TWI548100B - Thin film transistor, display panel and manufacturing methods thereof - Google Patents

Thin film transistor, display panel and manufacturing methods thereof Download PDF

Info

Publication number
TWI548100B
TWI548100B TW104100519A TW104100519A TWI548100B TW I548100 B TWI548100 B TW I548100B TW 104100519 A TW104100519 A TW 104100519A TW 104100519 A TW104100519 A TW 104100519A TW I548100 B TWI548100 B TW I548100B
Authority
TW
Taiwan
Prior art keywords
layer
oxygen supply
thin film
film transistor
oxide semiconductor
Prior art date
Application number
TW104100519A
Other languages
Chinese (zh)
Other versions
TW201626576A (en
Inventor
陳佳楷
王培筠
胡晉瑋
許庭毓
黃雅琴
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to TW104100519A priority Critical patent/TWI548100B/en
Priority to CN201510101338.0A priority patent/CN104659107B/en
Publication of TW201626576A publication Critical patent/TW201626576A/en
Application granted granted Critical
Publication of TWI548100B publication Critical patent/TWI548100B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Electroluminescent Light Sources (AREA)

Description

薄膜電晶體、顯示面板以及其製造方法 Thin film transistor, display panel and method of manufacturing same

本發明是有關於一種薄膜電晶體、一種顯示面板及其製造方法。 The present invention relates to a thin film transistor, a display panel, and a method of fabricating the same.

隨著現代資訊科技的進步,各種不同規格的顯示器已被廣泛地應用在消費者電子產品的螢幕之中,例如手機、筆記型電腦、數位相機以及個人數位助理(Personal Digital Assistant,PDA)等。在這些顯示器中,由於液晶顯示器(Liquid Crystal Display,LCD)及有機電激發光顯示器(Organic Electro-luminescent Display,OELD或稱為OLED)具有輕薄以及消耗功率低的優點,因此在市場中成為主流商品。LCD與OLED的製程包括將半導體元件陣列排列於基板上,而半導體元件包含薄膜電晶體(Thin Film Transistor,TFT)。 With the advancement of modern information technology, displays of various specifications have been widely used in the screens of consumer electronic products, such as mobile phones, notebook computers, digital cameras, and personal digital assistants (PDAs). Among these displays, liquid crystal displays (LCDs) and organic electro-luminescent displays (OELDs or OLEDs) have become the mainstream products in the market due to their advantages of thinness and low power consumption. . The process of LCD and OLED includes arranging an array of semiconductor elements on a substrate, and the semiconductor element comprises a Thin Film Transistor (TFT).

隨著顯示器的解析度越來越高,薄膜電晶體的尺寸也越來越小。目前已發展了一種自行對準式的頂閘極(self-align top-gate)結構的薄膜電晶體以克服微影製程中對位的限制,並且改善閘極-汲極(gate-drain)與閘極-源極(gate-source)之寄生電容(parasitic capacitance)(亦即,Cgd與Cgs)的問題。在現行技術中,需要進行整面性的鋁薄膜濺鍍且厚度需控制在5奈米左右,並搭配退火製程使高阻值的氧化銦鎵鋅(Indium Gallium Zinc Oxide,IGZO)與鋁薄膜進行氧化反應而變成低阻值的氧化銦鎵鋅。然而,整面性的鋁薄膜常無法在製程中完全氧化為絕緣的氧化鋁,而是僅在接觸氧化銦鎵鋅的部分可從氧化銦鎵鋅取得足夠的氧而完全氧化為氧化鋁。如此一來,本應該彼此絕緣的許多線路,將會因為沒有被完全氧化的鋁薄膜而短路,導致無法正常顯示。 As the resolution of displays becomes higher and higher, the size of thin film transistors is getting smaller and smaller. A self-aligning top gate (self-align) has been developed Top-gate structure of thin film transistors to overcome alignment limitations in lithography processes and improve gate-drain and gate-source parasitic capacitance (ie, Cgd and Cgs). In the current technology, it is necessary to carry out the whole-surface aluminum film sputtering and the thickness needs to be controlled to about 5 nm, and the annealing process is used to make the high-resistance Indium Gallium Zinc Oxide (IGZO) and the aluminum film. The oxidation reaction turns into a low-resistance indium gallium zinc oxide. However, the full-face aluminum film is often not completely oxidized to insulating alumina in the process, but only in the portion contacting the indium gallium zinc oxide, sufficient oxygen can be obtained from indium gallium zinc oxide to completely oxidize to aluminum oxide. As a result, many of the lines that should be insulated from each other will be short-circuited because they are not completely oxidized by the aluminum film, resulting in failure to display properly.

本發明提供一種薄膜電晶體、顯示面板及其製造方法,其可以避免習知之鋁薄膜在製程中氧化不全而導致顯示面板無法正常顯示的問題。 The invention provides a thin film transistor, a display panel and a manufacturing method thereof, which can avoid the problem that the conventional aluminum film is not oxidized in the process and the display panel cannot be normally displayed.

本發明的薄膜電晶體包括氧化物半導體層、閘絕緣圖案、閘極、金屬氧化物絕緣層、供氧層、源極以及汲極。氧化物半導體層具有源極區、汲極區以及通道區,且通道區位於源極區以及汲極區之間。閘絕緣圖案位於氧化物半導體層的通道區上。閘極位於閘絕緣圖案上。金屬氧化物絕緣層覆蓋氧化物半導體層。供氧層與金屬氧化物絕緣層相接觸。源極以及汲極位於供氧層的上方,且分別電性連接氧化物半導體層的源極區以汲極區。 The thin film transistor of the present invention includes an oxide semiconductor layer, a gate insulating pattern, a gate, a metal oxide insulating layer, an oxygen supply layer, a source, and a drain. The oxide semiconductor layer has a source region, a drain region, and a channel region, and the channel region is located between the source region and the drain region. The gate insulating pattern is located on the channel region of the oxide semiconductor layer. The gate is located on the gate insulation pattern. The metal oxide insulating layer covers the oxide semiconductor layer. The oxygen supply layer is in contact with the metal oxide insulating layer. The source and the drain are located above the oxygen supply layer, and are electrically connected to the source region of the oxide semiconductor layer to be the drain region.

本發明另提供一種薄膜電晶體的製造方法,此製造方法包括以下步驟。形成氧化物半導體層。依序於氧化物半導體層上形成閘絕緣圖案與閘極。形成金屬層以覆蓋氧化物半導體層、閘絕緣圖案與閘極。形成供氧層,使金屬層與供氧層相接觸。進行第一退火製程,以使氧化物半導體層與金屬層反應以形成源極區以及汲極區,其中源極區以及汲極區之間的氧化物半導體層為通道區,且同時使金屬層與供氧層以及氧化物半導體層反應以形成金屬氧化物絕緣層。於供氧層的上方形成源極與汲極,且源極以及汲極分別電性連接氧化物半導體層的源極區以及汲極區。 The present invention further provides a method of manufacturing a thin film transistor, the method comprising the following steps. An oxide semiconductor layer is formed. A gate insulating pattern and a gate are formed on the oxide semiconductor layer in sequence. A metal layer is formed to cover the oxide semiconductor layer, the gate insulating pattern, and the gate. An oxygen supply layer is formed to bring the metal layer into contact with the oxygen supply layer. Performing a first annealing process to react the oxide semiconductor layer with the metal layer to form a source region and a drain region, wherein the oxide semiconductor layer between the source region and the drain region is a channel region, and at the same time, the metal layer The oxygen supply layer and the oxide semiconductor layer are reacted to form a metal oxide insulating layer. A source and a drain are formed above the oxygen supply layer, and the source and the drain are electrically connected to the source region and the drain region of the oxide semiconductor layer, respectively.

本發明另提供一種顯示面板,其包括基板、多個薄膜電晶體、第一電極、發光層、第二電極、第一電源線以及第二電源線。基板具有顯示區以及位於顯示區外圍的周邊區。薄膜電晶體包括氧化物半導體層、閘絕緣圖案、閘極、金屬氧化物絕緣層、供氧層、源極以及汲極。氧化物半導體層具有源極區、汲極區以及通道區,且通道區位於源極區以及汲極區之間。閘絕緣圖案位於氧化物半導體層的通道區上。閘極位於閘絕緣圖案上。金屬氧化物絕緣層覆蓋氧化物半導體層。供氧層與金屬氧化物絕緣層相接觸。源極以及汲極位於供氧層的上方,且分別電性連接氧化物半導體層的源極區以汲極區。第一電極位於源極與汲極的上方,且第一電極電性連接汲極。發光層位於第一電極上。第二電極位於發光層上。第一電源線位於周邊區,且第一電源線電性連接於源極。第二電源線位於周邊區,且第二電源線電性連接於第二電 極,其中金屬氧化物絕緣層更覆蓋於第一電源線與第二電源線上,供氧層更覆蓋於第一電源線與第二電源線上方之金屬氧化物絕緣層上。 The present invention further provides a display panel including a substrate, a plurality of thin film transistors, a first electrode, a light emitting layer, a second electrode, a first power line, and a second power line. The substrate has a display area and a peripheral area located at the periphery of the display area. The thin film transistor includes an oxide semiconductor layer, a gate insulating pattern, a gate, a metal oxide insulating layer, an oxygen supply layer, a source, and a drain. The oxide semiconductor layer has a source region, a drain region, and a channel region, and the channel region is located between the source region and the drain region. The gate insulating pattern is located on the channel region of the oxide semiconductor layer. The gate is located on the gate insulation pattern. The metal oxide insulating layer covers the oxide semiconductor layer. The oxygen supply layer is in contact with the metal oxide insulating layer. The source and the drain are located above the oxygen supply layer, and are electrically connected to the source region of the oxide semiconductor layer to be the drain region. The first electrode is located above the source and the drain, and the first electrode is electrically connected to the drain. The luminescent layer is on the first electrode. The second electrode is located on the luminescent layer. The first power line is located in the peripheral area, and the first power line is electrically connected to the source. The second power line is located in the peripheral area, and the second power line is electrically connected to the second power The metal oxide insulating layer covers the first power line and the second power line, and the oxygen supply layer covers the metal oxide insulating layer above the first power line and the second power line.

基於上述,由於供氧層與金屬層相接觸以便在退火製程中供氧層提供金屬層氧化時所需的氧,因此可以避免金屬層在退火製程中發生氧化不全的現象。 Based on the above, since the oxygen supply layer is in contact with the metal layer to provide the oxygen required for the oxidation of the metal layer during the annealing process, the phenomenon that the metal layer is oxidized in the annealing process can be avoided.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

30‧‧‧第一電源線 30‧‧‧First power cord

40‧‧‧第二電源線 40‧‧‧second power cord

52‧‧‧顯示區 52‧‧‧ display area

54‧‧‧周邊區 54‧‧‧The surrounding area

100‧‧‧畫素陣列 100‧‧‧ pixel array

110‧‧‧基板 110‧‧‧Substrate

120‧‧‧第一供氧層 120‧‧‧First oxygen supply layer

122‧‧‧隔離層 122‧‧‧Isolation

130‧‧‧氧化物半導體層 130‧‧‧Oxide semiconductor layer

130S‧‧‧源極區 130S‧‧‧ source area

130C‧‧‧通道區 130C‧‧‧Channel area

130D‧‧‧汲極區 130D‧‧‧Bungee Area

140‧‧‧閘絕緣圖案 140‧‧‧Brake insulation pattern

150‧‧‧閘極 150‧‧‧ gate

160‧‧‧金屬層 160‧‧‧metal layer

160a‧‧‧金屬氧化物絕緣層 160a‧‧‧Metal oxide insulation

170‧‧‧第二供氧層/供氧層 170‧‧‧Second oxygen supply layer/oxygen supply layer

180‧‧‧平坦層 180‧‧‧flat layer

192‧‧‧保護層 192‧‧‧protection layer

194‧‧‧第一電極 194‧‧‧First electrode

195‧‧‧畫素隔離壁 195‧‧‧ pixel separation wall

196‧‧‧發光層 196‧‧‧Lighting layer

198‧‧‧第二電極 198‧‧‧second electrode

C‧‧‧電容器 C‧‧‧ capacitor

D‧‧‧汲極 D‧‧‧汲

DL‧‧‧資料線 DL‧‧‧ data line

GL‧‧‧電源線 GL‧‧‧ power cord

OLED‧‧‧有機發光二極體 OLED‧‧ Organic Light Emitting Diode

PL‧‧‧電源線 PL‧‧‧Power cord

S‧‧‧源極 S‧‧‧ source

SL‧‧‧掃描線 SL‧‧‧ scan line

T1、T2‧‧‧薄膜電晶體 T1, T2‧‧‧ film transistor

V1’‧‧‧第一子開口 V1’‧‧‧ first child opening

V2’‧‧‧第二子開口 V2’‧‧‧ second child opening

V1‧‧‧第一開口 V1‧‧‧ first opening

V2‧‧‧第二開口 V2‧‧‧ second opening

V3‧‧‧第三開口 V3‧‧‧ third opening

V4‧‧‧第四開口 V4‧‧‧ fourth opening

圖1是本發明一實施例之顯示面板的示意圖。 1 is a schematic view of a display panel in accordance with an embodiment of the present invention.

