TWI524472B - Resistor and manufacturing method thereof - Google Patents

Resistor and manufacturing method thereof Download PDF

Info

Publication number
TWI524472B
TWI524472B TW100131078A TW100131078A TWI524472B TW I524472 B TWI524472 B TW I524472B TW 100131078 A TW100131078 A TW 100131078A TW 100131078 A TW100131078 A TW 100131078A TW I524472 B TWI524472 B TW I524472B
Authority
TW
Taiwan
Prior art keywords
metal
resistor
layer
gate
transistor
Prior art date
Application number
TW100131078A
Other languages
Chinese (zh)
Other versions
TW201310577A (en
Inventor
楊傑甯
徐世杰
林俊賢
王堯展
白啟宏
曾紀昇
Original Assignee
聯華電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯華電子股份有限公司 filed Critical 聯華電子股份有限公司
Priority to TW100131078A priority Critical patent/TWI524472B/en
Publication of TW201310577A publication Critical patent/TW201310577A/en
Application granted granted Critical
Publication of TWI524472B publication Critical patent/TWI524472B/en

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

電阻及其製作方法Resistance and manufacturing method thereof

本發明有關於一種電阻及其製作方法,尤指一種與具有金屬閘極(metal gate)之電晶體整合之電阻及其製作方法。The invention relates to a resistor and a manufacturing method thereof, in particular to a resistor integrated with a transistor having a metal gate and a manufacturing method thereof.

在半導體產業中,為了提升電晶體的操作效率,現已有利用金屬作為電晶體控制閘極之方式。金屬閘極具有低的電阻與無空乏效應等優點,可以改善傳統閘極使用高電阻的多晶矽材料所造成的操作效能不佳等缺點。金屬閘極可概分為前閘極(gate first)製程與後閘極(gate last)製程,其中後閘極製程又因符合金屬材料的熱預算,以及可提供較寬的材料選擇等原因,逐漸地取代了前閘極製程。In the semiconductor industry, in order to improve the operational efficiency of the transistor, there has been a way of using metal as a transistor to control the gate. The metal gate has the advantages of low resistance and no depletion effect, and can improve the shortcomings such as poor operation performance caused by the use of high-resistance polysilicon material in the conventional gate. The metal gate can be roughly divided into a gate first process and a gate last process, wherein the back gate process is in accordance with the thermal budget of the metal material and provides a wider material selection. Gradually replaced the front gate process.

另外,在積體電路中,常需要加入電阻等其它電路元件的設置,來做穩壓或濾雜訊等功能。而電阻其主體一般來說亦係利用多晶矽、摻雜區或金屬氧化物來製作。In addition, in the integrated circuit, it is often necessary to add settings of other circuit components such as resistors to perform functions such as voltage stabilization or noise filtering. The main body of the resistor is generally made of polycrystalline germanium, doped regions or metal oxides.

由於積體電路製程的高複雜度以及各式元件產品的高精密性,因此在追求良率的不斷提昇時,除了嘗試改良製程技術之外,對製程整合的需求亦是相當重要的一環,以減少製程步驟並同時提升生產效率。因此,業界仍然需要一種可成功整合電阻以及具有金屬閘極之電晶體之製作方法。Due to the high complexity of the integrated circuit process and the high precision of various component products, in addition to trying to improve the process technology, the demand for process integration is also an important part in the pursuit of improvement in yield. Reduce process steps while increasing productivity. Therefore, there is still a need in the industry for a method of fabricating a transistor that successfully integrates a resistor and has a metal gate.

因此,本發明係提供一種整合電阻以及具有金屬閘極之電晶體的製作方法。Accordingly, the present invention provides an integrated resistor and a method of fabricating a transistor having a metal gate.

