TWI548208B - 功率放大器以及使用主動與被動元件的線性化技術 - Google Patents

功率放大器以及使用主動與被動元件的線性化技術 Download PDF

Info

Publication number
TWI548208B
TWI548208B TW100138211A TW100138211A TWI548208B TW I548208 B TWI548208 B TW I548208B TW 100138211 A TW100138211 A TW 100138211A TW 100138211 A TW100138211 A TW 100138211A TW I548208 B TWI548208 B TW I548208B
Authority
TW
Taiwan
Prior art keywords
power amplifier
component
loaded
components
line
Prior art date
Application number
TW100138211A
Other languages
English (en)
Other versions
TW201236363A (en
Inventor
馬凱學
陸揚
顧江敏
揚傑聖
Original Assignee
南洋理工大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南洋理工大學 filed Critical 南洋理工大學
Publication of TW201236363A publication Critical patent/TW201236363A/zh
Application granted granted Critical
Publication of TWI548208B publication Critical patent/TWI548208B/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0261Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3211Modifications of amplifiers to reduce non-linear distortion in differential amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/18Indexing scheme relating to amplifiers the bias of the gate of a FET being controlled by a control signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/222A circuit being added at the input of an amplifier to adapt the input impedance of the amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/387A circuit being added at the output of an amplifier to adapt the output impedance of the amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/191Tuned amplifiers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Amplifiers (AREA)
  • Microwave Amplifiers (AREA)

