TWI612666B - Method for fabricating finfet transistor - Google Patents
Method for fabricating finfet transistor Download PDFInfo
- Publication number
- TWI612666B TWI612666B TW102122404A TW102122404A TWI612666B TW I612666 B TWI612666 B TW I612666B TW 102122404 A TW102122404 A TW 102122404A TW 102122404 A TW102122404 A TW 102122404A TW I612666 B TWI612666 B TW I612666B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- forming
- gate structure
- gate
- field effect
- Prior art date
Links
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
本發明是揭露一種製作鰭狀場效電晶體的方法。首先提供一基底,然後形成一鰭狀結構於基底上、形成一第一閘極結構於鰭狀結構上、形成一第一磊晶層於鰭狀結構內並設於第一閘極結構旁。接著形成一層間介電層於第一閘極結構與第一磊晶層上、於層間介電層中形成一接觸洞並暴露出第一磊晶層、形成一矽遮蓋層於第一磊晶層上以及形成一接觸插塞於接觸洞內。 The present invention is directed to a method of making a fin field effect transistor. First, a substrate is provided, and then a fin structure is formed on the substrate to form a first gate structure on the fin structure, and a first epitaxial layer is formed in the fin structure and disposed beside the first gate structure. Forming an interlayer dielectric layer on the first gate structure and the first epitaxial layer, forming a contact hole in the interlayer dielectric layer and exposing the first epitaxial layer to form a germanium mask layer on the first epitaxial layer A contact plug is formed in the layer and in the contact hole.
Description
本發明是關於一種製作鰭狀場效電晶體的方法,尤指一種於形成接觸洞並暴露出磊晶層之後才形成矽遮蓋層(silicon cap)的方法。 The present invention relates to a method of fabricating a fin field effect transistor, and more particularly to a method of forming a silicon cap after forming a contact hole and exposing the epitaxial layer.
近年來,隨著各種消費性電子產品不斷的朝小型化發展,半導體元件設計的尺寸亦不斷縮小,以符合高積集度、高效能和低耗電之潮流以及產品需求。 In recent years, as various consumer electronic products continue to be miniaturized, the size of semiconductor component designs has been shrinking to meet the trend of high integration, high efficiency, low power consumption, and product demand.
隨著場效電晶體(field effect transistors,FETs)元件尺寸持續地縮小,習知平面式(planar)場效電晶體元件之發展已面臨製程上之極限。為了克服製程限制,以非平面(non-planar)之場效電晶體元件,例如鰭狀場效電晶體(fin field effect transistor,Fin FET)元件來取代平面電晶體元件已成為目前之主流發展趨勢。由於鰭狀場效電晶體元件的立體結構可增加閘極與鰭狀結構的接觸面積,因此,可進一步增加閘極對於載子通道區域的控制,從而降低小尺寸元件面臨的汲極引發能帶降低(drain induced barrier lowering,DIBL)效應,並可以抑制短通道效應(short channel effect,SCE)。再者,由於鰭狀場效電晶體元件在同樣的閘極長度下會具有更寬的通道寬度,因而可獲得加倍的汲極驅動電流。甚而,電晶體元件的臨界電 壓(threshold voltage)亦可藉由調整閘極的功函數而加以調控。 As the size of field effect transistors (FETs) components continues to shrink, the development of conventional planar field effect transistor components has faced process limitations. In order to overcome the process limitation, it has become the mainstream trend to replace the planar transistor component with a non-planar field effect transistor component, such as a fin field effect transistor (Fin FET) component. . Since the three-dimensional structure of the fin field effect transistor element can increase the contact area between the gate and the fin structure, the control of the gate to the carrier channel region can be further increased, thereby reducing the buckling initiation band of the small-sized component. The drain induced barrier lowering (DIBL) effect can be suppressed and the short channel effect (SCE) can be suppressed. Furthermore, since the fin field effect transistor element has a wider channel width at the same gate length, a doubled drain drive current can be obtained. Even the criticality of the transistor component The threshold voltage can also be regulated by adjusting the work function of the gate.
