TWI509740B - Dual damascene process - Google Patents
Dual damascene process Download PDFInfo
- Publication number
- TWI509740B TWI509740B TW099140178A TW99140178A TWI509740B TW I509740 B TWI509740 B TW I509740B TW 099140178 A TW099140178 A TW 099140178A TW 99140178 A TW99140178 A TW 99140178A TW I509740 B TWI509740 B TW I509740B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- dual damascene
- opening
- mask
- damascene process
- Prior art date
Links
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Description
本發明係提供一種雙鑲嵌製程,尤指一種可以應用於超低介電常數(ultra low-k)材料之雙鑲嵌製程。The present invention provides a dual damascene process, and more particularly a dual damascene process that can be applied to ultra low dielectric constant (ultra low-k) materials.
雙鑲嵌製程(dual damascene process)是一種能同時形成一金屬導線以及一通孔插塞(via plug)之上下堆疊內連線結構的方法。雙鑲嵌結構是用來連接半導體晶片中各層間的不同元件與導線,並利用其周圍的金屬層間介電材料(inter metal dielectrics)及內層介電材料(inter layer dielectrics)來與其他元件相隔離。由於在製備雙鑲嵌結構時,最後還會進行一道化學機械研磨製程(chemical mechanical polish,CMP),使半導體晶片表面變的很平坦,非常利於後續各種沉積及微影(photo-lithography)等製程的進行,以製備結構良好的多重金屬內連線(multilevel interconnects),因此雙鑲嵌結構被廣泛地應用在積體電路的製程上。The dual damascene process is a method of simultaneously forming a metal wire and a via plug on top of the stacked interconnect structure. The dual damascene structure is used to connect different components and wires between layers in a semiconductor wafer, and is isolated from other components by inter-metal inter-metal dielectrics and inter-layer dielectrics. . Since a chemical mechanical polish (CMP) is finally used in the preparation of the dual damascene structure, the surface of the semiconductor wafer is flattened, which is advantageous for various subsequent deposition and photo-lithography processes. This is done to prepare well-structured multilevel interconnects, so the dual damascene structure is widely used in the process of integrated circuits.
此外,銅雙鑲嵌技術搭配低介電常數(low-k)介電層更為目前所知對於高積集度、高速(high-speed)邏輯積體電路晶片製造以及針對深次微米(deep sub-micro meter)半導體製程最佳的金屬內連線解決方案。這是由於銅具有低電阻值(比鋁低30%)以及較佳抗電致遷(electromigration resistance)的特性,而低介電常數材料則可幫助降低金屬導線間之電容效應所造成的RC延遲(RC delay),由此可知,低介電常數材料搭配銅金屬雙鑲嵌內連線技術在積體電路製程中顯得日益重要。In addition, copper dual damascene technology with low dielectric constant (low-k) dielectric layers is now known for high-accumulation, high-speed logic integrated circuit chip fabrication and for deep sub-micron (deep sub -micro meter) The best metal interconnect solution for semiconductor processes. This is because copper has low resistance (30% lower than aluminum) and better resistance to electromigration resistance, while low dielectric constant materials help reduce the RC delay caused by the capacitive effect between metal wires. (RC delay), it can be seen that the low dielectric constant material with copper metal dual damascene interconnect technology is becoming more and more important in the integrated circuit process.
然而,習知雙鑲嵌製程需要多次反覆的上光阻、底抗反射層塗佈、曝光、顯影、顯影後檢驗(after developing inspection,ADI)、蝕刻以及蝕刻後檢驗(after etching inspection,AEI)等步驟才能夠完成。這在積體電路製程的關鍵尺寸(critical dimension,CD)縮小演進至深次微米甚至奈米(nanometer,1 nm~100 nm)等級時,不但十分費時、耗費成本,同時也造成產能以及圖案轉移的精確度下降。尤其是當進行製程異常所需的重工(rework)步驟時,更會嚴重影響金屬層間介電層的品質,發生介電常數劣化(dielectric constant,k value,degradation)或關鍵尺寸變異(critical dimension variation)等問題,造成介電層發生線路變形(line distortion)或產生脆裂(fragile)的狀況,使得原先應為直線之溝渠或者通孔(via hole)產生扭曲(wiggling)的情況,進而影響後續金屬化製程的良率。However, the conventional dual damascene process requires multiple repeated upper photoresist, bottom anti-reflective coating, exposure, development, after developing inspection (ADI), etching, and after etching inspection (AEI). Wait for the steps to complete. This is not only time-consuming and costly, but also causes capacity and pattern transfer when the critical dimension (CD) of the integrated circuit process is reduced to the deep sub-micron or nanometer (1 nm to 100 nm) level. The accuracy is reduced. In particular, when the rework step required for process anomalies is performed, the quality of the dielectric layer between the metal layers is seriously affected, and dielectric constant degradation (dielectric constant, k value, degradation) or critical dimension variation (critical dimension variation) occurs. And other problems, causing line distortion or fragile of the dielectric layer, causing a wriggling of a ditch or a via hole that would otherwise be a straight line, thereby affecting the subsequent The yield of the metallization process.
