TWI541502B - 具有背景電流操縱之背側受激感測器 - Google Patents

具有背景電流操縱之背側受激感測器 Download PDF

Info

Publication number
TWI541502B
TWI541502B TW103138944A TW103138944A TWI541502B TW I541502 B TWI541502 B TW I541502B TW 103138944 A TW103138944 A TW 103138944A TW 103138944 A TW103138944 A TW 103138944A TW I541502 B TWI541502 B TW I541502B
Authority
TW
Taiwan
Prior art keywords
cmos
pixel
substrate
background current
diode
Prior art date
Application number
TW103138944A
Other languages
English (en)
Other versions
TW201508271A (zh
Inventor
瑪諾 比庫曼拉
Original Assignee
豪威科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 豪威科技股份有限公司 filed Critical 豪威科技股份有限公司
Publication of TW201508271A publication Critical patent/TW201508271A/zh
Application granted granted Critical
Publication of TWI541502B publication Critical patent/TWI541502B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4148Integrated circuits therefor, e.g. fabricated by CMOS processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4145Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for biomolecules, e.g. gate electrode with immobilised receptors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Electrochemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

具有背景電流操縱之背側受激感測器
本文中揭示基於親和性之感測器的實施例。詳言之但非排他地,本文中揭示背側受激CMOS(互補金屬氧化物半導體)型感測器之實施例。在若干實施例中,感測器利用其背景電流來量測對其背側表面之親和性相關刺激。
基於親和性之偵測為識別及量測之基礎方法。舉例而言,基於親和性之偵測可用以識別及量測生物及生化分析物之豐度。其為在包括生物技術之許多奮鬥領域中的重要分析方法。基於親和性之生物感測器利用目標分析物與固定捕獲探針之選擇性相互作用及結合來特定地將目標分析物捕獲至固體表面上。此特定捕獲基於所捕獲之分析物產生可偵測之信號。所產生之信號與目標分析物(例如,離子、毒素、聚合物、激素、DNA股、蛋白質、細胞等)之存在相關,且因此用以估計分析物之豐度。
為了產生目標特定信號,樣本中之目標分析物首先與裝備有探針之捕獲層碰撞、結合至該等探針且起始轉導過程,亦即,產生僅由經捕獲實體產生之可量測信號(例如,電信號、機械信號或光學信號)的過程。接著藉由各種方式(例如,基於半導體之信號處理技術)來處 理該等信號。
在此項技術中已知各種基於親和性之感測器。然而,此項技術中通常需要新的且有用的基於親和性之感測器。
100‧‧‧背側受激CMOS生物感測器像素
101‧‧‧固定生物探針
102‧‧‧分析物
103‧‧‧背側表面
110‧‧‧基板
111‧‧‧二極體
112‧‧‧浮動擴散區結構
113‧‧‧傳送閘
114‧‧‧STI結構
120‧‧‧層間介電質
130‧‧‧金屬堆疊
210‧‧‧正離子親和性背側表面部分
211‧‧‧基板
212‧‧‧帶負電荷之表面層或帶負電荷之實體
213‧‧‧正離子分析物
220‧‧‧負離子親和性背側表面部分
221‧‧‧基板
222‧‧‧帶正電荷之表面層或帶正電荷之實體
223‧‧‧負離子分析物
230‧‧‧肝素親和性背側表面部分
231‧‧‧基板
232‧‧‧魚精蛋白探針
233‧‧‧肝素
234‧‧‧基板表面
240‧‧‧DNA親和性背側表面部分
241‧‧‧基板
242‧‧‧DNA探針
243‧‧‧目標DNA
244‧‧‧目標DNA
245‧‧‧標籤
246‧‧‧基板表面
250‧‧‧抗體-抗原親和性背側表面部分
251‧‧‧基板
252‧‧‧抗體探針
253‧‧‧分析物抗體
254‧‧‧基板表面
260‧‧‧酶親和性背側表面部分
261‧‧‧基板
262‧‧‧酶探針
263‧‧‧分析物
264‧‧‧基板表面
265‧‧‧反應產物
270‧‧‧細胞親和性背側表面部分
271‧‧‧基板
272‧‧‧細胞探針
273‧‧‧分析物刺激
274‧‧‧基板表面
275‧‧‧反應產物
280‧‧‧組織親和性背側表面部分
281‧‧‧基板
282‧‧‧組織探針
283‧‧‧分析物刺激
284‧‧‧基板表面
285‧‧‧反應產物
310‧‧‧CMOS像素
311‧‧‧二極體
312‧‧‧STI結構
313‧‧‧基板
320‧‧‧CMOS像素
321‧‧‧經操縱之二極體
330‧‧‧CMOS像素
332‧‧‧經操縱之STI結構
340‧‧‧CMOS像素
342‧‧‧STI結構
345‧‧‧摻雜劑
350‧‧‧CMOS像素
351‧‧‧二極體
352‧‧‧STI結構
353‧‧‧基板
354‧‧‧電感線圈
360‧‧‧CMOS像素
364‧‧‧電感線圈
365‧‧‧參考像素
366‧‧‧溫度感測器
400‧‧‧CMOS像素陣列
401‧‧‧背側表面層
402‧‧‧CMOS像素
403‧‧‧CMOS像素
404‧‧‧CMOS像素
410‧‧‧經修改背側表面部分
411‧‧‧基板
412‧‧‧凸塊結構
413‧‧‧凸塊結構
414‧‧‧凸塊結構
415‧‧‧表面
416‧‧‧空腔
417‧‧‧空腔
500‧‧‧背側受激CMOS生物感測器像素
501‧‧‧生物探針
502‧‧‧分析物
503‧‧‧CMOS背側表面
504‧‧‧懸臂
505‧‧‧偵測表面
510‧‧‧基板層
511‧‧‧二極體
512‧‧‧浮動擴散部件
513‧‧‧傳送閘
514‧‧‧STI結構
520‧‧‧層間介電質
530‧‧‧金屬堆疊
610‧‧‧懸臂
611‧‧‧懸臂臂
612‧‧‧生物探針
614‧‧‧懸臂臂表面
615‧‧‧中間部件
616‧‧‧CMOS背側表面
620‧‧‧懸臂
621‧‧‧懸臂臂
622‧‧‧生物探針
623‧‧‧分析物
624‧‧‧懸臂臂表面
625‧‧‧尖端部件
626‧‧‧CMOS背側表面
630‧‧‧懸臂
631‧‧‧懸臂臂
632‧‧‧生物探針
633‧‧‧分析物
634‧‧‧懸臂臂表面
636‧‧‧CMOS背側表面
637‧‧‧基座部分
638‧‧‧類凹口結構
700‧‧‧CMOS生物感測器
701‧‧‧CMOS像素
702‧‧‧像素陣列
710‧‧‧讀出電路
715‧‧‧功能邏輯
720‧‧‧控制電路
800‧‧‧像素電路
C1-Cx‧‧‧行
DD‧‧‧二極體
FD‧‧‧浮動擴散區節點
P1-Pn‧‧‧像素
Pa‧‧‧像素
Pb‧‧‧像素
R1-Ry‧‧‧列
RST‧‧‧重設信號
SEL‧‧‧選擇信號
SF‧‧‧源極隨耦器
T1‧‧‧傳送電晶體
T2‧‧‧重設電晶體
T3‧‧‧源極隨耦器(「SF」)電晶體
T4‧‧‧選擇電晶體
TX‧‧‧傳送信號
VDD‧‧‧電力軌
圖1為展示背側表面上之生物探針的CMOS生物感測器系統之橫截面圖;圖2A為展示結合至背側表面之正離子的CMOS生物感測器背側表面的橫截面圖;圖2B為展示結合至背側表面之負離子的CMOS生物感測器背側表面的橫截面圖;圖2C為展示結合至背側表面上之魚精蛋白生物受體之肝素分子的CMOS生物感測器背側表面的橫截面圖;圖2D為展示結合至背側表面上之探針DNA生物探針之目標DNA的CMOS生物感測器背側表面的橫截面圖;圖2E為展示結合至背側表面上之抗原生物探針之目標抗原的CMOS生物感測器背側表面的橫截面圖;圖2F為展示結合至背側表面上之酶生物探針之分析物的CMOS生物感測器背側表面的橫截面圖;圖2G為展示刺激背側表面上之細胞生物探針之分析物的CMOS生物感測器背側表面的橫截面圖;圖2H為展示刺激背側表面上之組織生物探針之分析物的CMOS生物感測器背側表面的橫截面圖;圖3A為含有二極體及STI結構的CMOS像素之透視截面圖,其中不對二極體或STI結構進行操縱;圖3B為含有二極體之CMOS像素的透視截面圖,該二極體已經操 縱以擁有不同於未經操縱之二極體的幾何形狀;圖3C為含有STI結構之CMOS像素的橫截面圖,該STI結構已經操縱以擁有比未經操縱之STI結構的表面粗糙的表面;圖3D為已經操縱以含有摻雜劑之CMOS像素的橫截面圖,該摻雜劑影響CMOS像素之背景電流;圖3E為在一電感元件或部件附近的CMOS像素之橫截面圖,該電感元件或部件更改CMOS像素之溫度,藉此影響CMOS像素之背景電流;圖3F為在電感元件或部件、溫度感測器及參考像素附近之CMOS像素的橫截面圖,該電感元件或部件、溫度感測器及參考像素形成控制CMOS像素之溫度的回饋機構,藉此影響CMOS像素之背景電流;圖4A為偵測背側表面處或附近之帶電荷實體之移動的CMOS像素陣列的橫截面圖;圖4B為CMOS像素陣列之經修改背側表面的橫截面圖,其中凸塊結構形成促進對帶電荷實體之移動的偵測的通道;圖5為在背側表面上含有懸臂結構的CMOS生物感測器系統之橫截面圖;圖6A為包括一懸臂結構之CMOS生物感測器像素之背側表面的橫截面圖,該懸臂結構經由塊體型結構而耦接至背側表面;圖6B為包括一懸臂結構之CMOS生物感測器像素之背側表面的橫截面圖,該懸臂結構經由尖端型結構而耦接至背側表面;圖6C為包括一懸臂結構之CMOS生物感測器像素之背側表面的橫截面圖,該懸臂結構實質上位於該背側表面上;圖7為說明根據一實施例之CMOS生物感測器的方塊圖;及圖8為說明根據一實施例之在生物感測器陣列內之兩個CMOS生 物感測器像素之樣本像素電路的電路圖。
可藉由參考以下描述及參看附圖來最佳地理解本發明,該描述及該等附圖用以說明本發明之實施例。
在以下描述中,陳述眾多具體細節。然而,應理解,可在無此等具體細節之情況下實踐本發明之實施例。在其他情況下,未詳細展示熟知之電路、結構及技術以免混淆對此描述之理解。
貫穿本說明書,使用若干技術術語。此等術語將採用其在其所屬技術中之一般涵義,除非本文中明確定義或其使用之內容脈絡將另有清楚地建議。「背景電流」在本文中定義為在缺少諸如入射光之外部信號輸入的情況下在感測器中流動之電流,且藉由二極體之材料性質的固有特性且亦藉由感測器中之應力產生。「基於親和性之結合」在本文中定義為一或多個分析物至在生物感測器之偵測表面上固定的一或多個探針的結合,此產生可為生物感測器偵測到之信號,例如光學、磁性、電、電化學或機電信號。「背側」在本文中定義為基板之與前側相反的側,金屬堆疊架構位於其中。術語「生物感測器」及「生物探針」用以描述感測器實施例及探針實施例。然而,如本揭示案中所描述之感測器及探針不限於生物應用。所揭示之感測器及探針亦屬於其他應用領域,包括但不限於離子、化學、電、機械及磁性應用。
在一或多個實例實施例中,用於感測選自生物、化學、離子、電、機械及磁性刺激中之至少一者的CMOS像素(諸如,背側受激生物感測器像素)可包括包括一背側之基板。一源可與該基板耦接以產生背景電流。在一態樣中,該用以產生背景電流之源可包括實質上安置於基板內之二極體。一偵測元件(諸如,電路)可經電耦接以量測該背 景電流。在一或多個實施例中,該偵測元件可為適合於讀取像素陣列之像素的電路或其他元件(例如,讀取電路)。CMOS像素之背側表面可包括親和性地結合至分析物的探針或生物探針之一層。基於親和性之結合增加或減小背側表面處或附近之電荷,藉此造成背景電流或刺激之改變。該刺激(其將被提供至背側)可影響背景電流之可量測改變。雖然本文中使用術語像素,但不要求該像素用於成像或甚至該像素偵測光或對應於光之電子。而是,該像素可具有用作背景電流之源的光電二極體或二極體而非用作光偵測器之光電二極體,該光電二極體可視情況地被遮蔽(例如,用光或電子阻擋層或材料)、覆蓋、屏蔽或以其他方式阻擋以免接收光或相應電子,使得其實際上不需要偵測光而是可改為主要用作背景電流之源。
CMOS「背側」受激生物感測器像素與「前側」受激生物感測器像素不同。典型CMOS像素包括在底部處之矽基板、位於基板上的諸如電晶體之主動裝置、在主動裝置上方之若干金屬及介電層。生物探針可位於頂面上。分析物與生物探針之間的相互作用可產生行進穿過金屬及介電層至主動裝置的信號。可接著藉由主動裝置及支援電路來量測該等信號以便量化基於親和性之效應或分析物與生物探針之間的相互作用之量。習知CMOS像素架構之顯著缺點為堆疊於主動裝置頂部上的多個金屬層及介電層。此等多個互連層用以電存取電晶體、產生某一電路拓撲,及減少待分析之流體樣本與半導體結構之間的不當相互作用。然而,此等多個層亦增加了堆疊高度,將增加生物感測器系統之體積,且導致較高系統複雜性及成本。堆疊之厚度亦可造成偵測敏感性及準確性之減少。希望減少或消除此等層,同時仍允許存取電晶體及保護半導體結構以免與流體樣本相互作用。
替代將基於親和性之結合信號自晶片之頂部經由頂部金屬層而 傳輸至CMOS積體電路中,可將該等信號自底部且直接經由基板而耦接至CMOS像素中。替代置放於頂部金屬層上,生物探針可建構於基板之背側表面上的CMOS像素之背側上。背側刺激方案已成功地用於CMOS影像感測器像素,諸如OmniVisionTM背側照明式CMOS成像器產品。然而,CMOS生物感測器技術中之普遍教示建議,「電信號可僅自頂部且經由襯墊而耦接」,亦即,自形成金屬/介電層之CMOS像素的前側(B.Jang及A.Hassibi,「Biosensor Systems in Standard CMOS Processes:Fact or Fiction?」IEEE工業電子國際會議(ISIE)會議記錄,2049,2008)。背側刺激方案挑戰此習知智慧。
除了背側刺激之外,對於某些生物感測器實施例,並非在分析物-電極界面處使用習知電極來量測電化學信號(諸如,阻抗、電位、電流及I-V曲線),實施例利用CMOS像素之背景電流作為量測工具。
在電子技術中,背景電流替代地被稱作漏電流。其主要由附接至電容器之電子裝置(諸如,電晶體或二極體)造成,該等電子裝置甚至在關閉時仍傳導小量之電流。對於CMOS影像感測器,背景電流常被稱作暗電流。其為在光電二極體節點處之漏電流,其對像素電容放電(即使無光刺激光電二極體)。背景電流可描述為具有至少兩個分量,即,理想之背景電流及應力產生之背景電流。
理想之背景電流部分取決於摻雜濃度、帶隙及光電二極體之溫度。理想之背景電流進一步包括兩個子分量。第一子分量為歸因於熱電子及電洞之注入的注入-擴散電流,該等熱電子及電洞具有比p-n接面之內建式位能高的能量。第二子分量為歸因於p-n接面內之熱電子-電洞產生或再結合的產生-再結合電流。此兩個分量取決於施加電壓及溫度。理想背景電流為p-n接面之材料性質的固有特性的結果。
應力產生之背景電流由CMOS像素之結構中的個別缺陷的特性來 判定。CMOS像素及支援裝置之建構中所使用的材料的性質經由各種機制在CMOS像素中誘發背景電流。此等機制可包括以下各者:首先,背景電流可藉由光電二極體之接面洩漏以及經由光電二極體及其周圍結構之結構缺陷或限制的其他洩漏而產生。其次,背景電流可藉由連接至光電二極體之電晶體的次臨限洩漏產生。再者,背景電流可藉由汲極誘發障壁降低洩漏或藉由連接至光電二極體之電晶體的閘極誘發汲極漏電流產生。
歸因於界面處之材料性質的與光電二極體邊緣及淺渠溝隔離(STI)結構之空乏區相關聯的漏電流為特別重要的。舉例而言,矽基板之鄰接STI結構的側壁內之點缺陷可產生充當電荷之洩漏路徑的表面狀態。此外,在離子植入步驟期間引入至STI結構中的大體而言之摻雜劑離子且詳言之硼離子可影響緊靠STI結構之矽基板的表面鈍化。此等摻雜劑離子亦可產生充當電荷之洩漏路徑的界面電荷狀態。
背景電流已以經驗模型而描述為I=αA+βn,其中I表示背景電流,α表示判定接面單位面積貢獻之係數,A表示接面面積,β表示判定角落貢獻之係數,且n表示設計中角落之數目(Igor Shcherback、Alexander Belenky及Orly Yadid-Pecht,「Empirical dark current modeling for complementary metal oxide semiconductor active pixel sensor。」Opt.Eng.41(6)1216-1219,2002年6月)。αA項說明理想背景電流分量,而βn項說明應力產生之漏電流分量。
背景電流使CMOS影像感測器之影像品質降級。因此,其減少及消除為CMOS影像感測器像素設計之重要目標。本文中描述利用通常非所要之背景電流作為生物感測器之親和性結合的量測工具的各種實施例。並非旨在清除CMOS像素之背景電流,本文中所描述之實施例維持適當位準之背景電流,且使用其來偵測CMOS像素之表面處的基 於親和性之效應,諸如在生物感測器表面處之基於親和性的結合。
對於背側受激CMOS像素陣列表面,在背側表面上之若干組環境影響CMOS像素之背景電流。在一組環境中,電荷在背側表面上之存在影響背景電流。在另一組環境中,背側表面上之機械應力影響背景電流。
以下實驗結果表明,存在於背側表面上之電荷影響CMOS影像感測器之背景電流及影像品質兩者。在第一個實驗中,背側表面含有離子性質之缺陷。因此,白點存在於缺陷之位點處。此等白點具有比周圍區域高之背景電流值。在剝離處理步驟之後,移除表面電荷缺陷,藉此消除白點。因此,從前之白點採取與周圍區域相同之背景電流值。
在第二個實驗中,在將電壓施加至CMOS影像感測器陣列之背側表面之前,觀測每一像素之背景電流。不同像素產生不同但仍相對類似之背景電流。在正電壓施加之後,表面獲得整個板上之正電位。因此,不同像素中之背景電流增加至整個背側表面變成「白區」的點。簡言之,藉由將均一電壓偏壓施加至CMOS影像感測器之背側,可使無缺陷之像素看似有缺陷的、類白點像素,只要施加正確之電壓位準便可。相反地,藉由施加負電壓偏壓,可使有缺陷之像素看似無缺陷之像素。
此等實驗表明,對於背側受激CMOS像素,表面電荷影響背景電流行為。特定地,正表面電荷增加背景電流,而負表面電荷減小背景電流。此原理可用以設計新類型之CMOS感測器,該等感測器利用背景電流作為用以量測背側表面處之基於親和性之效應的指示器。儘管習知CMOS感測器系統(諸如,美國專利申請公開案2010/0122904、2010/0052080中揭示之生物感測器)依賴於主動裝置(諸如,二極體)來 量測基於親和性效應之輸入信號,本申請案中所揭示之基於背景電流的感測器系統聰明地利用CMOS像素之固有背景電流作為量測輸入信號及基於親和性之效應的基礎。此處,基於親和性之效應在背側表面處或附近產生電荷。此等電荷調變CMOS像素之背景電流。
除了背側表面處或附近之電荷之外,在背側表面上之物理應力亦可能影響背景電流。如美國專利申請案2010/12708330中所揭示,用超輕質之屏蔽層覆蓋表面將額外物理應力引入至CMOS像素,此更改背景電流。此表面應力對CMOS像素之背景電流的影響可用以實現類似於上文才論述過之生物感測器的CMOS生物感測器。此處,替代在表面處或附近產生電荷,基於親和性之效應產生額外表面應力,此又影響CMOS像素之背景電流。
揭示若干背側受激CMOS生物感測器系統。生物探針固定於CMOS之基板背側表面上。目標分析物與固定受體之基於親和性的結合產生由CMOS像素偵測之信號。CMOS像素利用其固有背景電流來量測輸入信號。一類實施例依賴於基於親和性之結合以在背側表面處或附近產生電荷。一替代類別之實施例依賴於基於親和性之結合來對背側表面產生物理應力。
圖1說明根據一實施例之背側受激CMOS生物感測器像素100。CMOS生物感測器像素100包括金屬堆疊130、安置於金屬堆疊130之上之層間介電質120及安置於層間介電質120之上之基板層110。金屬堆疊130可包括安置於一或多個介電或絕緣層中之一或多個層級之互連件。基板層110進一步包括STI結構114、二極體111、傳送閘113及浮動擴散結構112。STI結構114、二極體111、傳送閘113及浮動擴散結構112實質上安置於基板110內。至少一種類型之固定生物探針101之至少一層在背側表面103之頂部上或與背側表面103耦接。在使用期 間,由於分析物102結合至生物探針101,因此背側表面103處或附近之電荷特性改變。表面特性之此改變影響CMOS生物感測器像素100之背景電流行為。因此,基於親和性之結合影響背景電流。藉由CMOS電路偵測及處理背景電流之改變。應瞭解,另一實施例可包括類似於像素100之像素的陣列。
圖2A至圖2H說明在CMOS生物感測器像素之背側表面部分處或附近的基於親和性之結合的若干實施例。圖2A展示正離子親和性背側表面部分210,其包括基板211及帶負電荷之表面層或帶負電荷之實體212。帶負電荷之表面層212可包括處於質子-受體狀態的SiO2、Si3N4、Al2O3或Ta2O5。帶負電荷之表面層212的質子-受體狀態允許其結合至諸如質子H+之正離子分析物213。
圖2B展示負離子親和性背側表面部分220,其包括基板221及帶正電荷之表面層或帶正電荷之實體222。帶正電荷之表面層222可包括處於氫氧化物-受體狀態的SiO2、Si3N4、Al2O3或Ta2O5。帶正電荷之表面層222的氫氧化物-受體狀態允許其結合至諸如氫氧化物OH-之負離子分析物223。
圖2C展示肝素親和性背側表面部分230,其包括基板231及附接至基板表面234之魚精蛋白探針232。魚精蛋白為親和性地結合至帶負電荷之肝素233的帶正電荷之蛋白質,肝素為廣泛用在醫學程序(諸如,腎透析、開心繞通手術及血凝塊之治療)中的抗凝劑,亦即,血液稀釋劑。肝素含量應受到良好控制,因為肝素過量會導致危險之出血併發症。魚精蛋白探針232與肝素233之間的基於親和性之結合可改變肝素親和性背側表面部分230處或附近之電荷特性,該肝素親和性背側表面部分230為圖1中所展示之CMOS生物感測器像素100之部分。此改變影響CMOS生物感測器像素100之背景電流。在替代實施 例中,肝素可用作用以偵測魚精蛋白分析物之生物探針。在此實施例中,CMOS生物感測器系統充當魚精蛋白感測器。或者,可使用其他帶正電荷及帶負電荷之蛋白質或整個的其他互補蛋白質對。
圖2D展示DNA親和性背側表面部分240,其包括基板241及附接至基板表面246之DNA探針242。DNA探針242為互補地結合至分析物(亦即,目標DNA 243)之單股DNA分子。由於目標DNA 243結合至DNA探針242,因此DNA親和性背側表面部分240之電荷特性改變。此改變影響圖1中所展示之CMOS生物感測器像素100之背景電流。為了增加偵測敏感性,可藉由將標籤245附接至目標DNA來修改目標DNA以產生帶標記之目標DNA 244。標籤245放大了基於親和性之結合對圖1中所展示之CMOS生物感測器像素100之電特性的影響。舉例而言,標籤245可為增加DNA親和性表面240處或附近之電荷的存在的電荷。標籤245亦可為磁性性質的,且經由電磁效應而影響表面特性。標籤245亦可為諸如二茂鐵之氧化還原標籤,其可供給或接受電子。
圖2E展示抗體-抗原親和性背側表面部分250,其包括基板251及附接至基板表面254之抗體探針252。由於分析物抗體253親和性地結合至抗體探針252,因此基於親和性之結合改變抗體-抗原親和性表面250之電荷特性。在本實施例中,將抗體用作生物探針,且將抗原用作分析物。舉例而言,分析物可為由炭疸桿菌產生之抗原毒素,且生物探針可為特異地結合至炭疸抗原之抗體。或者,若分析物為抗體(例如,HIV診斷測試中之HIV抗體),則HIV-特異抗原可用作附接至抗體-抗原親和性表面250之生物探針。類似於DNA相關實施例,此等抗原-抗體實施例中之抗原及抗體可用標籤來標記以便增加偵測敏感性。
圖2F展示酶親和性背側表面部分260,其包括基板261及附接至基板表面264之酶探針262。藉助於實例,酶探針可為將青黴素轉化成青黴素酸之青黴素酶、將尿素轉化成CO2及銨之尿素酶,或將葡萄糖轉化成葡萄糖酸之葡萄糖氧化酶。分析物之實例可為青黴素、尿素或葡萄糖。由於分析物263結合至酶探針262,因此基於親和性之結合導致改變酶親和性背側表面部分260之電荷特性的酶促反應。舉例而言,酶促反應可產生影響酶親和性背側表面部分260之表面特性的反應產物265。反應產物之實例可為青黴素酸、CO2及銨,或葡萄糖酸。
圖2G展示細胞親和性背側表面部分270,其包括基板271及附接至基板表面274之細胞探針272。細胞探針272可實質上覆蓋如圖1中所展示之CMOS生物感測器像素100之背側表面。由於分析物刺激273影響細胞探針272,因此所得反應改變細胞親和性背側表面部分270之電荷特性。舉例而言,該反應可產生影響酶親和性背側表面部分270之表面特性的反應產物275。或者,細胞探針272可為在基板表面274處或附近產生電脈衝之心臟細胞、肌細胞或神經元細胞。
圖2H展示組織親和性背側表面部分280,其包括基板281及附接至基板表面284之組織探針282。組織探針282可實質上覆蓋一個或幾個CMOS生物感測器像素之背側表面。由於分析物刺激283影響組織探針282,因此所得反應改變組織親和性背側表面部分280之電荷特性。舉例而言,該反應可產生影響組織親和性背側表面部分280之表面特性的反應產物285。或者,組織探針282可為感測環境中之分析物刺激283的昆蟲觸角。分析物刺激283之感測在基板表面284處或附近產生電脈衝。
圖3A至圖3E說明操縱CMOS像素之背景電流以使得其可用以量測CMOS像素之表面特性的若干實施例。藉助於實例,背景電流可具 有10至100個電子/秒之範圍。在一實施例中,背景電流可為約50個電子/秒。適當之背景電流位準允許背側表面刺激產生相對較高之信雜比,此為偵測敏感性所要的。
在一組環境中,CMOS像素中之二極體的幾何形狀經操縱或不同於典型之形狀(例如,非立方體)以產生所要位準之背景電流。在另一組環境中,STI結構經操縱或不同於典型之結構(例如,比相鄰區域粗糙或以不同方式摻雜)以產生所要位準之背景電流。然而,在另一組環境中,動態地控制背景電流。
圖3A為展示CMOS像素310之透視圖,CMOS像素310含有在CMOS像素310內部之基板313、二極體311及STI結構312。二極體311與STI結構312皆未被操縱。二極體311之幾何形狀為立方體(例如,立方體或矩形固體)。亦即,平面橫截面為矩形或正方形。
圖3B為展示含有經操縱之二極體321之CMOS像素320的透視圖。藉助於實例,經操縱之二極體具有類似六邊形之橫截面幾何形狀。總體形狀為六邊形固體。此幾何形狀不同於如圖3A中所展示之未經操縱之立方體二極體311,未經操縱之立方體二極體311的橫截面幾何形狀類似矩形或正方形。六邊形形狀之二極體可產生不同於由立方體二極體產生之背景電流的背景電流。若干因素可使六邊形形狀之二極體產生與矩形二極體不同之背景電流。此等因素之實例可為六邊形形狀之二極體具有更多角落及/或角。除了六邊形外之其他形狀為可能的,諸如具有具四條以上邊的橫截面形狀。在一或多個實施例中,二極體可具有比立方體或矩形固體多之垂直邊或角落。在一或多個實施例中,二極體321可具有比立方體多之角或比立方體少之角。
在一或多個實施例中,該用以產生背景電流之源可包括實質上安置於基板內之淺渠溝隔離(STI)結構。在一或多個實施例中,為達 成相同目的,CMOS生物感測器像素之STI結構經操縱或不同於典型結構(例如,比典型STI結構粗糙或在其周圍之較輕摻雜概況)。
圖3C為展示含有經操縱之STI結構332之CMOS像素330的橫截面圖。藉助於實例,經操縱之STI結構332含有比未經操縱之STI結構粗糙的一或多個邊緣。該等邊緣之相對粗糙程度造成與光滑邊緣不同量之應力,從而導致不同位準之背景電流。
圖3D為展示含有摻雜劑345之CMOS像素340的橫截面圖。藉助於實例,摻雜劑345可包括硼離子。摻雜劑345可在STI結構342周圍。與距STI較遠之區相比,摻雜劑345可具有較高之濃度範圍或較低之濃度範圍。摻雜劑濃度範圍之實例可為約1014至1016個離子/cm3。摻雜劑濃度範圍之另一實例可為約1017至1020個離子/cm3。實質上在預定濃度範圍內的摻雜劑345之存在影響基板343之緊靠STI結構342的部分之表面鈍化,且產生充當電荷之洩漏路徑的界面電荷狀態,藉此影響CMOS像素340之背景電流。
圖3E為展示含有基板353、二極體351及STI結構352之CMOS像素350的橫截面圖。電感線圈354或另一加熱器或加熱元件(諸如,電阻加熱器)位於CMOS像素350附近或最接近處,例如與基板353耦接。可操縱電感線圈354以便影響CMOS像素350之溫度。如本文中所使用,若電感線圈充分地定位以影響CMOS像素之溫度,則電感線圈在CMOS像素附近或最接近處。藉助於實例,電流可穿過電感線圈354以對其加熱。電感線圈354可用作溫度參考。電感線圈354之加熱可影響CMOS像素350之溫度。CMOS像素350中之溫度改變影響其背景電流。
圖3F為展示位於CMOS像素360附近之電感線圈364之橫截面圖。溫度感測器366耦接至參考像素365及電感線圈364,使得電感線圈364 控制CMOS像素360相對於參考像素365之溫度。參考像素、溫度感測器及電感部件可形成用以控制CMOS像素之溫度的回饋機構。
圖4A為展示包括大量CMOS像素402、403及404之CMOS像素陣列400的橫截面圖。CMOS像素陣列400包括可感測電荷之存在的背側表面層401。由於每一個別CMOS像素可偵測其上方之電荷,因此CMOS像素之陣列可偵測電荷之移動。帶電荷實體之移動偵測可用以量測此等帶電荷實體之性質,諸如其質量、大小、形狀或定向。
在一或多個實施例中,生物感測器系統可包括基板之背側、在基板之背側之下的CMOS像素陣列及與基板之背側耦接的大量凸塊結構。如本文中所使用,大量包括至少20個,在一些情況下至少50個,在一些情況下至少100個,或100個以上。大量凸塊結構可實質上藉由空隙分離。
圖4B為展示如圖4A中所揭示之CMOS像素陣列400之經修改背側表面部分410的橫截面圖。經修改之背側表面層410包括基板411及位於表面415上之凸塊結構412、413及414。凸塊結構412、413及414可在其間形成空腔416及417。凸塊結構及空腔可輔助粒子、電荷及表面415上之其他實體的流動的量測。藉助於實例,凸塊結構及空腔可經配置以形成可引導粒子、電荷及其他實體之流動的通道。在另一實例中,該等空腔可具有不同大小,藉此允許分離並分類粒子、電荷及其他實體。
在另一組實施例中,在CMOS生物感測器像素之背側表面的頂部上建構懸臂(cantilever)結構。生物探針附接至該懸臂結構。分析物與生物探針之間的基於親和性之結合影響CMOS像素之背側表面的應力條件,藉此造成背景電流之改變。
圖5說明根據一實施例之背側受激CMOS生物感測器像素500。除 了特定提及之差異之外,像素500可類似於圖1之像素100及/或具有圖1之像素100的特徵。為簡短起見,將不會不必要地重複此等特徵。CMOS生物感測器像素500包括金屬堆疊530、層間介電質520及基板層510。基板層510進一步包括STI結構514、二極體511、傳送閘513及浮動擴散部件512。懸臂504在CMOS背側表面503之頂部上。在一實施例中,懸臂504實質上位於CMOS背側表面503上或與CMOS背側表面503耦接。懸臂504包括偵測表面505,生物探針501固定或耦接至其上。分析物502可結合至生物探針501,藉此將質量添加至懸臂504。因此,CMOS背側表面503上之應力改變。表面應力之此改變影響CMOS生物感測器像素500之背景電流行為。藉由CMOS電路偵測及處理背景電流之改變。
懸臂504可具有不同操作模式。藉助於實例,懸臂504可具有靜態操作模式。在靜態模式中,分析物502至生物探針501的基於親和性之結合造成懸臂504之靜態彎曲。該靜態彎曲改變CMOS背側表面503之表面應力,藉此造成CMOS生物感測器像素500之背景電流的可偵測改變。
在另一實例中,懸臂504可具有動態操作模式。在動態模式中,懸臂504可實質上在其諧振頻率下被機械地激勵。該機械激勵可藉由各種力產生。藉助於實例,一種機械激勵力可為壓電力。懸臂504之機械激勵可造成對CMOS背側表面503之動態應力循環。分析物502至生物探針501的基於親和性之結合可將額外質量添加至懸臂504,從而造成諧振頻率之偏移。諧振頻率之偏移可造成CMOS背側表面503上之動態應力循環的相應頻率偏移,其可藉由監視CMOS生物感測器像素500之背景電流來偵測到。一替代實施例可包括一懸臂陣列,其中每一懸臂對應於相應像素陣列中之一像素。
除了圖5之外,圖6A至圖6C亦說明懸臂與CMOS背側表面之間的耦接之若干實施例。圖6A展示具有懸臂臂(cantilever arm)611之懸臂610。生物探針612附接至懸臂臂表面614。懸臂臂611經由中間部件615而實質上耦接至CMOS背側表面616。藉助於實例,由於分析物633可結合至生物探針612,因此懸臂臂611彎曲。所得應力可經由中間部件615而傳送至CMOS背側表面616。中間部件615可為各種便利材料。在另一實例中,懸臂臂611可受機械激勵,從而導致懸臂臂611之循環運動。所得應力循環可經由中間部件615而傳送至CMOS背側表面616。
圖6B展示具有懸臂臂621之懸臂620。生物探針622附接至懸臂臂表面624。生物探針622可親和性地結合至分析物623。懸臂臂621可經由尖端部件625而耦接至CMOS背側表面626。尖端部件625可將懸臂臂621之應力及運動傳送至CMOS背側表面626。類似於前一段中所揭示之實施例,本實施例可具有若干操作模式,包括靜態模式及動態模式。
圖6C展示具有懸臂臂631之懸臂630。懸臂630包括基座部分637。懸臂630可實質上位於CMOS背側表面636上,其中基座部分637實質上位於在CMOS背側表面636內之類凹口結構638上。基座部分637與類凹口結構638之間的相互作用可促進懸臂630與CMOS背側表面636之間的應力之傳送。生物探針632可附接至懸臂臂表面634。生物探針632可親和性地結合至分析物633。基於親和性之結合添加懸臂630之質量。在靜態操作模式下,所添加之質量影響對CMOS背側表面636之應力。在動態操作模式下,所添加之質量影響CMOS背側表面636之循環應力的頻率。
圖7為說明根據一實施例之CMOS生物感測器700的方塊圖。 CMOS生物感測器700之所說明實施例包括像素陣列702。像素陣列702或組成像素陣列702之個別CMOS像素701可具有上述特性中之一些或所有。CMOS生物感測器700亦包括至少一讀出電路710、一功能邏輯715及一控制電路720。讀出電路710表示用以量測背景電流之偵測元件的實例實施例。像素陣列702可為個別CMOS像素701(例如,像素P1、P2、...、Pn)之二維陣列。如所說明,每一個別像素701配置成一列(例如,列R1至Ry)及一行(例如,行C1至Cx)以獲取分析物與生物探針之間的基於親和性之結合的資料。此等資料可接著用以呈現分析物資訊之二維資料集。舉例而言,每一個別像素可用以偵測特定DNA序列。不同像素之一陣列可允許同時偵測組成整個基因組之各種DNA序列,基因組為此等各種DNA序列之總體。簡言之,CMOS生物感測器700准許在一個量測中判定整個基因組之DNA序列資訊。
在每一像素701已獲取其資料之後,藉由讀出電路710讀出該資料且將其傳送至功能邏輯715。藉助於實例,讀出電路710可包括至少一放大電路、一類比至數位轉換電路或其他電路。功能邏輯715可簡單地儲存資料或甚至藉由應用後量測效應來操縱資料。在一實施例中,讀出電路710可沿著讀出行線而一次讀出一列資料(經說明),或可使用各種其他技術來讀出資料(未經說明),諸如,行/列讀出、串行讀出或同時對所有像素之完全並行讀出。控制電路720與像素陣列702連接以控制組成像素陣列702之一些或所有像素701的操作特性。舉例而言,控制電路720可產生一或多個信號以更改一些或所有像素701中之背景電流以便改良特定的基於親和性之結合生物檢定的偵測敏感性。
圖8為說明根據本發明之實施例的像素陣列內之兩個四電晶體像素之像素電路800的電路圖。像素電路800為用於實施圖7之像素陣列 702內之每一像素的一個可能的像素電路架構。然而,應瞭解,實施例並不限於四電晶體像素架構;而是,受益於本發明之一般熟習此項技術者將理解,當前教示亦適用於三電晶體設計、五電晶體設計及各種其他像素架構。
在圖8中,像素Pa及Pb配置成兩列及一行。每一像素電路800之所說明實施例包括一二極體DD、一傳送電晶體T1、一重設電晶體T2、一源極隨耦器(「SF」)電晶體T3及一選擇電晶體T4。在操作期間,分析物與生物探針之間的基於親和性之結合可調變像素Pa及Pb中之背景電流的位準。此外,二極體DD可具有與其周圍基板之界面,其中該界面可為背景電流之主要源。傳送電晶體T1接收傳送信號TX,其將背景電流自二極體DD之附近區傳送至浮動擴散節點FD。在一實施例中,浮動擴散節點FD可耦接至用於臨時儲存來自背景電流之電荷的儲存電容器。
重設電晶體T2耦接於電力軌VDD與浮動擴散節點FD之間以在重設信號RST之控制下重設像素(例如,對FD及DD放電或充電至預設電壓)。浮動擴散節點FD經耦接以控制SF電晶體T3之閘極。SF電晶體T3耦接於電力軌VDD與選擇電晶體T4之間。SF電晶體T3作為提供至浮動擴散區FD之高阻抗連接的源極隨耦器操作。最後,選擇電晶體T4在選擇信號SEL之控制下選擇性地將像素電路800之輸出耦接至讀出行線。
本發明之所說明實施例之以上描述(包括在發明摘要中所描述之內容)不意欲為詳盡的或將本發明限於所揭示之精確形式。如熟習相關技術者將認識到,雖然在本文中出於說明性目的而描述本發明之具體實施例及實例,但在本發明之範疇內各種修改係可能的。
可根據以上詳細描述而對本發明進行此等修改。在以下申請專 利範圍中所使用之術語不應被理解為將本發明限於本說明書中所揭示之具體實施例。實情為,本發明之範疇將完全藉由以下申請專利範圍判定,以下申請專利範圍將根據請求項解釋之公認準則加以理解。
在上文之描述中且在申請專利範圍中,術語「經耦接」可意謂著兩個或兩個以上元件直接實體接觸或電接觸。然而,「經耦接」可改為意謂著兩個或兩個以上元件彼此並不直接接觸,而是仍(諸如)經由一或多個介入組件或結構彼此協作或相互作用。
在上文之描述中,為達成闡述之目的,陳述眾多具體細節以提供對本發明之實施例的澈底理解。然而,熟習此項技術者將顯見,可在無此等具體細節中之一些的情況下實踐其他實施例。不提供所描述之特定實施例以限制本發明而是說明本發明。本發明之範疇不藉由上文所提供之具體實例來判定而是僅藉由下文之申請專利範圍來判定。在其他情況下,熟知之電路、結構、裝置及操作已以方塊圖形式加以展示或無細節地展示以便避免混淆對描述之理解。
舉例而言,貫穿本說明書對「一實施例」或「一或多個實施例」之提及意謂著本發明之實踐中可包括一特定特徵。類似地,在描述中,為達成使本揭示內容流暢及輔助理解各種發明性態樣的目的,有時在單一實施例、單一圖或其描述中將各種特徵分組到一起。然而,此揭示方法不應被解釋為反映以下意圖:本發明需要比每一請求項中所明確陳述之特徵多的特徵。而是,如以下申請專利範圍所反映,發明性態樣可處於單一所揭示實施例之所有特徵中的一部分中。因此,特此將跟在[實施方式]之後的申請專利範圍明確地併入至此[實施方式]中,其中每一請求項獨立地作為本發明之單獨實施例。
700‧‧‧CMOS生物感測器
701‧‧‧CMOS像素
702‧‧‧像素陣列
710‧‧‧讀出電路
715‧‧‧功能邏輯
720‧‧‧控制電路
C1-Cx‧‧‧行
P1-Pn‧‧‧像素
R1-Ry‧‧‧列

Claims (26)

  1. 一種用於感測選自以下各者中之至少一者的互補金屬氧化物半導體(CMOS)像素:一生物刺激、一化學刺激、一離子刺激、一電刺激、一機械刺激及一磁性刺激,該CMOS像素包含:一基板,其包括一背側;一源,其與該基板耦接以產生一背景電流;一第一二極體,及一偵測系統,其係電性地與該基板耦接以量測該背景電流之一效應;至少一電荷敏感層,其具有一電荷且係與該背側耦接,其中該至少一電荷敏感層可經操作以與一暴露至該背側之分析物互動,且其中該電荷層與該分析物的該互動提供一非發光性刺激,該非發光性刺激改變該至少一電荷敏感層之該電荷且影響該背景電流之一效應中之一可量測改變。
  2. 如請求項1之CMOS像素,其中該偵測系統包括選自以下各者中之至少一者:一第一二極體、一傳送電晶體、一重設電晶體、一浮動擴散節點、一源極隨耦器電晶體、及一選擇電晶體。
  3. 如請求項2之CMOS像素,其中該傳送電晶體及該重設電晶體對該第一二極體進行一動作至一部份地由該刺激對該背景電流之該效應所決定之電壓位準。
  4. 如請求項2之CMOS像素,其中該傳送電晶體、該浮動擴散節點、及該源極隨耦器電晶體自該第一二極體讀出一部份地由該刺激對該背景電流之該效應所決定之電壓位準。
  5. 如請求項1之CMOS像素,其中至少一電荷敏感層係實質地與該背側耦接。
  6. 如請求項1之CMOS像素,其中至少一電荷敏感層係一絕緣層。
  7. 如請求項1之CMOS像素,其中至少一電荷敏感層係在該基板中且與該基板係相同材料且係鄰近於該基板之該背側。
  8. 如請求項5之CMOS像素,其中該電荷敏感層具有對保持在該第一二極體中的電荷的基於親和性的修改之一容量且其中對保持在該第一二極體中的電荷的該基於親和性的修改影響該背景電流之一效應之一可量測改變。
  9. 如請求項1之CMOS像素,其中產生該背景電流之該源包括一第二二極體,該第二二極體係實質地安置於該基板中。
  10. 如請求項1之CMOS像素,其中產生該背景電流之該源包括一實質地安置於該基板中之淺渠溝隔離結構,且其中存在以下情況中之至少一者:(1)該淺渠溝隔離結構包括至少一粗糙表面;及(2)該基板包括鄰近該淺渠溝隔離結構的包括嵌入式摻雜劑原子之一部分。
  11. 如請求項10之CMOS像素,其中該等嵌入式摻雜劑原子包括硼離子。
  12. 一種感測器,其包含:一基板,其具有一前側及一相對於該前側之背側,該前側具有一金屬堆疊在互補金屬氧化物半導體(CMOS)電路上;一二極體及一結構中之至少一者,其安置於該基板內,且可經操作而產生一背景電流;一電路,其與該基板電性地耦接且可經操作以量測該背景電流;及探針,其與該背側耦接且具有一電荷,該等探針可經操作而結合分析物,其中該等探針與該分析物之該結合係為在不需要一光發射的情況下改變該等探針之該電荷,且係為在該背景電 流中造成一足以被該電路量測的變化。
  13. 如請求項12之感測器,其中該二極體及該結構中之該至少一者包含一二極體,且其中該二極體具有比一立方體(cuboid)多的角度或者是比一立方體少的角度。
  14. 如請求項12之感測器,其中該二極體及該結構中之該至少一者包含一淺渠溝隔離(shallow trench isolation,STI)結構,且其中該STI結構具有至少一粗糙表面,其中該粗糙表面比CMOS影像感測器中的STI結構的表面更粗糙。
  15. 如請求項12之感測器,其中該二極體及該結構中之該至少一者包含一淺渠溝隔離(shallow trench isolation,STI)結構,且其中該基板包括一鄰近該STI結構的包括摻雜劑原子的部份,該部份包括之摻雜劑原子之濃度不同於離該STI結構更遠的一區域中之濃度。
  16. 如請求項15之感測器,其中該等摻雜劑原子包括硼離子。
  17. 如請求項12之感測器,其進一步包括至少一懸臂,其中該等探針與該至少一懸臂之一表面耦接。
  18. 如請求項17之感測器,其中該至少一懸臂經由一中間部件而與該背側耦接。
  19. 如請求項12之感測器,其中該電路係一像素之一部份,且其中該像素並非可操作以偵測光。
  20. 如請求項19之感測器,其進一步包含一阻擋層及一阻擋材料中之至少一者以自該像素阻擋該光。
  21. 如請求項12之感測器,其中該二極體及該結構中之該至少一者包含一光電二極體,該光電二極體可經操作以產生該背景電流但並非可操作以偵測光。
  22. 如請求項21之感測器,其進一步包含一阻擋層及一阻擋材料中 之至少一者以自該光電二極體阻擋該光。
  23. 一種用於感測選自以下各者中之至少一者的互補金屬氧化物半導體(CMOS)像素:一生物刺激、一化學刺激、一離子刺激、一電刺激、一機械刺激及一磁性刺激,該CMOS像素包含:一基板,其包括一背側;一源,其與該基板耦接以產生一背景電流;一偵測元件,其係電性地與該基板耦接以量測該背景電流;至少一受體實體(receptor entity),其具有一電荷且與該背側耦接,其中該至少一受體實體係可經操作而結合至一將被暴露至該背側之分析物,且其中該至少一受體實體與該分析物之該結合係為改變該至少一受體實體之該電荷且為影響該背景電流中之一可量測改變,其中該像素並非可操作以偵測光。
  24. 如請求項23之CMOS像素,其進一步包含一阻擋層及一阻擋材料中之至少一者以自該像素阻擋該光。
  25. 如請求項23之感測器,其中該源包含一光電二極體,且其中該光電二極體並非可操作以偵測光。
  26. 如請求項25之感測器,其進一步包含一阻擋層及一阻擋材料中之至少一者以自該光電二極體阻擋該光。
TW103138944A 2010-08-09 2011-06-22 具有背景電流操縱之背側受激感測器 TWI541502B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/853,160 US8519490B2 (en) 2010-08-09 2010-08-09 Backside stimulated sensor with background current manipulation

Publications (2)

Publication Number Publication Date
TW201508271A TW201508271A (zh) 2015-03-01
TWI541502B true TWI541502B (zh) 2016-07-11

Family

ID=45555488

Family Applications (2)

Application Number Title Priority Date Filing Date
TW103138944A TWI541502B (zh) 2010-08-09 2011-06-22 具有背景電流操縱之背側受激感測器
TW100121873A TWI465719B (zh) 2010-08-09 2011-06-22 具有背景電流操縱之背側受激感測器

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW100121873A TWI465719B (zh) 2010-08-09 2011-06-22 具有背景電流操縱之背側受激感測器

Country Status (3)

Country Link
US (2) US8519490B2 (zh)
CN (1) CN102375016B (zh)
TW (2) TWI541502B (zh)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8519490B2 (en) * 2010-08-09 2013-08-27 Omnivision Technologies, Inc. Backside stimulated sensor with background current manipulation
US8987841B2 (en) 2010-08-09 2015-03-24 Omnivision Technologies, Inc. Backside stimulated sensor with background current manipulation
US9958443B2 (en) * 2011-10-31 2018-05-01 Taiwan Semiconductor Manufacturing Company, Ltd. Signal enhancement mechanism for dual-gate ion sensitive field effect transistor in on-chip disease diagnostic platform
US9459234B2 (en) 2011-10-31 2016-10-04 Taiwan Semiconductor Manufacturing Company, Ltd., (“TSMC”) CMOS compatible BioFET
US9689835B2 (en) 2011-10-31 2017-06-27 Taiwan Semiconductor Manufacturing Company, Ltd. Amplified dual-gate bio field effect transistor
WO2014062885A1 (en) 2012-10-17 2014-04-24 Bio-Rad Laboratories, Inc. Image capture for large analyte arrays
US8728844B1 (en) 2012-12-05 2014-05-20 Taiwan Semiconductor Manufacturing Company, Ltd. Backside CMOS compatible bioFET with no plasma induced damage
US9389199B2 (en) 2013-03-14 2016-07-12 Taiwan Semiconductor Manufacturing Company, Ltd. Backside sensing bioFET with enhanced performance
US20140264468A1 (en) 2013-03-14 2014-09-18 Taiwan Semiconductor Manufacturing Company, Ltd. Biofet with increased sensing area
CN104049021B (zh) * 2013-03-14 2016-10-05 台湾积体电路制造股份有限公司 具有增大的感测面积的biofet
EP3071965A1 (en) 2013-11-21 2016-09-28 Avails Medical, Inc. Electrical biosensor for detecting a substance in a bodily fluid, and method and system for same
US9702847B2 (en) * 2014-12-30 2017-07-11 Avails Medical, Inc. Systems and methods for detecting a substance in bodily fluid
US9714914B2 (en) 2015-01-20 2017-07-25 Taiwan Semiconductor Manufacturing Co., Ltd. CMOS compatible biofet
US9810661B2 (en) * 2015-02-18 2017-11-07 Sensor Kinesis Corporation Carbon nanotube biofet with a local amplifier in a system array for analysis of biomarkers and method of analysis of same
US10509008B2 (en) 2015-04-29 2019-12-17 Taiwan Semiconductor Manufacturing Co., Ltd. Biological device and biosensing method thereof
US9709524B2 (en) 2015-05-15 2017-07-18 Taiwan Semiconductor Manufacturing Co., Ltd. Integrated circuit device with adaptations for multiplexed biosensing
US9968927B2 (en) 2015-05-22 2018-05-15 Taiwan Semiconductor Manufacturing Co., Ltd. Optical biosensor device
JP6978408B2 (ja) 2015-08-25 2021-12-08 アバイルズ メディカル,インコーポレイテッド 流体試料中の生存微生物を検出する装置、システムおよび方法
US10161901B2 (en) 2015-12-07 2018-12-25 Taiwan Semiconductor Manufacturing Co., Ltd. Dual gate biologically sensitive field effect transistor
EP3356511B1 (en) 2016-01-25 2022-04-27 Avails Medical, Inc. Methods for detecting viable infectious agents in a fluid sample using an electrolyte-insulator-semiconductor sensor
US10522400B2 (en) 2016-05-27 2019-12-31 Taiwan Semiconductor Manufacturing Co., Ltd. Embedded temperature control system for a biosensor
WO2017209839A1 (en) 2016-05-31 2017-12-07 Avails Medical, Inc. Detecting viable infectious agents in a fluid sample and susceptibility of infectious agents to anti-infectives
US10101295B2 (en) 2016-12-15 2018-10-16 Taiwan Semiconductor Manufacturing Co., Ltd. On-chip reference electrode for biologically sensitive field effect transistor
WO2019005296A1 (en) 2017-06-27 2019-01-03 Avails Medical, Inc. APPARATUS, SYSTEMS AND METHODS FOR DETERMINING THE SENSITIVITY OF MICROORGANISMS TO ANTI-INFECTIOUS
TWI745392B (zh) * 2017-06-29 2021-11-11 瑞禾生物科技股份有限公司 生物感測元件及其製造方法以及生物分子檢測方法
CN111182971B (zh) 2017-10-03 2022-08-30 阿威尔斯医疗公司 用于基于氧化还原反应测定微生物的浓度和微生物对抗感染剂的敏感性的装置、系统和方法
US11860120B2 (en) * 2020-08-31 2024-01-02 Taiwan Semiconductor Manufacturing Co., Ltd. Integrated circuit with biofets and fabrication thereof
WO2023049328A2 (en) * 2021-09-24 2023-03-30 University Of Cincinnati Electrochemical aptamer sensors with stable blocking layers, rapid electron transfer and robust antifouling properties

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212050A (en) * 1988-11-14 1993-05-18 Mier Randall M Method of forming a permselective layer
US5200051A (en) * 1988-11-14 1993-04-06 I-Stat Corporation Wholly microfabricated biosensors and process for the manufacture and use thereof
US6306594B1 (en) * 1988-11-14 2001-10-23 I-Stat Corporation Methods for microdispensing patterened layers
US5063081A (en) * 1988-11-14 1991-11-05 I-Stat Corporation Method of manufacturing a plurality of uniform microfabricated sensing devices having an immobilized ligand receptor
US5841126A (en) * 1994-01-28 1998-11-24 California Institute Of Technology CMOS active pixel sensor type imaging system on a chip
US5827415A (en) * 1994-09-26 1998-10-27 The Board Of Trustees Of Leland Stanford Jun. Univ. Oxygen sensor
JP2000356619A (ja) * 1999-06-14 2000-12-26 Sumitomo Metal Ind Ltd pHセンサおよびそれを使用したpH測定方法
CA2376325A1 (en) * 1999-08-19 2001-03-01 Yang Zhao Apparatus and method for visually identifying micro-forces with a palette of cantilever array blocks
US7118710B2 (en) * 2000-10-30 2006-10-10 Sru Biosystems, Inc. Label-free high-throughput optical technique for detecting biomolecular interactions
DE10145701A1 (de) * 2001-09-17 2003-04-10 Infineon Technologies Ag Fluoreszenz-Biosensorchip und Fluoreszenz-Biosensorchip-Anordnung
US7425749B2 (en) * 2002-04-23 2008-09-16 Sharp Laboratories Of America, Inc. MEMS pixel sensor
US7867754B1 (en) * 2002-08-01 2011-01-11 Purdue Research Foundation Microarrays for analyte detection
US7091536B2 (en) * 2002-11-14 2006-08-15 Micron Technology, Inc. Isolation process and structure for CMOS imagers
US7309614B1 (en) * 2002-12-04 2007-12-18 Sru Biosystems, Inc. Self-referencing biodetection method and patterned bioassays
KR100926476B1 (ko) * 2003-07-09 2009-11-13 어번 유니버시티 다중이온용 가역형 전기화학 센서
US7759924B2 (en) * 2003-11-25 2010-07-20 Northwestern University Cascaded MOSFET embedded multi-input microcantilever
US7492027B2 (en) * 2004-02-20 2009-02-17 Micron Technology, Inc. Reduced crosstalk sensor and method of formation
US7544979B2 (en) * 2004-04-16 2009-06-09 Technion Research & Development Foundation Ltd. Ion concentration transistor and dual-mode sensors
EP1756562A1 (en) * 2004-05-21 2007-02-28 Atonomics A/S Surface acoustic wave sensor comprising a hydrogel
US7217428B2 (en) * 2004-05-28 2007-05-15 Technology Innovations Llc Drug delivery apparatus utilizing cantilever
US7176532B2 (en) * 2004-07-22 2007-02-13 Dialog Semiconductor Gmbh CMOS active pixel sensor with improved dark current and sensitivity
US20090298704A1 (en) * 2005-07-12 2009-12-03 Anwar M Mekhail Wireless CMOS Biosensor
US7315014B2 (en) * 2005-08-30 2008-01-01 Micron Technology, Inc. Image sensors with optical trench
US7432148B2 (en) * 2005-08-31 2008-10-07 Micron Technology, Inc. Shallow trench isolation by atomic-level silicon reconstruction
US7794584B2 (en) * 2005-10-12 2010-09-14 The Research Foundation Of State University Of New York pH-change sensor and method
US7342656B2 (en) * 2005-10-17 2008-03-11 Hewlett-Packard Development Company, L.P. Dynamically variable separation among nanoparticles for nano-enhanced Raman spectroscopy (NERS) molecular sensing
US20070127164A1 (en) * 2005-11-21 2007-06-07 Physical Logic Ag Nanoscale Sensor
KR100761829B1 (ko) * 2005-12-15 2007-09-28 삼성전자주식회사 반도체 소자, 시모스 이미지 센서, 반도체 소자의 제조방법및 시모스 이미지 센서의 제조방법
US8637436B2 (en) * 2006-08-24 2014-01-28 California Institute Of Technology Integrated semiconductor bioarray
US7709872B2 (en) * 2006-09-13 2010-05-04 Taiwan Semiconductor Manufacturing Co., Ltd. Methods for fabricating image sensor devices
US8232109B2 (en) * 2006-10-06 2012-07-31 Sharp Laboratories Of America, Inc. Micro-pixelated active-matrix fluid-assay performance
JP5221549B2 (ja) * 2006-10-12 2013-06-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 試薬層を有した高速バイオセンサ
US7737392B2 (en) * 2006-11-09 2010-06-15 The Board Of Trustees Of The University Of Illinois Photonic crystal sensors with integrated fluid containment structure, sample handling devices incorporating same, and uses thereof for biomolecular interaction analysis
US8349167B2 (en) * 2006-12-14 2013-01-08 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
WO2008132656A2 (en) * 2007-04-27 2008-11-06 Nxp B.V. A biosensor chip and a method of manufacturing the same
KR101439434B1 (ko) * 2007-10-05 2014-09-12 삼성전자주식회사 이미지 센서 및 그 제조 방법
US20090181441A1 (en) * 2007-11-27 2009-07-16 Board Of Trustees Of Michigan State University Porous silicon-polymer composites for biosensor applications
US8183510B2 (en) * 2008-02-12 2012-05-22 Omnivision Technologies, Inc. Image sensor with buried self aligned focusing element
EP2307130A1 (fr) * 2008-06-27 2011-04-13 STMicroelectronics (Research & Development) Limited Dispositif d'analyse biologique de type pixel, biocapteur cmos et procedes de fabrication correspondants
US8581174B2 (en) * 2008-08-26 2013-11-12 Omnivision Technologies, Inc. Image sensor with prismatic de-multiplexing
US20100301398A1 (en) * 2009-05-29 2010-12-02 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes
US20100137143A1 (en) * 2008-10-22 2010-06-03 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes
US20100122904A1 (en) * 2008-11-17 2010-05-20 Board Of Regents, The University Of Texas System Incorporating cmos integrated circuits in the design of affinity-based biosensor systems
KR101550067B1 (ko) * 2008-12-24 2015-09-03 인텔렉추얼디스커버리 주식회사 이미지 센서 및 이의 제조 방법
US8026559B2 (en) * 2009-11-27 2011-09-27 Visera Technologies Company Limited Biosensor devices and method for fabricating the same
US8233066B2 (en) 2010-02-18 2012-07-31 Omnivision Technologies, Inc. Image sensor with improved black level calibration
US8419273B2 (en) * 2010-05-03 2013-04-16 Sharp Kabushiki Kaisha Array element for temperature sensor array circuit, temperature sensor array circuit utilizing such array element, and AM-EWOD device including such a temperature sensor array circuit
US8653832B2 (en) * 2010-07-06 2014-02-18 Sharp Kabushiki Kaisha Array element circuit and active matrix device
US8519490B2 (en) * 2010-08-09 2013-08-27 Omnivision Technologies, Inc. Backside stimulated sensor with background current manipulation
US8338856B2 (en) * 2010-08-10 2012-12-25 Omnivision Technologies, Inc. Backside illuminated image sensor with stressed film

Also Published As

Publication number Publication date
CN102375016B (zh) 2014-06-18
US8680630B2 (en) 2014-03-25
TWI465719B (zh) 2014-12-21
CN102375016A (zh) 2012-03-14
US8519490B2 (en) 2013-08-27
US20120032235A1 (en) 2012-02-09
TW201213806A (en) 2012-04-01
TW201508271A (zh) 2015-03-01
US20130307093A1 (en) 2013-11-21

Similar Documents

Publication Publication Date Title
TWI541502B (zh) 具有背景電流操縱之背側受激感測器
US8987841B2 (en) Backside stimulated sensor with background current manipulation
Sawada et al. A novel fused sensor for photo-and ion-sensing
US10563241B2 (en) Biosensor
EP1396725B1 (en) System and method for detecting biological and chemical material
US10104307B2 (en) Non-destructive read operations with dynamically growing images
US8426900B2 (en) Sensing device
EP1469311A1 (en) Biosensor, magnetic molecule measurement method, and measurement object measuring method
JPH10332423A (ja) 物理現象または化学現象の測定方法および装置
JP2007183259A (ja) イオン物質検出用のfet基盤のセンサー、それを備えるイオン物質の検出装置及びそれを利用したイオン物質の検出方法
KR101287445B1 (ko) 바이오 센서 어레이 소자 및 그 제작 방법과 바이오 센서 칩 및 그 제작 방법
US6503701B1 (en) Analytic sensor apparatus and method
KR20090060635A (ko) 나노입자를 이용한 바이오 센서 및 그 제조 방법
JP2023501225A (ja) 改良されたドレインを備えるピクセル
Lee et al. A CMOS multi-functional biosensor array for rapid low-concentration analyte detection with on-chip DEP-assisted active enrichment and manipulation with no external electrodes
JP4133028B2 (ja) 融合型化学・物理現象検出装置
Nakazawa et al. A fused pH and fluorescence sensor using the same sensing area
WO2014192830A1 (ja) 化学・物理現象検出方法及びその装置
TW201812294A (zh) 生物感測器裝置及其形成方法
US20220404345A1 (en) Sensing chip with fluidic device
Imai et al. Biosensor
JP2007212233A (ja) バイオセンサ
Tashtoush CMOS Technology for IC Biosensor and Applications: Multi-Labs-On-Single-Chip (MLoC)
WO2008068692A1 (en) Method of manufacturing a semiconductor sensor device and semiconductor sensor device obtained with such method
Tokuda et al. A new scheme for imaging on-chip dry DNA spots using optical/potential dual-image complementary metal oxide semiconductor sensor