根據本發明所提供之申請專利範圍,係提供一種具有金屬閘極之電晶體與電阻之製作方法,該製作方法首先提供一基底,且該基底上定義有一電晶體區與一電阻區。接下來,於該電晶體區與該電阻區內分別形成一電晶體與一電阻,該電晶體具有一虛置閘極(dummy gate)。隨後,移除該虛置閘極與部分該電阻,以分別於該電晶體與該電阻內形成一第一溝渠與二個第二溝渠,並於該第一溝渠與該等第二溝渠內分別形成至少一高介電常數閘極介電層。之後,於該第一溝渠與該等第二溝渠中分別形成一金屬閘極與一金屬結構。According to the patent application scope provided by the present invention, a method for fabricating a transistor and a resistor having a metal gate is provided. The fabrication method first provides a substrate, and the substrate defines a transistor region and a resistance region. Next, a transistor and a resistor are respectively formed in the transistor region and the resistor region, and the transistor has a dummy gate. Subsequently, the dummy gate and a portion of the resistor are removed to form a first trench and two second trenches respectively in the transistor and the resistor, and respectively in the first trench and the second trench At least one high dielectric constant gate dielectric layer is formed. Thereafter, a metal gate and a metal structure are respectively formed in the first trench and the second trenches.

根據本發明所提供之申請專利範圍,另提供一種電阻,該電阻包含有一基底、一設置於該基底上之多晶矽部分、以及二金屬部分,該等金屬部分係分別設置於該多晶矽部分之兩端,且該等金屬部分之底部分別包含一U型高介電常數材料層。According to the scope of the invention provided by the present invention, there is further provided a resistor comprising a substrate, a polysilicon portion disposed on the substrate, and a metal portion, the metal portions being respectively disposed at opposite ends of the polysilicon portion And the bottoms of the metal portions respectively comprise a U-type high dielectric constant material layer.

根據本發明所提供之具有金屬閘極之電晶體與電阻之整合製作方法,係可在不增加製程複雜度的前提下整合電阻以及具有金屬閘極的電晶體。此外,由於電阻具有金屬部分,因此在後續進行接觸插塞之製作時,可因與接觸插塞接觸之材料變少而增加接觸插塞的材料選擇,以及提升製程容忍度(process window)。更重要的是,電阻本身因具有熱穩定性高的金屬部分,故可更提升電阻的穩定性以及電性表現。According to the integrated manufacturing method of the transistor and the resistor having the metal gate provided by the invention, the resistor and the transistor having the metal gate can be integrated without increasing the complexity of the process. In addition, since the resistor has a metal portion, in the subsequent fabrication of the contact plug, the material selection of the contact plug can be increased due to less material contact with the contact plug, and the process window can be improved. More importantly, the resistance itself has a high thermal stability of the metal portion, so that the stability and electrical performance of the resistor can be further improved.

請參閱第1圖至第8圖,第1圖至第8圖係為本發明所提供之一種具有金屬閘極之電晶體與電阻之製作方法之一較佳實施例之示意圖。如第1圖所示,本較佳實施例首先提供一基底100,基底100上係定義有一電晶體區102與一電阻區104;基底100內則形成有複數個用以提供電性隔離之淺溝絕緣(shallow trench isolation,STI) 106。且如第1圖所示,電阻區104內係包含有一STI 106,用以作為電阻元件的設置場所。接下來,係於基底100上依序形成一介電層107、一多晶矽層108以及一圖案化硬遮罩110,圖案化硬遮罩110係用以定義一電晶體元件之閘極位置以及一電阻元件之形成位置。其中,形成於基底100與多晶矽層108之間的介電層107可包含一般介電材料如氧化矽。Please refer to FIG. 1 to FIG. 8 . FIG. 1 to FIG. 8 are schematic diagrams showing a preferred embodiment of a method for fabricating a transistor and a resistor having a metal gate according to the present invention. As shown in FIG. 1, the preferred embodiment first provides a substrate 100 having a transistor region 102 and a resistive region 104 defined therein. The substrate 100 is formed with a plurality of shallow electrodes for providing electrical isolation. Shallow trench isolation (STI) 106. As shown in FIG. 1, the resistor region 104 includes an STI 106 for use as a place for the resistor element to be placed. Next, a dielectric layer 107, a polysilicon layer 108, and a patterned hard mask 110 are sequentially formed on the substrate 100. The patterned hard mask 110 is used to define a gate position of a transistor element and a gate. The position at which the resistive element is formed. The dielectric layer 107 formed between the substrate 100 and the polysilicon layer 108 may comprise a general dielectric material such as hafnium oxide.