因此隨著積體電路的發展日趨精密與複雜,如何提昇雙鑲嵌製程的良率,是目前積體電路製程中重要的課題。Therefore, with the development of integrated circuits becoming more sophisticated and complex, how to improve the yield of the dual damascene process is an important issue in the current integrated circuit process.
因此,本發明之目的即在提供一種可應用於超低介電常數材料之製作雙鑲嵌結構的方法。Accordingly, it is an object of the present invention to provide a method of fabricating a dual damascene structure that can be applied to ultra low dielectric constant materials.
根據本發明所提供之申請專利範圍,係提供一種雙鑲嵌製程,首先形成一介電層於一基底上,接著形成一第一圖案化遮罩於該介電層上,且該第一圖案化遮罩具有一開口,之後形成一材料層於該介電層上並覆蓋該第一圖案化遮罩,再形成一第二圖案化遮罩於該介電層上,且該第二圖案化遮罩具有一第一開孔,接著於該第二圖案化遮罩中形成一第二開孔,且該第二開孔與該第一開孔具有一特定間距,最後利用該第二圖案化遮罩當作蝕刻遮罩,以經由該第一開孔與該第二開孔移除部份之該材料層與部份之該介電層。According to the scope of the invention provided by the present invention, a dual damascene process is provided, in which a dielectric layer is first formed on a substrate, and then a first patterned mask is formed on the dielectric layer, and the first patterning is performed. The mask has an opening, and then a material layer is formed on the dielectric layer and covers the first patterned mask, and then a second patterned mask is formed on the dielectric layer, and the second patterned mask The cover has a first opening, and then a second opening is formed in the second patterned mask, and the second opening has a specific spacing from the first opening, and finally the second patterned cover is used. The mask acts as an etch mask to remove portions of the material layer and portions of the dielectric layer through the first opening and the second opening.
由於本發明係於預定形成雙鑲嵌圖案的介電層上方設置蝕刻停止層、材料層與護層等,因此介電層完全不會受到製作溝渠與通孔(via hole)之圖案化遮罩所需的蝕刻、清潔、去光阻等步驟、以及顯影後檢驗(ADI)或蝕刻後檢驗(AEI)發生異常時的重工步驟所影響,進而可有效確保金屬層間介電層與雙鑲嵌圖案的品質,提高良率。Since the present invention is provided with an etch stop layer, a material layer, a protective layer, and the like over a dielectric layer that is intended to form a dual damascene pattern, the dielectric layer is not exposed at all by the patterned mask of the trench and the via hole. The steps of etching, cleaning, photoresist removal, etc., and the rework steps when the post-development inspection (ADI) or post-etch inspection (AEI) is abnormal, can effectively ensure the quality of the inter-metal dielectric layer and the dual damascene pattern. , improve yield.
為使熟習本發明所屬技術領域之一般技藝者能更進一步了解本發明,下文特列舉本發明之數個較佳實施例,並配合所附圖式,詳細說明本發明的構成內容及所欲達成之功效。The present invention will be further understood by those skilled in the art to which the present invention pertains. The effect.
請參閱第1圖至第10圖,第1圖至第10圖係為本發明所提供之雙鑲嵌製作方法之一較佳實施例的示意圖。如第1圖所示,首先提供一基底100,如矽基底、含矽基底、或矽覆絕緣(silicon-on-insulator,SOI)基底等,基底100表面上形成有至少兩導電件102、104,且該兩導電件102、104之間另形成有一絕緣材料層106用以電性隔離此兩導電件102、104。其中,導電件102、104可為下列中至少一者:金屬氧化物半導體(metal-oxide semiconductor,MOS)電晶體元件的汲極/源極與閘極、電阻、直通矽晶穿孔(Through-Silicon Via,TSV)、摻雜區、金屬導線層等;絕緣材料層106可為層間介電層或淺溝渠隔離(STI)等,且視產品設計與製程需求,導電件102、104與基底100之間另可形成有至少一層間介電層(圖未示)。Please refer to FIG. 1 to FIG. 10 . FIG. 1 to FIG. 10 are schematic diagrams showing a preferred embodiment of the dual damascene manufacturing method provided by the present invention. As shown in FIG. 1, a substrate 100 such as a germanium substrate, a germanium-containing substrate, or a silicon-on-insulator (SOI) substrate is provided, and at least two conductive members 102, 104 are formed on the surface of the substrate 100. An insulating material layer 106 is further formed between the two conductive members 102 and 104 for electrically isolating the two conductive members 102 and 104. The conductive members 102 and 104 may be at least one of the following: a drain/source and a gate of a metal-oxide semiconductor (MOS) transistor, a resistor, and a through-silicon via (Through-Silicon) Via, TSV), doped regions, metal wiring layers, etc.; the insulating material layer 106 may be an interlayer dielectric layer or shallow trench isolation (STI), etc., and depending on product design and process requirements, the conductive members 102, 104 and the substrate 100 There may be at least one interlayer dielectric layer (not shown).