Description

功率放大器以及使用主動與被動元件的線性化技術
本發明大體上和功率放大器設計有關,並且更明確地說,本發明係關於適用於任何非線性功率放大器電路的功率放大器設計線性化技術以及適用於非A類功率放大器電路(其包含AB類、B類、C類、或是F類功率放大器)的線性化技術。
相關申請案之交叉參考
本申請案主張2010年10月20日提申的美國臨時專利申請案第61/394,787號的優先權。
對高階電路整合與多重標準通訊系統的興趣已經刺激寬頻功率放大器(Power Amplifier,PA)的發展。不幸的係,當通道頻寬與操作頻率增加時,功率放大器的可用輸出功率與效率則會嚴重地下降。即使利用非恆定振幅調變技術,例如,QPSK、OFDM、以及QAM,線性的需求在PA中都非常重要,因為它們都有變動的波封以及高峰值均值比(peak to average ratio)。功率放大器的非線性還會導致頻譜再成長以及互調失真(InterModulation Distortion,IMD),其會在高速數位通訊中造成符號間干擾(Inter-Symbol Interference,ISI)並且使得位元誤差率(Bit Error Rate,BER)變差。因此,無線通訊技術需要高線性功率放大器設計方能達到非恆定調變技術。已經有人針對功率放大器的線性化提出數種先前技術技術。從P1dB點回退、前置失真(predistortion)、回授以及前饋都是最常運用的技術。
「回退(backoff)」會對該功率放大器進行偏壓,俾使得被傳送的訊號會遠小於該功率放大器能夠處理的最大訊號。因此,被傳送的訊號仍會保持在線性放大區中。然而,回退基本上付出的代價係會使得該等放大元件有高功率消耗、從電源供應器處耗費更多的功率、以及施行發射器的成本會提高,這些全部都是行動無線應用的限制。
第二種經常使用的方法係前置失真。前置失真係由在要被線性化的非線性元件的輸入中插入一組前置失真器所構成。總互調功率極小化會被用來線性化該放大器的旁通響應。於大部分的情況中,前置失真會被施行在類比輸入訊號藉由一A/D轉換器被轉換成數位格式的數位技術中。該經過轉換的數位訊號資訊接著會根據功率放大器的反向轉換函數以逐個取樣(sample-by-sample)的方式被輸入至數位訊號處理器(Digital Signal Processor,DSP)以達前置失真的目的。最後,經過處理的資料會藉由一D/A轉換器被反向轉換成一類比訊號,以便充當該功率放大器的已前置失真訊號來進行放大。此技術對互調失真雖然有極高的抑制效果;但是,施行此技術的高複雜性、需要用到之矽質區的整合問題、以及被消耗的功率卻會限制此項技術的應用。
第三種方法係回授技術,其複雜度較低並且提供合理的互調失真抑制。在回授方法中,振幅與相位兩種格式的輸出訊號的失真會被感測到並且被負向回授至輸入,俾使得原始訊號與回授訊號的組合會抵消該互調失真效應。然而,本方法的應用卻會因為在射頻應用中施行任何回授系統時固有的穩定性考量的關係而受到限制。
另一已知的方法便係前饋線性化技術。前饋線性化運用功率放大器的簡化形式,因此,其輸入會扣除輸出用以產生一誤差訊號作為失真。接著,該誤差訊號會被放大並且與主要功率放大器的輸出組合用以抵消該PA的失真。此方法雖然不會有穩定性問題並且提供良好的IMD抑制;但是,前饋技術的主要缺點係高複雜性,從而會造成高成本並且容易受到溫度與製程變異的影響。
額外的習知方法運用發射器的結構並且在下面全部收發器結構中施行線性化:基頻級、IF級、以及功率放大級。然而,此等方法同樣會在收發器設計以及施行中增加複雜性、成本、以及額外的矽需求。
因此,本領域需要一種有效的功率放大器設計與施行方式,其會保持穩定性、線性、以及可用的輸出功率,同時又可抑制IMD,但是並不會增加成本、複雜性、以及需要用到的矽面積。再者,從後面的詳細說明以及隨附的申請專利範圍中,配合附圖及本發明的背景說明,便會明白其它所希的特點與特徵。
根據實施方式段落,本發明提供一種功率放大器線性化技術。本發明所設計的高線性功率放大器包含第一被動元件、第二被動元件、第三被動元件、以及一主動式放大元件。該第一被動元件會實施輸入匹配與網路偏壓。該主動式放大元件具有經調諧至預設諧波頻率之參數。該第二被動元件會抑制預設的諧波頻率以外的諧波頻率。而該第三被動元件則會實施輸出匹配與網路偏壓。
下面的詳細說明僅具有示範性的本質而沒有限制本發明或本申請案及本發明之用途的意圖。再者,本發明亦不受限於本發明前面背景說明或後面詳細說明中所提出的任何理論。
本發明提供一種高線性功率放大器,用以衰減由非線性放大元件所產生的諧波。用於毫米波功率放大器的線性化技術包括:一放大元件,其具有適當的選定尺寸以及電流或電壓偏壓,以便在感興趣之工作頻率的第二階諧波處達到截止頻率;以及一有負載的線性化截線,其會被附接至該放大元件,用以吸收第二階、第三階、甚至更高階諧波。
該高線性化功率放大器係由數個方塊所組成。一輸入匹配電路會從一來源處接受一輸入訊號。一電壓或電流偏壓電路(其可能係該輸入匹配電路的一部分)會被用來驅動該放大元件。該放大元件有三個終端:一終端會被連接至接地,一終端會被連接至該輸入匹配電路的第二終端,而另一終端則會被連接至該有負載的線性化截線。一扼流方塊會饋送一電壓電源給該放大元件的第三終端,俾使得其會提供高阻抗。被附接至該放大元件的線性化截線會濾除諧波,以便將乾淨的基礎放大頻率傳送至一輸出匹配電路。該輸出匹配電路會傳遞已線性化的輸出訊號給一負載。
參考圖1,圖中所示的係該高線性功率放大器的方塊圖100,其運用具有適當的選定尺寸以及電流或電壓偏壓的線性化技術來將該元件設定在必要的截止頻率或最大振盪頻率處。
該放大器的輸入訊號會被施加至一輸入埠11,該輸入埠會被連接至一包含第一被動元件的輸入匹配與偏壓電路12。適當的偏壓電壓或電流會經由該偏壓電路12來維護,用以驅動一放大元件13,俾使得該主動式放大元件13的截止頻率會被設定在一工作頻率或所希頻率的第二階諧波處。該主動式放大元件13可能具有三個終端:一終端會被連接至接地,一終端會被連接至該輸入匹配電路12的第二終端,而第三終端則會被連接至一有負載的線性化截線15。
一扼流方塊14會饋送一電壓電源18給該放大元件13的第三終端,從而提供高阻抗給該放大元件的輸出。被附接至該放大元件的第二被動元件15會濾除諧波並且將乾淨的基礎放大頻率傳送至一輸出匹配電路16的第三被動元件,該輸出匹配電路16會經由輸出埠19傳遞已線性化的輸出訊號給該負載。
該等第二被動元件15可能會被併入輸出匹配16的該等第三被動元件之中。組件12、13、15、以及16中的該等主動元件與被動元件的技術已揭示在本發明實施例中。可套用至圖1中高線性功率放大器的放大元件包含:以III-V族為基礎的HEMT;MESFET以及各種HBT電晶體;MOSFET;SOI電晶體;以及寬頻帶能隙電晶體,例如,GaN與SiC材料。
參考圖2,圖中所示的係根據本發明實施例的圖1的放大元件的示範性積體電路佈局圖200。圖200所示的係一HBT SiGe製程高線性功率放大器的佈局。
圖3中的曲線圖300所示的係可藉由電晶體集極電流,Ic,的偏壓來調諧的截止頻率或單位電流增益頻率(fT)。在一給定的集極-射極電壓,Vce,以及一給定的電晶體尺寸下,截止頻率會隨著集極電流增加,如走線31所示;或者,當偏壓集極電流增加時,截止頻率會在下降之前先增加至最大值,如圖3中走線32所示。
參考圖4,曲線圖400所示的係可藉由電晶體集極電流,Ic,的偏壓來調諧的最大振盪頻率(fmax)。在一給定的集極-射極電壓,Vce,以及一給定的電晶體尺寸下,最大振盪頻率會隨著集極電流增加,如圖4中走線41所示。或者,當偏壓集極電流增加時,最大振盪頻率會在下降之前先增加至最大值,如走線42所示。
圖5所繪的曲線圖500所示的係可藉由電晶體集極-射極電壓,Vce,的偏壓來調諧的截止頻率。在一給定的基極電流偏壓以及一給定的電晶體尺寸下,截止頻率會隨著集極-射極電壓增加,如走線51與52所示。圖6的曲線圖600同樣顯示的係可藉由電晶體集極電壓,Vce,的偏壓來調諧的最大振盪頻率。在一給定的基極電流偏壓以及一給定的電晶體尺寸下,最大振盪頻率會隨著集極-射極電壓增加,如走線61與62所示。
圖7的曲線圖700顯示的係可藉由電晶體尺寸來調諧的截止頻率。在一給定的基極電流與集極-射極電壓偏壓下,截止頻率會隨著集極-射極電壓增加而下降,如走線71與72所示。參考圖8,曲線圖800顯示的係同樣可藉由電晶體尺寸來調諧的最大振盪頻率。在一給定的基極電流與集極-射極電壓偏壓下,最大振盪頻率會隨著集極-射極電壓增加而下降,如走線81與82所示。藉由調諧基極電流或集極電流、集極-射極電壓、以及電晶體尺寸,可以在本發明實施例中合理地選擇電晶體的適當截止頻率與最大振盪頻率,用以適配線性化需求。
圖9的曲線圖900顯示的係走線91中fT=180GHz的主動式放大元件以及走線92中fT=120GHz的另一主動式放大元件的S21參數的比較圖。從曲線圖900中可以看見,fT=180GHz的主動式放大元件在第二階諧波與第三階諧波中的衰減大於fT=120GHz的主動式放大元件在第二階諧波與第三階諧波中的衰減。
根據本發明實施例的有負載的線性化截線設計1000的第一電路施行方式顯示在圖10中。根據本發明實施例,該有負載的線性化截線設計1000會被連接至放大電晶體,以便進一步改良線性化效能。該有負載的線性化截線1000係由一或數個串接單位組件101與102所組成,該等單位組件101與102中的每一者會在相同的諧波頻率或是不同階的諧波頻率處發揮功能。在每一個單位組件中都會有一主要傳輸線106連接在一非線性RF訊號輸入與一線性RF訊號輸出之間,並且會有一開路截線103用以陷波過濾不必要的諧波頻率訊號。為縮短該開路截線103的長度,可能會加入一或多個有負載的組件104與105。該開路截線103以及該等有負載的組件104與105會構成多級(M級,其中,M為整數)耦合傳輸線,其會呈現偶數模式阻抗與電氣長度Zij0e與Θij0e以及奇數模式阻抗與電氣長度Zij0e與Θij0e
本發明中所揭示之有負載的線性化截線設計實施例的另一電路施行方式1100顯示在圖11中。該施行方式1100同樣可能會被連接至放大電晶體,以便在本發明實施例中達到更佳的線性化效能。該有負載的線性化截線係由一或數個串接單位組件111與112所組成,該等單位組件111與112中的每一者會在相同的諧波頻率或是不同階的諧波頻率處發揮功能。在每一個單位組件111、112中都會有:一主要傳輸線116;連接在該非線性RF訊號輸入與該線性RF訊號輸出之間的耦合組件117;以及一開路截線113,用以陷波過濾不必要的諧波頻率訊號。該耦合組件117可能係一電容器或是一耦合傳輸線。為縮短該開路截線113的長度,可能會加入一或多個有負載的組件114與115。該開路截線113以及該等有負載的組件114與115會構成多級(M級,其中,M為整數)耦合傳輸線,其會呈現偶數模式阻抗與電氣長度Zij0e與Θij0e以及奇數模式阻抗與電氣長度Zij0e與Θij0e
圖12所示的係圖10中的有負載的線性化截線設計的實施例的對稱式配置1200。該對稱式配置同樣可應用於本發明在圖11中所揭示的設計的實施例。
圖13所示的係圖10中的有負載的線性化截線設計的實施例的差動式驅動電路應用的差動式驅動配置1300。該用於差動式驅動應用的配置同樣可應用於本發明在圖11中所揭示的設計的實施例。
從圖14至圖18中,數個俯視、右側、正面透視圖1400、1500、1600、1700、1800描繪的係本發明實施例的被動元件的實施例。此等施行方式1400、1500、1600、1700、1800中的任一者可能使用其它IC製程,例如,CMOS、GaAs、或是InP。該等施行方式1400、1500、1600、1700、1800雖然可能係以該等截線與連接傳輸線的微帶型結構為基礎;不過,該等截線與連接傳輸線亦可利用習知的共平面波導(CPW)或是有導體後背的波導(CPW)來施行。在圖14至圖18中所示的暗區與灰區金屬層可能係任何金屬層或是介於任何兩個金屬層之間,例如,在一隔離基板(例如,SiO2、矽)之中。
圖14中所示的係本發明以微帶結構來施行之圖10中的開路截線及其有負載的組件的第一施行方式1400,其中,所有組件係在標準的SiGe 1P6M製程中被製作在不同的金屬層之中。在施行方式1400中,該等有負載的組件141與143分別位於金屬層6與4之中,而開路截線142則被製作在金屬層5之中。該等有負載的組件的其中一端會被連接至接地144。該施行方式可以修正為不同的配置。舉例來說,141、142、以及143可以使用其它金屬層或是以不同的順序來使用該等金屬層。另外,底部接地亦可被形成不同種類的有圖樣接地。
圖15中所示的係根據本發明實施例以微帶結構來施行的開路截線及其有負載的組件的另一施行方式1500,其中,所有組件係在標準的SiGe 1P6M製程中被製作在相同的金屬層之中。在施行方式1500中,該等有負載的組件151與153以及開路截線152都係被製作在金屬層6之中。該等有負載的組件的其中一端會被連接至接地154。
圖16中所示的係以微帶結構來施行的開路截線及其有負載的組件的另一施行方式1600,其中,所有組件係在標準的SiGe 1P6M製程中被製作在不同的金屬層之中。在施行方式1600中,該等有負載的組件162與163分別位於金屬層5與4之中,而開路截線161則被製作在金屬層6之中。該等有負載的組件的其中一端會被連接至接地164。
圖17中所示的係以微帶結構來施行的開路截線及其有負載的組件的另一施行方式1700,其中,所有組件係在標準的SiGe 1P6M製程中被製作在不同的金屬層之中,但是有垂直或水平位置偏移。在施行方式1700中,該等有負載的組件171與172係位於金屬層6與5之中,而開路截線173則被製作在金屬層4之中。該等有負載的組件在該開路截線左邊並且其中一端會被連接至接地174。然而,施行方式1700並不受限於此種版本-該等有負載的組件可能位於該開路截線的右邊並且在上方金屬層之中,或者,該等有負載的組件可能位於該開路截線的左邊並且在下方金屬層之中,或者,該等有負載的組件可能位於該開路截線的右邊並且在下方金屬層之中。
圖18中所示的係本發明中以微帶結構來施行的開路截線及其有負載的組件的另一施行方式1800,其中,所有組件係在標準的SiGe 1P6M製程中被製作在相同的金屬層之中。在施行方式1800中,該等有負載的組件182與183以及開路截線181都係被製作在金屬層6之中。該等有負載的組件在該開路截線右邊並且其中一端會被連接至接地184。於一雷同的施行方式中,該等有負載的組件可能位於該開路截線左邊。
因此,從圖中可以看出,本發明提供一種有效的功率放大器設計與施行方式,其會保持穩定性、線性、以及可用的輸出功率,同時又可抑制IMD,但是並不會增加成本、複雜性、以及需要用到的矽面積。進一步言之,用於一毫米波功率放大器的改良線性化技術包含選擇具有適當尺寸以及電流或電壓偏壓的放大元件以便在感興趣的工作頻率的第二階諧波處達到截止頻率,並且將其連接至一有負載的線性化截線用以吸收第二階、第三階、甚至更高階諧波。雖然在本發明前面詳細說明中已經提出數個示範性實施例;不過,應該明白的係,示範性實施例僅為範例,而且完全沒有限制本發明的範疇、可應用性、維度、或是配置的意義。確切地說,前面的詳細說明雖然提供熟習本技術的人士一種方便的準則來施行本發明的一示範性實施例;不過,應該瞭解的係,亦可以對示範性實施例中所述之組件的功能與配置以及執行步驟的方法進行各種改變,其並不會脫離隨附申請專利範圍中所提出之本發明的範疇。
11...輸入埠