請參閱第2圖。隨後係進行一蝕刻製程,利用圖案化硬遮罩110作為一蝕刻遮罩,以蝕刻多晶矽層108與介電層107,而於電晶體區102以及電阻區104內分別形成一虛置閘極112與一電阻114。接下來,係於虛置閘極112兩側之基底100內分別形成一輕摻雜汲極(lightly-doped drain,LDD)120,而在形成LDD 120之後,係於虛置閘極112與電阻114之側壁上分別形成一側壁子122、124。隨後,再於虛置閘極112兩側,尤其是側壁子122兩側之基底100內形成一源極/汲極126,以完成一電晶體130之製作,且該電晶體130具有虛置閘極112。另外,更可在電晶體130之源極/汲極126表面分別形成一金屬矽化物128。而在完成電晶體130與電阻114之製作後,係於基底100上依序形成一覆蓋電晶體130與電阻114的接觸洞蝕刻停止層(contact etch stop layer,CESL)140與一內層介電(inter-layer dielectric,ILD)層142。上述元件之製作步驟以及材料選擇,甚至是半導體業界中為提供應力作用更改善電性表現而實施選擇性磊晶成長(selective epitaxial growth,SEG)方法形成的源極/汲極126等皆為該領域之人士所熟知,故於此皆不再贅述。Please refer to Figure 2. Subsequently, an etching process is performed, using the patterned hard mask 110 as an etch mask to etch the polysilicon layer 108 and the dielectric layer 107, and forming a dummy gate 112 in the transistor region 102 and the resistor region 104, respectively. With a resistor 114. Next, a lightly doped drain (LDD) 120 is formed in the substrate 100 on both sides of the dummy gate 112, and after the LDD 120 is formed, the dummy gate 112 and the resistor are connected. A side wall 122, 124 is formed on each side wall of the 114. Then, a source/drain 126 is formed on both sides of the dummy gate 112, especially the substrate 100 on both sides of the sidewall 122 to complete the fabrication of a transistor 130, and the transistor 130 has a dummy gate. Extreme 112. In addition, a metal telluride 128 may be formed on the surface of the source/drain 126 of the transistor 130, respectively. After the fabrication of the transistor 130 and the resistor 114 is completed, a contact etch stop layer (CESL) 140 covering the transistor 130 and the resistor 114 is sequentially formed on the substrate 100 and an inner dielectric is formed. (inter-layer dielectric, ILD) layer 142. The fabrication steps and material selection of the above-mentioned components, and even the source/drain 126 formed by the selective epitaxial growth (SEG) method in the semiconductor industry to provide a stress-improving electrical performance and improve the electrical performance are Those in the field are well known and will not be described here.

請參閱第3圖。在形成CESL 140與ILD層142後,係藉由一平坦化製程移除部分的CESL 140、ILD層142以及部分圖案化硬遮罩110,隨後更可利用一道蝕刻製程,例如一乾蝕刻製程完全移除圖案化硬遮罩110,以暴露出電晶體130的虛置閘極112以及電阻114。隨後,係於基底100上形成另一圖案化硬遮罩144,其覆蓋部分電阻114,而暴露出電阻114的兩端。在形成圖案化硬遮罩144之後,利用一適合之蝕刻製程移除電晶體130的虛置閘極112以及暴露出的電阻114,而於電晶體130內形成一第一溝渠146,同時於電阻114的兩端分別形成一第二溝渠148。值得注意的是,本較佳實施例係後閘極製程以及後閘極介電層(high-k last)製程整合,因此在移除電晶體130的虛置閘極112以及部分電阻114時,介電層107係用以保護其下的基底100,並於移除電晶體130的虛置閘極112以及部分電阻114後,暴露於第一溝渠146與第二溝渠148的底部。Please refer to Figure 3. After forming the CESL 140 and the ILD layer 142, a portion of the CESL 140, the ILD layer 142, and the partially patterned hard mask 110 are removed by a planarization process, and then an etching process, such as a dry etching process, is further utilized. In addition to patterning the hard mask 110, the dummy gate 112 of the transistor 130 and the resistor 114 are exposed. Subsequently, another patterned hard mask 144 is formed on the substrate 100 that covers a portion of the resistor 114 to expose both ends of the resistor 114. After forming the patterned hard mask 144, the dummy gate 112 of the transistor 130 and the exposed resistor 114 are removed by a suitable etching process, and a first trench 146 is formed in the transistor 130 while the resistor is A second trench 148 is formed at each end of the 114. It should be noted that the preferred embodiment is a post-gate process and a high-k last process integration. Therefore, when the dummy gate 112 of the transistor 130 and a portion of the resistor 114 are removed, The dielectric layer 107 is used to protect the underlying substrate 100 and is exposed to the bottom of the first trench 146 and the second trench 148 after removing the dummy gate 112 of the transistor 130 and a portion of the resistor 114.