接著於基底100表面上依序形成一蓋層108、一介電層110以及一第一圖案化遮罩112。其中,蓋層108係為一選擇性形成的材料層,用以保護導電件102、104並可加強後續形成之介電層110的附著力。蓋層108的材質例如是氮化矽(SiN)、氧化矽(SiO)、碳化矽(SiC)、氮碳化矽(SiCN)或氮氧化矽(SiON)等,較佳者,蓋層108為一含氮的介電層,但並不以此為限。A cap layer 108, a dielectric layer 110, and a first patterned mask 112 are sequentially formed on the surface of the substrate 100. The cap layer 108 is a selectively formed material layer for protecting the conductive members 102, 104 and enhancing the adhesion of the subsequently formed dielectric layer 110. The material of the cap layer 108 is, for example, tantalum nitride (SiN), yttrium oxide (SiO), tantalum carbide (SiC), niobium oxynitride (SiCN) or bismuth oxynitride (SiON). Preferably, the cap layer 108 is a Nitrogen-containing dielectric layer, but not limited to this.
介電層110可包含單層或多層的介電材質,其係選用自介電常數低於3.5的無機類或有機類兩種低介電常數材料。例如含氟矽氧化物(fluorine-doped oxide,FSG)、有機矽玻璃(organosilicate,OSG)、芳香族熱固性聚合物(aromatic thermosets polymers)、無機含氫矽酸鹽(hydrogen silsesquioxane,HSQ,SiO:H)、甲基矽酸鹽(methyl silsesquioxane,MSQ,SiO:CH3 )、混合有機矽氧烷聚合物(Hybrid Organic Siloxane Polymer,HOSP)、氫摻雜聚矽酸鹽(hydrio polysilsesquioxane,H-PSSQ)、甲基摻雜聚矽酸鹽(methyl polysilsesquioxane,M-PSSQ)、苯基摻雜聚矽酸鹽(phenyl polysilsesquioxane,P-PSSQ)或多孔性凝膠(porous sol-gel)等等,較佳者,介電層110為一具超低介電常數(Ultra low-k,ULK)的材料(例如k<2.5)。另外,若根據其形成的方式又可分成化學氣相沉積(CVD)、電漿加強化學氣相沈積(plasma enhanced chemical vapor deposition,PECVD)、高密度電漿化學氣相沈積(high density plasma CVD)或旋塗式塗佈法(Spin-on)等方式所製成,但並不以此為限。The dielectric layer 110 may comprise a single layer or a plurality of layers of dielectric materials selected from inorganic or organic low dielectric constant materials having a dielectric constant of less than 3.5. For example, fluorine-doped oxide (FSG), organosilicate (OSG), aromatic thermosets polymers, hydrogen silsesquioxane (HSQ, SiO: H) ), methyl silsesquioxane (MSQ, SiO: CH 3 ), Hybrid Organic Siloxane Polymer (HOSP), Hydrogen-doped polyoxane (H-PSSQ) , methyl polysilsesquioxane (M-PSSQ), phenyl polysilsesquioxane (P-PSSQ) or porous sol-gel, etc., preferably The dielectric layer 110 is a material having an ultra low dielectric constant (ULK) (for example, k < 2.5). In addition, according to the manner of its formation, it can be further divided into chemical vapor deposition (CVD), plasma enhanced chemical vapor deposition (PECVD), high density plasma chemical vapor deposition (high density plasma CVD). Or by spin-on method, but not limited to this.
