TWI534831B - Memory device and operation method thereof - Google Patents

Memory device and operation method thereof Download PDF

Info

Publication number
TWI534831B
TWI534831B TW102142032A TW102142032A TWI534831B TW I534831 B TWI534831 B TW I534831B TW 102142032 A TW102142032 A TW 102142032A TW 102142032 A TW102142032 A TW 102142032A TW I534831 B TWI534831 B TW I534831B
Authority
TW
Taiwan
Prior art keywords
address
bits
command
memory device
pulses
Prior art date
Application number
TW102142032A
Other languages
Chinese (zh)
Other versions
TW201521040A (en
Inventor
張欽鴻
林志銘
張坤龍
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW102142032A priority Critical patent/TWI534831B/en
Publication of TW201521040A publication Critical patent/TW201521040A/en
Application granted granted Critical
Publication of TWI534831B publication Critical patent/TWI534831B/en

Links

Landscapes

  • Dram (AREA)

Description

記憶體裝置與其操作方法 Memory device and its operation method

本發明是有關於一種記憶體裝置與其操作方法,且特別是有關於一種具有雙傳輸速率的記憶體裝置與其操作方法。 The present invention relates to a memory device and method of operation thereof, and more particularly to a memory device having a dual transfer rate and method of operation thereof.

近年來,消費性電子產品(例如:智慧型手機、平板電腦、數位相機…等)的快速發展,使得廠商對於記憶體裝置的需求也急速增加。在操作上,記憶體裝置除了可以提供大量的資料儲存以外,記憶體裝置的傳輸速度與讀取效能也將影響電子產品的整體運作。換言之,記憶體裝置已成為電子產品中的一個重要元件。因此,如何提升記憶體裝置的傳輸速度或是讀取效能,已是記憶體裝置在設計上的一重要課題。 In recent years, the rapid development of consumer electronic products (such as smart phones, tablets, digital cameras, etc.) has led to a rapid increase in demand for memory devices. In operation, in addition to providing a large amount of data storage, the memory device's transmission speed and reading performance will also affect the overall operation of the electronic product. In other words, memory devices have become an important component in electronic products. Therefore, how to improve the transmission speed or read performance of the memory device has become an important issue in the design of the memory device.

本發明提供一種記憶體裝置與其操作方法,利用時脈訊號之脈衝的兩邊緣來擷取控制命令與資料位址,進而有助於提升記憶體裝置的傳輸速度與讀取效能。 The invention provides a memory device and a method for operating the same, which utilizes both edges of a pulse of a clock signal to capture control commands and data addresses, thereby helping to improve the transmission speed and read performance of the memory device.

本發明的記憶體裝置,包括記憶體、時脈產生器與控制 器。時脈產生器產生包括多個脈衝的時脈訊號。記憶體裝置傳送控制命令與資料位址至控制器。此外,控制器依據時脈訊號中的多個脈衝的上升緣與下降緣擷取控制命令與資料位址,並依據控制命令與資料位址存取記憶體。 The memory device of the invention comprises a memory, a clock generator and a control Device. The clock generator generates a clock signal comprising a plurality of pulses. The memory device transmits control commands and data addresses to the controller. In addition, the controller retrieves the control command and the data address according to the rising edge and the falling edge of the plurality of pulses in the clock signal, and accesses the memory according to the control command and the data address.

另一方面,本發明的記憶體裝置的操作方法包括下列步驟。產生時脈訊號,其中時脈訊號包括多個脈衝。傳送控制命令與資料位址。依據時脈訊號中的多個脈衝的上升緣與下降緣,擷取控制命令與資料位址。依據控制命令與資料位址存取記憶體裝置中的記憶體。 In another aspect, the method of operating a memory device of the present invention includes the following steps. A clock signal is generated, wherein the clock signal includes a plurality of pulses. Transfer control commands and data addresses. The control command and the data address are retrieved according to the rising edge and the falling edge of the plurality of pulses in the clock signal. The memory in the memory device is accessed according to the control command and the data address.

基於上述,本發明利用時脈訊號之脈衝的兩邊緣來擷取控制命令與資料位址。藉此,記憶體裝置將可利用雙傳輸速率來傳送控制命令與資料位址,進而有助於提升其傳輸速度與讀取效能。 Based on the above, the present invention utilizes both edges of the pulse of the clock signal to retrieve control commands and data addresses. Thereby, the memory device will be able to transmit control commands and data addresses using dual transmission rates, thereby helping to improve its transmission speed and read performance.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

100‧‧‧記憶體裝置 100‧‧‧ memory device

110‧‧‧記憶體 110‧‧‧ memory

120‧‧‧時脈產生器 120‧‧‧ clock generator

130‧‧‧控制器 130‧‧‧ Controller

140~160‧‧‧接腳 140~160‧‧‧ pins

CSB‧‧‧晶片選擇訊號 CSB‧‧‧ wafer selection signal

SI/SIO0‧‧‧接腳150所傳送的訊號 Signal transmitted by SI/SIO0‧‧‧ pin 150

SO/SIO1‧‧‧接腳160所傳送的訊號 Signal transmitted by SO/SIO1‧‧‧ pin 160

SCLK‧‧‧時脈訊號 SCLK‧‧‧ clock signal

S210~S240‧‧‧用以說明圖2實施例的各步驟程 S210~S240‧‧‧ to illustrate the steps of the embodiment of Fig. 2

S310、S320‧‧‧用以進一步地說明圖3實施例的步驟 S310, S320‧‧‧ for further explaining the steps of the embodiment of FIG.

P1~P31‧‧‧脈衝 P1~P31‧‧‧pulse

CM4‧‧‧控制命令 CM4‧‧‧ control order

AD4‧‧‧資料位址 AD4‧‧‧ data address

DT4‧‧‧記憶體資料 DT4‧‧‧ memory data

S510~S540‧‧‧用以進一步地說明圖5實施例的步驟 S510~S540‧‧‧ for further explaining the steps of the embodiment of FIG.

CM41、CM42‧‧‧控制命令的位元群組 Bit group of CM41, CM42‧‧‧ control commands

AD41、AD42‧‧‧資料位址的位元群組 Bit group of AD41, AD42‧‧‧ data address

DT41、DT42‧‧‧記憶體資料的位元群組 Bit group of DT41, DT42‧‧‧ memory data

圖1為依據本發明一實施例之記憶體裝置的示意圖。 1 is a schematic diagram of a memory device in accordance with an embodiment of the present invention.

圖2為依據本發明一實施例之記憶體裝置的操作方法流程圖。 2 is a flow chart of a method of operating a memory device in accordance with an embodiment of the present invention.

圖3為依據本發明另一實施例之記憶體裝置的操作方法流程 圖。 3 is a flow chart of an operation method of a memory device according to another embodiment of the present invention; Figure.

圖4為依據本發明一實施例之用以說明記憶體裝置的訊號時序圖。 4 is a timing diagram of signals used to describe a memory device in accordance with an embodiment of the invention.

圖5為依據本發明另一實施例之記憶體裝置的操作方法流程圖。 FIG. 5 is a flow chart of a method of operating a memory device in accordance with another embodiment of the present invention.

圖6為依據本發明另一實施例之用以說明記憶體裝置的訊號時序圖。 FIG. 6 is a timing diagram of signals for explaining a memory device according to another embodiment of the present invention.

圖1為依據本發明一實施例之記憶體裝置的示意圖。參照圖1,記憶體裝置100包括記憶體110、時脈產生器120與控制器130,且記憶體裝置100具有多個接腳140~160。其中,時脈產生器120電性連接至控制器130,且控制器130電性連接在接腳140~160與記憶體110之間。 1 is a schematic diagram of a memory device in accordance with an embodiment of the present invention. Referring to FIG. 1, the memory device 100 includes a memory 110, a clock generator 120, and a controller 130, and the memory device 100 has a plurality of pins 140-160. The clock generator 120 is electrically connected to the controller 130, and the controller 130 is electrically connected between the pins 140-160 and the memory 110.

此外,記憶體裝置100的接腳140用以傳送晶片選擇訊號CSB。其中,控制器130會依據晶片選擇訊號CSB的位準切換至致能模式或是禁能模式。此外,記憶體裝置100的接腳150為記憶體裝置100的一輸入/輸出埠,並用以傳送訊號SI/SIO0。相似地,記憶體裝置100的接腳160為記憶體裝置100的另一輸入/輸出埠,並用以傳送訊號SO/SIO1。其中,所述的訊號SI/SIO0與訊號SO/SIO1可例如包括控制命令、資料位址、記憶體資料…等。 In addition, the pin 140 of the memory device 100 is used to transmit the wafer selection signal CSB. The controller 130 switches to the enable mode or the disable mode according to the level of the chip selection signal CSB. In addition, the pin 150 of the memory device 100 is an input/output port of the memory device 100 and is used to transmit the signal SI/SIO0. Similarly, the pin 160 of the memory device 100 is another input/output port of the memory device 100 and is used to transmit the signal SO/SIO1. The signal SI/SIO0 and the signal SO/SIO1 may include, for example, a control command, a data address, a memory data, and the like.

圖2為依據本發明一實施例之記憶體裝置的操作方法流 程圖。以下請同時參照圖1與圖2。如步驟S210所示,時脈產生器120用以產生一時脈訊號SCLK。如步驟S220所示,記憶體裝置100可透過至少一接腳傳送一控制命令與一資料位址。亦即,記憶體裝置100可採用序列傳輸的方式來與外部裝置溝通。此外,如步驟S230所示,控制器130會依據時脈訊號SCLK中的多個脈衝的上升緣與下降緣來擷取控制命令與資料位址。 2 is a flow chart of an operation method of a memory device according to an embodiment of the invention Cheng Tu. Please refer to FIG. 1 and FIG. 2 at the same time. As shown in step S210, the clock generator 120 is configured to generate a clock signal SCLK. As shown in step S220, the memory device 100 can transmit a control command and a data address through at least one pin. That is, the memory device 100 can communicate with an external device by means of serial transmission. In addition, as shown in step S230, the controller 130 retrieves the control command and the data address according to the rising edge and the falling edge of the plurality of pulses in the clock signal SCLK.

再者,如步驟S240所示,控制器130將依據控制命令與資料位址來存取記憶體110。例如,控制器130會依據控制命令而決定對記憶體110進行一特定操作,例如:讀取操作、寫入操作…等。此外,控制器130會依據資料位址選取記憶體110中的一記憶區塊,進而對記憶體110中的該記憶區塊進行所述特定操作。例如,控制器130可依據控制命令而決定對記憶體110進行讀取操作,進而依據資料位址從記憶體110中的一記憶區塊讀取出一記憶體資料。此外,控制器130也可依據控制命令而決定對記憶體110進行寫入操作,進而依據資料位址將一資料寫入至記憶體110的一記憶區塊。 Moreover, as shown in step S240, the controller 130 will access the memory 110 according to the control command and the data address. For example, the controller 130 may decide to perform a specific operation on the memory 110 according to the control command, for example, a read operation, a write operation, and the like. In addition, the controller 130 selects a memory block in the memory 110 according to the data address, and performs the specific operation on the memory block in the memory 110. For example, the controller 130 may determine to read the memory 110 according to the control command, and then read a memory data from a memory block in the memory 110 according to the data address. In addition, the controller 130 may also perform a write operation on the memory 110 according to the control command, and then write a data to a memory block of the memory 110 according to the data address.

值得一提的是,針對控制命令與資料位址,控制器130都是利用脈衝的兩邊緣(亦即,上升緣與下降緣)來進行擷取。如此一來,針對控制命令與資料位址的傳送,記憶體裝置100都可達到雙傳輸速率(double transfer rate),進而有助於提升其傳輸速度與讀取效能。此外,隨著記憶體裝置100之輸入輸出模式的切換,控制器130還可利用單一個脈衝擷取到控制命令中兩個以上的命 令位元或是資料位址中兩個以上的位址位元,進而可以更進一步地提升記憶體裝置100的傳輸速度與讀取效能。 It is worth mentioning that for the control command and the data address, the controller 130 uses the two edges of the pulse (ie, the rising edge and the falling edge) to perform the capturing. In this way, for the transmission of the control command and the data address, the memory device 100 can achieve a double transfer rate, thereby helping to improve its transmission speed and read performance. In addition, with the switching of the input and output modes of the memory device 100, the controller 130 can also capture more than two lives in the control command by using a single pulse. The bit rate or more than two address bits in the data address can further improve the transmission speed and read performance of the memory device 100.

舉例來說,圖3為依據本發明另一實施例之記憶體裝置的操作方法流程圖。圖4為依據本發明一實施例之用以說明記憶體裝置的訊號時序圖。以下請同時參照圖1、圖3與圖4。 For example, FIG. 3 is a flow chart of a method of operating a memory device in accordance with another embodiment of the present invention. 4 is a timing diagram of signals used to describe a memory device in accordance with an embodiment of the invention. Please refer to FIG. 1, FIG. 3 and FIG. 4 at the same time.

在一實施例中,記憶體裝置100可切換至一單重輸入輸出模式。此時,在傳送控制命令與資料位址(步驟S220)的細部流程上,如步驟S310所示,記憶體裝置100將透過一接腳(例如:接腳150)依序傳送控制命令中的多個命令位元與資料位址中的多個位址位元。此外,在擷取控制命令與資料位址(步驟S230)的細部流程上,如步驟S320所示,控制器130將利用每一脈衝的上升緣與下降緣,擷取所述多個命令位元中的兩命令位元或是所述多個位址位元中的兩位址位元。 In an embodiment, the memory device 100 can be switched to a single input/output mode. At this time, on the detailed flow of transmitting the control command and the data address (step S220), as shown in step S310, the memory device 100 will sequentially transmit the control commands through a pin (for example, the pin 150). Command bit and multiple address bits in the data address. In addition, on the detailed flow of capturing the control command and the data address (step S230), as shown in step S320, the controller 130 will utilize the rising edge and the falling edge of each pulse to retrieve the plurality of command bits. The two command bits in the middle or the two bit bits in the plurality of address bits.

例如,在圖4實施例中,時脈訊號SCLK包括脈衝P1~P31,且控制命令CM4包括8個命令位元,資料位址AD4包括24個位址位元。在操作上,當晶片選擇訊號CSB切換至低位準時,控制器130將切換至致能模式,並開始擷取控制命令CM4與資料位址AD4。其中,控制器130利用脈衝P1擷取控制命令CM4中的第1至第2個命令位元,並利用脈衝P2擷取控制命令CM4中的第3至第4個命令位元。以此類推,控制器130僅須利用4個脈衝P1~P4就可擷取到具有8個命令位元的控制命令CM4。 For example, in the embodiment of FIG. 4, the clock signal SCLK includes pulses P1 P P31, and the control command CM4 includes 8 command bits, and the data address AD4 includes 24 address bits. In operation, when the wafer select signal CSB is switched to the low level, the controller 130 will switch to the enable mode and begin to retrieve the control command CM4 and the data address AD4. The controller 130 uses the pulse P1 to capture the first to second command bits in the control command CM4, and uses the pulse P2 to capture the third to fourth command bits in the control command CM4. By analogy, the controller 130 only needs to use the four pulses P1~P4 to retrieve the control command CM4 having 8 command bits.

當擷取到控制命令CM4之後,控制器130將接著擷取資 料位址AD4。其中,控制器130利用脈衝P5擷取資料位址AD4中的第1至第2個位址位元,並利用脈衝P6擷取資料位址AD4中的第3至第4個位址位元。以此類推,控制器130僅須利用12個脈衝P5~P16就可擷取到具有24個位址位元的資料位址AD4。 After the control command CM4 is retrieved, the controller 130 will continue to draw funds. Material address AD4. The controller 130 uses the pulse P5 to capture the first to second address bits in the data address AD4, and uses the pulse P6 to retrieve the third to fourth address bits in the data address AD4. By analogy, the controller 130 only needs to use the 12 pulses P5~P16 to retrieve the data address AD4 with 24 address bits.

換言之,當記憶體裝置100切換至單重輸入輸出模式時,控制器130將利用每一個脈衝擷取兩個命令位元或是兩個位址位元,進而有助於提升記憶體裝置100的傳輸速度。此外,在圖4實施例中,控制器130會依據控制命令CM4而決定對記憶體110進行讀取操作,進而參照資料位址AD4從記憶體110中讀取出一記憶體資料DT4。再者,控制器130會利用多個脈衝(例如,脈衝P24~P31)的上升緣與下降緣來傳送記憶體資料DT4。亦即,記憶體裝置100也可利用雙傳輸速率來傳送記憶體資料DT4。 In other words, when the memory device 100 switches to the single input/output mode, the controller 130 will use two pulses or two address bits for each pulse, thereby contributing to the improvement of the memory device 100. transfer speed. In addition, in the embodiment of FIG. 4, the controller 130 determines to read the memory 110 according to the control command CM4, and further reads a memory data DT4 from the memory 110 with reference to the data address AD4. Furthermore, the controller 130 transmits the memory data DT4 using the rising edge and the falling edge of a plurality of pulses (for example, the pulses P24 to P31). That is, the memory device 100 can also transfer the memory data DT4 using the dual transfer rate.

記憶體資料DT4會透過記憶體裝置100的接腳160傳送至外部裝置。此外,在資料的輸入與輸出上,記憶體裝置100可相隔一空白期間。例如,如圖4所示,在透過接腳150接收到控制命令CM14與資料位址AD4之後,記憶體裝置100會等待包括8個脈衝P17~P24之久的一空白期間之後,再透過接腳160輸出記憶體資料DT4。其中,空白期間的長短是取決於記憶體裝置100的讀取頻率。此外,在實際應用上,記憶體裝置100也可在接收完資料後接著輸出資料,而無須定義空白期間。 The memory data DT4 is transmitted to the external device through the pin 160 of the memory device 100. In addition, the memory device 100 can be separated by a blank period on the input and output of the data. For example, as shown in FIG. 4, after receiving the control command CM14 and the data address AD4 through the transparent pin 150, the memory device 100 waits for a blank period including 8 pulses P17~P24, and then transmits the pin. 160 output memory data DT4. The length of the blank period depends on the reading frequency of the memory device 100. In addition, in practical applications, the memory device 100 can also output data after receiving the data without defining a blank period.

圖5為依據本發明另一實施例之記憶體裝置的操作方法流程圖。圖6為依據本發明另一實施例之用以說明記憶體裝置的 訊號時序圖。以下請同時參照圖1、圖5與圖6。 FIG. 5 is a flow chart of a method of operating a memory device in accordance with another embodiment of the present invention. 6 is a diagram for explaining a memory device according to another embodiment of the present invention. Signal timing diagram. Please refer to FIG. 1, FIG. 5 and FIG. 6 at the same time.

在一實施例中,記憶體裝置100更可切換至一雙重輸入輸出模式。此時,在傳送控制命令與資料位址(步驟S220)的細部流程上,如步驟S510與S520所示,記憶體裝置100將透過第一接腳(例如:接腳150)依序傳送控制命令中的多個第一命令位元與資料位址中的多個第一位址位元,並透過第二接腳(例如:接腳160)依序傳送控制命令中的多個第二命令位元與資料位址中的多個第二位址位元。 In an embodiment, the memory device 100 is further switchable to a dual input/output mode. At this time, on the detailed flow of transmitting the control command and the data address (step S220), as shown in steps S510 and S520, the memory device 100 will sequentially transmit the control command through the first pin (for example, the pin 150). a plurality of first command bits and a plurality of first address bits in the data address, and sequentially transmitting a plurality of second command bits in the control command through the second pin (eg, pin 160) Multiple second address bits in the meta and data addresses.

此外,所述的多個脈衝包括多個命令脈衝與多個位址脈衝。在擷取控制命令與資料位址(步驟S230)的細部流程上,如步驟S530與S540所示,控制器130將利用每一命令脈衝的上升緣與下降緣,擷取所述多個第一命令位元中的兩第一命令位元與所述多個第二命令位元中的兩第二命令位元,並利用每一位址脈衝的上升緣與下降緣,擷取所述多個第一位址位元中的兩第一位址位元與所述多個第二位址位元中的兩第二位址位元。 Additionally, the plurality of pulses includes a plurality of command pulses and a plurality of address pulses. On the detailed flow of capturing the control command and the data address (step S230), as shown in steps S530 and S540, the controller 130 will use the rising edge and the falling edge of each command pulse to retrieve the plurality of first And two second command bits in the command bit and two second command bits in the plurality of second command bits, and using the rising edge and the falling edge of each address pulse to extract the plurality of Two first address bits of the first address bit and two second address bits of the plurality of second address bits.

例如,在圖6實施例中,時脈訊號SCLK中的脈衝P1~P2可視為多個命令脈衝,且脈衝P3~P8可視為多個位址脈衝。此外,在圖6中,具有8個命令位元的控制命令CM4被劃分成兩個位元群組CM41與CM42,且位元群組CM41與CM42各自包括4個命令位元。再者,在圖6中,具有24個位址位元的資料位址AD4被劃分成兩個位元群組AD41與AD42,且位元群組AD41與AD42各自包括12個位址位元。 For example, in the embodiment of FIG. 6, the pulses P1 to P2 in the clock signal SCLK can be regarded as a plurality of command pulses, and the pulses P3 to P8 can be regarded as a plurality of address pulses. Further, in FIG. 6, the control command CM4 having 8 command bits is divided into two bit groups CM41 and CM42, and the bit groups CM41 and CM42 each include 4 command bits. Furthermore, in FIG. 6, the data address AD4 having 24 address bits is divided into two bit groups AD41 and AD42, and the bit groups AD41 and AD42 each include 12 address bits.

在操作上,控制器130會利用脈衝P1(亦即,命令脈衝P1)擷取位元群組CM41中的第1至2個命令位元以及位元群組CM42中的第1至2個命令位元。此外,控制器130更利用脈衝P2(亦即,命令脈衝P2)擷取位元群組CM41中的第3至4個命令位元以及位元群組CM42中的第3至4個命令位元。換言之,在雙重輸入輸出模式下,控制器130僅須利用2個脈衝P1與P2就可擷取到具有8個命令位元的控制命令CM4。 In operation, the controller 130 uses the pulse P1 (ie, the command pulse P1) to retrieve the first to second command bits in the bit group CM41 and the first to second commands in the bit group CM42. Bit. In addition, the controller 130 further uses the pulse P2 (ie, the command pulse P2) to retrieve the third to fourth command bits in the bit group CM41 and the third to fourth command bits in the bit group CM42. . In other words, in the dual input/output mode, the controller 130 only has to use the two pulses P1 and P2 to retrieve the control command CM4 having eight command bits.

另一方面,控制器130利用脈衝P3(亦即,位址脈衝P3)擷取位元群組AD41中的第1至2個位址位元以及位元群組AD42中的第1至2個位址位元。此外,控制器130會利用脈衝P4(亦即,位址脈衝P4)擷取位元群組AD41中的第3至4個位址位元以及位元群組AD42中的第3至4個位址位元。以此類推,控制器130僅須利用6個脈衝P3~P8就可擷取到具有24個位址位元的資料位址AD4。 On the other hand, the controller 130 uses the pulse P3 (ie, the address pulse P3) to extract the first to second address bits in the bit group AD41 and the first to second bits in the bit group AD42. Address bit. In addition, the controller 130 uses the pulse P4 (ie, the address pulse P4) to extract the 3rd to 4th address bits in the bit group AD41 and the 3rd to 4th bits in the bit group AD42. Address bit. By analogy, the controller 130 only needs to use the 6 pulses P3~P8 to retrieve the data address AD4 with 24 address bits.

換言之,當記憶體裝置100切換至雙重輸入輸出模式時,控制器130將利用每一個脈衝擷取四個命令位元或是四個位址位元,進而有助於提升記憶體裝置100的傳輸速度。此外,在圖6實施例中,控制器130會依據控制命令CM4而從記憶體110中讀取出記憶體資料DT4,其中記憶體資料DT4被劃分成兩個位元群組DT41與DT42。再者,控制器130會依據多個脈衝(例如,脈衝P17~P23)來傳送位元群組DT41與DT42,且位元群組DT41與DT42會透過記憶體裝置100的兩接腳150與160傳送至外部裝置。 In other words, when the memory device 100 switches to the dual input/output mode, the controller 130 will use four pulses or four address bits for each pulse to help improve the transmission of the memory device 100. speed. In addition, in the embodiment of FIG. 6, the controller 130 reads the memory data DT4 from the memory 110 according to the control command CM4, wherein the memory data DT4 is divided into two bit groups DT41 and DT42. Furthermore, the controller 130 transmits the bit groups DT41 and DT42 according to a plurality of pulses (for example, pulses P17 to P23), and the bit groups DT41 and DT42 pass through the two pins 150 and 160 of the memory device 100. Transfer to an external device.

綜上所述,本發明是利用時脈訊號之脈衝的兩邊緣來擷取控制命令與資料位址。藉此,記憶體裝置將可利用雙傳輸速率來傳送控制命令與資料位址,進而有助於提升其傳輸速度與讀取效能。此外,記憶體裝置也可切換其輸入輸出模式,進而可以更進一步地提升其傳輸速度與讀取效能。 In summary, the present invention utilizes both edges of the pulse of the clock signal to retrieve control commands and data addresses. Thereby, the memory device will be able to transmit control commands and data addresses using dual transmission rates, thereby helping to improve its transmission speed and read performance. In addition, the memory device can also switch its input and output modes, which can further improve its transmission speed and read performance.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

S210~S240‧‧‧用以說明圖2實施例的各步驟程 S210~S240‧‧‧ to illustrate the steps of the embodiment of Fig. 2

Claims (8)

一種記憶體裝置,包括:一記憶體;一時脈產生器,產生包括多個脈衝的一時脈訊號;以及一控制器,其中該記憶體裝置傳送一控制命令與一資料位址至該控制器,且該控制器依據該些脈衝的上升緣與下降緣擷取該控制命令中兩個以上的命令位元或是該資料位址中兩個以上的位址位元,並依據該控制命令與該資料位址存取該記憶體。 A memory device includes: a memory; a clock generator that generates a clock signal including a plurality of pulses; and a controller, wherein the memory device transmits a control command and a data address to the controller, And the controller extracts two or more command bits in the control command or two or more address bits in the data address according to the rising edge and the falling edge of the pulses, and according to the control command The data address accesses the memory. 如申請專利範圍第1項所述的記憶體裝置,其中該記憶體裝置具有一接腳,且該接腳用以依序傳送該控制命令中的該些命令位元與該資料位址中的該些位址位元。 The memory device of claim 1, wherein the memory device has a pin, and the pin is configured to sequentially transmit the command bit in the control command and the data address in the data address These address bits. 如申請專利範圍第1項所述的記憶體裝置,其中該記憶體裝置具有一第一接腳與一第二接腳,且該第一接腳用以依序傳送該控制命令中的多個第一命令位元與該資料位址中的多個第一位址位元,該第二接腳用以依序傳送該控制命令中的多個第二命令位元與該資料位址中的多個第二位址位元。 The memory device of claim 1, wherein the memory device has a first pin and a second pin, and the first pin is configured to sequentially transmit the plurality of control commands. a first command bit and a plurality of first address bits in the data address, the second pin is configured to sequentially transmit a plurality of second command bits in the control command and the data address Multiple second address bits. 如申請專利範圍第3項所述的記憶體裝置,其中該些脈衝包括多個命令脈衝與多個位址脈衝,該控制器利用每一該些命令脈衝的上升緣與下降緣擷取該些第一命令位元中的兩第一命令位元與該些第二命令位元中的兩第二命令位元,且該控制器利用每一該些位址脈衝的上升緣與下降緣,擷取該些第一位址位元中的兩第一位址位元與該些第二位址位元中的兩第二位址位元。 The memory device of claim 3, wherein the pulses comprise a plurality of command pulses and a plurality of address pulses, and the controller uses the rising and falling edges of each of the command pulses to extract the Two first command bits in the first command bit and two second command bits in the second command bits, and the controller utilizes a rising edge and a falling edge of each of the address pulses, Taking two first address bits of the first address bits and two second address bits of the second address bits. 一種記憶體裝置的操作方法,包括:產生一時脈訊號,其中該時脈訊號包括多個脈衝;傳送一控制命令與一資料位址;依據該時脈訊號中的該些脈衝的上升緣與下降緣,擷取該控制命令中兩個以上的命令位元或是該資料位址中兩個以上的位址位元;以及依據該控制命令與該資料位址存取該記憶體裝置中的一記憶體。 A method for operating a memory device, comprising: generating a clock signal, wherein the clock signal comprises a plurality of pulses; transmitting a control command and a data address; and rising and falling according to the pulses in the clock signal Edge, capturing more than two command bits in the control command or two or more address bits in the data address; and accessing one of the memory devices according to the control command and the data address Memory. 如申請專利範圍第5項所述的記憶體裝置的操作方法,其中傳送該控制命令與該資料位址的步驟包括:透過該記憶體裝置的一接腳,依序傳送該控制命令中的該些命令位元與該資料位址中的該些位址位元。 The method for operating a memory device according to claim 5, wherein the transmitting the control command and the data address comprises: sequentially transmitting the control command through a pin of the memory device Some command bits and the address bits in the data address. 如申請專利範圍第5項所述的記憶體裝置的操作方法,其中傳送該控制命令與該資料位址的步驟包括:透過該記憶體裝置的一第一接腳,依序傳送該控制命令中的多個第一命令位元與該資料位址中的多個第一位址位元;以及透過該記憶體裝置的一第二接腳,依序傳送該控制命令中的多個第二命令位元與該資料位址中的多個第二位址位元。 The method for operating a memory device according to claim 5, wherein the transmitting the control command and the data address comprises: sequentially transmitting the control command through a first pin of the memory device Transmitting a plurality of first command bits and a plurality of first address bits in the data address; and sequentially transmitting a plurality of second commands in the control command through a second pin of the memory device A bit and a plurality of second address bits in the data address. 如申請專利範圍第7項所述的記憶體裝置的操作方法,其中該些脈衝包括多個命令脈衝與多個位址脈衝,且依據該時脈訊號中的該些脈衝的上升緣與下降緣,擷取該控制命令中的該些命令位元或是該資料位址中該些位址位元的步驟包括: 利用每一該些命令脈衝的上升緣與下降緣,擷取該些第一命令位元中的兩第一命令位元與該些第二命令位元中的兩第二命令位元;以及利用每一該些位址脈衝的上升緣與下降緣,擷取該些第一位址位元中的兩第一位址位元與該些第二位址位元中的兩第二位址位元。 The method of operating a memory device according to claim 7, wherein the pulses comprise a plurality of command pulses and a plurality of address pulses, and according to rising and falling edges of the pulses in the clock signal The steps of capturing the command bits in the control command or the address bits in the data address include: Using the rising edge and the falling edge of each of the command pulses, extracting two first command bits of the first command bits and two second command bits of the second command bits; Extracting a rising edge and a falling edge of each of the address pulses, and extracting two first address bits of the first address bits and two second address bits of the second address bits yuan.
TW102142032A 2013-11-19 2013-11-19 Memory device and operation method thereof TWI534831B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102142032A TWI534831B (en) 2013-11-19 2013-11-19 Memory device and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102142032A TWI534831B (en) 2013-11-19 2013-11-19 Memory device and operation method thereof

Publications (2)

Publication Number Publication Date
TW201521040A TW201521040A (en) 2015-06-01
TWI534831B true TWI534831B (en) 2016-05-21

Family

ID=53935103

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102142032A TWI534831B (en) 2013-11-19 2013-11-19 Memory device and operation method thereof

Country Status (1)

Country Link
TW (1) TWI534831B (en)

Also Published As

Publication number Publication date
TW201521040A (en) 2015-06-01

Similar Documents

Publication Publication Date Title
CN102981776B (en) DDR PSRAM, controller and access method for DDR PSRAM and operating method thereof, and data writing and reading methods thereof
CN108091355A (en) Data antiphase circuit
US9405313B2 (en) Semiconductor devices and semiconductor systems including the same
CN102789424B (en) External extended DDR2 (Double Data Rate 2) read-write method on basis of FPGA (Field Programmable Gate Array) and external extended DDR2 particle storage on basis of FPGA
CN102751966B (en) The latent time control circuit of delay circuit and memorizer and signal delay method thereof
CN103970708B (en) Communication means between a kind of FPGA and general processor and system
US8953392B2 (en) Latency control device and semiconductor device including the same
TWI534831B (en) Memory device and operation method thereof
KR20130111028A (en) Semiconductor module
CN106409322A (en) Semiconductor devices and semiconductor systems including the same
CN101609439A (en) Electronic system with time-shared bus is used the method for the bus of electronic system together
CN102237867A (en) Semiconductor module including module control circuit and method for controlling the same
US11379136B2 (en) Adjustable access energy and access latency memory system and devices
CN201936294U (en) Caching system for high-speed image acquisition system
US20150155019A1 (en) Semiconductor integrated circuit
US9377957B2 (en) Method and apparatus for latency reduction
CN103137092A (en) Arbitration method, arbitration circuit, liquid crystal display (LCD) driving circuit and LCD driving system
CN104681075B (en) Storage arrangement and its operating method
US20130100757A1 (en) Dual-Port Memory and a Method Thereof
CN101813971B (en) Processor and internal memory thereof
TW202105186A (en) Memory interface circuit, memory storage device and signal generation method
US11928039B1 (en) Data-transfer test mode
CN203733474U (en) Synchronous memory
US20240079036A1 (en) Standalone Mode
CN106294224B (en) Storage system and its memory entities interface circuit