在習知的鰭狀場效電晶體元件製程中,磊晶層製作完畢後通常會緊接著於磊晶層上另外形成一矽遮蓋層。然而,此製程順序通常會造成由多晶矽所構成的閘極表面產生凸塊問題(bump issue)。其次,在製作矽化金屬層的過程中也容易因所進行的濕式清洗製程對閘極與側壁子之間的襯墊層造成侵蝕(encroachment),並導致矽化鎳導通(nickel silicide piping)等問題。因此如何改良現有製程以解決上述所遇到的瓶頸即為現今一重要課題。 In the conventional fin field effect transistor device process, after the epitaxial layer is formed, a mask layer is additionally formed on the epitaxial layer. However, this process sequence typically causes a bump issue to be created by the gate surface of the polysilicon. Secondly, in the process of fabricating the deuterated metal layer, it is easy to cause encroachment of the liner layer between the gate and the sidewall due to the wet cleaning process performed, and cause problems such as nickel silicide piping. . Therefore, how to improve the existing process to solve the bottleneck encountered above is an important issue today.
本發明是揭露一種製作鰭狀場效電晶體的方法,包含有下列步驟。首先提供一基底,然後形成一鰭狀結構於基底上、形成一第一閘極結構於鰭狀結構上、形成一第一磊晶層於鰭狀結構內並設於第一閘極結構旁。接著形成一層間介電層於第一閘極結構與第一磊晶層上、於層間介電層中形成一接觸洞並暴露出第一磊晶層、形成一矽遮蓋層於第一磊晶層上以及形成一接觸插塞於接觸洞內。 The present invention is directed to a method of making a fin field effect transistor comprising the following steps. First, a substrate is provided, and then a fin structure is formed on the substrate to form a first gate structure on the fin structure, and a first epitaxial layer is formed in the fin structure and disposed beside the first gate structure. Forming an interlayer dielectric layer on the first gate structure and the first epitaxial layer, forming a contact hole in the interlayer dielectric layer and exposing the first epitaxial layer to form a germanium mask layer on the first epitaxial layer A contact plug is formed in the layer and in the contact hole.
10‧‧‧基底 10‧‧‧Base
12‧‧‧第一鰭狀結構 12‧‧‧First fin structure
14‧‧‧第二鰭狀結構 14‧‧‧Second fin structure
16‧‧‧絕緣層 16‧‧‧Insulation
18‧‧‧PMOS電晶體區 18‧‧‧ PMOS transistor area
20‧‧‧NMOS電晶體區 20‧‧‧ NMOS transistor area
22‧‧‧第一閘極結構 22‧‧‧First gate structure
24‧‧‧第二閘極結構 24‧‧‧Second gate structure
26‧‧‧閘極電極 26‧‧‧gate electrode
28‧‧‧硬遮罩 28‧‧‧hard mask
30‧‧‧虛置閘極 30‧‧‧Virtual gate
32‧‧‧閘極介電層 32‧‧‧ gate dielectric layer
34‧‧‧第一硬遮罩 34‧‧‧First hard mask
36‧‧‧第一側壁子 36‧‧‧First side wall
38‧‧‧第一磊晶層 38‧‧‧First epitaxial layer
40‧‧‧第二硬遮罩 40‧‧‧Second hard mask
42‧‧‧第一側壁子 42‧‧‧First side wall
44‧‧‧第二磊晶層 44‧‧‧Second epilayer
46‧‧‧第二側壁子 46‧‧‧Second side wall
48‧‧‧氧化遮蓋層 48‧‧‧Oxidation cover
50‧‧‧源極/汲極區域 50‧‧‧Source/bungee area
52‧‧‧源極/汲極區域 52‧‧‧Source/bungee area
54‧‧‧接觸洞蝕刻停止層 54‧‧‧Contact hole etch stop layer
56‧‧‧層間介電層 56‧‧‧Interlayer dielectric layer
58‧‧‧金屬閘極 58‧‧‧Metal gate
60‧‧‧高介電常數介電層 60‧‧‧High dielectric constant dielectric layer
62‧‧‧功函數金屬層 62‧‧‧Work function metal layer
64‧‧‧遮蓋層 64‧‧‧ Covering layer
66‧‧‧接觸洞 66‧‧‧Contact hole
68‧‧‧矽遮蓋層 68‧‧‧矽 Covering layer
70‧‧‧矽化金屬層 70‧‧‧Deuterated metal layer
72‧‧‧接觸插塞 72‧‧‧Contact plug
第1圖至第14圖是根據本發明之一較佳實施例所繪示之鰭狀場效電晶體的製作方法示意圖。 1 to 14 are schematic views showing a method of fabricating a fin field effect transistor according to a preferred embodiment of the present invention.