第一圖案化遮罩112具有一開口120,用來定義雙鑲嵌結構中溝渠開口的位置,且此開口120的相對位置約略對應於兩導電件102、104之間並部分重疊此兩導電件102、104。其中,第一圖案化遮罩112可為單層遮罩或為多層遮罩(multilayer hardmask)結構,且其可包含金屬遮罩或非金屬遮罩或兩者之組合。在本較佳實施例中,第一圖案化遮罩112係為一多層遮罩,例如可包含一鈦層112a、一氮化鈦層112b以及一氧化物層112c等的多層堆疊結構。而其製作方式例如為先依序全面性形成鈦層112a、氮化鈦層112b以及氧化物層112c以構成一遮罩層,然後再進行一光阻塗佈與微影製程,以於其上形成一圖案化的光阻層(圖未示),接著進行一蝕刻製程以進行一圖案轉移,以於遮罩層中蝕刻出開口120形成第一圖案化遮罩112。此外,視產品設計與製程需求,第一圖案化遮罩112與介電層110之間另可選擇性形成有一蝕刻停止層114,例如氮氧化矽(SiON)等,用來當作對第一圖案化遮罩112進行圖案轉移時的蝕刻阻障層以保護其下方的介電層110。此外,若在進行第一圖案化遮罩112的顯影後檢驗(ADI)或蝕刻後檢驗(AEI)發生異常時,本較佳實施例可直接進行一重工步驟,且由於介電層110上方設置有蝕刻停止層114,因此介電層110完全不會受到製備第一圖案化遮罩112所需的蝕刻、清潔、去光阻等步驟以及顯影後檢驗(ADI)或蝕刻後檢驗(AEI)發生異常時的重工步驟所影響,而可確保介電層的品質。The first patterned mask 112 has an opening 120 for defining the position of the trench opening in the dual damascene structure, and the relative position of the opening 120 approximately corresponds to the two conductive members 102, 104 and partially overlaps the two conductive members 102. 104. The first patterned mask 112 may be a single layer mask or a multilayer hard mask structure, and may include a metal mask or a non-metal mask or a combination of the two. In the preferred embodiment, the first patterned mask 112 is a multilayer mask, for example, a multilayer stack structure including a titanium layer 112a, a titanium nitride layer 112b, and an oxide layer 112c. For example, the titanium layer 112a, the titanium nitride layer 112b, and the oxide layer 112c are formed in a comprehensive manner to form a mask layer, and then a photoresist coating and lithography process is performed thereon. A patterned photoresist layer (not shown) is formed, followed by an etching process to perform a pattern transfer to etch the opening 120 in the mask layer to form the first patterned mask 112. In addition, depending on product design and process requirements, an etch stop layer 114, such as silicon oxynitride (SiON), may be selectively formed between the first patterned mask 112 and the dielectric layer 110 to serve as the first pattern. The mask 112 is etched with a barrier layer during pattern transfer to protect the dielectric layer 110 beneath it. In addition, if an abnormality occurs in the post-development inspection (ADI) or the post-etch inspection (AEI) of the first patterned mask 112, the preferred embodiment can directly perform a rework step and is disposed above the dielectric layer 110. There is an etch stop layer 114, so the dielectric layer 110 is completely unaffected by the etching, cleaning, photoresist removal, etc. steps required to prepare the first patterned mask 112, as well as post-development inspection (ADI) or post-etch inspection (AEI). The quality of the dielectric layer is ensured by the rework steps during anomalies.
隨後如第2圖與第3圖所示,於基底100表面上依序再形成一材料層130以及一第二圖案化遮罩140,並覆蓋於第一圖案化遮罩112、蝕刻停止層114與介電層110之上。其中,材料層130可為含C、H、O的高分子材料,例如旋塗碳材硬遮罩層(Carbon-spin on hardmask,C-SOH),但並不以此為限。而第二圖案化遮罩140具有一第一開孔180,用來定義雙鑲嵌結構中通孔(via hole)的位置,且此第一開孔180的位置約略位於兩導電件102、104之一,例如導電件104的正上方。Then, as shown in FIG. 2 and FIG. 3 , a material layer 130 and a second patterned mask 140 are sequentially formed on the surface of the substrate 100 and covered on the first patterned mask 112 and the etch stop layer 114 . Above the dielectric layer 110. The material layer 130 may be a polymer material containing C, H, and O, such as a carbon-spin on hard mask (C-SOH), but is not limited thereto. The second patterned mask 140 has a first opening 180 for defining the position of the via hole in the dual damascene structure, and the position of the first opening 180 is approximately located between the two conductive members 102 and 104. One, for example, directly above the conductive member 104.
在本較佳實施例中,第二圖案化遮罩140係可為一多層遮罩或一單層遮罩,例如為單一氧化物層。而其製作方式例如為先以化學氣相沉積法形成一矽氧化合物當作遮罩層140a,然後再於其上形成一圖案化的光阻層150,並進行一蝕刻製程以進行一圖案轉移,以於遮罩層140a中蝕刻出第一開孔180,形成第二圖案化遮罩140。且視產品設計與製程需求,第二圖案化遮罩140與材料層130之間另可選擇性形成有一護層160,例如氮化矽(SiN)等,用來當作對第二圖案化遮罩140進行圖案轉移時的蝕刻停止層以保護其下方的材料層130。而圖案化的光阻層150與第二圖案化遮罩140之間另可選擇性形成有一第一底抗反射層(BARC) 170,例如氮氧化矽(SiON)等。In the preferred embodiment, the second patterned mask 140 can be a multilayer mask or a single layer mask, such as a single oxide layer. The manufacturing method is, for example, first forming an oxide compound by chemical vapor deposition as the mask layer 140a, then forming a patterned photoresist layer 150 thereon, and performing an etching process to perform a pattern transfer. The first opening 180 is etched into the mask layer 140a to form a second patterned mask 140. Depending on the product design and process requirements, a second protective layer 160, such as tantalum nitride (SiN), may be selectively formed between the second patterned mask 140 and the material layer 130 to serve as a second patterned mask. The etch stop layer at the time of pattern transfer is performed to protect the material layer 130 underneath. A first bottom anti-reflective layer (BARC) 170, such as silicon oxynitride (SiON) or the like, may be selectively formed between the patterned photoresist layer 150 and the second patterned mask 140.