12...輸入匹配與偏壓電路
13...放大元件
14...扼流方塊
15...有負載的線性化截線
16...輸出匹配電路
17...偏壓
18...電壓電源
19...輸出埠
31...走線
32...走線
41...走線
42...走線
51...走線
52...走線
61...走線
62...走線
71...走線
72...走線
81...走線
82...走線
91...走線
92...走線
100...高線性功率放大器
101...串接之單位組件
102...串接之單位組件
103...開路截線
104...有負載的組件
105...有負載的組件
106...傳輸線
111...串接之單位組件
112...串接之單位組件
113...開路截線
114...有負載的組件
115...有負載的組件
116...主要傳輸線
117...耦合組件
141...有負載的組件
142...開路截線
143...有負載的組件
144...接地
151...有負載的組件
152...開路截線
153...有負載的組件
154...接地
161...開路截線
162...有負載的組件
163...有負載的組件
164...接地
171...有負載的組件
172...有負載的組件
173...開路截線
174...接地
181...開路截線
182...有負載的組件
183...有負載的組件
184...接地
200...積體電路佈局圖
300...曲線圖
400...曲線圖
500...曲線圖
600...曲線圖
700...曲線圖
800...曲線圖
900...曲線圖
1000...有負載的線性化截線設計
1100...電路實施
1200...對稱式配置
1300...差動式驅動配置
1400...實施例
1500...被動元件實施例
1600...被動元件實施例
1700...被動元件實施例
1800...被動元件實施例
隨附的圖式係用來圖解各種實施例並且解釋根據本發明的各種原理與優點,其中,不同圖式中相同的元件符號代表相同或功能雷同的組件,並且和前面的詳細說明一起被併入本說明書之中並且構成本說明書的一部分。
圖1所示的係根據本發明一實施例的線性功率放大器的方塊圖,其運用截止頻率技術以及諧波之有負載的截線濾波。
圖2所示的係根據本發明實施例的圖1的放大元件的示範性積體電路佈局圖。
圖3所示的係根據本發明實施例之響應於電晶體集極電流,Ic,的偏壓的電晶體截止頻率可調諧性的曲線圖。
圖4所示的係根據本發明實施例藉由電晶體集極電流,Ic,的偏壓來調諧的電晶體最大振盪頻率的曲線圖。
圖5所示的係根據本發明實施例藉由電晶體集極-射極電壓,Vce,的偏壓來調諧的電晶體截止頻率的曲線圖。
圖6所示的係根據本發明實施例藉由電晶體集極-射極電壓,Vce,的偏壓來調諧的電晶體最大振盪頻率的曲線圖。
圖7所示的係根據本發明實施例的電晶體截止頻率相對於電晶體尺寸的曲線圖。
圖8所示的係根據本發明實施例的電晶體最大振盪頻率相對於電晶體尺寸的曲線圖。
圖9所示的係根據本發明實施例在不同截止頻率處的S21的曲線圖。
圖10所示的係根據本發明實施例的一種結構的俯視平面圖,該結構包含一有負載的線性化截線、一開路截線及其負載組件。
圖11所示的係根據第一替代實施例的一種結構及其耦合組件的俯視平面圖,該結構係由一有負載的線性化截線、一開路截線及其負載組件所組成。
圖12所示的係根據第二替代實施例的有負載的線性化截線的對稱式配置的俯視平面圖。
圖13所示的係根據第三替代實施例的有負載的線性化截線的差動式驅動配置的俯視平面圖。
圖14所示的係根據本發明實施例的一替代實施例由該開路截線及其負載組件所組成的垂直結構的俯視、右側、正面透視圖,其中,每一個該等負載組件會被施行在不同的金屬層之中並且被放置在該開路截線的兩側。
圖15所示的係根據本發明實施例的一替代實施例由該開路截線及其負載組件所組成的水平結構的俯視、右側、正面透視圖,其中,每一個該等負載組件會被施行在相同的金屬層之中並且被放置在該開路截線的兩側。
圖16所示的係根據本發明實施例的一替代實施例由該開路截線及其負載組件所組成的垂直結構的俯視、右側、正面透視圖,其中,每一個該等負載組件會被施行在不同的金屬層之中並且被放置在該開路截線的其中一側。
圖17所示的係根據本發明實施例的一替代實施例由該開路截線及其負載組件所組成的結構的俯視、右側、正面透視圖,其中,每一個該等負載組件會被施行在具有垂直或水平偏移的不同金屬層之中。
圖18所示的係根據本發明實施例的一替代實施例由該開路截線及其負載組件所組成的水平結構的俯視、右側、正面透視圖,其中,每一個該等負載組件會被施行在相同的金屬層之中並且被放置在該開路截線的其中一側。
熟習本技術的人士便會明白,圖中所示的組件僅係為達簡化與清楚的目的而並不需要依照比例來繪製。舉例來說,在圖解積體電路架構的圖式中,某些組件的維度可能會相對於其它組件被放大,以便幫助改良對本發明實施例及替代實施例的理解。
11...輸入埠
12...輸入匹配與偏壓電路
13...放大元件
14...扼流方塊
15...有負載的線性化截線
16...輸出匹配電路
17...偏壓
18...電壓電源
19...輸出埠
100...高線性功率放大器