為詳細揭示本發明的技術實質,下面結合附圖舉實施例詳細說明。第1圖至第14圖是根據本發明之一較佳實施例所繪示之半導體裝置的製作方法示意圖。如第1圖所示,首先提供一基底10, 例如一矽基底或矽覆絕緣(SOI)基板,其上定義有一第一電晶體區,例如一PMOS電晶體區18與一第二電晶體區,例如一NMOS電晶體區20。 In order to disclose the technical essence of the present invention in detail, the embodiments will be described in detail below with reference to the accompanying drawings. 1 to 14 are schematic views showing a method of fabricating a semiconductor device according to a preferred embodiment of the present invention. As shown in Figure 1, a substrate 10 is first provided, For example, a substrate or a blanket insulating (SOI) substrate having a first transistor region defined thereon, such as a PMOS transistor region 18 and a second transistor region, such as an NMOS transistor region 20.
基底10上具有至少一第一鰭狀結構12、至少一第二鰭狀結構14及一絕緣層16。鰭狀結構12、14之底部係被絕緣層16,例如氧化矽所包覆而形成淺溝隔離,且部分的第一鰭狀結構12以及部分的第二鰭狀結構14上另分別設有一第一閘極結構22與一第二閘極結構24。第一閘極結構22與第二閘極結構24分別包含一閘極電極26與一硬遮罩28設於閘極電極26上,且第一閘極結構22與第二閘極結構24旁可選擇性設置複數個虛置閘極30。在後續製得的電晶體元件中,鰭狀結構12、14被閘極電極26間的重疊區域可以作為載子流通之通道。 The substrate 10 has at least one first fin structure 12, at least one second fin structure 14 and an insulating layer 16. The bottoms of the fin structures 12, 14 are covered by an insulating layer 16, such as yttrium oxide, to form shallow trench isolation, and a portion of the first fin structure 12 and a portion of the second fin structure 14 are respectively provided with a first A gate structure 22 and a second gate structure 24. The first gate structure 22 and the second gate structure 24 respectively include a gate electrode 26 and a hard mask 28 disposed on the gate electrode 26, and the first gate structure 22 and the second gate structure 24 are adjacent to each other. A plurality of dummy gates 30 are selectively provided. In the subsequently produced transistor element, the overlapping regions between the fin structures 12, 14 by the gate electrodes 26 can serve as channels through which the carriers circulate.