如第4圖與第5圖所示,接著進行一沉積、光阻塗佈與微影製程,於基底100表面上依序形成一第二底抗反射層190以及一圖案化的光阻層200,並覆蓋在第二圖案化遮罩140、護層160與材料層130之上。接著利用圖案化的光阻層200當作遮罩並利用護層160當作蝕刻停止層,來進行另一蝕刻製程以進行另一圖案轉移,以於第二圖案化遮罩140中蝕刻形成第二開孔220,用來定義雙鑲嵌結構中另一通孔的位置,且此第二開孔120的位置約略位於兩導電件102、104之另一者,例如導電件102的正上方。As shown in FIG. 4 and FIG. 5, a deposition, photoresist coating and lithography process is then performed to sequentially form a second bottom anti-reflective layer 190 and a patterned photoresist layer 200 on the surface of the substrate 100. And overlying the second patterned mask 140, the cover layer 160 and the material layer 130. Then, using the patterned photoresist layer 200 as a mask and using the cap layer 160 as an etch stop layer, another etching process is performed to perform another pattern transfer for etching in the second patterned mask 140. The second opening 220 is used to define the position of another through hole in the dual damascene structure, and the second opening 120 is located approximately at the other of the two conductive members 102, 104, for example, directly above the conductive member 102.
值得注意的是,第二開孔220與第一開孔180不重疊並具有一特定間距,且此特定間距小於形成第一圖案化光阻層150之微影製程的最小間距解析度。而且本較佳實施例可適當調整光阻層150、光阻層200、第一底抗反射層170與第二底抗反射層190的厚度,使得其在形成第一開孔180與第二開孔220之各自的蝕刻製程時,便同時消耗殆盡;當然亦可再結合清洗製程,以完全去除殘留的光阻層150與第一底抗反射層170、光阻層200與第二底抗反射層190。此外,如果在進行第2圖與第5圖所述的步驟並於相應之顯影後檢驗(ADI)或蝕刻後檢驗(AEI)發生異常時,本較佳實施例可隨時進行所需進行的重工步驟,且由於介電層110上方設置有蝕刻停止層114、材料層130與護層160,因此介電層110完全不會受到第2圖與第5圖所述的蝕刻、清潔、去光阻等步驟以及顯影後檢驗(ADI)或蝕刻後檢驗(AEI)發生異常時的重工步驟所影響而發生介電常數劣化(k value degradation)或關鍵尺寸變異等問題,進而可確保金屬層間介電層與雙鑲嵌圖案的品質。It should be noted that the second opening 220 does not overlap with the first opening 180 and has a specific spacing, and the specific spacing is smaller than the minimum pitch resolution of the lithography process for forming the first patterned photoresist layer 150. Moreover, the thickness of the photoresist layer 150, the photoresist layer 200, the first bottom anti-reflective layer 170 and the second bottom anti-reflective layer 190 can be appropriately adjusted so that the first opening 180 and the second opening are formed. When the holes 220 are respectively etched, they are simultaneously exhausted; of course, the cleaning process can be combined to completely remove the residual photoresist layer 150 and the first bottom anti-reflective layer 170, the photoresist layer 200 and the second bottom reactance. Reflective layer 190. In addition, the preferred embodiment can perform the required rework at any time if the steps described in FIGS. 2 and 5 are performed and an abnormality occurs in the corresponding post-development inspection (ADI) or post-etch inspection (AEI). Steps, and since the etch stop layer 114, the material layer 130 and the cap layer 160 are disposed over the dielectric layer 110, the dielectric layer 110 is not subjected to the etching, cleaning, and photoresist removal described in FIGS. 2 and 5 at all. The problem of dielectric constant degradation (k value degradation) or critical dimension variation caused by the steps and the rework steps when the post-development inspection (ADI) or post-etch inspection (AEI) is abnormal, thereby ensuring the inter-metal dielectric layer With the quality of the double mosaic pattern.
在完成顯影後檢驗(ADI)步驟確認第一開孔180與第二開孔220的佈局圖案無誤之後,接著如第6圖所示,利用第二圖案化遮罩140當作蝕刻遮罩來蝕刻護層160,以將第二圖案化遮罩140中第一開孔180與第二開孔220的圖案轉移至護層160中。After the post-development inspection (ADI) step confirms that the layout patterns of the first opening 180 and the second opening 220 are correct, then, as shown in FIG. 6, the second patterned mask 140 is used as an etch mask to etch. The cover layer 160 transfers the pattern of the first opening 180 and the second opening 220 in the second patterned mask 140 into the sheath 160.