請參閱第4圖。在形成第一溝渠146與第二溝渠148之後,暴露於第一溝渠146與第二溝渠148底部的介電層107可作為一介面層(interfacial layer)。隨後移除圖案化硬遮罩144,並於基底100上依序形成一高介電常數(high dielectric constant,以下簡稱為high-k)閘極介電層150與一底部阻障層(bottom barrier layer)(圖未示)。High-k閘極介電層150可以是一金屬氧化物層,例如一稀土金屬氧化物層。High-k閘極介電層150係可選自氧化鉿(hafnium oxide,HfO2)、矽酸鉿氧化合物(hafnium silicon oxide,HfSiO4)、矽酸鉿氮氧化合物(hafnium silicon oxynitride,HfSiON)、氧化鋁(aluminum oxide,Al2O3)、氧化鑭(lanthanum oxide,La2O3)、氧化鉭(tantalum oxide,Ta2O5)、氧化釔(yttrium oxide,Y2O3)、氧化鋯(zirconium oxide,ZrO2)、鈦酸鍶(strontium titanate oxide,SrTiO3)、矽酸鋯氧化合物(zirconium silicon oxide,ZrSiO4)、鋯酸鉿(hafnium zirconium oxide,HfZrO4)、鍶鉍鉭氧化物(strontium bismuth tantalate,SrBi2Ta2O9,SBT)、鋯鈦酸鉛(lead zirconate titanate,PbZrxTi1-xO3,PZT)與鈦酸鋇鍶(barium strontium titanate,BaxSr1-xTiO3,BST)所組成之群組。而底部阻障層則可包含氮化鈦(titanium nitride,TiN),但不限於此。另外,在形成high-k閘極介電層150與底部阻障層之後,可於底部阻障層上形成一蝕刻停止層(圖未示),其可包含氮化鉭(tantalum nitride,TaN),但亦不限於此。Please refer to Figure 4. After forming the first trench 146 and the second trench 148, the dielectric layer 107 exposed to the bottom of the first trench 146 and the second trench 148 can serve as an interfacial layer. Then, the patterned hard mask 144 is removed, and a high dielectric constant (high dielectric constant layer hereinafter referred to as high-k) gate dielectric layer 150 and a bottom barrier layer are sequentially formed on the substrate 100. Layer) (not shown). The high-k gate dielectric layer 150 can be a metal oxide layer, such as a rare earth metal oxide layer. The high-k gate dielectric layer 150 can be selected from the group consisting of hafnium oxide (HfO 2 ), hafnium silicon oxide (HfSiO 4 ), and hafnium silicon oxynitride (HfSiON). , aluminum oxide (Al 2 O 3 ), lanthanum oxide (La 2 O 3 ), tantalum oxide (Ta 2 O 5 ), yttrium oxide (Y 2 O 3 ), oxidation Zirconium oxide (ZrO 2 ), strontium titanate oxide (SrTiO 3 ), zirconium silicon oxide (ZrSiO 4 ), hafnium zirconium oxide (HfZrO 4 ), yttrium Oxide (strontium bismuth tantalate, SrBi 2 Ta 2 O 9 , SBT), lead zirconate titanate (PbZr x Ti 1-x O 3 , PZT) and barium strontium titanate (Ba x Sr) a group consisting of 1-x TiO 3 , BST). The bottom barrier layer may include titanium nitride (TiN), but is not limited thereto. In addition, after forming the high-k gate dielectric layer 150 and the bottom barrier layer, an etch stop layer (not shown) may be formed on the bottom barrier layer, which may include tantalum nitride (TaN). , but not limited to this.

請繼續參閱第4圖。接下來進行一化學氣相沈積(chemical vapor deposition,CVD)製程或一物理氣相沈積(physical vapor deposition,PVD)製程,於第一溝渠146與第二溝渠148內形成一功函數金屬層152。依據電晶體130的導電型態,功函數金屬層152可為一具有p型導電型式的p型功函數金屬層,或者具有n型導電型式的n型功函數金屬層。此外,功函數金屬層152可為一單層結構或一複合層結構。Please continue to see Figure 4. Next, a chemical vapor deposition (CVD) process or a physical vapor deposition (PVD) process is performed to form a work function metal layer 152 in the first trench 146 and the second trench 148. The work function metal layer 152 may be a p-type work function metal layer having a p-type conductivity type or an n-type work function metal layer having an n-type conductivity type depending on the conductivity type of the transistor 130. In addition, the work function metal layer 152 may be a single layer structure or a composite layer structure.

請仍然參閱第4圖。接下來於基底100上形成一阻擋層154,其可包含光阻材料,但不限於此。阻擋層154係形成於第一溝渠146與第二溝渠148內,更重要的是,阻擋層154之高度係低於第一溝渠146與第二溝渠148之深度。換句話說,阻擋層154之表面係低於第一溝渠146與第二溝渠148之開口。Please still refer to Figure 4. Next, a barrier layer 154 is formed on the substrate 100, which may include a photoresist material, but is not limited thereto. The barrier layer 154 is formed in the first trench 146 and the second trench 148. More importantly, the height of the barrier layer 154 is lower than the depth of the first trench 146 and the second trench 148. In other words, the surface of the barrier layer 154 is lower than the opening of the first trench 146 and the second trench 148.

請參閱第5圖。隨後,進行一蝕刻製程,利用合適之蝕刻劑移除未被阻擋層154覆蓋之功函數金屬層152與high-k閘極介電層150。如第5圖所示,在蝕刻製程之後,high-k閘極介電層150與功函數金屬層152包含一U型形狀,且U型high-k閘極介電層150與U型功函數金屬層152之一最高部分係低於第一溝渠146與第二溝渠148之開口。換句話說,high-k閘極介電層150與功函數金屬層152僅存留於第一溝渠146與第二溝渠148內,尤其是第一溝渠146與第二溝渠148之底部與側壁。藉由此一蝕刻製程,係使得high-k閘極介電層150未完全覆蓋第二溝渠148,故可提供後續形成的金屬層完整的傳導途徑此外,在形成high-k閘極介電層150與功函數金屬層152時於第一溝渠146開口形成的懸突部(overhang)(圖未示)係可藉由上述之蝕刻製程移除,故可增加後續金屬膜層的填入能力。Please refer to Figure 5. Subsequently, an etching process is performed to remove the work function metal layer 152 and the high-k gate dielectric layer 150 that are not covered by the barrier layer 154 with a suitable etchant. As shown in FIG. 5, after the etching process, the high-k gate dielectric layer 150 and the work function metal layer 152 comprise a U-shaped shape, and the U-type high-k gate dielectric layer 150 and the U-type work function. The highest portion of one of the metal layers 152 is lower than the openings of the first trench 146 and the second trench 148. In other words, the high-k gate dielectric layer 150 and the work function metal layer 152 remain only in the first trench 146 and the second trench 148, particularly the bottom and sidewalls of the first trench 146 and the second trench 148. By this etching process, the high-k gate dielectric layer 150 does not completely cover the second trench 148, so that a complete conduction path of the subsequently formed metal layer can be provided. In addition, a high-k gate dielectric layer is formed. The overhang (not shown) formed by the opening of the first trench 146 when the work function metal layer 152 is formed can be removed by the etching process described above, so that the filling ability of the subsequent metal film layer can be increased.

請參閱第6圖。接下來,移除第一溝渠146與第二溝渠148內的阻擋層154,並於第一溝渠146與第二溝渠148內的功函數金屬層152上形成一填充金屬層156。此外功函數金屬層152與填充金屬層156之間較佳可設置一頂部阻障層(圖未示),頂部阻障層可包含TiN,但不限於此。填充金屬層156係用以填滿第一溝渠146與第二溝渠148,並可選擇具有優良填充能力與較低阻值的金屬或金屬氧化物,例如鋁(aluminum,Al)、鋁化鈦(titanium aluminide,TiAl)或氧化鋁鈦(titanium aluminum oxide,TiAlO),但不限於此。Please refer to Figure 6. Next, the first trench 146 and the barrier layer 154 in the second trench 148 are removed, and a filler metal layer 156 is formed on the work function metal layer 152 in the first trench 146 and the second trench 148. In addition, a top barrier layer (not shown) may be disposed between the work function metal layer 152 and the fill metal layer 156, and the top barrier layer may include TiN, but is not limited thereto. The fill metal layer 156 is used to fill the first trench 146 and the second trench 148, and may select a metal or metal oxide having excellent filling ability and lower resistance, such as aluminum (aluminum, Al), titanium aluminide ( Titanium aluminide (TiAl) or titanium aluminum oxide (TiAlO), but is not limited thereto.

請參閱第7圖。最後,進行一平坦化製程,例如一CMP製程,用以移除多餘的填充金屬層156,完成一金屬閘極162之製作,而於電晶體區102內形成一具有金屬閘極162的電晶體130。更重要的是,在完成金屬閘極162製作的同時,係於電阻區104的第二溝渠148內分別形成一金屬結構164,而於電阻區104內形成具有一多晶矽部分108與二個金屬部分164的電阻114。且如第7圖所示,電阻114的金屬部分164係分別設置於多晶矽部分108的兩端,且其底部形成有一最高部分低於金屬部分164表面的U型功函數金屬層152與U型high-k閘極介電層150。此外,本實施例亦可再選擇性去除ILD層142與CESL 140等,然後重新形成CESL與介電層,以有效提升電晶體的電性表現。由於上述CMP製程等步驟係為該技術領域中具通常知識者所知,故於此係不再贅述。Please refer to Figure 7. Finally, a planarization process, such as a CMP process, is performed to remove the excess fill metal layer 156 to complete the fabrication of a metal gate 162, and a transistor having a metal gate 162 is formed in the transistor region 102. 130. More importantly, while the metal gate 162 is completed, a metal structure 164 is formed in the second trench 148 of the resistor region 104, and a polysilicon portion 108 and two metal portions are formed in the resistor region 104. Resistor 114 of 164. As shown in FIG. 7, the metal portions 164 of the resistor 114 are respectively disposed at both ends of the polysilicon portion 108, and a U-shaped work function metal layer 152 and a U-type high having a highest portion lower than the surface of the metal portion 164 are formed at the bottom portion thereof. -k gate dielectric layer 150. In addition, in this embodiment, the ILD layer 142 and the CESL 140 and the like can be selectively removed, and then the CESL and the dielectric layer are reformed to effectively improve the electrical performance of the transistor. Since the above CMP process and the like are known to those of ordinary skill in the art, they are not described herein.

請參閱第8圖。接下來於基底上形成一介電層170,較佳為一複合膜層,並於介電層170內形成複數個第一接觸插塞172、二個第二接觸插塞174,第一接觸插塞172係電性連接電晶體140的金屬閘極162以及源極/汲極126;而第二接觸插塞174則電性連接電阻114的兩金屬部分164。值得注意的是,由於本較佳實施例中,電阻114兩端的金屬部分164係具有與金屬閘極162相同複合金屬膜層,因此在製作接觸插塞時,接觸插塞僅需與兩種材料接觸:金屬閘極162與金屬部分164以及金屬矽化物128(形成於源極/汲極126表面)。相較於習知技術中,接觸插塞必需與金屬材料(例如金屬閘極)、多晶矽材料(例如多晶矽電阻)以及金屬矽化物(形成於電晶體之源極/汲極表面)等不同的三種材料接觸,而限制了接觸插塞的材料選擇此一缺失,本較佳實施例係可藉由減少與接觸插塞接觸的材料種類簡化接觸插塞的材料限制,即增加接觸插塞的材料選擇以及製程容忍度(process window)。另外,由於電阻114兩端與第二接觸插塞174接觸者為金屬部分164,因此第二接觸插塞174與金屬部分164之間的表面電阻(surface resistance,Rs)係被降低,電阻114本身的穩定度(stability)可再提升。同時,由於金屬部分164的設置,更可再提升電阻114的熱穩定度(thermal stability)。Please refer to Figure 8. Next, a dielectric layer 170 is formed on the substrate, preferably a composite film layer, and a plurality of first contact plugs 172 and two second contact plugs 174 are formed in the dielectric layer 170, and the first contact plugs are formed. The plug 172 is electrically connected to the metal gate 162 of the transistor 140 and the source/drain 126; and the second contact plug 174 is electrically connected to the two metal portions 164 of the resistor 114. It should be noted that, in the preferred embodiment, the metal portion 164 at both ends of the resistor 114 has the same composite metal film layer as the metal gate 162. Therefore, when the contact plug is fabricated, the contact plug only needs two materials. Contact: metal gate 162 and metal portion 164 and metal germanide 128 (formed on the surface of source/drain 126). Compared with the prior art, the contact plug must be different from metal materials (such as metal gates), polysilicon materials (such as polysilicon resistors), and metal tellurides (formed on the source/drain surface of the transistor). Material contact, while limiting the material of the contact plug, this preferred embodiment, the preferred embodiment can simplify the material limitations of the contact plug by reducing the amount of material in contact with the contact plug, ie, increasing the material selection of the contact plug And process window. In addition, since the two ends of the resistor 114 are in contact with the second contact plug 174 as the metal portion 164, the surface resistance (Rs) between the second contact plug 174 and the metal portion 164 is lowered, and the resistor 114 itself The stability can be improved. At the same time, due to the arrangement of the metal portion 164, the thermal stability of the resistor 114 can be further increased.

根據本發明所提供之具有金屬閘極之電晶體與電阻之整合製作方法,係可在不增加製程複雜度的前提下整合電阻以及具有金屬閘極的電晶體。此外,由於電阻具有金屬部分,因此在後續進行接觸插塞之製作時,可因與接觸插塞接觸之材料變少而增加接觸插塞的材料選擇,以及提升製程容忍度。更重要的是,電阻本身因具有熱穩定性高的金屬部分,故可更提升電阻的穩定性以及電性表現。According to the integrated manufacturing method of the transistor and the resistor having the metal gate provided by the invention, the resistor and the transistor having the metal gate can be integrated without increasing the complexity of the process. In addition, since the resistor has a metal portion, in the subsequent fabrication of the contact plug, the material selection of the contact plug can be increased due to the less material contact with the contact plug, and the process tolerance can be improved. More importantly, the resistance itself has a high thermal stability of the metal portion, so that the stability and electrical performance of the resistor can be further improved.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

100...基底100. . . Base

102...電晶體區102. . . Transistor region

104...電阻區104. . . Resistance zone

106...淺溝隔離106. . . Shallow trench isolation

107...介電層107. . . Dielectric layer

108...多晶矽層108. . . Polycrystalline layer

110...圖案化硬遮罩110. . . Patterned hard mask

112...虛置閘極112. . . Virtual gate

114...電阻114. . . resistance

120...輕摻雜汲極120. . . Lightly doped bungee

122、124...側壁子122, 124. . . Side wall

126...源極/汲極126. . . Source/bungee

128...金屬矽化物128. . . Metal telluride

130...電晶體130. . . Transistor

140...接觸洞蝕刻停止層140. . . Contact hole etch stop layer

142...內層介電層142. . . Inner dielectric layer

144...圖案化硬遮罩144. . . Patterned hard mask

146...第一溝渠146. . . First ditches

148...第二溝渠148. . . Second ditches

150...高介電常數閘極介電層150. . . High dielectric constant gate dielectric layer

152...功函數金屬層152. . . Work function metal layer

154...阻擋層154. . . Barrier layer

156...填充金屬層156. . . Filled metal layer

162...金屬閘極162. . . Metal gate

164...金屬部分164. . . Metal part

170...介電層170. . . Dielectric layer

172...第一接觸插塞172. . . First contact plug

174...第二接觸插塞174. . . Second contact plug

第1圖至第8圖係為本發明所提供之一種具有金屬閘極之電晶體與電阻之製作方法之一較佳實施例之示意圖。1 to 8 are schematic views showing a preferred embodiment of a method for fabricating a transistor and a resistor having a metal gate according to the present invention.

100...基底100. . . Base

102...電晶體區102. . . Transistor region

104...電阻區104. . . Resistance zone

106...淺溝隔離106. . . Shallow trench isolation

107...介電層107. . . Dielectric layer

108...多晶矽層108. . . Polycrystalline layer

114...電阻114. . . resistance

120...輕摻雜汲極120. . . Lightly doped bungee

122、124...側壁子122, 124. . . Side wall

126...源極/汲極126. . . Source/bungee

128...金屬矽化物128. . . Metal telluride

130...電晶體130. . . Transistor

140...接觸洞蝕刻停止層140. . . Contact hole etch stop layer

142...內層介電層142. . . Inner dielectric layer

144...圖案化硬遮罩144. . . Patterned hard mask

146...第一溝渠146. . . First ditches

148...第二溝渠148. . . Second ditches

Claims (6)

一種電阻,包含有:一基底;一多晶矽部分,設置於該基底上;以及二金屬部分,分別設置於該多晶矽部分之兩端,該等金屬部分之底部分別包含一U型高介電常數材料層。 A resistor comprising: a substrate; a polysilicon portion disposed on the substrate; and a second metal portion disposed at each end of the polysilicon portion, the bottom portions of the metal portions each comprising a U-type high dielectric constant material Floor. 如申請專利範圍第1項所述之電阻,其中該U型高介電常數材料層之一最高部分係低於該金屬部分之表面。 The resistor of claim 1, wherein the highest portion of the U-type high dielectric constant material layer is lower than the surface of the metal portion. 如申請專利範圍第1項所述之電阻,其中該金屬部分包含一複合膜層結構。 The resistor of claim 1, wherein the metal portion comprises a composite film layer structure. 如申請專利範圍第3項所述之電阻,其中該金屬部分更包含一功函數金屬層與一填充金屬層。 The resistor of claim 3, wherein the metal portion further comprises a work function metal layer and a filler metal layer. 如申請專利範圍第4項所述之電阻,其中該功函數金屬層係包含一U型功函數金屬層。 The resistor of claim 4, wherein the work function metal layer comprises a U-shaped work function metal layer. 如申請專利範圍第5項所述之電阻,其中該U型功函數金屬層之一最高部分係低於該金屬部分之表面。 The resistor of claim 5, wherein the highest portion of the U-shaped work function metal layer is lower than the surface of the metal portion.
TW100131078A 2011-08-30 2011-08-30 Resistor and manufacturing method thereof TWI524472B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100131078A TWI524472B (en) 2011-08-30 2011-08-30 Resistor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100131078A TWI524472B (en) 2011-08-30 2011-08-30 Resistor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201310577A TW201310577A (en) 2013-03-01
TWI524472B true TWI524472B (en) 2016-03-01

Family

ID=48482060

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100131078A TWI524472B (en) 2011-08-30 2011-08-30 Resistor and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI524472B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI581433B (en) * 2013-03-21 2017-05-01 聯華電子股份有限公司 Semiconductor structure and process thereof
CN111092047B (en) * 2018-10-23 2022-09-27 联华电子股份有限公司 Semiconductor device and method for manufacturing the same

Also Published As

Publication number Publication date
TW201310577A (en) 2013-03-01

Similar Documents

Publication Publication Date Title
US9685337B2 (en) Method for fabricating semiconductor device
US9530862B2 (en) Semiconductor device having metal gate and manufacturing method thereof
US8669618B2 (en) Manufacturing method for semiconductor device having metal gate
US8981527B2 (en) Resistor and manufacturing method thereof
US9142649B2 (en) Semiconductor structure with metal gate and method of fabricating the same
US8477006B2 (en) Resistor and manufacturing method thereof
US20150118836A1 (en) Method of fabricating semiconductor device
US8524556B1 (en) Resistor and manufacturing method thereof
US8765588B2 (en) Semiconductor process
US9105623B2 (en) Semiconductor device having metal gate and manufacturing method thereof
US8643069B2 (en) Semiconductor device having metal gate and manufacturing method thereof
US9673040B2 (en) Semiconductor device and method for fabricating the same
TWI663656B (en) Semiconductor device having metal gate and fabrication method thereof
US8710593B2 (en) Resistor and manufacturing method thereof
US20150079780A1 (en) Method of forming semiconductor structure
TWI612666B (en) Method for fabricating finfet transistor
TWI524472B (en) Resistor and manufacturing method thereof
TWI533360B (en) Semiconductor device having metal gate and manufacturing method thereof
TWI591730B (en) Semiconductor device and fabricating method thereof
TWI523147B (en) Resistor integrated with a transistor having metal gate and manufacturing method thereof
TWI520307B (en) Resistor and manufacturing method thereof
TWI527125B (en) Menufacturing method for semiconductor device having metal gate
TW201301444A (en) Method for fabricating semiconductor device
TW201312691A (en) Semiconductor device and manufacturing method thereof