上述第一鰭狀結構12及第二鰭狀結構14之形成方式可以包含先形成一圖案化遮罩(圖未示)於基底10上,再經過一蝕刻製程,將圖案化遮罩之圖案轉移至基底10中。接著,對應三閘極電晶體元件及雙閘極鰭狀電晶體元件結構特性的不同,而可選擇性去除或留下圖案化遮罩,並利用沈積、化學機械研磨(chemical mechanical polishing,CMP)及回蝕刻製程而形成一環繞各鰭狀結構12、14底部之絕緣層16。除此之外,第一鰭狀結構12及第二鰭狀結構14之形成方式另也可以是先製作一圖案化硬遮罩層(圖未示)於基底10上,並利用磊晶製程於暴露出於圖案化硬遮罩層之基底10上成長出半導體層,此半導體層即可作為相對應的鰭狀結構12、14。同樣的,另可以選擇性去除或留下圖案化硬遮罩層,並透過沈積、CMP及回蝕刻製程形成一絕緣層16以包覆住鰭狀結構12、14之底部。另外, 當基底10為矽覆絕緣(SOI)基板時,則可利用圖案化遮罩來蝕刻基底上之一半導體層,並停止於此半導體層下方的一底氧化層以形成各鰭狀結構,故可省略前述製作絕緣層16的步驟。 The first fin structure 12 and the second fin structure 14 may be formed by first forming a patterned mask (not shown) on the substrate 10, and then transferring the pattern of the patterned mask through an etching process. Into the substrate 10. Then, corresponding to the structural characteristics of the three-gate transistor element and the double-gate fin-shaped transistor element, the patterned mask can be selectively removed or left, and deposition, chemical mechanical polishing (CMP) can be utilized. And an etch back process to form an insulating layer 16 around the bottom of each of the fin structures 12, 14. In addition, the first fin structure 12 and the second fin structure 14 may be formed by first forming a patterned hard mask layer (not shown) on the substrate 10, and using an epitaxial process. A semiconductor layer is grown on the substrate 10 exposed to the patterned hard mask layer, and the semiconductor layer can serve as the corresponding fin structures 12, 14. Similarly, a patterned hard mask layer can be selectively removed or left, and an insulating layer 16 is formed through the deposition, CMP, and etch back processes to cover the bottom of the fin structures 12, 14. In addition, When the substrate 10 is a silicon-on-insulator (SOI) substrate, a patterned mask can be used to etch a semiconductor layer on the substrate, and a bottom oxide layer under the semiconductor layer is stopped to form each fin structure. The above-described step of forming the insulating layer 16 is omitted.
閘極電極26與鰭狀結構12、14之間另分別包括一閘極介電層32。其中,閘極電極26之材質較佳包含摻雜或非摻雜多晶矽,但不排除可選自金屬矽化物或金屬等材料,而閘極介電層32的材質在本實施例中較佳包含矽化物層,例如氧化矽(SiO)、氮化矽(SiN)或氮氧化矽(SiON),但不排除可選自高介電常數的介電材料。 The gate electrode 26 and the fin structures 12, 14 further include a gate dielectric layer 32, respectively. The material of the gate electrode 26 preferably includes doped or undoped polysilicon, but does not exclude materials selected from metal halides or metals, and the material of the gate dielectric layer 32 is preferably included in this embodiment. A telluride layer, such as hafnium oxide (SiO), tantalum nitride (SiN) or hafnium oxynitride (SiON), but does not exclude dielectric materials that may be selected from high dielectric constants.
然後如第2圖所示,全面性形成一第一硬遮罩34並覆蓋第一閘極結構22與第二閘極結構24。依據本發明之較佳實施例,第一硬遮罩34是選自由碳化矽(SiC)、氮氧化矽(SiON)、氮化矽(SiN)、氮碳化矽(SiCN)以及氮硼化矽(SiBN)等所構成的群組,但不侷限於此。 Then, as shown in FIG. 2, a first hard mask 34 is integrally formed and covers the first gate structure 22 and the second gate structure 24. In accordance with a preferred embodiment of the present invention, the first hard mask 34 is selected from the group consisting of tantalum carbide (SiC), niobium oxynitride (SiON), tantalum nitride (SiN), niobium nitriding (SiCN), and niobium lanthanum hydride ( A group composed of SiBN) or the like, but is not limited thereto.
如第3圖所示,接著於NMOS電晶體區20形成一圖案化光阻層(圖未示),並以該圖案化光阻層為遮罩去除PMOS電晶體區18之部分第一硬遮罩34,以於第一閘極結構22周圍形成一第一側壁子36並於第一閘極結構22旁之第一鰭狀結構12內形成一第一凹槽(圖未示)。然後於去除NMOS電晶體區20之圖案化光阻層後進行一選擇性磊晶成長製程,以於該第一凹槽中形成一由鍺化矽所構成的第一磊晶層38。 As shown in FIG. 3, a patterned photoresist layer (not shown) is formed in the NMOS transistor region 20, and the first hard mask of the PMOS transistor region 18 is removed by using the patterned photoresist layer as a mask. The cover 34 defines a first sidewall 36 around the first gate structure 22 and a first recess (not shown) in the first fin structure 12 adjacent to the first gate structure 22. Then, after the patterned photoresist layer of the NMOS transistor region 20 is removed, a selective epitaxial growth process is performed to form a first epitaxial layer 38 composed of germanium germanium in the first recess.