之後如第7圖所示,利用第二圖案化遮罩140以及護層160當作蝕刻遮罩來部分蝕刻材料層130、蝕刻停止層114與介電層110,以將第一開孔180與第二開孔220的圖案繼續向下轉移至材料層130、蝕刻停止層114以及介電層110中,並於介電層110中相對應形成第一通孔180a與第二通孔220a。同樣地,本較佳實施例可適當調整第二圖案化遮罩140與護層160的厚度以及蝕刻參數,使得其在形成第一通孔180a與第二通孔220a的蝕刻製程時,便同時消耗殆盡;當然亦可再結合清洗製程,以完全去除殘餘的第二圖案化遮罩140與護層160。然後第8圖所示,進行一剝除製程,例如可通入含有二氧化碳、一氧化碳或氫氣等之氣體,完全去除剩餘的材料層130,以曝露具有開口120圖案的第一圖案化遮罩112、具有第一通孔180a與第二通孔220a圖案的蝕刻停止層114。Then, as shown in FIG. 7, the second patterned mask 140 and the cap layer 160 are used as an etch mask to partially etch the material layer 130, the etch stop layer 114 and the dielectric layer 110 to connect the first opening 180 with The pattern of the second opening 220 continues to be transferred downward into the material layer 130, the etch stop layer 114, and the dielectric layer 110, and the first via hole 180a and the second via hole 220a are correspondingly formed in the dielectric layer 110. Similarly, the thickness of the second patterned mask 140 and the cover layer 160 and the etching parameters can be appropriately adjusted in the preferred embodiment so that the etching process of the first via hole 180a and the second via hole 220a is simultaneously performed. Exhaustion is exhausted; of course, the cleaning process can be combined to completely remove the remaining second patterned mask 140 and the sheath 160. Then, as shown in FIG. 8, a stripping process is performed, for example, a gas containing carbon dioxide, carbon monoxide or hydrogen gas is introduced to completely remove the remaining material layer 130 to expose the first patterned mask 112 having the pattern of the opening 120, An etch stop layer 114 having a pattern of first via holes 180a and second via holes 220a.
最後如第9圖所示,利用第一圖案化遮罩112以及蝕刻停止層114當作蝕刻遮罩來蝕刻介電層110與蓋層108,以將開口120的圖案繼續向下轉移至介電層110中,並同時將第一通孔180a與第二通孔220a的圖案繼續向下轉移至介電層110與蓋層108中,而分別曝露導電件104與102,完成雙鑲嵌圖案250的製程。Finally, as shown in FIG. 9, the dielectric layer 110 and the cap layer 108 are etched using the first patterned mask 112 and the etch stop layer 114 as an etch mask to continue the pattern of the opening 120 down to the dielectric. In the layer 110, and simultaneously transferring the patterns of the first through holes 180a and the second through holes 220a to the dielectric layer 110 and the cap layer 108, respectively, the conductive members 104 and 102 are exposed to complete the dual damascene pattern 250. Process.
值得注意的是,本較佳實施例之第一圖案化遮罩112係為一多層堆疊遮罩,其包含鈦層112a以及氮化鈦層112b等蝕刻速率不同於介電層110、蓋層108以及蝕刻停止層114的金屬遮罩材質,而相對具有較高的蝕刻選擇比。因此在完成雙鑲嵌圖案250的製程時,第一圖案化遮罩112的氧化物層112c會消耗殆盡,而基底100上僅會留存鈦層112a及氮化鈦層112b。It should be noted that the first patterned mask 112 of the preferred embodiment is a multilayer stacked mask, and the etching rate including the titanium layer 112a and the titanium nitride layer 112b is different from the dielectric layer 110 and the cap layer. 108 and the metal mask material of the etch stop layer 114 have a relatively high etching selectivity. Therefore, when the process of the dual damascene pattern 250 is completed, the oxide layer 112c of the first patterned mask 112 is exhausted, and only the titanium layer 112a and the titanium nitride layer 112b remain on the substrate 100.