圖2是圖1之實施例的顯示面板的局部等效電路圖。 2 is a partial equivalent circuit diagram of the display panel of the embodiment of FIG. 1.

圖3A至圖3H是本發明一實施例之薄膜電晶體的製造方法的流程剖面圖。 3A to 3H are cross-sectional views showing the flow of a method of manufacturing a thin film transistor according to an embodiment of the present invention.

圖4是包括本發明圖3H之實施例的薄膜電晶體的顯示面板的剖面圖。 4 is a cross-sectional view of a display panel including a thin film transistor of the embodiment of FIG. 3H of the present invention.

圖5A至圖5D是本發明另一實施例之薄膜電晶體的製造方法的部分流程剖面圖。 5A to 5D are partial cross-sectional views showing a method of manufacturing a thin film transistor according to another embodiment of the present invention.

圖6是包括本發明圖5D之實施例的薄膜電晶體的顯示面板的剖面圖。 Figure 6 is a cross-sectional view of a display panel including a thin film transistor of the embodiment of Figure 5D of the present invention.

圖7A至圖7G是本發明另一實施例的薄膜電晶體的製造方法 的流程剖面圖。 7A to 7G are diagrams of a method of manufacturing a thin film transistor according to another embodiment of the present invention; Flow chart of the process.

圖8包括本發明圖7G之實施例的薄膜電晶體的顯示面板的剖面圖。 Figure 8 is a cross-sectional view showing a display panel of a thin film transistor of the embodiment of Figure 7G of the present invention.

圖9A至圖9D是本發明另一實施例的薄膜電晶體的製造方法的流程剖面圖。 9A to 9D are cross-sectional views showing the flow of a method of manufacturing a thin film transistor according to another embodiment of the present invention.

圖10包括本發明圖9D之實施例的薄膜電晶體的顯示面板的剖面圖。 Figure 10 is a cross-sectional view showing a display panel of a thin film transistor of the embodiment of Figure 9D of the present invention.

圖11A至圖11D是本發明另一實施例的薄膜電晶體的製造方法的流程剖面圖。 11A to 11D are cross-sectional views showing the flow of a method of manufacturing a thin film transistor according to another embodiment of the present invention.

圖12包括本發明圖11D之實施例的薄膜電晶體的顯示面板的剖面圖。 Figure 12 is a cross-sectional view showing a display panel of a thin film transistor of the embodiment of Figure 11D of the present invention.

圖13A是習知之顯示面板的薄膜電晶體的汲極電流對閘極電壓(Id-Vg)的關係圖。 Fig. 13A is a graph showing the relationship between the gate current and the gate voltage (Id-Vg) of a thin film transistor of a conventional display panel.

圖13B是本發明之圖4的顯示面板的薄膜電晶體之汲極電流對閘極電壓(Id-Vg)的關係圖。 Figure 13B is a graph showing the relationship between the gate current and the gate voltage (Id-Vg) of the thin film transistor of the display panel of Figure 4 of the present invention.

圖14是本發明之圖8的顯示面板的薄膜電晶體之汲極電流對閘極電壓(Id-Vg)的關係圖。 Figure 14 is a graph showing the relationship between the gate current and the gate voltage (Id-Vg) of the thin film transistor of the display panel of Figure 8 of the present invention.

圖15是本發明之圖12的顯示面板的薄膜電晶體之汲極電流對閘極電壓(Id-Vg)的關係圖。 Figure 15 is a graph showing the relationship between the gate current and the gate voltage (Id-Vg) of the thin film transistor of the display panel of Figure 12 of the present invention.

圖1是本發明一實施例之顯示面板的示意圖。圖2是圖1之實施例的顯示面板的局部等效電路圖。請同時參照圖1以及圖 2,本實施例之顯示面板包括一基板110,且基板110包括一顯示區52以及位於顯示區52外圍的一周邊區54。一畫素陣列100位於顯示區52中。畫素陣列100具有多個畫素結構(未標示),每一畫素結構包括至少一薄膜電晶體T1、T2以及與至少一薄膜電晶體T1、T2電性連接之一有機發光二極體OLED。根據本發明之一實施例,畫素陣列100更包括多條掃描線SL、多條資料線DL以及多條電源線PL、GL(如圖2所示),電源線PL、GL分別連接至位於周邊區54中的一第一電源線30以及一第二電源線40。第一電源線30例如是一高電壓電源線(連接至電壓OVDD),而第二電源線40例如是一低電壓電源線(連接至電壓OVSS),且一金屬氧化物絕緣層160a覆蓋於顯示區52以及周邊區54之第一電源線30以及第二電源線40上,以確保彼此電性隔離。 1 is a schematic view of a display panel in accordance with an embodiment of the present invention. 2 is a partial equivalent circuit diagram of the display panel of the embodiment of FIG. 1. Please also refer to Figure 1 and Figure 2. The display panel of this embodiment includes a substrate 110, and the substrate 110 includes a display area 52 and a peripheral area 54 located at the periphery of the display area 52. A pixel array 100 is located in display area 52. The pixel array 100 has a plurality of pixel structures (not labeled), and each pixel structure includes at least one thin film transistor T1, T2 and one organic light emitting diode OLED electrically connected to at least one thin film transistor T1, T2. . According to an embodiment of the present invention, the pixel array 100 further includes a plurality of scan lines SL, a plurality of data lines DL, and a plurality of power lines PL, GL (shown in FIG. 2), wherein the power lines PL, GL are respectively connected to A first power line 30 and a second power line 40 in the peripheral area 54. The first power line 30 is, for example, a high voltage power line (connected to the voltage OVDD), and the second power line 40 is, for example, a low voltage power line (connected to the voltage OVSS), and a metal oxide insulating layer 160a is overlaid on the display. The region 52 and the first power line 30 of the peripheral region 54 and the second power line 40 are electrically isolated from each other.

根據本發明之一實施例,薄膜電晶體T1具有一閘極、一源極以及一汲極(未標示),其中源極與資料線DL電性連接,閘極與掃描線SL電性連接,且汲極與薄膜電晶體T2電性連接。薄膜電晶體T2具有一閘極、一源極以及一汲極(未標示),其中閘極是與薄膜電晶體T1的汲極電性連接,源極是與電源線PL電性連接,且汲極與有機發光二極體OLED電性連接。一電容器C的一電極端是與薄膜電晶體T1的汲極電性連接,電容器C的另一電極端與薄膜電晶體T2的汲極電性連接。有機發光二極體OLED包括一第一電極、一發光層以及一第二電極(未繪示),其中第一電極與薄膜電晶體T2的汲極電性連接,第二電極與電源線GL電性連結。在 本實施例中,每一畫素結構是以兩個薄膜電晶體搭配一個電容器(2T1C)為例來說明,但並非用以限定本發明,本發明不限每一畫素結構內的薄膜電晶體與電容器的個數。圖3A至圖3H是本發明一實施例之薄膜電晶體的製造方法的流程剖面圖。在圖3A至圖3H的製造流程中,是以薄膜電晶體T2為例來說明。雖然圖式沒有繪示出薄膜電晶體T1的製造流程,但實際上,薄膜電晶體T1的製造過程與薄膜電晶體T2相同。 According to an embodiment of the present invention, the thin film transistor T1 has a gate, a source, and a drain (not labeled), wherein the source is electrically connected to the data line DL, and the gate is electrically connected to the scan line SL. And the drain is electrically connected to the thin film transistor T2. The thin film transistor T2 has a gate, a source and a drain (not shown), wherein the gate is electrically connected to the drain of the thin film transistor T1, and the source is electrically connected to the power line PL, and The pole is electrically connected to the organic light emitting diode OLED. One electrode end of a capacitor C is electrically connected to the drain of the thin film transistor T1, and the other electrode end of the capacitor C is electrically connected to the drain of the thin film transistor T2. The organic light emitting diode OLED includes a first electrode, a light emitting layer and a second electrode (not shown), wherein the first electrode is electrically connected to the drain of the thin film transistor T2, and the second electrode is electrically connected to the power line GL. Sexual links. in In this embodiment, each pixel structure is illustrated by taking two thin film transistors together with a capacitor (2T1C) as an example, but is not intended to limit the present invention, and the present invention is not limited to the thin film transistor in each pixel structure. The number of capacitors. 3A to 3H are cross-sectional views showing the flow of a method of manufacturing a thin film transistor according to an embodiment of the present invention. In the manufacturing flow of FIGS. 3A to 3H, the thin film transistor T2 is taken as an example. Although the drawing does not show the manufacturing flow of the thin film transistor T1, in practice, the manufacturing process of the thin film transistor T1 is the same as that of the thin film transistor T2.

首先,請參照圖3A,提供一基板110。基板110之材質可為玻璃、石英、有機聚合物、或是不透光/反射材料(例如:導電材料、金屬、晶圓、陶瓷、或其它可適用的材料)、或是其它可適用的材料。若使用導電材料或金屬時,則在基板110上覆蓋一層絕緣層(未繪示),以避免短路問題。在基板110上依序形成一氧化物半導體層130、一閘絕緣圖案140以及一閘極150;且閘絕緣圖案140以及閘極150暴露出部份的氧化物半導體層130。在本實施例中,上述氧化物半導體層130、閘絕緣圖案140以及閘極150的製造方法例如是先沉積一氧化半導體材料層(未繪示)在對其進行圖案化製程以形成氧化物半導體層130;接著,沉積一閘絕緣材料層(未繪示)以及一閘極材料層(未繪示)對其進行圖案化製程以形成閘絕緣圖案140以及閘極150。上述圖案化製程例如是微影蝕刻製程,但本發明不限於此。 First, referring to FIG. 3A, a substrate 110 is provided. The substrate 110 may be made of glass, quartz, organic polymer, or an opaque/reflective material (eg, conductive material, metal, wafer, ceramic, or other applicable material), or other applicable materials. . If a conductive material or metal is used, an insulating layer (not shown) is coated on the substrate 110 to avoid short circuit problems. An oxide semiconductor layer 130, a gate insulating pattern 140, and a gate 150 are sequentially formed on the substrate 110; and the gate insulating pattern 140 and the gate 150 expose a portion of the oxide semiconductor layer 130. In the present embodiment, the method for fabricating the oxide semiconductor layer 130, the gate insulating pattern 140, and the gate 150 is, for example, first depositing a layer of an oxidized semiconductor material (not shown) in a patterning process to form an oxide semiconductor. Layer 130; Next, a gate insulating material layer (not shown) and a gate material layer (not shown) are patterned to form a gate insulating pattern 140 and a gate 150. The above patterning process is, for example, a lithography process, but the invention is not limited thereto.

