...interlayer opening depth

H1...研磨高度H 1 . . . Grinding height

H2...緩衝高度H 2 . . . Buffer height

第1圖至第5圖係為本發明所提供之半導體積體電路之製作方法之一第一較佳實施例之示意圖。1 to 5 are schematic views showing a first preferred embodiment of a method of fabricating a semiconductor integrated circuit provided by the present invention.

第6圖至第10圖係為本發明所提供之半導體積體電路之製作方法之一第二較佳實施例之示意圖。6 to 10 are schematic views showing a second preferred embodiment of a method of fabricating a semiconductor integrated circuit provided by the present invention.

100...基底100. . . Base

102...導電層102. . . Conductive layer

104...底層104. . . Bottom layer

106...金屬層間介電層106. . . Metal interlayer dielectric layer

108...複合膜層108. . . Composite film

108a...金屬硬遮罩108a. . . Metal hard mask

108b...氮氧化矽層108b. . . Niobium oxynitride layer

108c...氧化矽層108c. . . Cerium oxide layer

110...虛置元件阻擋區110. . . Virtual component barrier

112...一般元件區112. . . General component area

126...溝渠126. . . ditch

136...介層洞136. . . Via hole

138...虛置介層洞138. . . Virtual interlayer hole

140...導電層140. . . Conductive layer

150...化學機械研磨製程150. . . Chemical mechanical polishing process

D...介層洞深度D. . . Via depth

D’...虛置介層洞深度D’. . . Virtual interlayer depth

H1...研磨高度H 1 . . . Grinding height

H2...緩衝高度H 2 . . . Buffer height

Claims (13)

一種鑲嵌結構之製作方法,包含有:提供一基底,該基底上形成有一介電層;該基底上形成一第一圖案化光阻,用以定義至少一介層洞(via)與至少一虛置介層洞(dummy via);進行一第一蝕刻製程,以於該介電層內形成至少一介層洞開口與該虛置介層洞;於該第一蝕刻製程之後,於該介電層內形成該介層洞與至少一溝渠(trench);於該基底上形成一第一導電層,且該第一導電層填滿該溝渠、該介層洞、與該虛置介層洞;以及進行一化學機械研磨製程,用以形成該鑲嵌結構,同時移除該虛置介層洞。 A method for fabricating a damascene structure, comprising: providing a substrate, wherein a dielectric layer is formed on the substrate; forming a first patterned photoresist on the substrate for defining at least one via and at least one dummy a dummy via; performing a first etching process to form at least one via opening and the dummy via in the dielectric layer; after the first etching process, in the dielectric layer Forming the via hole and the at least one trench; forming a first conductive layer on the substrate, and the first conductive layer fills the trench, the via hole, and the dummy via hole; A chemical mechanical polishing process is used to form the damascene structure while removing the dummy via holes. 如申請專利範圍第1項所述之製作方法,其中該基底內更包含一第二導電層。 The manufacturing method of claim 1, wherein the substrate further comprises a second conductive layer. 如申請專利範圍第2項所述之製作方法,其中該第二導電層係暴露於該介層洞之底部。 The manufacturing method of claim 2, wherein the second conductive layer is exposed to the bottom of the via hole. 如申請專利範圍第1項所述之製作方法,其中該介層洞開口與該虛置介層洞共平面。 The manufacturing method of claim 1, wherein the via opening is coplanar with the dummy via. 如申請專利範圍第1項所述之製作方法,其中形成該溝渠之步驟更包含:於該基底上形成一第二圖案化光阻,用以定義該溝渠;以及進行一第二蝕刻製程,以於該介電層內形成該溝渠,同時轉移該介層洞開口至該溝渠底部之該介電層內,以形成該介層洞。 The manufacturing method of claim 1, wherein the step of forming the trench further comprises: forming a second patterned photoresist on the substrate to define the trench; and performing a second etching process to The trench is formed in the dielectric layer, and the via opening is transferred into the dielectric layer at the bottom of the trench to form the via. 如申請專利範圍第5項所述之製作方法,其中該第二圖案化光阻係填滿該虛置介層洞。 The manufacturing method of claim 5, wherein the second patterned photoresist fills the dummy via hole. 如申請專利範圍第1項所述之製作方法,更包含於該介電層表面形成一複合膜層之步驟,進行於形成該介層洞開口與該虛置介層洞之前。 The manufacturing method of claim 1, further comprising the step of forming a composite film layer on the surface of the dielectric layer, before forming the via hole opening and the dummy via hole. 如申請專利範圍第7項所述之製作方法,其中該複合膜層至少包含一金屬硬遮罩。 The manufacturing method of claim 7, wherein the composite film layer comprises at least one metal hard mask. 如申請專利範圍第1項所述之製作方法,其中形成該介層洞與該虛置介層洞不共平面。 The manufacturing method of claim 1, wherein the via hole is formed to be not coplanar with the dummy via hole. 如申請專利範圍第1項所述之製作方法,其中該虛置介層洞之深度小於等於該介層洞之深度。 The manufacturing method of claim 1, wherein the depth of the dummy via hole is less than or equal to the depth of the via hole. 如申請專利範圍第10項所述之製作方法,其中該CMP製程更移除部分該第一導電層與部分該介電層,且該等被移除之部分該第一導電層與部分該介電層具有一緩衝高度。 The manufacturing method of claim 10, wherein the CMP process further removes a portion of the first conductive layer and a portion of the dielectric layer, and the removed portions of the first conductive layer and a portion of the dielectric layer The electrical layer has a buffer height. 如申請專利範圍第11項所述之製作方法,其中該緩衝高度大於該虛置介層洞之深度。 The manufacturing method of claim 11, wherein the buffer height is greater than the depth of the dummy via hole. 如申請專利範圍第1項所述之製作方法,其中該基底上係定義有一虛置元件阻擋區(dummy-blocking region),且該虛置介層洞係形成於該虛置元件阻擋區內。 The manufacturing method of claim 1, wherein the substrate defines a dummy-blocking region, and the dummy via hole is formed in the dummy element blocking region.
TW101101913A 2012-01-18 2012-01-18 Method for manufacturing damascene structure TWI550713B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101101913A TWI550713B (en) 2012-01-18 2012-01-18 Method for manufacturing damascene structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101101913A TWI550713B (en) 2012-01-18 2012-01-18 Method for manufacturing damascene structure

Publications (2)

Publication Number Publication Date
TW201332014A TW201332014A (en) 2013-08-01
TWI550713B true TWI550713B (en) 2016-09-21

Family

ID=49479090

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101101913A TWI550713B (en) 2012-01-18 2012-01-18 Method for manufacturing damascene structure

Country Status (1)

Country Link
TW (1) TWI550713B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070224795A1 (en) * 2006-03-22 2007-09-27 Taiwan Semiconductor Manufacturing Company, Ltd. Dummy vias for damascene process
US20090227113A1 (en) * 2006-06-22 2009-09-10 United Microelectronics Corp. Method for fabricating opening
US20100291729A1 (en) * 2009-05-12 2010-11-18 Canon Kabushiki Kaisha Method of manufacturing photoelectric conversion device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070224795A1 (en) * 2006-03-22 2007-09-27 Taiwan Semiconductor Manufacturing Company, Ltd. Dummy vias for damascene process
US20090227113A1 (en) * 2006-06-22 2009-09-10 United Microelectronics Corp. Method for fabricating opening
US20100291729A1 (en) * 2009-05-12 2010-11-18 Canon Kabushiki Kaisha Method of manufacturing photoelectric conversion device

Also Published As

Publication number Publication date
TW201332014A (en) 2013-08-01

Similar Documents

Publication Publication Date Title
US8298935B2 (en) Dual damascene process
TWI618147B (en) Fabrication methods of semiconductor devices
US7545045B2 (en) Dummy via for reducing proximity effect and method of using the same
US9312204B2 (en) Methods of forming parallel wires of different metal materials through double patterning and fill techniques
TW201727709A (en) Semiconductor structure having tapered damascene aperture and method of the same
US9018092B2 (en) Encapsulated metal interconnect
US9330964B2 (en) Semiconductor structures and fabrication methods for improving undercut between porous film and hardmask film
US20060194426A1 (en) Method for manufacturing dual damascene structure with a trench formed first
TW201913762A (en) Method of forming semiconductor device and semiconductor device
US8883638B2 (en) Method for manufacturing damascene structure involving dummy via holes
TW201732930A (en) Method of forming semiconductor
TW201813038A (en) Interconnects with inner sacrificial spacers
JP2001284451A (en) Method for manufacturing two-dimensional waveform structure
US9741614B1 (en) Method of preventing trench distortion
US20130161798A1 (en) Graded density layer for formation of interconnect structures
CN102034733A (en) Interconnecting structure and forming method thereof
TWI550713B (en) Method for manufacturing damascene structure
TW201705360A (en) Conductive plug and method of forming the same
KR101898316B1 (en) Metal hardmask all in one integrated etch
CN102044471A (en) Interconnecting structure and forming method thereof
TWI509740B (en) Dual damascene process
KR100955838B1 (en) Semiconductor device and method for forming metal line in the same
US8048799B2 (en) Method for forming copper wiring in semiconductor device
JP2008053308A (en) Manufacturing method of semiconductor device, and plasma processing equipment
CN106971973B (en) Semiconductor device, manufacturing method thereof and electronic device