接續再於雙鑲嵌圖案250中填滿導電材料,使其電連接於導電件104與102,形成雙鑲嵌結構。例如先利用化學氣相沈積(CVD)或物理氣相沈積(PVD)或電鍍製程依序形成一阻障層260及一晶種層(圖未示),然後再電鍍形成一銅金屬層280。其中,阻障層可由鉭(Ta)、氮化鉭(tantalum,TaN)、鈦(Ti)、或氮化鈦(TiN)等不同組合所組成之複合式擴散阻障層,具有雙層或三層式疊層結構,用以防止銅金屬層280之銅離子向外遷移(migration)而擴散出介電層110中。最後再進行一平坦化製程,去除雙鑲嵌圖案250之外的導電材料,並同時移除殘存鈦層112a及氮化鈦層112b,直至蝕刻停止層114或介電層110的頂面,如第10圖所示。此皆為習知相關技藝者與通常知識者所熟知,故在此不多加贅述。The dual damascene pattern 250 is then filled with conductive material to electrically connect the conductive members 104 and 102 to form a dual damascene structure. For example, a barrier layer 260 and a seed layer (not shown) are sequentially formed by chemical vapor deposition (CVD) or physical vapor deposition (PVD) or an electroplating process, and then a copper metal layer 280 is formed by electroplating. The barrier layer may be a composite diffusion barrier layer composed of different combinations of tantalum (Ta), tantalum (Tatal), titanium (Ti), or titanium nitride (TiN), having a double layer or three The layered laminated structure prevents the copper ions of the copper metal layer 280 from migrating outwardly into the dielectric layer 110. Finally, a planarization process is performed to remove the conductive material other than the dual damascene pattern 250, and simultaneously remove the remaining titanium layer 112a and the titanium nitride layer 112b until the etch stop layer 114 or the top surface of the dielectric layer 110, as described Figure 10 shows. This is well known to those skilled in the art and to those of ordinary skill, and therefore will not be described here.
上述之較佳實施例主要是以部分通孔優先(partial-via-first)製程,但本發明亦可整合於溝渠優先(trench-first)製程、通孔優先(via-first)製程、以及自行對準(self-aligned)製程等雙鑲嵌製程中。The preferred embodiment described above is primarily a partial-via-first process, but the present invention can also be integrated into a trench-first process, a via-first process, and In a dual damascene process such as a self-aligned process.
綜上所述,本較佳實施例可隨時進行所需進行的重工步驟,且由於預定形成雙鑲嵌圖案的介電層上方設置有蝕刻停止層、材料層與護層等,因此介電層完全不會受到第1圖與第5圖所述的蝕刻、清潔、去光阻等步驟以及顯影後檢驗(ADI)或蝕刻後檢驗(AEI)發生異常時的重工步驟所影響而發生介電常數劣化或關鍵尺寸變異等問題,進而可於第一圖案化遮罩及第二圖案化遮罩及護層中分別形成品質良好的開口、第一開孔與第二開孔的佈局圖案。最後再伴隨後續的蝕刻製程一齊轉移至介電層中,故能有效避免發生介電常數劣化(k value degradation)或關鍵尺寸變異(CD variation)等問題,大幅提高金屬層間介電層與雙鑲嵌圖案的品質與製程良率。In summary, the preferred embodiment can perform the required rework steps at any time, and since the etch stop layer, the material layer and the cladding layer are disposed above the dielectric layer which is intended to form the dual damascene pattern, the dielectric layer is completely Dielectric constant deterioration does not occur due to the steps of etching, cleaning, photoresist removal, etc., and the rework steps when an abnormality occurs after post-development inspection (ADI) or post-etch inspection (AEI) as described in FIGS. 1 and 5. Or a problem such as a critical dimension variation, and further, a layout pattern of a good opening, a first opening, and a second opening can be formed in the first patterned mask and the second patterned mask and the protective layer, respectively. Finally, the subsequent etching process is transferred to the dielectric layer, so that problems such as k value degradation or CD variation can be effectively avoided, and the interlayer dielectric layer and the double damascene are greatly improved. Pattern quality and process yield.
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.
100...基底100. . . Base
102、104...導電件102, 104. . . Conductive part
106...絕緣材料層106. . . Insulating material layer
108...蓋層108. . . Cover
110...介電層110. . . Dielectric layer
112...第一圖案化遮罩112. . . First patterned mask
112a...鈦層112a. . . Titanium layer
112b...氮化鈦層112b. . . Titanium nitride layer
112c...氧化物層112c. . . Oxide layer
114...蝕刻停止層114. . . Etch stop layer
120...開口120. . . Opening
130...材料層130. . . Material layer
140...第二圖案化遮罩140. . . Second patterned mask
140a...遮罩層140a. . . Mask layer
150、200...光阻層150, 200. . . Photoresist layer
160...護層160. . . Cover
170...第一底抗反射層170. . . First bottom anti-reflection layer
180...第一開孔180. . . First opening
190...第二底抗反射層190. . . Second bottom anti-reflection layer
220...第二開孔220. . . Second opening
180a...第一通孔180a. . . First through hole
220a...第二通孔220a. . . Second through hole
250...雙鑲嵌圖案250. . . Double mosaic
260...阻障層260. . . Barrier layer
280...銅金屬層280. . . Copper metal layer
第1圖至第10圖為本發明之雙鑲嵌製程的示意圖。1 to 10 are schematic views of the dual damascene process of the present invention.