氧化物半導體層130的材質例如是金屬氧化物半導體材料,例如是氧化銦鎵鋅(Indium-Gallium-Zinc Oxide,IGZO)、氧化 鋅(ZnO)氧化錫(SnO)、氧化銦鋅(Indium-Zinc Oxide,IZO)、氧化鎵鋅(Gallium-Zinc Oxide,GZO)、氧化鋅錫(Zinc-Tin Oxide,ZTO)或氧化銦錫(Indium-Tin Oxide,ITO)、或其它合適的材料、或上述之組合。閘絕緣圖案140的材料包含無機材料(例如:氧化矽、氮化矽、氮氧化矽、其它合適的材料、或上述至少二種材料的堆疊層)、有機材料、或其它合適的材料、或上述之組合。閘極150的材料包含金屬、金屬氧化物、有機導電材料或上述之組合。在本實施例中,閘絕緣圖案140以及閘極150是一層結構;但在其他實施例中,閘絕緣圖案140以及閘極150亦可以是雙層結構或多層堆疊結構,本發明不限於此。在一實施例中,閘極150例如是鈦-鋁-鈦的三層結構之複合金屬層。 The material of the oxide semiconductor layer 130 is, for example, a metal oxide semiconductor material, for example, Indium-Gallium-Zinc Oxide (IGZO), oxidation. Zinc (ZnO) tin oxide (SnO), Indium-Zinc Oxide (IZO), Gallium-Zinc Oxide (GZO), Zinc-Tin Oxide (ZTO) or Indium Tin Oxide (Zinc-Tin Oxide, ZTO) Indium-Tin Oxide, ITO), or other suitable materials, or combinations thereof. The material of the gate insulating pattern 140 comprises an inorganic material (for example: hafnium oxide, tantalum nitride, niobium oxynitride, other suitable materials, or a stacked layer of at least two of the above materials), an organic material, or other suitable material, or The combination. The material of the gate 150 comprises a metal, a metal oxide, an organic conductive material, or a combination thereof. In the present embodiment, the gate insulating pattern 140 and the gate 150 are a single layer structure; however, in other embodiments, the gate insulating pattern 140 and the gate 150 may also be a two-layer structure or a multi-layer stacked structure, and the present invention is not limited thereto. In one embodiment, the gate 150 is, for example, a composite metal layer of a three-layer structure of titanium-aluminum-titanium.

請參照圖3B,在基板110上方依序形成一金屬層160,以覆蓋氧化物半導體層130、閘絕緣圖案140以及閘極150,且金屬層160直接與暴露出的部份氧化物半導體層130相接觸。金屬層160的材料包含鋁、鈦、銦或其他金屬。接著,在金屬層160上全面形成一供氧層170,如圖3C所示。供氧層170的材料包含氧化矽或金屬氧化物半導體材料(例如:銦錫鎵鋅氧化物、銦鎵鋅氧化物、銦錫鋅氧化物、銦鎵錫氧化物、錫鎵鋅氧化物、銦鋅氧化物、錫鋅氧化物、銦錫氧化物、銦鎵氧化物、錫鎵氧化物、鋅鎵氧化物、氧化銦、氧化錫、氧化鎵、氧化鋅)或其他適當的含氧材料。 Referring to FIG. 3B, a metal layer 160 is sequentially formed over the substrate 110 to cover the oxide semiconductor layer 130, the gate insulating pattern 140, and the gate 150, and the metal layer 160 directly contacts the exposed portion of the oxide semiconductor layer 130. Contact. The material of the metal layer 160 comprises aluminum, titanium, indium or other metals. Next, an oxygen supply layer 170 is formed over the metal layer 160 as shown in FIG. 3C. The material of the oxygen supply layer 170 comprises yttrium oxide or a metal oxide semiconductor material (for example: indium tin gallium zinc oxide, indium gallium zinc oxide, indium tin zinc oxide, indium gallium tin oxide, tin gallium zinc oxide, indium) Zinc oxide, tin zinc oxide, indium tin oxide, indium gallium oxide, tin gallium oxide, zinc gallium oxide, indium oxide, tin oxide, gallium oxide, zinc oxide) or other suitable oxygen-containing materials.

然後,請參照圖3D,進行一第一退火製程,以使金屬層 160轉換為金屬氧化物絕緣層160a。第一退火製程例如是於一般氣壓(例如一大氣壓力,1 atm)、340℃、氧氣濃度18%的環境中進行。本實施例中,整面的供氧層170直接接觸金屬層160。在第一退火製程中,供氧層170可以提供金屬層160氧化時所需的氧,因此可確保金屬層160完全地轉換為金屬氧化物絕緣層160a,解決習知鋁薄膜氧化不完全所產生的問題。另外,在第一退火製程中,金屬層160也會從所接觸的氧化物半導體層130中取得氧,使得與金屬層160所接觸的部份氧化物半導體層130的氧濃度低於未與金屬層160所接觸的部份氧化物半導體層130的氧濃度。氧化物半導體層130中氧濃度低的區域(亦即導電率相對較高的區域)形成一源極區130S與一汲極區130D,氧化物半導體層130中氧濃度高的區域(亦即導電率相對較低的區域)形成一通道區130C。 Then, referring to FIG. 3D, a first annealing process is performed to make the metal layer 160 is converted into a metal oxide insulating layer 160a. The first annealing process is carried out, for example, in an environment of normal atmospheric pressure (for example, an atmospheric pressure, 1 atm), 340 ° C, and an oxygen concentration of 18%. In this embodiment, the entire surface of the oxygen supply layer 170 directly contacts the metal layer 160. In the first annealing process, the oxygen supply layer 170 can provide the oxygen required for the oxidation of the metal layer 160, thereby ensuring that the metal layer 160 is completely converted into the metal oxide insulating layer 160a, which solves the problem of incomplete oxidation of the conventional aluminum thin film. The problem. In addition, in the first annealing process, the metal layer 160 also takes oxygen from the contacted oxide semiconductor layer 130, so that the oxygen concentration of the portion of the oxide semiconductor layer 130 in contact with the metal layer 160 is lower than that of the metal. The oxygen concentration of the portion of the oxide semiconductor layer 130 that the layer 160 contacts. A region having a low oxygen concentration in the oxide semiconductor layer 130 (that is, a region having a relatively high conductivity) forms a source region 130S and a drain region 130D, and a region having a high oxygen concentration in the oxide semiconductor layer 130 (ie, a conductive region) A relatively low rate region) forms a channel region 130C.

另外,在前述形成金屬層160之後與形成供氧層170之前,可進行一第二退火製程。換言之,當選擇第一退火製程與第二退火製程都執行時,是先執行第二退火製程後才形成供氧層170,並在形成供氧層170後才執行第一退火製程。第二退火製程例如是於一般氣壓(例如一大氣壓力,1 atm)、300℃、氧氣濃度40%的環境中進行。在進行第二退火製程時,金屬層160會從所接觸的氧化物半導體層130的源極區130S與汲極區130D以及退火環境中取得氧,故金屬層160會部分地被轉換為金屬氧化物絕緣層160a。本實施的第一退火製程是在一第一環境中進行,第二退 火製程是在一第二環境中進行,第二環境之氧氣含量等於或高於第一環境之氧氣含量,且第一環境之溫度等於或高於第二環境之溫度。但是,本發明不限制第一退火製程以及第二退火製程的條件,例如第二環境之氧氣含量也是可以等於第一環境之氧氣含量。 In addition, a second annealing process may be performed after the formation of the metal layer 160 and before the formation of the oxygen supply layer 170. In other words, when both the first annealing process and the second annealing process are performed, the oxygen supply layer 170 is formed after the second annealing process is performed, and the first annealing process is performed after the oxygen supply layer 170 is formed. The second annealing process is carried out, for example, in an environment of normal atmospheric pressure (for example, an atmospheric pressure, 1 atm), 300 ° C, and an oxygen concentration of 40%. During the second annealing process, the metal layer 160 takes oxygen from the source region 130S and the drain region 130D of the contacted oxide semiconductor layer 130 and the annealing environment, so that the metal layer 160 is partially converted into metal oxide. Insulation layer 160a. The first annealing process of the present implementation is performed in a first environment, and the second annealing process The fire process is carried out in a second environment, the oxygen content of the second environment being equal to or higher than the oxygen content of the first environment, and the temperature of the first environment being equal to or higher than the temperature of the second environment. However, the present invention does not limit the conditions of the first annealing process and the second annealing process, for example, the oxygen content of the second environment may also be equal to the oxygen content of the first environment.

如圖3E所示,移除位於金屬氧化物絕緣層160a之上的供氧層170。接著,如圖3F所示,圖案化金屬氧化物絕緣層160a,以形成暴露出源極區130S的一第一子開口V1’以及暴露出汲極區130D的一第二子開口V2’。之後,如圖3G所示,在基板110上方形成一平坦層180,並對平坦層180進行圖案化,以形成暴露出源極區130S的一第一開口V1以及暴露出汲極區130D的一第二開口V2。平坦層180之材料包含無機材料(例如:氧化矽、氮化矽、氮氧化矽、其它合適的材料、或上述至少二種材料的堆疊層)、有機材料(例如:聚酯類(PET)、聚烯類、聚丙醯類、聚碳酸酯類、聚環氧烷類、聚苯烯類、聚醚類、聚酮類、聚醇類、聚醛類、或其它合適的材料、或上述之組合)、或其它合適的材料、或上述之組合。在本實施例中,是先圖案化金屬氧化物絕緣層160a,再形成平坦層180,並對平坦層180進行圖案化;但本發明不限於此。在另一實施例中,可先形成平坦層180,再對依序對平坦層180以及金屬氧化物絕緣層160a進行圖案化以形成開口。 As shown in FIG. 3E, the oxygen supply layer 170 over the metal oxide insulating layer 160a is removed. Next, as shown in FIG. 3F, the metal oxide insulating layer 160a is patterned to form a first sub-opening V1' exposing the source region 130S and a second sub-opening V2' exposing the drain region 130D. Thereafter, as shown in FIG. 3G, a flat layer 180 is formed over the substrate 110, and the flat layer 180 is patterned to form a first opening V1 exposing the source region 130S and exposing one of the drain regions 130D. The second opening V2. The material of the flat layer 180 comprises an inorganic material (for example: cerium oxide, cerium nitride, cerium oxynitride, other suitable materials, or a stacked layer of at least two of the above materials), an organic material (for example, polyester (PET), Polyene, polypropylene, polycarbonate, polyalkylene oxide, polyphenylene, polyether, polyketone, polyalcohol, polyaldehyde, or other suitable material, or a combination thereof ), or other suitable materials, or a combination of the above. In the present embodiment, the metal oxide insulating layer 160a is first patterned, the flat layer 180 is formed, and the flat layer 180 is patterned; however, the present invention is not limited thereto. In another embodiment, the planarization layer 180 may be formed first, and then the planarization layer 180 and the metal oxide insulating layer 160a may be sequentially patterned to form an opening.

接著,如圖3H所示,形成一源極S與一汲極D,分別藉由第一開口V1以及第二開口V2電性連接源極區130S與汲極區130D。至此步驟,一薄膜電晶體已形成。在本實施例中,是以頂 部閘極型薄膜電晶體為例來說,但本發明不限於此。根據其他實施例,主動元件T1、T2也可以是底部閘極型薄膜電晶體。 Next, as shown in FIG. 3H, a source S and a drain D are formed, and the source region 130S and the drain region 130D are electrically connected through the first opening V1 and the second opening V2, respectively. At this point, a thin film transistor has been formed. In this embodiment, it is top The gate type thin film transistor is exemplified, but the invention is not limited thereto. According to other embodiments, the active elements T1, T2 may also be bottom gate type thin film transistors.

圖4是包括本發明圖3H之實施例的薄膜電晶體的顯示面板的剖面圖,其中形成此顯示面板的製造過程包括以下步驟(未繪示)。在如圖3H所示之薄膜電晶體上形成一保護層192,並對保護層192進行圖案化,以形成暴露出汲極D的一第三開口V3。在保護層192上形成一第一電極194,其中第一電極194藉由第三開口V3與汲極D電性連結,且第一電極194填滿第三開口V3。在第一電極194上形成一畫素隔離壁195,畫素隔離壁195具有一第四開口V4。在第四開口V4中形成一發光層196;並在發光層196之上,形成一第二電極198。第一電極194、發光層196以及第二電極198構成有機發光二極體OLED。本實施例的發光層196的材料是以有機發光材料為例,但本發明不限於此。在本發明一實施例,發光層196可以是單層的發光層或者是主發光層加上電子傳輸層、電子注入層、電洞傳輸層以及電洞注入層的組合。主發光層例如是白光發光材料層或是其他特定色光(例如紅、綠、藍等等)之發光材料層。在本發明另一實施例,可以選擇電子傳輸層、電子注入層、電洞傳輸層以及電洞注入層至少其中一層與主發光層來搭配,以構成兩層、三層、四層或五層之堆疊層,進而增進發光層196之發光效率。另,有機發光二極體OLED之其它膜層的詳細材質與結構為本領域具有通常知識者所熟知,因此不再贅述。 4 is a cross-sectional view of a display panel including a thin film transistor of the embodiment of FIG. 3H of the present invention, wherein the manufacturing process for forming the display panel includes the following steps (not shown). A protective layer 192 is formed on the thin film transistor as shown in FIG. 3H, and the protective layer 192 is patterned to form a third opening V3 exposing the drain D. A first electrode 194 is formed on the protective layer 192. The first electrode 194 is electrically connected to the drain D through the third opening V3, and the first electrode 194 fills the third opening V3. A pixel isolation wall 195 is formed on the first electrode 194, and the pixel isolation wall 195 has a fourth opening V4. A light emitting layer 196 is formed in the fourth opening V4; and a second electrode 198 is formed on the light emitting layer 196. The first electrode 194, the light-emitting layer 196, and the second electrode 198 constitute an organic light-emitting diode OLED. The material of the light-emitting layer 196 of the present embodiment is exemplified by an organic light-emitting material, but the invention is not limited thereto. In an embodiment of the invention, the light-emitting layer 196 may be a single-layer light-emitting layer or a combination of a main light-emitting layer plus an electron transport layer, an electron injection layer, a hole transport layer, and a hole injection layer. The primary luminescent layer is, for example, a layer of white light luminescent material or a layer of luminescent material of other specific colored light (eg, red, green, blue, etc.). In another embodiment of the present invention, at least one of the electron transport layer, the electron injection layer, the hole transport layer, and the hole injection layer may be selected to be combined with the main light emitting layer to form two, three, four, or five layers. The stacked layers further enhance the luminous efficiency of the luminescent layer 196. In addition, the detailed materials and structures of other film layers of the organic light-emitting diode OLED are well known to those skilled in the art, and therefore will not be described again.

值得一提的是,本實施例在形成金屬層160之前,更包 括形成第一電源線30以及第二電源線40於基板110的周邊區54,其中金屬層160覆蓋於第一電源線30與第二電源線40上,後續並以供氧層170覆蓋金屬層160。在進行第一退火製程之後,位於第一電源線30與第二電源線40上方之金屬層160會被轉換為如圖1所示的金屬氧化物絕緣層160a。在此,由於供氧層170的設置,可大幅降低金屬層160未被轉換為金屬氧化物絕緣層160a的機率,進而確保第一電源線30與第二電源線40彼此電性隔離。 It is worth mentioning that this embodiment is further included before the formation of the metal layer 160. The first power line 30 and the second power line 40 are formed on the peripheral region 54 of the substrate 110, wherein the metal layer 160 covers the first power line 30 and the second power line 40, and subsequently covers the metal layer with the oxygen supply layer 170. 160. After the first annealing process is performed, the metal layer 160 located above the first power line 30 and the second power line 40 is converted into the metal oxide insulating layer 160a as shown in FIG. Here, due to the provision of the oxygen supply layer 170, the probability that the metal layer 160 is not converted into the metal oxide insulating layer 160a can be greatly reduced, thereby ensuring that the first power line 30 and the second power line 40 are electrically isolated from each other.

基於上述,在本實施例中的退火製程中供氧層以及氧化物半導體層可提供金屬層氧化時足夠的氧,避免金屬層在退火製程中發生氧化不全的現象,改善氧化物半導體層的源極區以及汲極區的電性均勻度,進而使本發明的薄膜電晶體的汲極在閘極電壓驅動下具有較佳的電流均勻度。又,由於金屬層在退火製程中避免了氧化不全的現象,因此提高了位於顯示面板之周邊區的第一電源線與第二電源線的電阻值,進而避免了第一電源線與第二電源線之間的短路,確保顯示面板可正常顯示。 Based on the above, in the annealing process in this embodiment, the oxygen supply layer and the oxide semiconductor layer can provide sufficient oxygen for oxidation of the metal layer, avoiding the phenomenon of incomplete oxidation of the metal layer in the annealing process, and improving the source of the oxide semiconductor layer. The electrical uniformity of the polar regions and the drain regions further allows the drain of the thin film transistor of the present invention to have better current uniformity driven by the gate voltage. Moreover, since the metal layer avoids the phenomenon of incomplete oxidation during the annealing process, the resistance values of the first power line and the second power line located in the peripheral area of the display panel are improved, thereby avoiding the first power line and the second power source. A short circuit between the lines ensures that the display panel is displayed properly.

圖5A至圖5D為本發明另一實施例之薄膜電晶體的部分製程剖面圖。在本實施例中,薄膜電晶體的製造方法是先進行上述圖3A至圖3D的步驟。接著,請參照圖5A,在進行第一退火製程使金屬層160轉換為金屬氧化物絕緣層160a之後,不移除位於金屬氧化物絕緣層160a上方的供氧層170。 5A to 5D are partial process cross-sectional views of a thin film transistor according to another embodiment of the present invention. In the present embodiment, the method of manufacturing the thin film transistor is carried out by first performing the above steps of Figs. 3A to 3D. Next, referring to FIG. 5A, after the first annealing process is performed to convert the metal layer 160 into the metal oxide insulating layer 160a, the oxygen supply layer 170 located above the metal oxide insulating layer 160a is not removed.

接著,如圖5B所示,在基板110上方形成一平坦層180。請參照圖5C,圖案化平坦層180、供氧層170以及金屬氧化物絕 緣層160a,以形成暴露出源極區130S的一第一開口V1以及暴露出汲極區130D的一第二開口V2。在本實施例中,是先形成平坦層180,再對依序對平坦層180、供氧層170以及金屬氧化物絕緣層160a進行圖案化以形成開口;但本發明不限於此。在另一實施例中,可先圖案化供氧層170以及金屬氧化物絕緣層160a,再形成平坦層180,並對平坦層180進行圖案化。請參照圖5D,形成一源極S與一汲極D,分別藉由第一開口V1以及第二開口V2電性連接源極區130S與汲極區130D。至此步驟,另一薄膜電晶體已形成。 Next, as shown in FIG. 5B, a flat layer 180 is formed over the substrate 110. Referring to FIG. 5C, the patterned flat layer 180, the oxygen supply layer 170, and the metal oxide are absolutely The edge layer 160a forms a first opening V1 exposing the source region 130S and a second opening V2 exposing the drain region 130D. In the present embodiment, the flat layer 180 is formed first, and then the flat layer 180, the oxygen supply layer 170, and the metal oxide insulating layer 160a are sequentially patterned to form openings; however, the present invention is not limited thereto. In another embodiment, the oxygen supply layer 170 and the metal oxide insulating layer 160a may be patterned first, then the planarization layer 180 may be formed, and the planarization layer 180 may be patterned. Referring to FIG. 5D, a source S and a drain D are formed, and the source region 130S and the drain region 130D are electrically connected through the first opening V1 and the second opening V2, respectively. At this point, another thin film transistor has been formed.

類似於圖4,圖6是包括本發明圖5D之實施例的薄膜電晶體的顯示面板的剖面圖,在完成圖5D之薄膜電晶體之後,接著形成保護層192、第一電極194、畫素隔離壁195、發光層196以及第二電極198,從而完成顯示面板之結構。第一電極194、發光層196以及第二電極198構成有機發光二極體OLED。有機發光二極體OLED之各膜層的詳細材質與結構為本領域具有通常知識者所熟知,因此不再贅述。 Similar to FIG. 4, FIG. 6 is a cross-sectional view of a display panel including the thin film transistor of the embodiment of FIG. 5D of the present invention. After the thin film transistor of FIG. 5D is completed, a protective layer 192, a first electrode 194, and a pixel are subsequently formed. The partition wall 195, the light emitting layer 196, and the second electrode 198 complete the structure of the display panel. The first electrode 194, the light-emitting layer 196, and the second electrode 198 constitute an organic light-emitting diode OLED. The detailed materials and structures of the respective layers of the organic light-emitting diode OLED are well known to those skilled in the art and will not be described again.

承上述,在本實施例中的退火製程中供氧層以及氧化物半導體層提供金屬層氧化時足夠的氧,讓金屬層可以氧化完全,改善氧化物半導體層的源極區以及汲極區的電性均勻度,使本發明的薄膜電晶體的汲極在閘極電壓驅動下具有較佳的電流均勻度,也同時提高第一電源線與第二電源線的電阻值,避免第一電源線與第二電源線之間的短路,進而確保顯示面板可正常顯示。 According to the above, in the annealing process in this embodiment, the oxygen supply layer and the oxide semiconductor layer provide sufficient oxygen for oxidation of the metal layer, so that the metal layer can be completely oxidized, and the source region and the drain region of the oxide semiconductor layer are improved. The electrical uniformity makes the drain of the thin film transistor of the invention have better current uniformity under the driving of the gate voltage, and simultaneously increases the resistance value of the first power line and the second power line, avoiding the first power line A short circuit with the second power line ensures that the display panel can be displayed normally.

以下將配合圖式詳細地說明本發明另一實施例的薄膜電晶體的製造方法。圖7A至圖7G是本發明另一實施例的薄膜電晶體的製造方法的流程剖面圖。請參照圖7A,提供一基板110,且在基板110的上表面上依序形成一第一供氧層120、一隔離層122、一氧化物半導體層130、一閘絕緣圖案140以及一閘極150,閘絕緣圖案140以及閘極150暴露出部份的氧化物半導體層130。在本實施例中,上述結構的製造方法是先在基板110上依序沉積第一供氧層120、一隔離材料層(未繪示)以及一氧化半導體材料層(未繪示),再對隔離材料層以及氧化半導體材料層進行圖案化製程以形成隔離層122以及氧化物半導體層130。接著,沉積一閘絕緣材料層(未繪示)以及一閘極材料層(未繪示),對其進行圖案化製程以形成閘絕緣圖案140以及閘極150。上述圖案化製程例如是微影蝕刻製程,但本發明不限於此。 Hereinafter, a method of manufacturing a thin film transistor according to another embodiment of the present invention will be described in detail with reference to the drawings. 7A to 7G are cross-sectional views showing the flow of a method of manufacturing a thin film transistor according to another embodiment of the present invention. Referring to FIG. 7A, a substrate 110 is provided, and a first oxygen supply layer 120, an isolation layer 122, an oxide semiconductor layer 130, a gate insulation pattern 140, and a gate are sequentially formed on the upper surface of the substrate 110. 150, the gate insulating pattern 140 and the gate 150 expose a portion of the oxide semiconductor layer 130. In this embodiment, the first structure of the first oxygen supply layer 120, an isolation material layer (not shown), and an oxide semiconductor material layer (not shown) are sequentially deposited on the substrate 110, and then The isolation material layer and the oxidized semiconductor material layer are subjected to a patterning process to form the isolation layer 122 and the oxide semiconductor layer 130. Next, a gate insulating material layer (not shown) and a gate material layer (not shown) are deposited, and patterned to form the gate insulating pattern 140 and the gate 150. The above patterning process is, for example, a lithography process, but the invention is not limited thereto.

第一供氧層120的材料包含氧化矽或金屬氧化物半導體材料(例如:銦錫鎵鋅氧化物、銦鎵鋅氧化物、銦錫鋅氧化物、銦鎵錫氧化物、錫鎵鋅氧化物、銦鋅氧化物、錫鋅氧化物、銦錫氧化物、銦鎵氧化物、錫鎵氧化物、鋅鎵氧化物、氧化銦、氧化錫、氧化鎵、氧化鋅)或其他適當的含氧材料。隔離層122的材料包含無機材料(例如:氧化矽、氮化矽、氮氧化矽、其它合適的材料、或上述至少二種材料的堆疊層)、有機材料、或其它合適的材料、或上述之組合。氧化物半導體層130的材質例如是金屬氧化物半導體材料,例如是氧化銦鎵鋅(Indium-Gallium-Zinc Oxide, IGZO)、氧化鋅(ZnO)氧化錫(SnO)、氧化銦鋅(Indium-Zinc Oxide,IZO)、氧化鎵鋅(Gallium-Zinc Oxide,GZO)、氧化鋅錫(Zinc-Tin Oxide,ZTO)或氧化銦錫(Indium-Tin Oxide,ITO)、或其它合適的材料、或上述之組合。在本實施例中,閘絕緣圖案140以及閘極150是一層結構;但在其他實施例中,閘絕緣圖案140以及閘極150亦可以是雙層結構或多層堆疊結構,本發明不限於此。在一實施例中,閘極150例如是鈦-鋁-鈦的三層結構之複合金屬層。 The material of the first oxygen supply layer 120 comprises yttrium oxide or a metal oxide semiconductor material (for example: indium tin gallium zinc oxide, indium gallium zinc oxide, indium tin zinc oxide, indium gallium tin oxide, tin gallium zinc oxide , indium zinc oxide, tin zinc oxide, indium tin oxide, indium gallium oxide, tin gallium oxide, zinc gallium oxide, indium oxide, tin oxide, gallium oxide, zinc oxide) or other suitable oxygen-containing materials . The material of the isolation layer 122 comprises an inorganic material (for example: cerium oxide, cerium nitride, cerium oxynitride, other suitable materials, or a stacked layer of at least two of the above materials), an organic material, or other suitable material, or the above combination. The material of the oxide semiconductor layer 130 is, for example, a metal oxide semiconductor material, for example, Indium-Gallium-Zinc Oxide (Indium-Gallium-Zinc Oxide, IGZO), zinc oxide (ZnO) tin oxide (SnO), indium-zinc oxide (IZO), gallium zinc oxide (GZO), zinc tin oxide (Zinc-Tin Oxide, ZTO) or Indium-Tin Oxide (ITO), or other suitable materials, or a combination thereof. In the present embodiment, the gate insulating pattern 140 and the gate 150 are a single layer structure; however, in other embodiments, the gate insulating pattern 140 and the gate 150 may also be a two-layer structure or a multi-layer stacked structure, and the present invention is not limited thereto. In one embodiment, the gate 150 is, for example, a composite metal layer of a three-layer structure of titanium-aluminum-titanium.

請參照圖7B,在基板110上方形成一金屬層160,以覆蓋氧化物半導體層130、閘絕緣圖案140以及閘極150,且金屬層160直接與暴露出的部份氧化物半導體層130相接觸。金屬層160的材料包含鋁、鈦、銦或其他金屬。接著,如圖7C所示,在金屬層160上全面形成一第二供氧層170。第二供氧層170的材料包含氧化矽或金屬氧化物半導體材料(例如:銦錫鎵鋅氧化物、銦鎵鋅氧化物、銦錫鋅氧化物、銦鎵錫氧化物、錫鎵鋅氧化物、銦鋅氧化物、錫鋅氧化物、銦錫氧化物、銦鎵氧化物、錫鎵氧化物、鋅鎵氧化物、氧化銦、氧化錫、氧化鎵、氧化鋅)或其他適當的含氧材料。第二供氧層170的材料可以與第一供氧層120的材料相同或不同。 Referring to FIG. 7B, a metal layer 160 is formed over the substrate 110 to cover the oxide semiconductor layer 130, the gate insulating pattern 140, and the gate 150, and the metal layer 160 is in direct contact with the exposed portion of the oxide semiconductor layer 130. . The material of the metal layer 160 comprises aluminum, titanium, indium or other metals. Next, as shown in FIG. 7C, a second oxygen supply layer 170 is entirely formed on the metal layer 160. The material of the second oxygen supply layer 170 comprises yttrium oxide or a metal oxide semiconductor material (for example: indium tin gallium zinc oxide, indium gallium zinc oxide, indium tin zinc oxide, indium gallium tin oxide, tin gallium zinc oxide , indium zinc oxide, tin zinc oxide, indium tin oxide, indium gallium oxide, tin gallium oxide, zinc gallium oxide, indium oxide, tin oxide, gallium oxide, zinc oxide) or other suitable oxygen-containing materials . The material of the second oxygen supply layer 170 may be the same as or different from the material of the first oxygen supply layer 120.

請參照圖7D,進行一第一退火製程,以使金屬層160轉換為金屬氧化物絕緣層160a。第一退火製程例如是於一般氣壓(例如一大氣壓力,1 atm)、340℃、氧氣濃度18%的環境中進行。本實施例中,整面的第二供氧層170直接接觸整面的金屬層160。在 第一退火製程中,第二供氧層170可以提供金屬層160氧化時所需的氧,因此可確保金屬層160完全地轉換為金屬氧化物絕緣層160a,解決習知鋁薄膜氧化不完全所產生的問題。另外,在第一退火製程中,金屬層160也會從所接觸的氧化物半導體層130以及第一供氧層120中取得氧,使金屬層160可以被轉換成為金屬氧化物絕緣層160a。特別是,與金屬層160所接觸的部份氧化物半導體層130的氧濃度低於未與金屬層160所接觸的部份氧化物半導體層130的氧濃度。氧化物半導體層130中氧濃度低的區域形成一源極區130S與一汲極區130D,氧化物半導體層130中氧濃度高的區域形成一通道區130C,其中源極區130S與汲極區130D具有較低的電阻值而具有較佳的導電率。 Referring to FIG. 7D, a first annealing process is performed to convert the metal layer 160 into the metal oxide insulating layer 160a. The first annealing process is carried out, for example, in an environment of normal atmospheric pressure (for example, an atmospheric pressure, 1 atm), 340 ° C, and an oxygen concentration of 18%. In this embodiment, the entire second oxygen supply layer 170 directly contacts the entire metal layer 160. in In the first annealing process, the second oxygen supply layer 170 can provide the oxygen required for the oxidation of the metal layer 160, thereby ensuring that the metal layer 160 is completely converted into the metal oxide insulating layer 160a, thereby solving the problem of incomplete oxidation of the conventional aluminum thin film. The problem that arises. In addition, in the first annealing process, the metal layer 160 also takes oxygen from the contacted oxide semiconductor layer 130 and the first oxygen supply layer 120, so that the metal layer 160 can be converted into the metal oxide insulating layer 160a. In particular, the oxygen concentration of the portion of the oxide semiconductor layer 130 that is in contact with the metal layer 160 is lower than the oxygen concentration of the portion of the oxide semiconductor layer 130 that is not in contact with the metal layer 160. A region of the oxide semiconductor layer 130 having a low oxygen concentration forms a source region 130S and a drain region 130D, and a region having a high oxygen concentration in the oxide semiconductor layer 130 forms a channel region 130C, wherein the source region 130S and the drain region 130D has a lower resistance value and has a better conductivity.

另外,在前述形成金屬層160之後與形成第二供氧層170之前,可進行一第二退火製程。換言之,當選擇第一退火製程與第二退火製程都執行時,是先執行第二退火製程後才形成第二供氧層170,並在形成第二供氧層170後才執行第一退火製程。第二退火製程例如是於一般氣壓(例如一大氣壓力,1 atm)、300℃、氧氣濃度40%的環境中進行。在進行第二退火製程時,金屬層160會從所接觸的第一供氧層120、氧化物半導體層130的源極區130S與汲極區130D以及退火環境中取得氧,故金屬層160會部分地被轉換為金屬氧化物絕緣層160a。本實施的第一退火製程是在一第一環境中進行,第二退火製程是在一第二環境中進行,第二環境之氧氣含量等於或高於第一環境之氧氣含量,且第一環境之溫度 等於或高於第二環境之溫度。但是,本發明不限制第一退火製程以及第二退火製程的條件。 In addition, a second annealing process may be performed after the foregoing forming the metal layer 160 and before forming the second oxygen supply layer 170. In other words, when both the first annealing process and the second annealing process are performed, the second oxygen supply layer 170 is formed after the second annealing process is performed, and the first annealing process is performed after the second oxygen supply layer 170 is formed. . The second annealing process is carried out, for example, in an environment of normal atmospheric pressure (for example, an atmospheric pressure, 1 atm), 300 ° C, and an oxygen concentration of 40%. During the second annealing process, the metal layer 160 takes oxygen from the first oxygen supply layer 120, the source region 130S and the drain region 130D of the oxide semiconductor layer 130, and the annealing environment, so the metal layer 160 It is partially converted into a metal oxide insulating layer 160a. The first annealing process of the present embodiment is performed in a first environment, the second annealing process is performed in a second environment, the oxygen content of the second environment is equal to or higher than the oxygen content of the first environment, and the first environment Temperature Equal to or higher than the temperature of the second environment. However, the present invention does not limit the conditions of the first annealing process and the second annealing process.

如圖7E所示,在基板110上方形成一平坦層180。之後,如圖7F所示,圖案化平坦層180、第二供氧層170以及金屬氧化物絕緣層160a,以形成暴露出源極區130S的一第一開口V1以及暴露出汲極區130D的一第二開口V2。在本實施例中,是先形成平坦層180,再對依序對平坦層180、第二供氧層170以及金屬氧化物絕緣層160a進行圖案化以形成開口;但本發明不限於此。在另一實施例中,可先圖案化第二供氧層170以及金屬氧化物絕緣層160a,再形成平坦層180,並對平坦層180進行圖案化。請參照圖7G,形成一源極S與一汲極D,分別藉由第一開口V1以及第二開口V2電性連接源極區130S與汲極區130D。至此步驟,另一薄膜電晶體已形成。在本實施例中,是以頂部閘極型薄膜電晶體為例來說,但本發明不限於此。 As shown in FIG. 7E, a flat layer 180 is formed over the substrate 110. Thereafter, as shown in FIG. 7F, the planarization layer 180, the second oxygen supply layer 170, and the metal oxide insulating layer 160a are patterned to form a first opening V1 exposing the source region 130S and exposing the drain region 130D. a second opening V2. In the present embodiment, the flat layer 180 is formed first, and then the flat layer 180, the second oxygen supply layer 170, and the metal oxide insulating layer 160a are sequentially patterned to form openings; however, the present invention is not limited thereto. In another embodiment, the second oxygen supply layer 170 and the metal oxide insulating layer 160a may be patterned first, then the planarization layer 180 may be formed, and the planarization layer 180 may be patterned. Referring to FIG. 7G, a source S and a drain D are formed, and the source region 130S and the drain region 130D are electrically connected through the first opening V1 and the second opening V2, respectively. At this point, another thin film transistor has been formed. In the present embodiment, the top gate type thin film transistor is taken as an example, but the present invention is not limited thereto.