然後如第4圖所示,全面性形成一第二硬遮罩40並覆蓋第一閘極結構22與第二閘極結構24、NMOS電晶體區20之部分第 一硬遮罩34。依據本發明之較佳實施例,第二硬遮罩40是選自由碳化矽(SiC)、氮氧化矽(SiON)、氮化矽(SiN)、氮碳化矽(SiCN)以及氮硼化矽(SiBN)等所構成的群組,但不侷限於此。 Then, as shown in FIG. 4, a second hard mask 40 is integrally formed and covers the first gate structure 22 and the second gate structure 24, and the portion of the NMOS transistor region 20 A hard mask 34. In accordance with a preferred embodiment of the present invention, the second hard mask 40 is selected from the group consisting of tantalum carbide (SiC), niobium oxynitride (SiON), tantalum nitride (SiN), niobium oxynitride (SiCN), and niobium lanthanum hydride ( A group composed of SiBN) or the like, but is not limited thereto.
接著如第5圖所示,於PMOS電晶體區18形成一圖案化光阻層(圖未示),並以該圖案化光阻層為遮罩去除NMOS電晶體區20之第二硬遮罩40以於第二閘極結構24周圍形成另一第一側壁子42以及於第二閘極結構24旁之第二鰭狀結構14內形成一第二凹槽(圖未示)。然後於去除PMOS電晶體區18之圖案化光阻層後進行一選擇性磊晶成長製程,以形成一由磷化矽(SiP)所構成的第二磊晶層44於該第二凹槽中。 Next, as shown in FIG. 5, a patterned photoresist layer (not shown) is formed in the PMOS transistor region 18, and the second hard mask of the NMOS transistor region 20 is removed by using the patterned photoresist layer as a mask. A second recess (not shown) is formed in the second fin structure 14 around the second gate structure 24 and in the second fin structure 14 adjacent to the second gate structure 24 . Then, after the patterned photoresist layer of the PMOS transistor region 18 is removed, a selective epitaxial growth process is performed to form a second epitaxial layer 44 composed of bismuth phosphide (SiP) in the second recess. .
如第6圖所示,接著形成一第二側壁子46於第一閘極結構22與第二閘極結構24周圍。形成第二側壁子46之步驟可比照上述形成第一側壁子36、42之步驟,在此不另加贅述。需注意的是,本實施例雖直接於第一側壁子36、42側壁形成第二側壁子46,但不侷限於此作法,又可選擇於形成第二側壁子46之前先從第一閘極結構22與第二閘極結構24去除第一側壁子36、42,此實施例也屬本發明所涵蓋的範圍。 As shown in FIG. 6, a second sidewall 46 is then formed around the first gate structure 22 and the second gate structure 24. The step of forming the second sidewalls 46 may be compared to the steps of forming the first sidewalls 36, 42 as described above, and will not be further described herein. It should be noted that, in this embodiment, the second sidewall 46 is formed directly on the sidewalls of the first sidewalls 36 and 42. However, the second sidewall 46 is not limited thereto, and may be selected from the first gate before forming the second sidewall 46. Structure 22 and second gate structure 24 remove first sidewalls 36, 42 and this embodiment is also within the scope of the present invention.
然後如第7圖所示,先覆蓋一氧化遮蓋層(oxide seal)48於第二側壁子46、第一閘極結構22以及第二閘極結構24上,然後如第8圖所示,分別對PMOS電晶體區18及NMOS電晶體區20進行離子佈植以形成源極/汲極區域。例如,可先覆蓋一圖案化光阻層(圖未示)於NMOS電晶體區20並對PMOS電晶體區18進行一P型離子佈植製程,以於第一閘極結構22兩旁的第一磊晶層38中形成 一源極/汲極區域50。接著去除NMOS電晶體區20的圖案化光阻層,形成另一圖案化光阻層(圖未示)於PMOS電晶體區18並對NMOS電晶體區20進行一N型離子佈植,以於第二閘極結構24兩旁的第二磊晶層44中形成另一源極/汲極區域52,然後去除PMOS電晶體區18的圖案化光阻層。 Then, as shown in FIG. 7, an oxide seal 48 is first applied to the second sidewall 46, the first gate structure 22, and the second gate structure 24, and then as shown in FIG. The PMOS transistor region 18 and the NMOS transistor region 20 are ion implanted to form a source/drain region. For example, a patterned photoresist layer (not shown) may be overlaid on the NMOS transistor region 20 and a P-type ion implantation process is performed on the PMOS transistor region 18 to be first on both sides of the first gate structure 22. Formed in the epitaxial layer 38 A source/drain region 50. Then, the patterned photoresist layer of the NMOS transistor region 20 is removed, another patterned photoresist layer (not shown) is formed in the PMOS transistor region 18, and an N-type ion implantation is performed on the NMOS transistor region 20 to Another source/drain region 52 is formed in the second epitaxial layer 44 on both sides of the second gate structure 24, and then the patterned photoresist layer of the PMOS transistor region 18 is removed.
在形成源極/汲極區域50與源極/汲極區域52之後,再利用稀釋氟化氫(diluted HF,DHF)去除第一閘極結構22、第二閘極結構24與第二側壁子46上的氧化遮蓋層48。一般而言,前述形成源極/汲極區域50、52與去除圖案化光阻層後通常會以鹽酸(HCl)進行一道濕式清洗(wet clean)去除基底10表面的聚合物(polymer),而本發明可利用上述氧化遮蓋層48的設置來保護第一磊晶層38與第二磊晶層44在濕式清洗過程中不致受到影響。 After the source/drain region 50 and the source/drain region 52 are formed, the first gate structure 22, the second gate structure 24, and the second sidewall portion 46 are removed by using diluted HF (DHF). Oxidation mask 48. In general, after the formation of the source/drain regions 50, 52 and the removal of the patterned photoresist layer, a wet clean of hydrochloric acid (HCl) is usually used to remove the polymer on the surface of the substrate 10. However, the present invention can utilize the arrangement of the oxidized mask layer 48 to protect the first epitaxial layer 38 and the second epitaxial layer 44 from being affected during the wet cleaning process.
然後如第9圖所示,先沈積一接觸洞蝕刻停止層(contact etch stop layer,CESL)54並覆蓋PMOS電晶體區18與NMOS電晶體區20的第一閘極結構22、第二閘極結構24與第二側壁子46。接著進行一流體化學氣相沉積(flowable chemical vapor deposition,FCVD)製程以形成一層間介電層56並全面性覆蓋接觸洞蝕刻停止層54。隨後進行一平坦化製程,例如一化學機械研磨(chemical mechanical polishing,CMP)製程,去除部分層間介電層56、接觸洞蝕刻停止層54以及硬遮罩28,使第一閘極結構22與第二閘極結構24中由多晶矽所構成的閘極電極26頂部約略切齊於層間介電層56表面而受到裸露。另一作法則是利用CMP去除部分層間介電層56,並且停在接觸洞蝕刻停止層54,接著利用一道乾蝕刻的方式去除部分層間介電層56、接觸洞蝕刻停止層54以及硬遮罩28,使閘極電極26頂部 裸露出來。 Then, as shown in FIG. 9, a contact etch stop layer (CESL) 54 is deposited and covers the first gate structure 22 and the second gate of the PMOS transistor region 18 and the NMOS transistor region 20. Structure 24 and second side wall 46. A fluid chemical vapor deposition (FCVD) process is then performed to form an interlayer dielectric layer 56 and comprehensively cover the contact hole etch stop layer 54. Subsequently, a planarization process, such as a chemical mechanical polishing (CMP) process, removes a portion of the interlayer dielectric layer 56, the contact hole etch stop layer 54 and the hard mask 28, so that the first gate structure 22 and the first The top of the gate electrode 26 composed of polysilicon in the two-gate structure 24 is approximately flush with the surface of the interlayer dielectric layer 56 and exposed. Another method is to remove a portion of the interlayer dielectric layer 56 by CMP, and stop at the contact hole etch stop layer 54, and then remove a portion of the interlayer dielectric layer 56, the contact hole etch stop layer 54 and the hard mask 28 by dry etching. To make the top of the gate electrode 26 Bare out.
如第10圖所示,進行一金屬閘極置換(replacement metal gate,RMG)製程,以於PMOS電晶體區18與NMOS電晶體區20中各形成一金屬閘極58,其中金屬閘極58各包含一高介電常數介電層60與一功函數金屬層62。 As shown in FIG. 10, a metal gate replacement (RMG) process is performed to form a metal gate 58 in each of the PMOS transistor region 18 and the NMOS transistor region 20, wherein the metal gates 58 are each A high-k dielectric layer 60 and a work function metal layer 62 are included.
依據本發明之較佳實施例,金屬閘極置換製程可包括先進行一選擇性之乾蝕刻或濕蝕刻製程,例如利用氨水(ammonium hydroxide,NH4OH)或氫氧化四甲銨(Tetramethylammonium Hydroxide,TMAH)等蝕刻溶液來去除第一閘極結構22及第二閘極結構24中的多晶矽層但不蝕刻層間介電層56,以於各電晶體區18、20形成一凹槽(圖未示)。接著依據形成一高介電常數介電層60與一適當的功函數金屬層62於該凹槽內,然後平坦化功函數金屬層62及高介電常數介電層60,以於PMOS電晶體區18及NMOS電晶體區20分別形成一金屬閘極58。 In accordance with a preferred embodiment of the present invention, the metal gate replacement process can include a selective dry or wet etch process, such as ammonium hydroxide (NH 4 OH) or tetramethylammonium Hydroxide (Tetramethylammonium Hydroxide). Etching solution such as TMAH) removes the polysilicon layer in the first gate structure 22 and the second gate structure 24 but does not etch the interlayer dielectric layer 56 to form a recess in each of the transistor regions 18, 20 (not shown) ). Then, a high-k dielectric layer 60 and a suitable work function metal layer 62 are formed in the recess, and then the work function metal layer 62 and the high-k dielectric layer 60 are planarized to form a PMOS transistor. The region 18 and the NMOS transistor region 20 form a metal gate 58 respectively.
依據本發明之較佳實施例,金屬閘極置換製程包括先閘極(gate first)製程、後閘極(gate last)製程之先閘極介電層(high-k first)製程以及後閘極製程之後閘極介電層(high-k last)製程等,或是多晶矽閘極製程。本實施例係以後閘極製程之後閘極介電層製程所形成的電晶體為例,故高介電常數介電層60較佳為一具有U型剖面之高介電常數介電層,其材料包含介電常數大於4的介電材料,例如係選自氧化鉿(hafnium oxide,HfO2)、矽酸鉿氧化合物(hafnium silicon oxide,HfSiO4)、矽酸鉿氮氧化合物(hafnium silicon oxynitride,HfSiON)、氧化鋁(aluminum oxide,Al2O3)、氧化鑭 (lanthanum oxide,La2O3)、氧化鉭(tantalum oxide,Ta2O5)、氧化釔(yttrium oxide,Y2O3)、氧化鋯(zirconium oxide,ZrO2)、鈦酸鍶(strontium titanate oxide,SrTiO3)、矽酸鋯氧化合物(zirconium silicon oxide,ZrSiO4)、鋯酸鉿(hafnium zirconium oxide,HfZrO4)、鍶鉍鉭氧化物(strontium bismuth tantalate,SrBi2Ta2O9,SBT)、鋯鈦酸鉛(lead zirconate titanate,PbZrxTi1-xO3,PZT)、鈦酸鋇鍶(barium strontium titanate,BaxSr1-xTiO3,BST)、或其組合所組成之群組。 In accordance with a preferred embodiment of the present invention, the metal gate replacement process includes a gate first process, a gate last process, a high-k first process, and a back gate. After the process, the gate-high dielectric layer (high-k last) process, or the polysilicon gate process. This embodiment is an example of a transistor formed by a gate dielectric process after a gate process. