TWI527227B - Semiconductor structure and process thereof - Google Patents

Semiconductor structure and process thereof Download PDF

Info

Publication number
TWI527227B
TWI527227B TW101102616A TW101102616A TWI527227B TW I527227 B TWI527227 B TW I527227B TW 101102616 A TW101102616 A TW 101102616A TW 101102616 A TW101102616 A TW 101102616A TW I527227 B TWI527227 B TW I527227B
Authority
TW
Taiwan
Prior art keywords
gate
substrate
dielectric layer
forming
contact holes
Prior art date
Application number
TW101102616A
Other languages
Chinese (zh)
Other versions
TW201332107A (en
Inventor
廖端泉
陳益坤
戴錦華
朱曉忠
Original Assignee
聯華電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯華電子股份有限公司 filed Critical 聯華電子股份有限公司
Priority to TW101102616A priority Critical patent/TWI527227B/en
Publication of TW201332107A publication Critical patent/TW201332107A/en
Application granted granted Critical
Publication of TWI527227B publication Critical patent/TWI527227B/en

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

半導體結構及其製程Semiconductor structure and its process

本發明係關於一種半導體結構及其製程,且特別係關於一種直接形成磊晶結構於接觸洞中之半導體結構及其製程。The present invention relates to a semiconductor structure and a process thereof, and more particularly to a semiconductor structure and a process for directly forming an epitaxial structure in a contact hole.

磊晶技術常用來形成於半導體元件中,磊晶技術的功用除了可形成整片的單晶矽層,更可以解決其他半導體製程所衍生的問題,或者是製作特殊功能的構件。例如:當進行金屬矽化物製程時,會覆蓋一層金屬層於源/汲極區上,俾使金屬層中之金屬與其下方之矽反應而形成一金屬矽化物層,用以電連接下方之源/汲極區(一般為矽材或矽化合物)以及上方之金屬柱,並緩衝二者之材質結構之差異降低片電阻(sheet resistance)。然而,當金屬層與源/汲極區中之矽反應過多或源/汲極區的區域太淺時,常可能導致反應後之源/汲極區所剩無幾,損壞其p-n接合(p-n junction)。因此,一種改良的方式可在形成金屬層於源/汲極區上之前,先形成一磊晶層。以矽質基底為例,可搭配矽質磊晶或矽化物磊晶。如此,位於源/汲極區與金屬層之間的磊晶層,可使金屬層直接與磊晶層反應,而不會限縮源/汲極區的體積。Epitaxial technology is commonly used in semiconductor devices. The function of epitaxial technology can not only form a monolithic germanium layer, but also solve the problems caused by other semiconductor processes, or to make special functional components. For example, when the metal telluride process is performed, a metal layer is covered on the source/drain region, and the metal in the metal layer reacts with the underlying germanium to form a metal germanide layer for electrically connecting the source below. The / bungee zone (usually a coffin or bismuth compound) and the metal column above, and buffering the difference in material structure between the two reduces the sheet resistance. However, when the metal layer reacts too much with the ruthenium in the source/drain region or the region of the source/drain region is too shallow, it may often cause the source/drain regions after the reaction to be few and damage the pn junction (pn junction). ). Therefore, an improved method can form an epitaxial layer before forming a metal layer on the source/drain regions. Taking the enamel substrate as an example, it can be combined with enamel epitaxy or bismuth telluride. Thus, the epitaxial layer between the source/drain region and the metal layer allows the metal layer to directly react with the epitaxial layer without limiting the volume of the source/drain region.

另外,隨著半導體製程進入到深次微米時代,例如65奈米(nm)以下之製程,對於MOS電晶體元件的驅動電流(drive current)的提昇已顯得日益重要。為了改善元件的效能,目前業界已發展出所謂的「應變矽(strained-silicon)技術」,其原理主要是使閘極通道部分的矽晶格產生應變,使電荷在通過此應變之閘極通道時的移動力增加,進而達到使MOS電晶體運作更快的目的。其中一種常見之應變矽(strained-silicon)技術係為在半導體基材之源/汲極區上成長出一層應變矽磊晶層。由於此應變矽磊晶層的晶格常數異於半導體基材的晶格常數,故可藉由調整應變矽磊晶層的材質,而改變其晶格常數,進而對MOS電晶體之閘極通道產生應力。In addition, as semiconductor processes enter the deep submicron era, such as processes below 65 nanometers (nm), the drive current of MOS transistor components has become increasingly important. In order to improve the performance of components, the so-called "strained-silicon technology" has been developed in the industry. The principle is mainly to strain the germanium lattice of the gate channel portion, so that the charge passes through the strain gate channel. The movement force at the time increases, thereby achieving the purpose of making the MOS transistor operate faster. One of the common strained-silicon techniques is to grow a strained epitaxial layer on the source/drain regions of a semiconductor substrate. Since the lattice constant of the strained epitaxial layer is different from the lattice constant of the semiconductor substrate, the lattice constant of the strained germanium epitaxial layer can be changed, and the lattice constant of the MOS transistor can be changed. Stress is generated.

隨著半導體元件尺寸微縮,另外在源/汲極區上成長磊晶層的方法,更顯重要但亦會產生一些負面效果。例如,對於一鰭狀場效電晶體而言,源/汲極區係形成於鰭狀結構中,而磊晶結構則包覆此源/汲極區。然而,磊晶結構會擴大整個鰭狀結構的體積,導致各鰭狀結構之間的空間減少,甚至可能造成相鄰之鰭狀結構連結在一起,導致元件短路。換言之,如為避免相鄰之鰭狀結構連結在一起,則各鰭狀結構之間需維持一定距離,但此距離將限制半導體元件尺寸的微縮。此問題在各鰭狀結構分佈密集的靜態隨機存取記憶體(Static Random Access Memory,SRAM)中尤其顯著。As the size of the semiconductor component is reduced, the method of growing the epitaxial layer on the source/drain region is more important but also has some negative effects. For example, for a fin field effect transistor, the source/drain regions are formed in the fin structure, and the epitaxial structure covers the source/drain regions. However, the epitaxial structure enlarges the volume of the entire fin structure, resulting in a reduction in space between the fin structures, and may even cause adjacent fin structures to be joined together, resulting in short-circuiting of the components. In other words, if the adjacent fin structures are to be joined together, a certain distance needs to be maintained between the fin structures, but this distance will limit the size of the semiconductor component. This problem is particularly noticeable in Static Random Access Memory (SRAM) where the fin structure is densely distributed.

本發明提出一種半導體結構及其製程,利用將磊晶結構形成於接觸洞中的方法,解決上述之問題。The invention provides a semiconductor structure and a process thereof, and solves the above problems by a method of forming an epitaxial structure in a contact hole.

本發明提供一種半導體結構,包含有至少一鰭狀結構、一閘極、一源/汲極區、一層間介電層以及一磊晶結構。至少一鰭狀結構位於一底材上。閘極覆蓋於鰭狀結構上。源/汲極區位於閘極側邊的鰭狀結構中。層間介電層覆蓋閘極以及鰭狀結構,其中層間介電層具有複數個接觸洞,分別暴露出至少部分源/汲極區。磊晶結構位於接觸洞中,且直接接觸並僅位於源/汲極區上。The present invention provides a semiconductor structure including at least one fin structure, a gate, a source/drain region, an interlayer dielectric layer, and an epitaxial structure. At least one fin structure is located on a substrate. The gate is covered on the fin structure. The source/drain regions are located in the fin structure on the side of the gate. The interlayer dielectric layer covers the gate and the fin structure, wherein the interlayer dielectric layer has a plurality of contact holes exposing at least a portion of the source/drain regions. The epitaxial structure is located in the contact hole and is in direct contact and only on the source/drain region.

本發明提供一種半導體製程,包含有下述步驟。首先,提供一基底。接著,形成一MOS電晶體於基底上,其中MOS電晶體包含一閘極位於基底上以及一源/汲極區位於閘極側邊的基底中。接續,形成一層間介電層覆蓋閘極側邊的基底。續之,形成複數個接觸洞於層間介電層中,並暴露出至少部分源/汲極區。而後,分別形成一磊晶結構於各接觸洞中,且直接接觸並僅位於源/汲極區上。其後,形成一金屬矽化物於各接觸洞中的磊晶結構上。之後,沉積一介電層於層間介電層上並使其覆蓋閘極。然後,形成複數個對應接觸洞於介電層中,並連接接觸洞。最後,分別填入一金屬材料於各接觸洞以及各對應接觸洞中的金屬矽化物上。The present invention provides a semiconductor process comprising the steps described below. First, a substrate is provided. Next, a MOS transistor is formed on the substrate, wherein the MOS transistor includes a gate on the substrate and a source/drain region in the substrate on the side of the gate. Successively, an inter-layer dielectric layer is formed to cover the substrate on the side of the gate. Further, a plurality of contact holes are formed in the interlayer dielectric layer and expose at least a portion of the source/drain regions. Then, an epitaxial structure is formed in each contact hole, and is directly in contact with and only on the source/drain region. Thereafter, a metal telluride is formed on the epitaxial structure in each contact hole. Thereafter, a dielectric layer is deposited over the interlayer dielectric layer and overlying the gate. Then, a plurality of corresponding contact holes are formed in the dielectric layer, and the contact holes are connected. Finally, a metal material is filled in each of the contact holes and the metal halides in the corresponding contact holes.

本發明提供一種半導體製程,包含有下述步驟。首先,提供一基底。接著,形成一MOS電晶體於基底上,其中MOS電晶體包含一閘極位於基底上以及一源/汲極區位於閘極側邊的基底中。接續,依序形成一層間介電層以及一介電層覆蓋閘極以及基底。續之,形成複數個接觸洞於層間介電層以及介電層中,以暴露出至少部分源/汲極區。而後,分別形成一磊晶結構於各接觸洞中。其後,分別形成一金屬矽化物於各接觸洞中的各磊晶結構上。之後,分別填入一金屬材料於各接觸洞中的金屬矽化物上。The present invention provides a semiconductor process comprising the steps described below. First, a substrate is provided. Next, a MOS transistor is formed on the substrate, wherein the MOS transistor includes a gate on the substrate and a source/drain region in the substrate on the side of the gate. Subsequently, an interlayer dielectric layer and a dielectric layer are formed to cover the gate and the substrate. Further, a plurality of contact holes are formed in the interlayer dielectric layer and the dielectric layer to expose at least a portion of the source/drain regions. Then, an epitaxial structure is formed in each contact hole. Thereafter, a metal telluride is formed on each of the epitaxial structures in each contact hole. Thereafter, a metal material is separately filled in the metal halide in each contact hole.

基於上述,本發明提供一種半導體結構及其製程,藉由將磊晶結構形成於接觸洞中,可有效控制磊晶結構成長的範圍。舉例而言,本發明可有效控制磊晶結構成長的尺寸及形狀等。是以,採用本發明,可控制磊晶結構成長的範圍,防止相鄰之磊晶結構銜接在一起導致半導體元件短路。再者,藉由有效控制磊晶結構成長的範圍,精密化半導體元件的佈局分佈,亦可微縮半導體元件的尺寸。Based on the above, the present invention provides a semiconductor structure and a process thereof, which can effectively control the range of growth of an epitaxial structure by forming an epitaxial structure in a contact hole. For example, the present invention can effectively control the size and shape of the epitaxial structure growth and the like. Therefore, according to the present invention, the range of growth of the epitaxial structure can be controlled, and the adjacent epitaxial structures are prevented from being connected together to cause short circuit of the semiconductor element. Furthermore, by effectively controlling the range in which the epitaxial structure grows, the layout of the semiconductor elements can be refined, and the size of the semiconductor elements can be miniaturized.

第1-7圖繪示本發明第一實施例之半導體製程之剖面示意圖。首先,如第1圖所示,形成一MOS電晶體M於一基底110上。基底110例如是一矽基底、一含矽基底、一三五族覆矽基底(例如GaN-on-silicon)、一石墨烯覆矽基底(graphene-on-silicon)或一矽覆絕緣(silicon-on-insulator,SOI)基底等半導體基底。值得注意的是,在第1-7圖及後續描述之第8-11圖中所繪示之半導體製程可為一鰭狀場效電晶體的製程,故基底110係為一基底塊材,且基底110可包含一底材112以及至少一鰭狀結構114於底材112上,但本發明亦可為一平面電晶體的製程,因為鰭狀場效電晶體及平面電晶體之剖面結構相同,且本發明可應用於二者之結構,故合併繪示。然而,為使本發明之描述更清晰,以下以一鰭狀場效電晶體的製程為例加以說明,但本發明之應用範圍非限於此。另外,本發明亦可應用於其他半導體製程中,如各式平面電晶體製程與非平面電晶體製程等,凡屬本發明之精神者,亦屬本發明之範圍。1-7 are schematic cross-sectional views showing a semiconductor process according to a first embodiment of the present invention. First, as shown in Fig. 1, a MOS transistor M is formed on a substrate 110. The substrate 110 is, for example, a substrate, a germanium-containing substrate, a tri-five-layer overlying substrate (eg, GaN-on-silicon), a graphene-on-silicon or a silicon-on-insulator (silicon- On-insulator, SOI) A semiconductor substrate such as a substrate. It should be noted that the semiconductor process illustrated in Figures 1-7 and 8-11 of the subsequent description may be a process of a fin field effect transistor, so the substrate 110 is a substrate block, and The substrate 110 may include a substrate 112 and at least one fin structure 114 on the substrate 112. However, the present invention may also be a planar transistor process because the fin field effect transistor and the planar transistor have the same cross-sectional structure. Moreover, the present invention can be applied to the structure of both, so it is shown in combination. However, in order to make the description of the present invention clearer, the following is a description of the process of a fin field effect transistor, but the scope of application of the present invention is not limited thereto. In addition, the present invention can also be applied to other semiconductor processes, such as various planar transistor processes and non-planar transistor processes, etc., and the spirit of the present invention is also within the scope of the present invention.

請繼續參閱第1圖,首先,形成鰭狀結構114於底材112上的方法可例如:提供一塊狀底材(未繪示),在其上形成一硬遮罩層(未繪示),並將其圖案化以定義出其下之塊狀底材中欲對應形成之鰭狀結構114的位置。接著,進行一蝕刻製程,於塊狀底材(未繪示)中形成鰭狀結構114。如此,完成鰭狀結構114於底材112上之製作。在一實施例中,形成鰭狀結構114後即移除硬遮罩層(未繪示),可於後續製程中形成三閘極場效電晶體(tri-gate MOSFET)。如此一來,由於鰭狀結構114與後續形成之介電層之間具有三直接接觸面(包含二接觸側面及一接觸頂面),因此被稱作三閘極場效電晶體(tri-gate MOSFET)。相較於平面場效電晶體,三閘極場效電晶體可藉由將上述三直接接觸面作為載子流通之通道,而在同樣的閘極長度下具有較寬的載子通道寬度,俾使在相同之驅動電壓下可獲得加倍的汲極驅動電流。而在另一實施例中,亦可保留硬遮罩層(未繪示),而於後續製程中形成另一具有鰭狀結構之多閘極場效電晶體(multi-gate MOSFET)-鰭式場效電晶體(fin field effect transistor,Fin FET)。鰭式場效電晶體中,由於保留了硬遮罩層(未繪示),鰭狀結構114與後續將形成之介電層之間僅有兩接觸側面。Please continue to refer to FIG. 1. First, the method of forming the fin structure 114 on the substrate 112 may, for example, provide a piece of substrate (not shown) on which a hard mask layer (not shown) is formed. And patterning to define the position of the fin structure 114 to be formed correspondingly in the underlying bulk substrate. Next, an etching process is performed to form the fin structure 114 in a bulk substrate (not shown). Thus, the fabrication of the fin structure 114 on the substrate 112 is completed. In one embodiment, after forming the fin structure 114, the hard mask layer (not shown) is removed, and a three-gate tri-gate MOSFET can be formed in a subsequent process. As a result, since the fin structure 114 has three direct contact faces (including two contact sides and a contact top surface) between the subsequently formed dielectric layers, it is called a tri-gate field effect transistor (tri-gate). MOSFET). Compared with the planar field effect transistor, the three-gate field effect transistor can have a wider carrier channel width under the same gate length by using the above three direct contact surfaces as a channel through which the carrier flows. Double the drain drive current at the same drive voltage. In another embodiment, a hard mask layer (not shown) may be left, and another multi-gate MOSFET-fin field having a fin structure is formed in a subsequent process. Fin field effect transistor (Fin FET). In a fin field effect transistor, since a hard mask layer (not shown) is left, there are only two contact sides between the fin structure 114 and a dielectric layer to be formed later.

此外,如前所述,本發明亦可應用於其他種類的半導體基底,例如在另一實施態樣中,提供一矽覆絕緣基底(未繪示),並以蝕刻暨微影之方法蝕刻矽覆絕緣基底(未繪示)上之單晶矽層而停止於氧化層,即可完成鰭狀結構於矽覆絕緣基底上的製作。In addition, as described above, the present invention can also be applied to other kinds of semiconductor substrates. For example, in another embodiment, an insulating substrate (not shown) is provided and etched by etching and lithography. The formation of the fin structure on the insulating substrate can be completed by covering the single crystal germanium layer on the insulating substrate (not shown) and stopping at the oxide layer.

此外,為能清晰揭示本發明,本實施例之鰭狀結構114僅繪示一個,但本發明所能應用之鰭狀結構114亦可為複數個。In addition, in order to clearly disclose the present invention, only one of the fin structures 114 of the present embodiment is shown, but the fin structure 114 to which the present invention can be applied may also be plural.

接著,一閘極120覆蓋於鰭狀結構114上。形成閘極120的方法可包含依序形成一緩衝層(未繪示)、一閘極介電層(未繪示)、一電極層(未繪示)以及一蓋層(未繪示)並將其圖案化,而形成一緩衝層122於鰭狀結構114上,一閘極介電層124於緩衝層122上,一電極層126於閘極介電層124上,一蓋層128於電極層126上;然後,形成一間隙壁129於緩衝層122、閘極介電層124、電極層126以及蓋層128的側邊。如此,完成閘極120的製作。接續,以例如離子佈植的方法,形成一源/汲極區130於閘極120側邊的鰭狀結構114中。閘極120及源/汲極區130則構成MOS電晶體M。Next, a gate 120 is overlaid on the fin structure 114. The method for forming the gate 120 may include sequentially forming a buffer layer (not shown), a gate dielectric layer (not shown), an electrode layer (not shown), and a cap layer (not shown). Patterning is performed to form a buffer layer 122 on the fin structure 114, a gate dielectric layer 124 on the buffer layer 122, an electrode layer 126 on the gate dielectric layer 124, and a cap layer 128 on the electrode. On the layer 126; a spacer 129 is then formed on the sides of the buffer layer 122, the gate dielectric layer 124, the electrode layer 126, and the cap layer 128. In this way, the fabrication of the gate 120 is completed. Next, a source/drain region 130 is formed in the fin structure 114 on the side of the gate 120 by, for example, ion implantation. The gate 120 and the source/drain regions 130 constitute an MOS transistor M.

此時,緩衝層122可例如為一二氧化矽層;閘極介電層124可例如為一氧化層或一高介電常數介電層,其材質可選自氧化鉿(hafnium oxide,HfO2)、矽酸鉿氧化合物(hafnium silicon oxide,HfSiO4)、矽酸鉿氮氧化合物(hafnium silicon oxynitride,HfSiON)、氧化鋁(aluminum oxide,Al2O3)、氧化鑭(lanthanum oxide,La2O3)、氧化鉭(tantalum oxide,Ta2O5)、氧化釔(yttrium oxide,Y2O3)、氧化鋯(zirconium oxide,ZrO2)、鈦酸鍶(strontium titanate oxide,SrTiO3)、矽酸鋯氧化合物(zirconium silicon oxide,ZrSiO4)、鋯酸鉿(hafnium zirconium oxide,HfZrO4)、鍶鉍鉭氧化物(strontium bismuth tantalate,SrBi2Ta2O9,SBT)、鋯鈦酸鉛(lead zirconate titanate,PbZrxTi1-xO3,PZT)與鈦酸鋇鍶(barium strontium titanate,BaxSr1-xTiO3,BST)所組成之群組;電極層126可例如為一多晶矽層;蓋層128以及間隙壁129則可由氮化矽所組成,但本發明非限於此。在本實施例中,採用後置高介電常數介電層之後閘極(Gate Last for high-K Last)製程,因此閘極介電層124僅為一般氧化層等介電層。再者,由於電極層126為多晶矽層,因此所形成之閘極120為一多晶矽閘極。然後,在其他實施例中,亦可採用前置高介電常數介電層之後閘極(Gate Last for high-K First)製程,前閘極製程(Gate First)或多晶矽閘極製程等,本發明不以此為限。At this time, the buffer layer 122 can be, for example, a germanium dioxide layer; the gate dielectric layer 124 can be, for example, an oxide layer or a high-k dielectric layer, and the material thereof can be selected from hafnium oxide (HfO 2 ). ), hafnium silicon oxide (HfSiO 4 ), hafnium silicon oxynitride (HfSiON), aluminum oxide (Al 2 O 3 ), lanthanum oxide (La 2 ) O 3 ), tantalum oxide (Ta 2 O 5 ), yttrium oxide (Y 2 O 3 ), zirconium oxide (ZrO 2 ), strontium titanate oxide (SrTiO 3 ), zirconium silicate oxides (zirconium silicon oxide, ZrSiO 4) , hafnium zirconium (hafnium zirconium oxide, HfZrO 4) , tantalum oxide bismuth strontium (strontium bismuth tantalate, SrBi 2 Ta 2 O 9, SBT), lead zirconate titanate (lead zirconate titanate, PbZr x Ti 1-x O 3 , PZT) and a group consisting of barium strontium titanate (Ba x Sr 1-x TiO 3 , BST); the electrode layer 126 can be, for example, a The polysilicon layer; the cap layer 128 and the spacer 129 may be composed of tantalum nitride, but the invention is not limited thereto In this embodiment, a gate high dielectric constant layer (Gate Last for high-K Last) process is used, so the gate dielectric layer 124 is only a dielectric layer such as a general oxide layer. Moreover, since the electrode layer 126 is a polysilicon layer, the gate 120 formed is a polysilicon gate. Then, in other embodiments, a gate high potential dielectric layer (Gate Last for high-K First) process, a front gate process (Gate First) or a polysilicon gate process may be used. The invention is not limited to this.

如第2圖所示,可先選擇性地形成一接觸洞蝕刻停止層140覆蓋閘極120與基底110。接續,形成一平坦化之層間介電層150覆蓋閘極120側邊的基底110。在本實施例中,閘極120為一多晶矽閘極,亦為一犧牲閘極,其會再搭配閘極置換製程(replacement gate process)以形成一金屬閘極160取代之。詳細而言,先形成一層間介電層(未繪示)覆蓋閘極120及基底110。接著,例如以化學機械研磨(chemical mechanical polishing)製程,研磨層間介電層(未繪示),而形成平坦化之層間介電層150覆蓋閘極120側邊的基底110,其中研磨層間介電層(未繪示)的同時,亦一併移除蓋層128,暴露出其下之電極層126。然後,依序移除電極層126及閘極介電層124,再依序填入一高介電常數介電層162,一底阻障層(未繪示)、一功函數金屬層164、一頂阻障層(未繪示)以及一低電阻率材料(low resistivity material)166,而形成一金屬閘極160。低電阻率材料(low resistivity material)166可包含由鋁、銅、鎢等金屬組成。As shown in FIG. 2, a contact hole etch stop layer 140 may be selectively formed to cover the gate 120 and the substrate 110. Subsequently, a planarized interlayer dielectric layer 150 is formed to cover the substrate 110 on the side of the gate 120. In the present embodiment, the gate 120 is a polysilicon gate, which is also a sacrificial gate, which is replaced by a gate replacement process to form a metal gate 160. In detail, an interlayer dielectric layer (not shown) is formed to cover the gate 120 and the substrate 110. Then, for example, a chemical mechanical polishing process is performed to polish an interlayer dielectric layer (not shown), and a planarized interlayer dielectric layer 150 is formed to cover the substrate 110 on the side of the gate 120, wherein the interlayer dielectric is interposed. While the layer (not shown) is also removed, the cap layer 128 is also removed to expose the underlying electrode layer 126. Then, the electrode layer 126 and the gate dielectric layer 124 are sequentially removed, and then a high-k dielectric layer 162 is sequentially filled, a bottom barrier layer (not shown), a work function metal layer 164, A top barrier layer (not shown) and a low resistivity material 166 form a metal gate 160. The low resistivity material 166 may comprise a metal such as aluminum, copper, tungsten, or the like.

如第3圖所示,接續以例如蝕刻暨微影製程,形成複數個接觸洞R1於層間介電層150中,並暴露出至少部分源/汲極區130。然後如第4圖所示,分別形成一磊晶結構170於接觸洞R1中。如圖所示,磊晶結構170係僅位於接觸洞R1中而直接接觸並位於部份之源/汲極區130上。再者,本實施例以磊晶結構170不長滿接觸洞R1為例,但在其他實施例中,磊晶結構170亦可長滿接觸洞R1。其中,磊晶結構170可包含一矽鍺磊晶層適用於PMOS電晶體、一矽碳磊晶層適用於NMOS電晶體等應變矽的磊晶層,或一矽質磊晶層用於不需外加應力,可能僅為一昇起式源/汲極(raised S/D)並用以作為形成金屬矽化物的一部份。As shown in FIG. 3, a plurality of contact holes R1 are formed in the interlayer dielectric layer 150 by, for example, an etching and lithography process, and at least a portion of the source/drain regions 130 are exposed. Then, as shown in Fig. 4, an epitaxial structure 170 is formed in the contact hole R1, respectively. As shown, the epitaxial structure 170 is located only in the contact hole R1 and is in direct contact with and located on a portion of the source/drain region 130. Furthermore, in this embodiment, the epitaxial structure 170 does not extend over the contact hole R1, but in other embodiments, the epitaxial structure 170 may also extend over the contact hole R1. The epitaxial structure 170 may include a germanium epitaxial layer suitable for a PMOS transistor, a germanium carbon epitaxial layer suitable for an strained germanium epitaxial layer such as an NMOS transistor, or a tantalum epitaxial layer for use without The applied stress may be only one litre source/dip (s) and used as part of the formation of metal telluride.

請繼續參閱第4圖,形成一金屬矽化物180於接觸洞R1中的磊晶結構170上。詳細而言,可先形成一金屬層(未繪示)於磊晶結構170上,而後例如進行至少一熱處理,俾使金屬層(未繪示)之金屬擴散至部分磊晶結構170中,而形成金屬矽化物180。金屬層(未繪示)一般可例如為含鎳、鈷、鈦金屬等之材質。較佳者,在完成金屬矽化物180之後,源/汲極區130與金屬矽化物180之間仍具有部分的磊晶結構170。Referring to FIG. 4, a metal germanide 180 is formed on the epitaxial structure 170 in the contact hole R1. In detail, a metal layer (not shown) may be formed on the epitaxial structure 170, and then, for example, at least one heat treatment is performed to diffuse the metal of the metal layer (not shown) into the partial epitaxial structure 170. A metal telluride 180 is formed. The metal layer (not shown) may be, for example, a material containing nickel, cobalt, titanium metal or the like. Preferably, after completion of the metal telluride 180, there is still a partial epitaxial structure 170 between the source/drain region 130 and the metal telluride 180.

如第5圖所示,沉積一介電層190於層間介電層150上並使其覆蓋金屬閘極160。介電層190的材質較佳與層間介電層150相同,其可為層間介電層150之延伸。As shown in FIG. 5, a dielectric layer 190 is deposited over the interlayer dielectric layer 150 and overlying the metal gate 160. The material of the dielectric layer 190 is preferably the same as that of the interlayer dielectric layer 150, which may be an extension of the interlayer dielectric layer 150.

如第6圖所示,形成複數個對應接觸洞R2於介電層190中,並連接接觸洞R1。在本實施例中,對應接觸洞R2向下對準接觸洞R1的位置,可與接觸洞R1形成一接觸洞R。再者,本實施例中在形成對應接觸洞R2的同時,亦形成一閘極接觸洞R3於金屬閘極160正上方,並暴露出至少部分的金屬閘極160。As shown in FIG. 6, a plurality of corresponding contact holes R2 are formed in the dielectric layer 190, and the contact holes R1 are connected. In this embodiment, the contact hole R2 is aligned downward with the contact hole R1 to form a contact hole R with the contact hole R1. Moreover, in the embodiment, while forming the corresponding contact hole R2, a gate contact hole R3 is also formed directly above the metal gate 160, and at least a portion of the metal gate 160 is exposed.

如第7圖所示,分別填入一金屬材料198於接觸洞R及閘極接觸洞R3中,並加以平坦化而完成本發明之半導體製程。其中金屬材料198可包含鈦(Ti)、氮化鈦(TiN)、鉭(Ta)、氮化鉭(TaN)等之阻障層(未繪示)與鎢、銅或鋁等金屬。As shown in Fig. 7, a metal material 198 is filled in the contact hole R and the gate contact hole R3, respectively, and planarized to complete the semiconductor process of the present invention. The metal material 198 may include a barrier layer (not shown) of titanium (Ti), titanium nitride (TiN), tantalum (Ta), tantalum nitride (TaN), and the like, and a metal such as tungsten, copper or aluminum.

第8-11圖繪示本發明第二實施例之半導體製程之剖面示意圖。首先,如第1-2圖所示,在形成層間介電層150覆蓋閘極120側邊的基底110並再形成金屬閘極160之後,如第8圖所示,形成介電層190於層間介電層150上並覆蓋金屬閘極160。同樣的,基底110可為基底塊材或矽覆絕緣(SOI)基底等半導體基底,其上可具有至少一鰭狀結構,使本發明第二實施例可應用於各式平面電晶體製程與非平面電晶體製程等之半導體製程。8-11 are schematic cross-sectional views showing a semiconductor process according to a second embodiment of the present invention. First, as shown in FIG. 1-2, after the interlayer dielectric layer 150 is formed to cover the substrate 110 on the side of the gate 120 and the metal gate 160 is further formed, as shown in FIG. 8, the dielectric layer 190 is formed between the layers. The dielectric layer 150 is covered and covered with a metal gate 160. Similarly, the substrate 110 can be a semiconductor substrate such as a substrate block or a silicon-on-insulator (SOI) substrate, and can have at least one fin structure thereon, so that the second embodiment of the present invention can be applied to various planar transistor processes and non- Semiconductor process such as planar transistor process.

接著第9圖所示,例如以蝕刻暨微影製程,形成複數個接觸洞R於層間介電層150以及介電層190中,以暴露出至少部分源/汲極區130。如第10圖所示,分別形成磊晶結構170於接觸洞R中,其中磊晶結構170僅位於接觸洞R中而直接接觸並位於部份之源/汲極區130上。再者,本實施例以磊晶結構170不長滿接觸洞R為例,但在其他實施例中,磊晶結構170亦可長滿接觸洞R。磊晶結構170可包含一矽鍺磊晶層適用於PMOS電晶體、一矽碳磊晶層適用於NMOS電晶體等應變矽的磊晶層,或一矽質磊晶層用於不需外加應力,可能僅為一昇起式源/汲極(raised S/D)並用以作為形成金屬矽化物的一部份。接著,分別形成金屬矽化物180於接觸洞R中的各磊晶結構170上。詳細而言,可先形成一金屬層(未繪示)於磊晶結構170上,而後例如進行至少一熱處理,俾使金屬層(未繪示)之金屬擴散至部分磊晶結構170中,而形成金屬矽化物180。金屬層(未繪示)一般可例如為含鎳、鈷、鈦金屬等之材質。然後,可進行一蝕刻暨微影製程,形成閘極接觸洞(未繪示)。最後,分別填入一金屬材料(未繪示)於接觸洞R及閘極接觸洞(未繪示),並加以平坦化而完成本發明之半導體製程。金屬材料(未繪示)可包含鈦(Ti)、氮化鈦(TiN)、鉭(Ta)、氮化鉭(TaN)等之阻障層(未繪示)與鎢、銅或鋁等金屬。Next, as shown in FIG. 9, a plurality of contact holes R are formed in the interlayer dielectric layer 150 and the dielectric layer 190 to expose at least a portion of the source/drain regions 130, for example, by an etching and lithography process. As shown in FIG. 10, an epitaxial structure 170 is formed in the contact hole R, respectively, wherein the epitaxial structure 170 is located only in the contact hole R and is in direct contact with and located on a portion of the source/drain region 130. Moreover, in this embodiment, the epitaxial structure 170 does not extend over the contact hole R, but in other embodiments, the epitaxial structure 170 may also extend over the contact hole R. The epitaxial structure 170 may comprise a germanium epitaxial layer suitable for PMOS transistors, a germanium carbon epitaxial layer suitable for strained germanium epitaxial layers such as NMOS transistors, or a tantalum epitaxial layer for no external stress It may be only a raised source/dip (s) and used as part of the formation of metal halides. Next, metal telluride 180 is formed on each of the epitaxial structures 170 in the contact hole R, respectively. In detail, a metal layer (not shown) may be formed on the epitaxial structure 170, and then, for example, at least one heat treatment is performed to diffuse the metal of the metal layer (not shown) into the partial epitaxial structure 170. A metal telluride 180 is formed. The metal layer (not shown) may be, for example, a material containing nickel, cobalt, titanium metal or the like. Then, an etching and lithography process can be performed to form a gate contact hole (not shown). Finally, a metal material (not shown) is filled in the contact hole R and the gate contact hole (not shown), and planarized to complete the semiconductor process of the present invention. The metal material (not shown) may include a barrier layer (not shown) of titanium (Ti), titanium nitride (TiN), tantalum (Ta), tantalum nitride (TaN), and the like, and a metal such as tungsten, copper or aluminum. .

另外,亦可例如以蝕刻暨微影製程,同時形成複數個接觸洞R以及閘極接觸洞(未繪示)於層間介電層150以及介電層190中,以分別暴露出至少部分源/汲極區130以及低電阻率材料(low resistivity material)166。接著,分別形成磊晶結構170於接觸洞R中。由於低電阻率材料(low resistivity material)166為金屬材料,故不會長出磊晶結構。之後,可分別且同時填入金屬材料(未繪示)於接觸洞R及閘極接觸洞(未繪示),並加以平坦化而完成本發明之半導體製程。In addition, a plurality of contact holes R and gate contact holes (not shown) may be simultaneously formed in the interlayer dielectric layer 150 and the dielectric layer 190, for example, by etching and lithography, to expose at least part of the source/ The drain region 130 and the low resistivity material 166. Next, an epitaxial structure 170 is formed in the contact hole R, respectively. Since the low resistivity material 166 is a metal material, the epitaxial structure does not grow. Thereafter, a metal material (not shown) may be separately and simultaneously filled in the contact hole R and the gate contact hole (not shown), and planarized to complete the semiconductor process of the present invention.

由本發明第一實施例及第二實施例皆可形成本發明一半導體結構。第11圖繪示本發明一實施例之半導體結構之剖面示意圖。一半導體結構200包含有一鰭狀結構114、一閘極210、一源/汲極區130、一層間介電層220以及一磊晶結構170。鰭狀結構114位於一底材112上。閘極120覆蓋於鰭狀結構114上。源/汲極區130位於閘極120側邊的鰭狀結構114中。層間介電層220(包含第一實施例及第二實施例中之層間介電層150及介電層190)覆蓋閘極210以及鰭狀結構114。一接觸洞蝕刻停止層(未繪示)可選擇性地位於層間介電層220以及鰭狀結構114之間。層間介電層220具有複數個接觸洞R及一閘極接觸洞R3,分別暴露出至少部分源/汲極區130以及至少部分閘極210。磊晶結構170則位於接觸洞R中,且直接接觸並僅位於源/汲極區130上。一金屬矽化物180位於接觸洞R中的磊晶結構170上。一金屬柱230位於接觸洞R中的金屬矽化物180上以及閘極接觸洞R3中。鰭狀結構114及底材112可為由同一材質,例如矽材,所組成的基底110。閘極210可為一多晶矽閘極或一犧牲閘極,其可在形成部分層間介電層220(對應第一實施例及第二實施例中之層間介電層150)之後,由一金屬閘極取代。磊晶結構170包含一應變矽的磊晶層或一矽質磊晶層等。金屬柱230可由銅或鋁等金屬形成。A semiconductor structure of the present invention can be formed by both the first embodiment and the second embodiment of the present invention. 11 is a cross-sectional view showing a semiconductor structure according to an embodiment of the present invention. A semiconductor structure 200 includes a fin structure 114, a gate 210, a source/drain region 130, an interlayer dielectric layer 220, and an epitaxial structure 170. The fin structure 114 is located on a substrate 112. The gate 120 covers the fin structure 114. The source/drain region 130 is located in the fin structure 114 on the side of the gate 120. The interlayer dielectric layer 220 (including the interlayer dielectric layer 150 and the dielectric layer 190 in the first embodiment and the second embodiment) covers the gate 210 and the fin structure 114. A contact hole etch stop layer (not shown) is selectively interposed between the interlayer dielectric layer 220 and the fin structure 114. The interlayer dielectric layer 220 has a plurality of contact holes R and a gate contact hole R3 exposing at least a portion of the source/drain regions 130 and at least a portion of the gates 210, respectively. The epitaxial structure 170 is located in the contact hole R and is in direct contact with only the source/drain region 130. A metal telluride 180 is located on the epitaxial structure 170 in the contact hole R. A metal post 230 is located on the metal telluride 180 in the contact hole R and in the gate contact hole R3. The fin structure 114 and the substrate 112 may be a substrate 110 composed of the same material, such as a coffin. The gate 210 can be a polysilicon gate or a sacrificial gate, which can be formed by a metal gate after forming a portion of the interlayer dielectric layer 220 (corresponding to the interlayer dielectric layer 150 in the first embodiment and the second embodiment). Extremely replaced. The epitaxial structure 170 includes a strained epitaxial layer or a tantalum epitaxial layer. The metal post 230 may be formed of a metal such as copper or aluminum.

承上,本發明第一實施例及第二實施例之半導體製程,皆是在形成接觸洞R後,才形成磊晶結構170於接觸洞R中,如此即可將磊晶結構170限制成長於接觸洞R中。如此一來,本發明藉由將磊晶結構170限制成長於接觸洞R中,可有效控制磊晶結構170成長的範圍,防止各鰭狀結構114上的磊晶結構170連結在一起。並且,藉由將磊晶結構170僅形成於接觸洞R中而完整控制磊晶結構170成長的尺寸及形狀,可進一步達到微縮半導體結構200的功能。According to the first embodiment and the second embodiment of the present invention, after the contact hole R is formed, the epitaxial structure 170 is formed in the contact hole R, so that the epitaxial structure 170 can be restricted from growing. Contact the hole R. In this way, the present invention can effectively control the growth range of the epitaxial structure 170 by restricting the epitaxial structure 170 from growing into the contact hole R, and prevent the epitaxial structures 170 on the fin structures 114 from being joined together. Moreover, the function of the micro-semiconductor structure 200 can be further achieved by completely controlling the size and shape of the epitaxial structure 170 grown by forming the epitaxial structure 170 only in the contact hole R.

另外,本發明第一實施例及第二實施例之半導體製程所形成之半導體結構200,亦可應用於各種半導體裝置中,例如用以形成一靜態隨機存取記憶體(Static Random Access Memory,SRAM)。換言之,當半導體結構200之MOS電晶體之個數為複數個,並依照實際需要做特定之佈局分佈,則可形成一靜態隨機存取記憶體(Static Random Access Memory,SRAM)。如第12圖,繪示習知以及本發明一實施例之靜態隨機存取記憶體之佈局示意圖,其中上圖為習知之靜態隨機存取記憶體之佈局示意圖,而下圖為本發明一實施例之靜態隨機存取記憶體之佈局示意圖。如第12圖下圖所示,本發明之半導體結構200所形成之一靜態隨機存取記憶體300包含二雙鰭狀結構310及350,以及四單鰭狀結構320、330、340及360。當靜態隨機存取記憶體300的尺寸越做越小時,由於雙鰭狀結構310及350之間的距離較單鰭狀結構320、330、340及360更密集,是以雙鰭狀結構310及350中之相鄰的鰭狀結構更容易連接合併在一起,導致靜態隨機存取記憶體300短路。因此,本發明藉由將雙鰭狀結構310及350中之磊晶結構(未繪示)限制形成於接觸洞(未繪示)中,即可防止各磊晶結構(未繪示)銜接在一起,進而避免雙鰭狀結構310及350短路。再者,可比較在不改變其他製程參數下之採用本發明之半導體製程所形成之靜態隨機存取記憶體300(下圖)以及習知之靜態隨機存取記憶體400(上圖),可發現採用本發明之半導體製程所形成之靜態隨機存取記憶體300的尺寸可較靜態隨機存取記憶體400縮小許多,例如就長度上即可縮小距離d。In addition, the semiconductor structure 200 formed by the semiconductor process of the first embodiment and the second embodiment of the present invention can also be applied to various semiconductor devices, for example, to form a static random access memory (SRAM). ). In other words, when the number of MOS transistors of the semiconductor structure 200 is plural, and a specific layout distribution is performed according to actual needs, a static random access memory (SRAM) can be formed. FIG. 12 is a schematic diagram showing the layout of a conventional random access memory according to an embodiment of the present invention, wherein the above figure is a schematic diagram of a conventional static random access memory, and the following figure is an implementation of the present invention. A schematic diagram of the layout of a static random access memory. As shown in the lower diagram of FIG. 12, a static random access memory 300 formed by the semiconductor structure 200 of the present invention includes two double fin structures 310 and 350, and four single fin structures 320, 330, 340 and 360. When the size of the SRAM 300 is smaller, the distance between the double fin structures 310 and 350 is denser than that of the single fin structures 320, 330, 340, and 360, and the double fin structure 310 and Adjacent fin structures in 350 are more easily joined together, resulting in a short circuit of the SRAM 300. Therefore, the present invention can prevent each epitaxial structure (not shown) from being connected in the contact hole (not shown) by limiting the epitaxial structure (not shown) in the double fin structures 310 and 350. Together, the short circuits of the double fin structures 310 and 350 are prevented from being short-circuited. Furthermore, the SRAM 300 (below) formed by the semiconductor process of the present invention and the conventional SRAM 400 (above) can be compared without changing other process parameters, and can be found. The size of the SRAM 300 formed by the semiconductor process of the present invention can be much smaller than that of the SRAM 400, for example, the distance d can be reduced in length.

綜上所述,本發明提供一種半導體結構及其製程,藉由將磊晶結構僅形成於接觸洞中,可有效控制磊晶結構成長的範圍。舉例而言,本發明可有效控制磊晶結構成長的尺寸及形狀等。具體而言,形成本發明之半導體結構之製程,可先形成接觸洞後,再將磊晶結構填入其中。詳細來說,可採用兩段式形成接觸洞的方法,其係先形成下層接觸洞並將磊晶結構及金屬矽化物形成於其中後,再一併形成上層接觸洞與閘極接觸洞;或者,可採用一段式形成接觸洞的方法,直接一次性完成接觸洞的製作,然後再依序形成磊晶結構、金屬矽化物及金屬柱等。In summary, the present invention provides a semiconductor structure and a process thereof. By forming an epitaxial structure only in a contact hole, the range of growth of the epitaxial structure can be effectively controlled. For example, the present invention can effectively control the size and shape of the epitaxial structure growth and the like. Specifically, in the process of forming the semiconductor structure of the present invention, the contact hole can be formed first, and then the epitaxial structure is filled therein. In detail, a two-stage method of forming a contact hole may be employed, which first forms an underlying contact hole and forms an epitaxial structure and a metal telluride therein, and then forms an upper contact hole and a gate contact hole together; or The contact hole can be formed by a one-step method, and the contact hole can be directly produced in one time, and then the epitaxial structure, the metal telluride and the metal column are sequentially formed.

如此,採用本發明之方法,可控制磊晶結構成長的範圍,防止相鄰之磊晶結構銜接在一起導致半導體元件短路。再者,藉由有效控制磊晶結構成長的範圍,精密化半導體元件的佈局分佈,亦可微縮導致半導體元件的尺寸。Thus, by the method of the present invention, the range of growth of the epitaxial structure can be controlled to prevent the adjacent epitaxial structures from being joined together to cause short circuit of the semiconductor element. Furthermore, by effectively controlling the range in which the epitaxial structure grows, the layout of the semiconductor element can be refined, and the size of the semiconductor element can be reduced.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

110...基底110. . . Base

112...底材112. . . Substrate

114...鰭狀結構114. . . Fin structure

120、210...閘極120, 210. . . Gate

122...緩衝層122. . . The buffer layer

124...閘極介電層124. . . Gate dielectric layer

126...電極層126. . . Electrode layer

128...蓋層128. . . Cover

129...間隙壁129. . . Clearance wall

130...源/汲極區130. . . Source/bungee area

140...接觸洞蝕刻停止層140. . . Contact hole etch stop layer

150、220...層間介電層150, 220. . . Interlayer dielectric layer

160...金屬閘極160. . . Metal gate

162...高介電常數介電層162. . . High dielectric constant dielectric layer

164...功函數金屬層164. . . Work function metal layer

166...低電阻率材料166. . . Low resistivity material

170...磊晶結構170. . . Epitaxial structure

180...金屬矽化物180. . . Metal telluride

190...介電層190. . . Dielectric layer

198...金屬材料198. . . metallic material

200...半導體結構200. . . Semiconductor structure

230...金屬柱230. . . Metal column

300、400...靜態隨機存取記憶體300, 400. . . Static random access memory

310、350...雙鰭狀結構310, 350. . . Double fin structure

320、330、340、360...單鰭狀結構320, 330, 340, 360. . . Single fin structure

d...距離d. . . distance

M...MOS電晶體M. . . MOS transistor

R、R1...接觸洞R, R1. . . Contact hole

R2...對應接觸洞R2. . . Corresponding contact hole

R3...閘極接觸洞R3. . . Gate contact hole

第1-7圖繪示本發明第一實施例之半導體製程之剖面示意圖。1-7 are schematic cross-sectional views showing a semiconductor process according to a first embodiment of the present invention.

第8-10圖繪示本發明第二實施例之半導體製程之剖面示意圖。8-10 are schematic cross-sectional views showing a semiconductor process of a second embodiment of the present invention.

第11圖繪示本發明一實施例之半導體結構之剖面示意圖。11 is a cross-sectional view showing a semiconductor structure according to an embodiment of the present invention.

第12圖繪示習知及本發明一實施例之靜態隨機存取記憶體之佈局示意圖。FIG. 12 is a schematic diagram showing the layout of a conventional random access memory according to an embodiment of the present invention.

110‧‧‧基底 110‧‧‧Base

112‧‧‧底材 112‧‧‧Substrate

114‧‧‧鰭狀結構 114‧‧‧Fin structure

122‧‧‧緩衝層 122‧‧‧buffer layer

130‧‧‧源/汲極區 130‧‧‧Source/Bungee Zone

150‧‧‧層間介電層 150‧‧‧Interlayer dielectric layer

160‧‧‧金屬閘極 160‧‧‧Metal gate

162‧‧‧高介電常數介電層 162‧‧‧High dielectric constant dielectric layer

164‧‧‧功函數金屬層 164‧‧‧Work function metal layer

166‧‧‧低電阻率材料 166‧‧‧ Low resistivity materials

170‧‧‧磊晶結構 170‧‧‧ epitaxial structure

180‧‧‧金屬矽化物 180‧‧‧Metal Telluride

190‧‧‧介電層 190‧‧‧ dielectric layer

198‧‧‧金屬材料 198‧‧‧Metal materials

R、R1‧‧‧接觸洞 R, R1‧‧‧ contact hole

R2‧‧‧對應接觸洞 R2‧‧‧ corresponding contact hole

R3‧‧‧閘極接觸洞 R3‧‧‧ gate contact hole

Claims (25)

一種半導體結構,包含有:至少一鰭狀結構位於一底材上;一閘極覆蓋於該鰭狀結構上;一源/汲極區位於該閘極側邊的鰭狀結構中;一層間介電層覆蓋該閘極以及該鰭狀結構,其中該層間介電層具有複數個接觸洞,分別暴露出至少部分該源/汲極區,且該層間介電層的一頂面與該閘極的一頂面齊平;以及一磊晶結構位於各該些接觸洞中,且直接接觸並僅位於該源/汲極區上。 A semiconductor structure comprising: at least one fin structure on a substrate; a gate covering the fin structure; a source/drain region in a fin structure on a side of the gate; An electric layer covers the gate and the fin structure, wherein the interlayer dielectric layer has a plurality of contact holes exposing at least a portion of the source/drain regions, and a top surface of the interlayer dielectric layer and the gate A top surface is flush; and an epitaxial structure is located in each of the contact holes and is in direct contact with and only on the source/drain region. 如申請專利範圍第1項所述之半導體結構,其中該閘極包含一多晶矽閘極或一金屬閘極。 The semiconductor structure of claim 1, wherein the gate comprises a polysilicon gate or a metal gate. 如申請專利範圍第1項所述之半導體結構,更包含一接觸洞蝕刻停止層位於該層間介電層以及該鰭狀結構之間。 The semiconductor structure of claim 1, further comprising a contact etch stop layer between the interlayer dielectric layer and the fin structure. 如申請專利範圍第1項所述之半導體結構,更包含一金屬矽化物位於各該些接觸洞中的該磊晶結構上,以及一金屬柱位於各該些接觸洞中的該金屬矽化物上。 The semiconductor structure of claim 1, further comprising a metal telluride on the epitaxial structure in each of the contact holes, and a metal pillar on the metal germanide in each of the contact holes . 如申請專利範圍第1項所述之半導體結構,其中該磊晶結構包含一應變矽的磊晶結構。 The semiconductor structure of claim 1, wherein the epitaxial structure comprises a strained epitaxial structure. 一種半導體製程,包含有:提供一基底;形成一MOS電晶體於該基底上,其中該MOS電晶體包含一閘極位於該基底上以及一源/汲極區位於該閘極側邊的該基底中;形成一層間介電層覆蓋該閘極側邊的該基底;形成複數個接觸洞於該層間介電層中,並暴露出至少部分該源/汲極區;分別形成一磊晶結構填滿各該些接觸洞中,且直接接觸並僅位於該源/汲極區上;形成一金屬矽化物於各該些接觸洞中的該磊晶結構上;沉積一介電層於該層間介電層上並使其覆蓋該閘極;形成複數個對應接觸洞於該介電層中,並連接該些接觸洞;以及分別填入一金屬材料於各該些接觸洞以及各該些對應接觸洞中的該金屬矽化物上。 A semiconductor process comprising: providing a substrate; forming a MOS transistor on the substrate, wherein the MOS transistor comprises a gate on the substrate and a source/drain region on the side of the gate Forming an interlayer dielectric layer covering the substrate on the side of the gate; forming a plurality of contact holes in the interlayer dielectric layer and exposing at least a portion of the source/drain regions; respectively forming an epitaxial structure filling Filling each of the contact holes and directly contacting and only located on the source/drain regions; forming a metal germanide on the epitaxial structure in each of the contact holes; depositing a dielectric layer on the interlayer And electrically covering the gate; forming a plurality of corresponding contact holes in the dielectric layer and connecting the contact holes; and respectively filling a metal material in each of the contact holes and each of the corresponding contacts The metal telluride in the hole. 如申請專利範圍第6項所述之半導體製程,其中該閘極包含一多晶矽閘極。 The semiconductor process of claim 6, wherein the gate comprises a polysilicon gate. 如申請專利範圍第6項所述之半導體製程,其中該閘極包含一犧牲閘極,並且在形成該層間介電層覆蓋該犧牲閘極側邊的該基底之後,更包含:以一金屬閘極取代該犧牲閘極。 The semiconductor process of claim 6, wherein the gate comprises a sacrificial gate, and after forming the interlayer dielectric layer to cover the substrate on the side of the sacrificial gate, further comprising: a metal gate The pole replaces the sacrificial gate. 如申請專利範圍第6項所述之半導體製程,其中形成該層間介電層覆蓋該閘極側邊的該基底之前,更包含:形成一接觸洞蝕刻停止層於該基底以及該層間介電層之間。 The semiconductor process of claim 6, wherein the forming the interlayer dielectric layer to cover the gate side of the substrate further comprises: forming a contact hole etch stop layer on the substrate and the interlayer dielectric layer between. 如申請專利範圍第6項所述之半導體製程,其中該基底包含一基底塊材。 The semiconductor process of claim 6, wherein the substrate comprises a substrate block. 如申請專利範圍第6項所述之半導體製程,其中該基底包含一底材以及至少一鰭狀結構於該底材上,而該閘極以及該源/汲極區則形成於該鰭狀結構上。 The semiconductor process of claim 6, wherein the substrate comprises a substrate and at least one fin structure on the substrate, and the gate and the source/drain region are formed on the fin structure. on. 如申請專利範圍第6項所述之半導體製程,其中該MOS電晶體之個數為複數個,且該些MOS電晶體之佈局分佈形成一靜態隨機存取記憶體(Static Random Access Memory,SRAM)。 The semiconductor process of claim 6, wherein the number of the MOS transistors is plural, and the layout of the MOS transistors forms a static random access memory (SRAM). . 如申請專利範圍第6項所述之半導體製程,其中該磊晶結構包含一應變矽的磊晶結構。 The semiconductor process of claim 6, wherein the epitaxial structure comprises a strained epitaxial structure. 如申請專利範圍第6項所述之半導體製程,其中分別形成該磊晶結構於各該些接觸洞中,包含分別形成該磊晶結構填入部分各該些接觸洞。 The semiconductor process of claim 6, wherein the epitaxial structure is formed in each of the contact holes, respectively, and each of the contact holes is formed in the epitaxial structure filling portion. 如申請專利範圍第6項所述之半導體製程,其中形成複數個對應接觸洞時,更包含同時形成一閘極接觸洞於該介電層中,以暴露出該閘極。 The semiconductor process of claim 6, wherein forming a plurality of corresponding contact holes further comprises simultaneously forming a gate contact hole in the dielectric layer to expose the gate. 一種半導體製程,包含有:提供一基底;形成一MOS電晶體於該基底上,其中該MOS電晶體包含一閘極位於該基底上以及一源/汲極區位於該閘極側邊的該基底中;依序形成一層間介電層以及一介電層覆蓋該閘極以及該基底;形成複數個接觸洞於該層間介電層以及該介電層中,以暴露出至少部分該源/汲極區;分別形成一磊晶結構填滿各該些接觸洞中;分別形成一金屬矽化物於各該些接觸洞中的該磊晶結構上;以及分別填入一金屬材料於各該些接觸洞中的該金屬矽化物上。 A semiconductor process comprising: providing a substrate; forming a MOS transistor on the substrate, wherein the MOS transistor comprises a gate on the substrate and a source/drain region on the side of the gate Forming an interlayer dielectric layer and a dielectric layer to cover the gate and the substrate; forming a plurality of contact holes in the interlayer dielectric layer and the dielectric layer to expose at least a portion of the source/germanium a pole region; respectively forming an epitaxial structure filling each of the contact holes; respectively forming a metal germanide on the epitaxial structure in each of the contact holes; and respectively filling a metal material in each of the contacts The metal telluride in the hole. 如申請專利範圍第16項所述之半導體製程,其中該閘極包含一多晶矽閘極。 The semiconductor process of claim 16, wherein the gate comprises a polysilicon gate. 如申請專利範圍第16項所述之半導體製程,其中該閘極包含一犧牲閘極,並且依序形成該層間介電層以及該介電層覆蓋該犧牲閘極以及該基底的步驟,包含:形成該層間介電層於該犧牲閘極側邊的該基底上;以一金屬閘極取代該犧牲閘極;以及 形成該介電層於該層間介電層上並覆蓋該金屬閘極。 The semiconductor process of claim 16, wherein the gate comprises a sacrificial gate, and the step of forming the interlayer dielectric layer and the dielectric layer covering the sacrificial gate and the substrate comprises: Forming the interlayer dielectric layer on the substrate on the side of the sacrificial gate; replacing the sacrificial gate with a metal gate; The dielectric layer is formed on the interlayer dielectric layer and covers the metal gate. 如申請專利範圍第16項所述之半導體製程,其中在依序形成該層間介電層以及該介電層覆蓋該閘極以及該基底之前,更包含:形成一接觸洞蝕刻停止層於該基底以及該層間介電層之間。 The semiconductor process of claim 16, wherein before sequentially forming the interlayer dielectric layer and the dielectric layer covering the gate and the substrate, further comprising: forming a contact hole etch stop layer on the substrate And between the interlayer dielectric layers. 如申請專利範圍第16項所述之半導體製程,其中該基底包含一基底塊材。 The semiconductor process of claim 16, wherein the substrate comprises a substrate block. 如申請專利範圍第16項所述之半導體製程,其中該基底包含一底材以及至少一鰭狀結構於該底材上,而該閘極以及該源/汲極區則形成於該鰭狀結構上。 The semiconductor process of claim 16, wherein the substrate comprises a substrate and at least one fin structure on the substrate, and the gate and the source/drain region are formed on the fin structure. on. 如申請專利範圍第16項所述之半導體製程,該MOS電晶體之個數為複數個,且該些MOS電晶體之佈局分佈形成一靜態隨機存取記憶體(Static Random Access Memory,SRAM)。 For example, in the semiconductor process described in claim 16, the number of the MOS transistors is plural, and the layout of the MOS transistors forms a static random access memory (SRAM). 如申請專利範圍第16項所述之半導體製程,其中該磊晶結構包含一應變矽的磊晶結構。 The semiconductor process of claim 16, wherein the epitaxial structure comprises a strained epitaxial structure. 如申請專利範圍第16項所述之半導體製程,其中分別形成該磊晶結構於各該些接觸洞中,包含分別形成該磊晶結構填入部 分各該些接觸洞。 The semiconductor process of claim 16, wherein the epitaxial structure is formed in each of the contact holes, respectively, and the epitaxial structure filling portion is formed respectively. Divide each of these contact holes. 如申請專利範圍第16項所述之半導體製程,其中形成複數個接觸洞時,更包含同時形成一閘極接觸洞於該介電層中,以暴露出該閘極。 The semiconductor process of claim 16, wherein forming a plurality of contact holes further comprises simultaneously forming a gate contact hole in the dielectric layer to expose the gate.
TW101102616A 2012-01-20 2012-01-20 Semiconductor structure and process thereof TWI527227B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101102616A TWI527227B (en) 2012-01-20 2012-01-20 Semiconductor structure and process thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101102616A TWI527227B (en) 2012-01-20 2012-01-20 Semiconductor structure and process thereof

Publications (2)

Publication Number Publication Date
TW201332107A TW201332107A (en) 2013-08-01
TWI527227B true TWI527227B (en) 2016-03-21

Family

ID=49479109

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101102616A TWI527227B (en) 2012-01-20 2012-01-20 Semiconductor structure and process thereof

Country Status (1)

Country Link
TW (1) TWI527227B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9698019B2 (en) 2014-03-14 2017-07-04 Taiwan Semiconductor Manufacturing Company, Ltd. N-work function metal with crystal structure

Also Published As

Publication number Publication date
TW201332107A (en) 2013-08-01

Similar Documents

Publication Publication Date Title
US20170162450A1 (en) Semiconductor process
TWI686351B (en) Nanowire transistor and method for fabricating the same
TWI726128B (en) Semiconductor device and method for fabricating the same
US9196542B2 (en) Method for manufacturing semiconductor devices
TWI728413B (en) Methods for forming semiconductor device and semiconductor structure, and semiconductor device
US10998324B2 (en) Semiconductor device comprising work function metal pattern in boundary region and method for fabricating the same
TW201714208A (en) Semiconductor device and method for fabricating the same
CN116705613A (en) Semiconductor element and manufacturing method thereof
CN107026126B (en) Semiconductor element and manufacturing method thereof
TWI632617B (en) Semiconductor device and method for fabricating the same
TW201903856A (en) Semiconductor device and method for fabricating the same
US9748144B1 (en) Method of fabricating semiconductor device
TWI612666B (en) Method for fabricating finfet transistor
TW201911385A (en) Semiconductor device and method for fabricating the same
US10090398B2 (en) Manufacturing method of patterned structure of semiconductor
TW201707206A (en) Semiconductor device and a fabrication method thereof
TW201807832A (en) Semiconductor device and method for fabricating the same
TWI527227B (en) Semiconductor structure and process thereof
TWI524472B (en) Resistor and manufacturing method thereof
TWI528461B (en) Semicondoctor process
TW201338163A (en) FinFET and method of fabricating FinFET
TWI584482B (en) Complementary metal oxide semiconductor field effect transistor, metal oxide semiconductor field effect transistor and manufacturing method thereof
KR102676879B1 (en) Semiconductor device and method for fabricating the same
TWI527093B (en) Semiconductor structure and process thereof
TWI523081B (en) Semiconductor process