100...基底100. . . Base
102、104...導電件102, 104. . . Conductive part
106...絕緣材料層106. . . Insulating material layer
108...蓋層108. . . Cover
110...介電層110. . . Dielectric layer
112...第一圖案化遮罩112. . . First patterned mask
112a...鈦層112a. . . Titanium layer
112b...氮化鈦層112b. . . Titanium nitride layer
112c...氧化物層112c. . . Oxide layer
114...蝕刻停止層114. . . Etch stop layer
130...材料層130. . . Material layer
140...第二圖案化遮罩140. . . Second patterned mask
160...護層160. . . Cover
180...第一開孔180. . . First opening
220...第二開孔220. . . Second opening
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW099140178A TWI509740B (en) | 2010-11-22 | 2010-11-22 | Dual damascene process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW099140178A TWI509740B (en) | 2010-11-22 | 2010-11-22 | Dual damascene process |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201222724A TW201222724A (en) | 2012-06-01 |
TWI509740B true TWI509740B (en) | 2015-11-21 |
Family
ID=46725315
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW099140178A TWI509740B (en) | 2010-11-22 | 2010-11-22 | Dual damascene process |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI509740B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9793204B2 (en) | 2015-11-17 | 2017-10-17 | Taiwan Semiconductor Manufacturing Company Limited | Method of manufacturing semiconductor structure comprising plurality of through holes using metal hard mask |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030047764A1 (en) * | 2001-09-13 | 2003-03-13 | Samsung Electronics Co., Ltd. | Ferroelectric memory device and method of forming the same |
US20040201108A1 (en) * | 2003-04-14 | 2004-10-14 | Sony Corporation | Semiconductor device and method for manufacturing the same |
TW200729404A (en) * | 2006-01-10 | 2007-08-01 | Ibm | Dual damascene process flow enabling minimal ULK film modification and enhanced stack integrity |
US7479458B1 (en) * | 2005-12-15 | 2009-01-20 | Lam Research Corporation | Methods and apparatus for the optimization of highly selective process gases |
US20100099255A1 (en) * | 2008-10-20 | 2010-04-22 | Conley Willard E | Method of forming a contact through an insulating layer |
-
2010
- 2010-11-22 TW TW099140178A patent/TWI509740B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030047764A1 (en) * | 2001-09-13 | 2003-03-13 | Samsung Electronics Co., Ltd. | Ferroelectric memory device and method of forming the same |
US20040201108A1 (en) * | 2003-04-14 | 2004-10-14 | Sony Corporation | Semiconductor device and method for manufacturing the same |
US7479458B1 (en) * | 2005-12-15 | 2009-01-20 | Lam Research Corporation | Methods and apparatus for the optimization of highly selective process gases |
TW200729404A (en) * | 2006-01-10 | 2007-08-01 | Ibm | Dual damascene process flow enabling minimal ULK film modification and enhanced stack integrity |
US20100099255A1 (en) * | 2008-10-20 | 2010-04-22 | Conley Willard E | Method of forming a contact through an insulating layer |
Also Published As
Publication number | Publication date |
---|---|
TW201222724A (en) | 2012-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8298935B2 (en) | Dual damascene process | |
US9330974B2 (en) | Through level vias and methods of formation thereof | |
US9543193B2 (en) | Non-hierarchical metal layers for integrated circuits | |
US7541276B2 (en) | Methods for forming dual damascene wiring for semiconductor devices using protective via capping layer | |
US8062971B2 (en) | Dual damascene process | |
TWI610343B (en) | Semiconductor structure having tapered damascene aperture and method of the same | |
US9613880B2 (en) | Semiconductor structure and fabrication method thereof | |
US10062645B2 (en) | Interconnect structure for semiconductor devices | |
US8673765B2 (en) | Method and apparatus for back end of line semiconductor device processing | |
US6265307B1 (en) | Fabrication method for a dual damascene structure | |
US9431292B1 (en) | Alternate dual damascene method for forming interconnects | |
TW202303759A (en) | Method for forming interconnect structure | |
TW202038304A (en) | Method for forming multi-layer mask | |
US6821896B1 (en) | Method to eliminate via poison effect | |
CN112435983A (en) | Metal internal connection structure and its making method | |
TW202123335A (en) | Method of forming semiconductor device structure | |
TWI509740B (en) | Dual damascene process | |
US7622331B2 (en) | Method for forming contacts of semiconductor device | |
KR100818046B1 (en) | The fabricating method of metal line | |
US7112537B2 (en) | Method of fabricating interconnection structure of semiconductor device | |
TW202029367A (en) | Methods of manufacturing semiconductor devices | |
KR20070077670A (en) | Method for fabricating semiconductor device and semiconductor device fabricated thereby | |
JP2013222721A (en) | Method for forming wiring of semiconductor device |