類似於圖4,圖8是包括本發明圖7G之實施例的薄膜電晶體的顯示面板的剖面圖,其中形成此顯示面板的製造過程包括以下步驟(未繪示)。在如圖7G所示之薄膜電晶體上形成一保護層192,並對保護層192進行圖案化,以形成暴露出汲極D的一第三開口V3。在保護層192上形成一第一電極194,其中第一電極194藉由第三開口V3與汲極D電性連結,且第一電極194填滿第三開口V3。在第一電極194上形成一畫素隔離壁195,畫素隔離壁195具有一第四開口V4。在第四開口V4中形成一發光層196;並 在發光層196之上,形成一第二電極198,從而完成顯示面板之結構。第一電極194、發光層196以及第二電極198構成有機發光二極體OLED。有機發光二極體OLED之各膜層的詳細材質與結構為本領域具有通常知識者所熟知,因此不再贅述。 Similar to FIG. 4, FIG. 8 is a cross-sectional view of a display panel including the thin film transistor of the embodiment of FIG. 7G of the present invention, wherein the manufacturing process for forming the display panel includes the following steps (not shown). A protective layer 192 is formed on the thin film transistor as shown in FIG. 7G, and the protective layer 192 is patterned to form a third opening V3 exposing the drain D. A first electrode 194 is formed on the protective layer 192. The first electrode 194 is electrically connected to the drain D through the third opening V3, and the first electrode 194 fills the third opening V3. A pixel isolation wall 195 is formed on the first electrode 194, and the pixel isolation wall 195 has a fourth opening V4. Forming a light emitting layer 196 in the fourth opening V4; Above the light-emitting layer 196, a second electrode 198 is formed, thereby completing the structure of the display panel. The first electrode 194, the light-emitting layer 196, and the second electrode 198 constitute an organic light-emitting diode OLED. The detailed materials and structures of the respective layers of the organic light-emitting diode OLED are well known to those skilled in the art and will not be described again.

基於上述,在本實施例中的退火製程中第一供氧層、第二供氧層以及氧化物半導體層可提供金屬層氧化時足夠的氧,避免了金屬層在退火製程中發生氧化不全的現象,改善氧化物半導體層的源極區以及汲極區的電性均勻度,使本發明的薄膜電晶體的汲極在閘極電壓驅動下具有較佳的電流均勻度。又,位於顯示面板之周邊區的金屬層在退火製程中避免了氧化不全的現象,因此提高第一電源線與第二電源線的電阻值,進而避免第一電源線與第二電源線之間的短路,確保顯示面板可正常顯示。 Based on the above, in the annealing process in this embodiment, the first oxygen supply layer, the second oxygen supply layer, and the oxide semiconductor layer can provide sufficient oxygen for oxidation of the metal layer, thereby avoiding oxidation of the metal layer during the annealing process. The phenomenon improves the electrical uniformity of the source region and the drain region of the oxide semiconductor layer, so that the drain of the thin film transistor of the present invention has better current uniformity driven by the gate voltage. Moreover, the metal layer located in the peripheral region of the display panel avoids the phenomenon of incomplete oxidation during the annealing process, thereby increasing the resistance value of the first power line and the second power line, thereby avoiding the relationship between the first power line and the second power line Short circuit to ensure that the display panel can be displayed normally.

圖9A至圖9D是本發明另一實施例的薄膜電晶體的製造方法的流程剖面圖。在本實施例中,薄膜電晶體的製造方法首先進行上述圖7A至圖7D的步驟。接著,請參照圖9A,在進行第一退火製程使金屬層160轉換為金屬氧化物絕緣層160a之後,移除位於金屬氧化物絕緣層160a上方的第二供氧層170。 9A to 9D are cross-sectional views showing the flow of a method of manufacturing a thin film transistor according to another embodiment of the present invention. In the present embodiment, the method of manufacturing the thin film transistor first performs the above-described steps of FIGS. 7A to 7D. Next, referring to FIG. 9A, after the first annealing process is performed to convert the metal layer 160 into the metal oxide insulating layer 160a, the second oxygen supply layer 170 located above the metal oxide insulating layer 160a is removed.

接著,如圖9B所示,在基板110上方形成一平坦層180。如圖9C所示,圖案化平坦層180以及金屬氧化物絕緣層160a,以形成暴露出源極區130S的一第一開口V1以及暴露出汲極區130D的一第二開口V2。在本實施例中,是先形成平坦層180,再對依序對平坦層180以及金屬氧化物絕緣層160a進行圖案化以形 成開口;但本發明不限於此。在另一實施例中,可先圖案化金屬氧化物絕緣層160a,再形成平坦層180,並對平坦層180進行圖案化。請參照圖9D,形成一源極S與一汲極D,分別藉由第一開口V1以及第二開口V2電性連接源極區130S與汲極區130D。至此步驟,另一薄膜電晶體已形成。 Next, as shown in FIG. 9B, a flat layer 180 is formed over the substrate 110. As shown in FIG. 9C, the planarization layer 180 and the metal oxide insulating layer 160a are patterned to form a first opening V1 exposing the source region 130S and a second opening V2 exposing the drain region 130D. In this embodiment, the flat layer 180 is formed first, and then the planarization layer 180 and the metal oxide insulating layer 160a are sequentially patterned to form An opening; however, the invention is not limited thereto. In another embodiment, the metal oxide insulating layer 160a may be patterned first, then the planarization layer 180 may be formed, and the planarization layer 180 may be patterned. Referring to FIG. 9D, a source S and a drain D are formed, and the source region 130S and the drain region 130D are electrically connected through the first opening V1 and the second opening V2, respectively. At this point, another thin film transistor has been formed.

類似於圖4,圖10是包括本發明圖9D之實施例的薄膜電晶體的顯示面板的剖面圖,在完成圖9D之薄膜電晶體之後,接著形成保護層192、第一電極194、畫素隔離壁195、發光層196以及第二電極198,從而完成顯示面板之結構。第一電極194、發光層196以及第二電極198構成有機發光二極體OLED。有機發光二極體OLED之各膜層的詳細材質與結構為本領域具有通常知識者所熟知,因此不再贅述。 Similar to FIG. 4, FIG. 10 is a cross-sectional view of a display panel including the thin film transistor of the embodiment of FIG. 9D of the present invention. After the thin film transistor of FIG. 9D is completed, a protective layer 192, a first electrode 194, and a pixel are formed. The partition wall 195, the light emitting layer 196, and the second electrode 198 complete the structure of the display panel. The first electrode 194, the light-emitting layer 196, and the second electrode 198 constitute an organic light-emitting diode OLED. The detailed materials and structures of the respective layers of the organic light-emitting diode OLED are well known to those skilled in the art and will not be described again.

承上述,在本實施例中的退火製程中第一供氧層、第二供氧層以及氧化物半導體層提供金屬層氧化時足夠的氧,讓金屬層可以氧化完全,改善氧化物半導體層的源極區以及汲極區的電性均勻度,使本發明的薄膜電晶體的汲極在閘極電壓驅動下具有較佳的電流均勻度,也同時提高第一電源線與第二電源線的電阻值,避免第一電源線與第二電源線之間的短路,進而確保顯示面板可正常顯示。 According to the above, in the annealing process in this embodiment, the first oxygen supply layer, the second oxygen supply layer, and the oxide semiconductor layer provide sufficient oxygen for oxidation of the metal layer, so that the metal layer can be completely oxidized, and the oxide semiconductor layer is improved. The electrical uniformity of the source region and the drain region enables the drain of the thin film transistor of the present invention to have better current uniformity under the gate voltage driving, and also improves the first power line and the second power line. The resistance value avoids a short circuit between the first power line and the second power line, thereby ensuring that the display panel can be normally displayed.

圖11A至圖11D是本發明另一實施例的薄膜電晶體的製造方法的流程剖面圖。在本實施例中,薄膜電晶體的製造方法首先進行上述圖7A至圖7B的步驟,並且在基板110上方形成一金 屬層160以覆蓋氧化物半導體層130、閘絕緣圖案140以及閘極150。接著,請參照圖11A,直接進行一第一退火製程使金屬層160轉換為金屬氧化物絕緣層160a。第一退火製程例如是於一般氣壓(例如一大氣壓力,1 atm)、340℃、氧氣濃度18%的環境中進行。在第一退火製程中,金屬層160從所接觸的氧化物半導體層130、第一供氧層120以及退火環境中取得氧,使金屬層160可以被轉換成為金屬氧化物絕緣層160a。特別是,未與氧化物半導體層130以及第一供氧層120接觸的金屬層160不會轉換為金屬氧化物絕緣層160a,故本實施例中的金屬層160是部分地被轉換為金屬氧化物絕緣層160a,見圖11A。與金屬層160所接觸的部份氧化物半導體層130的氧濃度低於未與金屬層160所接觸的部份氧化物半導體層130的氧濃度。因此,氧化物半導體層130中氧濃度低的區域形成一源極區130S與一汲極區130D,氧化物半導體層130中氧濃度高的區域形成一通道區130C,其中源極區130S與汲極區130D具有較低的電阻值而具有較佳的導電率。 11A to 11D are cross-sectional views showing the flow of a method of manufacturing a thin film transistor according to another embodiment of the present invention. In the present embodiment, the method of manufacturing the thin film transistor first performs the above steps of FIGS. 7A to 7B, and forms a gold over the substrate 110. The tributary layer 160 covers the oxide semiconductor layer 130, the gate insulating pattern 140, and the gate 150. Next, referring to FIG. 11A, a first annealing process is directly performed to convert the metal layer 160 into the metal oxide insulating layer 160a. The first annealing process is carried out, for example, in an environment of normal atmospheric pressure (for example, an atmospheric pressure, 1 atm), 340 ° C, and an oxygen concentration of 18%. In the first annealing process, the metal layer 160 takes oxygen from the contacted oxide semiconductor layer 130, the first oxygen supply layer 120, and the annealing environment, so that the metal layer 160 can be converted into the metal oxide insulating layer 160a. In particular, the metal layer 160 that is not in contact with the oxide semiconductor layer 130 and the first oxygen supply layer 120 is not converted into the metal oxide insulating layer 160a, so the metal layer 160 in this embodiment is partially converted into metal oxide. The insulating layer 160a is shown in Fig. 11A. The oxygen concentration of the portion of the oxide semiconductor layer 130 that is in contact with the metal layer 160 is lower than the oxygen concentration of the portion of the oxide semiconductor layer 130 that is not in contact with the metal layer 160. Therefore, a region of the oxide semiconductor layer 130 having a low oxygen concentration forms a source region 130S and a drain region 130D, and a region having a high oxygen concentration in the oxide semiconductor layer 130 forms a channel region 130C, wherein the source region 130S and the gate region The polar region 130D has a lower resistance value and has a better electrical conductivity.

如圖11B所示,在基板110上方形成一平坦層180。如圖11C所示,圖案化平坦層180以及金屬氧化物絕緣層160a,以形成暴露出源極區130S的一第一開口V1以及暴露出汲極區130D的一第二開口V2。在本實施例中,是先形成平坦層180,再對依序對平坦層180以及金屬氧化物絕緣層160a進行圖案化,形成開口;但本發明不限於此。在另一實施例中,可先圖案化金屬氧化物絕緣層160a,再形成平坦層180,並對平坦層180進行圖案化。 請參照圖11D,形成一源極S與一汲極D,分別藉由第一開口V1以及第二開口V2電性連接源極區130S與汲極區130D。至此步驟,另一薄膜電晶體已形成。 As shown in FIG. 11B, a flat layer 180 is formed over the substrate 110. As shown in FIG. 11C, the planarization layer 180 and the metal oxide insulating layer 160a are patterned to form a first opening V1 exposing the source region 130S and a second opening V2 exposing the drain region 130D. In the present embodiment, the flat layer 180 is formed first, and then the flat layer 180 and the metal oxide insulating layer 160a are sequentially patterned to form an opening; however, the present invention is not limited thereto. In another embodiment, the metal oxide insulating layer 160a may be patterned first, then the planarization layer 180 may be formed, and the planarization layer 180 may be patterned. Referring to FIG. 11D, a source S and a drain D are formed, and the source region 130S and the drain region 130D are electrically connected through the first opening V1 and the second opening V2, respectively. At this point, another thin film transistor has been formed.

類似於圖4,圖12是包括本發明圖11D之實施例的薄膜電晶體的顯示面板的剖面圖,在完成圖11D之薄膜電晶體之後,接著形成保護層192、第一電極194、畫素隔離壁195、發光層196以及第二電極198,從而完成顯示面板之結構。第一電極194、發光層196以及第二電極198構成有機發光二極體OLED。有機發光二極體OLED之各膜層的詳細材質與結構為本領域具有通常知識者所熟知,因此不再贅述。 Similar to FIG. 4, FIG. 12 is a cross-sectional view of a display panel including the thin film transistor of the embodiment of FIG. 11D of the present invention. After the thin film transistor of FIG. 11D is completed, a protective layer 192, a first electrode 194, and a pixel are formed. The partition wall 195, the light emitting layer 196, and the second electrode 198 complete the structure of the display panel. The first electrode 194, the light-emitting layer 196, and the second electrode 198 constitute an organic light-emitting diode OLED. The detailed materials and structures of the respective layers of the organic light-emitting diode OLED are well known to those skilled in the art and will not be described again.

基於上述,在本實施例中的退火製程中第一供氧層以及氧化物半導體層可提供金屬層氧化時足夠的氧,使金屬層在退火製程中在特定區域內避免了氧化不全的現象,可改善氧化物半導體層的源極區以及汲極區的電性均勻度,使本發明的薄膜電晶體的汲極在閘極電壓驅動下具有較佳的電流均勻度。也因此提高了位於顯示面板之周邊區的第一電源線與第二電源線的電阻值,避免第一電源線與第二電源線之間的短路,使顯示面板可正常顯示。 Based on the above, in the annealing process in this embodiment, the first oxygen supply layer and the oxide semiconductor layer can provide sufficient oxygen for oxidation of the metal layer, so that the metal layer avoids oxidation in a specific region during the annealing process. The electrical uniformity of the source region and the drain region of the oxide semiconductor layer can be improved, so that the drain of the thin film transistor of the present invention has better current uniformity driven by the gate voltage. Therefore, the resistance values of the first power line and the second power line located in the peripheral area of the display panel are improved, and a short circuit between the first power line and the second power line is avoided, so that the display panel can be normally displayed.

圖13A是習知之薄膜電晶體的汲極電流對閘極電壓(Id-Vg)的關係圖。圖13B是本發明之圖4的顯示面板的薄膜電晶體之汲極電流對閘極電壓(Id-Vg)的關係圖。在圖13A以及圖13B中,實線曲線的汲極電壓(Vd)為10伏特,而虛線曲線的汲極電壓(Vd)為0.1伏特。汲極電流對閘極電壓(Id-Vg)的關係圖是藉由在顯 示面板的基板上選取三個測量點並分別對配置在三個測量點中的薄膜電晶體進行電性量測來取得。由圖13A可知,習知之薄膜電晶體的汲極在閘極電壓(Vg)驅動下,其汲極電流(Id)均勻度發生偏移且不穩。然而,根據圖13B可知,本發明之薄膜電晶體之汲極在閘極電壓驅動下具有穩定且較佳的電流均勻度。 Fig. 13A is a graph showing the relationship between the gate current and the gate voltage (Id-Vg) of a conventional thin film transistor. Figure 13B is a graph showing the relationship between the gate current and the gate voltage (Id-Vg) of the thin film transistor of the display panel of Figure 4 of the present invention. In FIGS. 13A and 13B, the solid line curve has a drain voltage (Vd) of 10 volts, and the dotted curve has a drain voltage (Vd) of 0.1 volt. The relationship between the gate current and the gate voltage (Id-Vg) is shown by Three measurement points are selected on the substrate of the display panel and are respectively obtained by electrically measuring the thin film transistors arranged in the three measurement points. As can be seen from FIG. 13A, the drain of the conventional thin film transistor is driven by the gate voltage (Vg), and the drain current (Id) uniformity is shifted and unstable. However, as can be seen from Fig. 13B, the drain of the thin film transistor of the present invention has stable and preferable current uniformity driven by the gate voltage.

為了證明本發明之薄膜電晶體的設計確實具有較佳的電流均勻度,特另以本發明之其它實施例進行實驗來做驗證。圖14是本發明之圖8的顯示面板之薄膜電晶體的汲極電流對閘極電壓(Id-Vg)的關係圖。圖15是本發明之圖12的顯示面板之薄膜電晶體的汲極電流對閘極電壓(Id-Vg)的關係圖。根據圖14以及圖15皆清楚可見,本發明之薄膜電晶體之汲極在閘極電壓驅動下具有較佳的電流均勻度。 In order to demonstrate that the design of the thin film transistor of the present invention does have better current uniformity, experiments have been carried out in other embodiments of the present invention for verification. Figure 14 is a graph showing the relationship between the gate current and the gate voltage (Id-Vg) of the thin film transistor of the display panel of Figure 8 of the present invention. Figure 15 is a graph showing the relationship between the gate current and the gate voltage (Id-Vg) of the thin film transistor of the display panel of Figure 12 of the present invention. As is clear from Fig. 14 and Fig. 15, the drain of the thin film transistor of the present invention has better current uniformity driven by the gate voltage.

綜上所述,在本發明的薄膜電晶體的製造方法中,使用供氧層,並使供氧層與金屬層相接觸,因此在退火製程中供氧層可提供金屬層氧化時所需的氧,以避免金屬層在退火製程中發生氧化不全的現象,改善氧化物半導體層的源極區以及汲極區的電性均勻度(例如:電子遷移率(mobility)、次臨界擺幅(sub-threshold swing)以及臨界擺幅(threshold swing)),進而使本發明的薄膜電晶體的汲極在閘極電壓驅動下具有較佳的電流均勻度。且,在本發明的顯示面板之製造過程中,藉由在金屬層上全面形成供氧層之後再進行退火製程,避免金屬層轉換為金屬氧化物絕緣層不全而導致錯誤的短路(例如:第一電源線與第二電源線之間的漏電 (current leakage)所引起之短路)。由於金屬層在退火製程後轉換為金屬氧化物絕緣層,使得第一電源線與第二電源線的電阻值提高外,亦同時提高顯示面板之亮度、子畫素點亮率以及薄膜電晶體之開關與驅動功能(switch and driving functions)的正確性,進而確保顯示面板可正常顯示。 In summary, in the method for fabricating a thin film transistor of the present invention, an oxygen supply layer is used and the oxygen supply layer is brought into contact with the metal layer, so that the oxygen supply layer can provide the oxidation of the metal layer during the annealing process. Oxygen to avoid oxidation incompleteness of the metal layer during the annealing process, improve the electrical uniformity of the source region and the drain region of the oxide semiconductor layer (eg, electron mobility, subcritical swing (sub) -threshold swing) and threshold swing, which in turn allows the drain of the thin film transistor of the present invention to have better current uniformity driven by the gate voltage. Moreover, in the manufacturing process of the display panel of the present invention, the annealing process is performed after the oxygen supply layer is completely formed on the metal layer, thereby avoiding the conversion of the metal layer into a metal oxide insulating layer and causing a erroneous short circuit (for example: Leakage between a power line and a second power line (current leakage) caused by (current leakage). Since the metal layer is converted into a metal oxide insulating layer after the annealing process, the resistance values of the first power line and the second power line are increased, and the brightness of the display panel, the sub-pixel lighting rate, and the thin film transistor are also improved. The correctness of the switch and driving functions ensures that the display panel is displayed properly.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

110‧‧‧基板 110‧‧‧Substrate

120‧‧‧第一供氧層 120‧‧‧First oxygen supply layer

122‧‧‧隔離層 122‧‧‧Isolation

130‧‧‧氧化物半導體層 130‧‧‧Oxide semiconductor layer

130S‧‧‧源極區 130S‧‧‧ source area

130C‧‧‧通道區 130C‧‧‧Channel area

130D‧‧‧汲極區 130D‧‧‧Bungee Area

140‧‧‧閘絕緣圖案 140‧‧‧Brake insulation pattern

150‧‧‧閘極 150‧‧‧ gate

160a‧‧‧金屬氧化物絕緣層 160a‧‧‧Metal oxide insulation

170‧‧‧第二供氧層 170‧‧‧Second oxygen supply layer

180‧‧‧平坦層 180‧‧‧flat layer

S‧‧‧源極 S‧‧‧ source

D‧‧‧汲極 D‧‧‧汲

V1‧‧‧第一開口 V1‧‧‧ first opening

V2‧‧‧第二開口 V2‧‧‧ second opening

Claims (19)

一種薄膜電晶體,包括:一氧化物半導體層,具有一源極區、一汲極區以及一通道區,該通道區位於該源極區以及該汲極區之間;一閘絕緣圖案,位於該氧化物半導體層之該通道區上;一閘極,位於該閘絕緣圖案上;一金屬氧化物絕緣層,覆蓋該氧化物半導體層;一供氧層,與該金屬氧化物絕緣層接觸;以及一源極以及一汲極,位於該供氧層之上方,且分別電性連接該氧化物半導體層之該源極區以及該汲極區。 A thin film transistor comprising: an oxide semiconductor layer having a source region, a drain region and a channel region, the channel region being located between the source region and the drain region; a gate insulating pattern located at a gate region of the oxide semiconductor layer; a gate on the gate insulating pattern; a metal oxide insulating layer covering the oxide semiconductor layer; and an oxygen supply layer in contact with the metal oxide insulating layer; And a source and a drain are disposed above the oxygen supply layer and electrically connected to the source region and the drain region of the oxide semiconductor layer, respectively. 如申請專利範圍第1項所述的薄膜電晶體,其中該供氧層位於該金屬氧化物絕緣層之上,且該金屬氧化物絕緣層更覆蓋該閘極以及該閘絕緣圖案。 The thin film transistor of claim 1, wherein the oxygen supply layer is over the metal oxide insulating layer, and the metal oxide insulating layer further covers the gate and the gate insulating pattern. 如申請專利範圍第1項所述的薄膜電晶體,更包括一隔離層,其中該供氧層位於該金屬氧化物半導體之下方,該隔離層位於該氧化物半導體層以及該供氧層之間,且該金屬氧化物絕緣層更覆蓋該隔離層以及該供氧層。 The thin film transistor according to claim 1, further comprising an isolation layer, wherein the oxygen supply layer is located under the metal oxide semiconductor, the isolation layer is located between the oxide semiconductor layer and the oxygen supply layer And the metal oxide insulating layer covers the isolation layer and the oxygen supply layer. 如申請專利範圍第3項所述的薄膜電晶體,更包括一金屬層,覆蓋該閘極以及該閘絕緣圖案。 The thin film transistor according to claim 3, further comprising a metal layer covering the gate and the gate insulating pattern. 如申請專利範圍第4項所述的薄膜電晶體,其中該金屬層包括鋁、鈦或銦,該金屬氧化物絕緣層包括氧化鋁、氧化鈦或氧化銦。 The thin film transistor according to claim 4, wherein the metal layer comprises aluminum, titanium or indium, and the metal oxide insulating layer comprises aluminum oxide, titanium oxide or indium oxide. 如申請專利範圍第1項所述的薄膜電晶體,更包括一隔離層,其中該供氧層包括:一第一供氧層,位於該金屬氧化物半導體之下方,其中該隔離層位於該氧化物半導體層以及該供氧層之間;以及一第二供氧層,位於該金屬氧化物絕緣層之上,且該金屬氧化物絕緣層更覆蓋該閘極、該閘絕緣圖案、該隔離層以及該第一供氧層。 The thin film transistor according to claim 1, further comprising an isolation layer, wherein the oxygen supply layer comprises: a first oxygen supply layer under the metal oxide semiconductor, wherein the isolation layer is located in the oxidation Between the semiconductor layer and the oxygen supply layer; and a second oxygen supply layer over the metal oxide insulating layer, and the metal oxide insulating layer further covers the gate, the gate insulating pattern, and the isolation layer And the first oxygen supply layer. 如申請專利範圍第1項所述的薄膜電晶體,其中該金屬氧化物絕緣層包括氧化鋁、氧化鈦或氧化銦。 The thin film transistor according to claim 1, wherein the metal oxide insulating layer comprises aluminum oxide, titanium oxide or indium oxide. 如申請專利範圍第1項所述的薄膜電晶體,其中該供氧層的材質包括氧化矽或金屬氧化物半導體材料。 The thin film transistor according to claim 1, wherein the material of the oxygen supply layer comprises ruthenium oxide or a metal oxide semiconductor material. 一種薄膜電晶體的製造方法,包括:形成一氧化物半導體層;於該氧化物半導體層上依序形成一閘絕緣圖案以及一閘極;形成一金屬層,以覆蓋該氧化物半導體層、該閘絕緣圖案與該閘極;形成一供氧層,使該金屬層與該供氧層相接觸;進行一第一退火製程,以使該氧化物半導體層與該金屬層反應而形成一源極區以及一汲極區,其中該源極區以及該汲極區之間的該氧化物半導體層為一通道區,且同時使該金屬層與該供氧層以及該氧化物半導體層反應以形成一金屬氧化物絕緣層;以及於該供氧層之上方形成一源極以及一汲極,該源極以及該汲 極分別電性連接該氧化物半導體層之該源極區以及該汲極區。 A method for fabricating a thin film transistor includes: forming an oxide semiconductor layer; sequentially forming a gate insulating pattern and a gate on the oxide semiconductor layer; forming a metal layer to cover the oxide semiconductor layer, a gate insulating pattern and the gate; forming an oxygen supply layer to bring the metal layer into contact with the oxygen supply layer; performing a first annealing process to react the oxide semiconductor layer with the metal layer to form a source a region and a drain region, wherein the oxide semiconductor layer between the source region and the drain region is a channel region, and simultaneously reacting the metal layer with the oxygen supply layer and the oxide semiconductor layer to form a metal oxide insulating layer; and forming a source and a drain above the oxygen supply layer, the source and the anode The poles are electrically connected to the source region of the oxide semiconductor layer and the drain region, respectively. 如申請專利範圍第9項所述的薄膜電晶體的製造方法,其中在形成該金屬層之後與形成該供氧層之前,更包括進行一第二退火製程。 The method for producing a thin film transistor according to claim 9, wherein the forming of the metal layer and before forming the oxygen supply layer further comprises performing a second annealing process. 如申請專利範圍第9項所述的薄膜電晶體的製造方法,其中該第一退火製程是於一大氣壓力的環境中進行。 The method for producing a thin film transistor according to claim 9, wherein the first annealing process is performed in an atmosphere at atmospheric pressure. 如申請專利範圍第9項所述的薄膜電晶體的製造方法,其中該供氧層形成於該金屬層之上,且在該第一退火製程之後所形成的該金屬氧化物絕緣層覆蓋該閘極、該閘絕緣圖案以及該氧化物半導體層。 The method of manufacturing a thin film transistor according to claim 9, wherein the oxygen supply layer is formed on the metal layer, and the metal oxide insulating layer formed after the first annealing process covers the gate a gate, the gate insulating pattern, and the oxide semiconductor layer. 如申請專利範圍第12項所述的薄膜電晶體的製造方法,其中在進行該第一退火製程之後,更包括移除該供氧層。 The method of manufacturing a thin film transistor according to claim 12, wherein after the performing the first annealing process, further comprising removing the oxygen supply layer. 如申請專利範圍第9項所述的薄膜電晶體的製造方法,其中該供氧層形成於該氧化物半導體層之下,該氧化物半導體層以及該供氧層之間更包括形成一隔離層;且在該第一退火製程之後所形成的該金屬氧化物絕緣層覆蓋該氧化物半導體層、該隔離層以及該供氧層。 The method of manufacturing a thin film transistor according to claim 9, wherein the oxygen supply layer is formed under the oxide semiconductor layer, and the oxide semiconductor layer and the oxygen supply layer further comprise an isolation layer. And the metal oxide insulating layer formed after the first annealing process covers the oxide semiconductor layer, the isolation layer, and the oxygen supply layer. 如申請專利範圍第9項所述的薄膜電晶體的製造方法,其中該供氧層包括一第一供氧層以及一第二供氧層,該第一供氧層形成於該氧化物半導體層之下,且該氧化物半導體層以及該供氧層之間更包括形成一隔離層,該第二供氧層形成於該金屬層之上;且在該第一退火製程之後所形成的該金屬氧化物絕緣層覆蓋 該閘極、該閘絕緣圖案、該氧化物半導體層、該隔離層以及該供氧層。 The method of manufacturing a thin film transistor according to claim 9, wherein the oxygen supply layer comprises a first oxygen supply layer and a second oxygen supply layer, and the first oxygen supply layer is formed on the oxide semiconductor layer. And forming an isolation layer between the oxide semiconductor layer and the oxygen supply layer, the second oxygen supply layer is formed on the metal layer; and the metal formed after the first annealing process Oxide insulation The gate, the gate insulating pattern, the oxide semiconductor layer, the isolation layer, and the oxygen supply layer. 如申請專利範圍第15項所述的薄膜電晶體的製造方法,其中在進行該第一退火製程之後,更包括移除該第二供氧層。 The method of manufacturing a thin film transistor according to claim 15, wherein after the performing the first annealing process, the second oxygen supply layer is further removed. 如申請專利範圍第9項所述的薄膜電晶體的製造方法,其中該供氧層的材質包括氧化矽或金屬氧化物半導體材料。 The method for producing a thin film transistor according to claim 9, wherein the material of the oxygen supply layer comprises a ruthenium oxide or a metal oxide semiconductor material. 一種顯示面板,包括:一基板,具有一顯示區以及位於該顯示區外圍之一周邊區;多個薄膜電晶體,位於該顯示區中,其中每一薄膜電晶體如申請專利範圍第1項所述的薄膜電晶體;一第一電極,位於該源極與該汲極之上方,且該第一電極電性連接該汲極;一發光層,位於該第一電極上;一第二電極,位於該發光層上;一第一電源線,位於該周邊區,且該第一電源線電性連接於該源極;一第二電源線,位於該周邊區,且該第二電源線電性連接於該第二電極,其中該金屬氧化物絕緣層更覆蓋於該第一電源線與該第二電源線上,該供氧層更覆蓋於該第一電源線與該第二電源線上方之該金屬氧化物絕緣層上。 A display panel comprising: a substrate having a display area and a peripheral area at a periphery of the display area; a plurality of thin film transistors located in the display area, wherein each of the thin film transistors is as described in claim 1 a thin film transistor; a first electrode located above the source and the drain, wherein the first electrode is electrically connected to the drain; a light emitting layer is located on the first electrode; and a second electrode is located a first power line is located in the peripheral area, and the first power line is electrically connected to the source; a second power line is located in the peripheral area, and the second power line is electrically connected In the second electrode, the metal oxide insulating layer covers the first power line and the second power line, and the oxygen supply layer covers the metal above the first power line and the second power line. On the oxide insulation layer. 如申請專利範圍第18項所述的顯示面板,其中該供氧層的材質包括氧化矽或金屬氧化物半導體材料。 The display panel of claim 18, wherein the material of the oxygen supply layer comprises ruthenium oxide or a metal oxide semiconductor material.
TW104100519A 2015-01-08 2015-01-08 Thin film transistor, display panel and manufacturing methods thereof TWI548100B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW104100519A TWI548100B (en) 2015-01-08 2015-01-08 Thin film transistor, display panel and manufacturing methods thereof
CN201510101338.0A CN104659107B (en) 2015-01-08 2015-03-09 Thin film transistor, display panel and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104100519A TWI548100B (en) 2015-01-08 2015-01-08 Thin film transistor, display panel and manufacturing methods thereof

Publications (2)

Publication Number Publication Date
TW201626576A TW201626576A (en) 2016-07-16
TWI548100B true TWI548100B (en) 2016-09-01

Family

ID=53250021

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104100519A TWI548100B (en) 2015-01-08 2015-01-08 Thin film transistor, display panel and manufacturing methods thereof

Country Status (2)

Country Link
CN (1) CN104659107B (en)
TW (1) TWI548100B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102522595B1 (en) * 2016-04-29 2023-04-17 삼성디스플레이 주식회사 Transistor panel and manufacturing method thereof
CN106129086B (en) * 2016-07-21 2019-04-30 深圳市华星光电技术有限公司 TFT substrate and preparation method thereof
CN107170807B (en) * 2017-05-11 2020-07-31 京东方科技集团股份有限公司 Thin film transistor, preparation method thereof, array substrate and display device
JP6703186B2 (en) * 2017-10-31 2020-06-03 株式会社アルバック Thin film transistor and manufacturing method thereof
CN110854204B (en) * 2019-11-26 2023-10-20 京东方科技集团股份有限公司 Thin film transistor, preparation method thereof, pixel circuit and display panel
CN113437018B (en) * 2021-06-02 2023-02-24 深圳市华星光电半导体显示技术有限公司 Manufacturing method of array substrate, array substrate and display panel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1168054A1 (en) * 1999-12-28 2002-01-02 Matsushita Electric Industrial Co., Ltd. Tft array substrate, method of manufacture thereof, and lcd with tft array substrate
TW200305745A (en) * 2002-04-24 2003-11-01 Sanyo Electric Co Display device
EP1852915A1 (en) * 2006-05-03 2007-11-07 Samsung SDI Co., Ltd. Organic light emitting display device
TW201308608A (en) * 2011-08-09 2013-02-16 Samsung Display Co Ltd Thin-film transistor array substrate, organic light-emitting display including the same and method of manufacturing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101206033B1 (en) * 2006-04-18 2012-11-28 삼성전자주식회사 Fabrication method of ZnO Thin Film and ZnO Transistor, and Thin Film Transistor adopting the same
KR100889627B1 (en) * 2007-08-23 2009-03-20 삼성모바일디스플레이주식회사 Thin film transistor, fabricating method for the same, and organic light emitting diode display device comprising the same
JP2012015436A (en) * 2010-07-05 2012-01-19 Sony Corp Thin film transistor and display device
WO2013167374A1 (en) * 2012-05-09 2013-11-14 Imec Method for increasing the electrical conductivity of metal oxide semiconductor layers
TWI482287B (en) * 2013-04-24 2015-04-21 Au Optronics Corp Electroluminescent display panel and method of fabricating the same
TWI528564B (en) * 2013-09-23 2016-04-01 友達光電股份有限公司 Thin film transistor and fabricating method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1168054A1 (en) * 1999-12-28 2002-01-02 Matsushita Electric Industrial Co., Ltd. Tft array substrate, method of manufacture thereof, and lcd with tft array substrate
TW200305745A (en) * 2002-04-24 2003-11-01 Sanyo Electric Co Display device
EP1852915A1 (en) * 2006-05-03 2007-11-07 Samsung SDI Co., Ltd. Organic light emitting display device
TW201308608A (en) * 2011-08-09 2013-02-16 Samsung Display Co Ltd Thin-film transistor array substrate, organic light-emitting display including the same and method of manufacturing the same

Also Published As

Publication number Publication date
CN104659107A (en) 2015-05-27
TW201626576A (en) 2016-07-16
CN104659107B (en) 2018-02-06

Similar Documents

Publication Publication Date Title
TWI548100B (en) Thin film transistor, display panel and manufacturing methods thereof
KR102248641B1 (en) Organic electro luminescent device
US9721977B2 (en) Display device and electronic unit
TWI500161B (en) Hybrid thin film transistor and manufacturing method thereof and display panel
TWI683164B (en) Display backboard and manufacturing method thereof, display panel and display device
JP4934599B2 (en) Active matrix display device
TWI535034B (en) Pixel structure and method of fabricating the same
JP5685989B2 (en) Display device and electronic device
US9368525B2 (en) Display device and electronic apparatus
US9362312B2 (en) Semiconductor device, display unit, and electronic apparatus
US10269885B2 (en) Display device having multiple protective films
US9214476B1 (en) Pixel structure
US20150279871A1 (en) Semiconductor device, display unit, and electronic apparatus
US20170092704A1 (en) Thin film transistor, method of manufacturing the thin film transistor and thin film transistor, method of manufacturing thin film transistor and flat panel display having the thin film transistor
US20110240986A1 (en) Pixel structure of electroluminescent display panel and method of making the same
US11678530B2 (en) Display substrate and preparation method thereof, and display apparatus
TWI549265B (en) Pixel structure and manufacturing method thereof
US9640554B2 (en) Pixel structure
TWI546954B (en) Pixel structure of electroluminescent display panel and method of fabricating the same
US10879329B2 (en) Semiconductor device, semiconductor substrate, luminescent unit, and display unit
US20220399420A1 (en) Display apparatus and method of manufacturing the same