Claims (20)

  1. 一種功率放大器,其包括:第一被動元件,用於輸入匹配與網路偏壓;主動式放大元件,具有經調諧至預設諧波頻率之參數;第二被動元件,用於抑制該預設諧波頻率以外的諧波頻率;以及第三被動元件,用於輸出匹配與網路偏壓;以及一被耦合至該主動式放大元件之有負載的線性化截線,其中,該有負載的線性化截線包括一或多個串接單位組件,其操作在該等預設諧波頻率中的一或多者處以及該等預設諧波頻率的不同階處。
  2. 如申請專利範圍第1項的功率放大器,其中,該第一被動元件會被耦合用以接收一輸入高頻訊號並且實施該輸入高頻訊號之電流與電壓中一或多者的偏壓,而且其中,該第三被動元件會被耦合用以接收一電源供應電流並且讓一輸出RF訊號匹配至該高線性功率放大器的一負載。
  3. 如申請專利範圍第1或2項中任一項的功率放大器,其中,該主動式放大元件會響應於調諧該主動式放大元件之固有參數而被調諧至該等預設的諧波頻率,該等固有參數包含其截止頻率與最大振盪頻率。
  4. 如申請專利範圍第3項的功率放大器,其中,該主動式放大元件會藉由維護用以在該輸入高頻訊號的基礎頻率處產生預設增益並且抑制該輸入高頻訊號的諧波頻率所需要之集極電流、集極-射極電壓、以及該主動式放大元件的 電晶體尺寸的一群組適當數值來調諧其該等固有參數。
  5. 如申請專利範圍第1項的功率放大器,其中,該等一或多個串接單位組件會藉由選自下面元件所組成之群組中的一或多個元件來相互連接,其包含:傳輸線、電感器、以及電容器。
  6. 如申請專利範圍第1項的功率放大器,其中,該等一或多個串接單位組件中的每一者都包括一主要傳輸線、一具有第一末端被連接至該主要傳輸線的開路截線、以及一或多個有負載的組件,其中,該等一或多個有負載的組件中之每一者具有一開路之第一末端以及一接地之第二末端。
  7. 如申請專利範圍第6項的功率放大器,其中,該等有負載的組件會相對於該開路截線被放置在選自由下面相對位置所組成之群組中的一或多個位置處,其包括:(a)該開路截線左邊的位置以及右邊的位置,(b)該開路截線上方的位置以及下方的位置,以及(c)該開路截線之上、下、左、右相同邊的位置。
  8. 如申請專利範圍第1項的功率放大器,其中,該等一或多個串接單位組件中的每一者都包括一主要傳輸線、一耦合組件、一開路截線、以及一或多個有負載的組件。
  9. 如申請專利範圍第8項的功率放大器,其中,該耦合組件係選自包括下面的群組:金屬-絕緣體-金屬電容器、多晶矽-絕緣體-多晶矽電容器、MOS電容器、MOS變容器、p-n變容器、指叉式電容器、其它電容式耦合組件、邊緣耦 合線、以及寬邊耦合線。
  10. 如申請專利範圍第8項的功率放大器,其中,該開路截線具有一開路的第一末端以及一接地的第二末端,並且其中,該開路截線會被耦合至該主要傳輸線與該等一或多個有負載的組件,以便形成一用於產生一負載效應的電磁場,用以拒斥不要的非線性偽訊號同時讓該功率放大器具有精簡尺寸及共振效應。
  11. 如申請專利範圍第6至10項中任一項的功率放大器,其中,包含該主要傳輸線在內的傳輸線係選自包括下面的群組:微帶線、共平面波導、以及帶線。
  12. 如申請專利範圍第6至10項中任一項的功率放大器,其中,包含該主要傳輸線之形狀在內的傳輸線的形狀係選自包括下面的群組:曲折線、折疊線、螺旋線、以及魚骨線。
  13. 如申請專利範圍第6至10項中任一項的功率放大器,其中,該開路截線與該等有負載的組件係選自包括下面的群組:微帶線、共平面波導、帶線、以及其它傳輸線結構。
  14. 如申請專利範圍第6至10項中任一項的功率放大器,其中,跨越該有負載的線性化截線的阻抗具有實質上為50歐姆之阻抗值。
  15. 如申請專利範圍第1或2項的功率放大器,其中,該主動式放大元件操作在10GHz及以上的頻率處。
  16. 如申請專利範圍第1或2項的功率放大器,其中, 該主動式放大元件包括選自包括下面的群組之中的一或多個元件:以III-V族為基礎的HEMT、MESFET、HBT電晶體、MOSFET、SOI電晶體、GaN寬頻帶能隙電晶體、以及SiC寬頻帶能隙電晶體。
  17. 如申請專利範圍第1或2項的功率放大器,其中,該功率放大器包括非A類功率放大器,其包含:AB類、B類、C類、以及F類功率放大器。
  18. 如申請專利範圍第2項的功率放大器,其中,該輸入高頻訊號係選自包括下面的群組:RF訊號、微波訊號、以及毫米波訊號。
  19. 如申請專利範圍第2或18項的功率放大器,其中,該主動式放大元件與該第二被動元件運用該等諧波頻率的固有高空間損失,而且該主動式放大元件會響應於頻率範圍在10GHz及以上的輸入高頻訊號來運用電晶體改良技術。
  20. 如申請專利範圍第19項的功率放大器,其中,該等第一被動元件、第二被動元件、以及第三被動元件的操作頻率為10GHz以下及以上的操作頻率。
TW100138211A 2010-10-20 2011-10-20 功率放大器以及使用主動與被動元件的線性化技術 TWI548208B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US39478710P 2010-10-20 2010-10-20

Publications (2)

Publication Number Publication Date
TW201236363A TW201236363A (en) 2012-09-01
TWI548208B true TWI548208B (zh) 2016-09-01

Family

ID=45975484

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100138211A TWI548208B (zh) 2010-10-20 2011-10-20 功率放大器以及使用主動與被動元件的線性化技術

Country Status (4)

Country Link
US (1) US9130511B2 (zh)
SG (1) SG189488A1 (zh)
TW (1) TWI548208B (zh)
WO (1) WO2012053980A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9431975B2 (en) 2011-04-04 2016-08-30 The Trustees Of Columbia University In The City Of New York Circuits for providing class-E power amplifiers
US8988161B2 (en) * 2013-06-20 2015-03-24 Triquint Semiconductor, Inc. Transformer for monolithic microwave integrated circuits
US10063197B2 (en) 2014-03-05 2018-08-28 The Trustees Of Columbia University In The City Of New York Circuits for power-combined power amplifier arrays
US9614541B2 (en) 2014-10-01 2017-04-04 The Trustees Of Columbia University In The City Of New York Wireless-transmitter circuits including power digital-to-amplitude converters
JP2018142827A (ja) * 2017-02-27 2018-09-13 三菱電機特機システム株式会社 半導体装置および電子機器
CN107425814B (zh) * 2017-08-07 2021-01-29 杭州电子科技大学 一种基于补偿寄生电容的宽带Doherty功率放大器
WO2019186881A1 (ja) * 2018-03-29 2019-10-03 三菱電機株式会社 モノリシックマイクロ波集積回路および高周波増幅器
US11621681B2 (en) * 2018-04-27 2023-04-04 Telefonaktiebolaget Lm Ericsson Radio frequency power amplifier and device
CN108736840A (zh) * 2018-05-04 2018-11-02 清华大学 基于差分耦合线的毫米波放大器匹配电路
WO2020003417A1 (ja) * 2018-06-27 2020-01-02 三菱電機株式会社 電力増幅器及びフィルタ
CN110231614B (zh) * 2019-07-05 2024-01-26 电子科技大学 基于无源变频的微波测距系统
US11764739B2 (en) * 2020-04-23 2023-09-19 Smarter Microelectronics (Guang Zhou) Co., Ltd. Radio frequency power amplifier with harmonic suppression
US20230116432A1 (en) * 2021-10-08 2023-04-13 Rachit Joshi Radio frequency power amplifier and method for manufacturing doherty power amplifier

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5146178A (en) * 1990-11-16 1992-09-08 Nippon Telegraph And Telephone Company Impedance-matched, class F high-frequency amplifier
US6177841B1 (en) * 1998-09-28 2001-01-23 Mitsubishi Denki Kabushiki Kaisha High frequency power amplifier
US6236274B1 (en) * 2000-01-04 2001-05-22 Industrial Technology Research Institute Second harmonic terminations for high efficiency radio frequency dual-band power amplifier
US6731174B2 (en) * 2002-09-12 2004-05-04 Motorola, Inc. Radio frequency power amplifier device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9126616D0 (en) * 1991-12-16 1992-02-12 Texas Instruments Ltd Improvements in or relating to amplifiers
JP3120583B2 (ja) * 1992-08-25 2000-12-25 株式会社デンソー 高周波増幅器の安定化回路
US5592122A (en) * 1994-05-19 1997-01-07 Matsushita Electric Industrial Co., Ltd. Radio-frequency power amplifier with input impedance matching circuit based on harmonic wave
US7151411B2 (en) * 2004-03-17 2006-12-19 Paratek Microwave, Inc. Amplifier system and method
US7157966B2 (en) * 2004-12-17 2007-01-02 Fairchild Semiconductor Corporation Multi-mode power amplifier
US7696841B2 (en) * 2005-06-23 2010-04-13 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Power amplifier utilizing quadrature hybrid for power dividing, combining and impedance matching
US8076994B2 (en) * 2007-06-22 2011-12-13 Cree, Inc. RF power transistor packages with internal harmonic frequency reduction and methods of forming RF power transistor packages with internal harmonic frequency reduction
US7944304B1 (en) * 2009-06-08 2011-05-17 Rockwell Collins, Inc. High efficiency millimeter wave field-effect transistor (FET) amplifier with coupled line matching network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5146178A (en) * 1990-11-16 1992-09-08 Nippon Telegraph And Telephone Company Impedance-matched, class F high-frequency amplifier
US6177841B1 (en) * 1998-09-28 2001-01-23 Mitsubishi Denki Kabushiki Kaisha High frequency power amplifier
US6236274B1 (en) * 2000-01-04 2001-05-22 Industrial Technology Research Institute Second harmonic terminations for high efficiency radio frequency dual-band power amplifier
US6731174B2 (en) * 2002-09-12 2004-05-04 Motorola, Inc. Radio frequency power amplifier device

Also Published As

Publication number Publication date
US20130335147A1 (en) 2013-12-19
US9130511B2 (en) 2015-09-08
TW201236363A (en) 2012-09-01
WO2012053980A1 (en) 2012-04-26
SG189488A1 (en) 2013-05-31

Similar Documents

Publication Publication Date Title
TWI548208B (zh) 功率放大器以及使用主動與被動元件的線性化技術
Kang et al. Design of bandwidth-enhanced Doherty power amplifiers for handset applications
US10601380B2 (en) Band-reconfigurable and load-adaptive power amplifier
EP2388912B1 (en) Power control of reconfigurable outphasing Chireix amplifiers and methods
US9397616B2 (en) Quasi-doherty architecture amplifier and method
KR101758086B1 (ko) 개선된 선형적 특징을 가지는 전력 증폭기
EP1271765A2 (en) Application of the doherty amplifier as a predistortion circuit for linearizing microwave amplifiers
US11005433B2 (en) Continuous-mode harmonically tuned power amplifier output networks and systems including same
JP5958834B2 (ja) 高周波電力増幅器
CN113938102A (zh) 一种宽带高效率的功率放大器及实现方法
Babaie et al. A wideband 60 GHz class-E/F 2 power amplifier in 40nm CMOS
Seo et al. Ultrabroadband linear power amplifier using a frequency-selective analog predistorter
Cai et al. A three-stage wideband GaN PA for 5G mm-wave applications
Serhan et al. A reconfigurable SOI CMOS Doherty power amplifier module for broadband LTE high-power user equipment applications
CN101882912A (zh) 线性度和功率附加效率提高的射频cascode结构功率放大器
Zarghami et al. A novel design methodology for extended continuous class-F power amplifiers in wireless applications
François et al. A fully integrated CMOS power amplifier for LTE-applications using clover shaped DAT
CN201733280U (zh) 线性度和功率附加效率提高的射频cascode结构功率放大器
Bathich Analysis and design of efficiency-enhancement microwave power amplifiers using the Doherty technique
Zhang et al. Design of broadband high-efficiency power amplifier based on elliptic low-pass and band-pass matching network
JP2006093857A (ja) 歪補償回路
Li et al. A 8–12 GHz power amplifier with high out-of-band rejection
CN114785299B (zh) 一种超宽带高线性高效率的功率放大器
Abdrahman et al. Design of a 10W, highly linear, ultra wideband power amplifier based on GaN HEMT
US11750156B2 (en) Power amplifier

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees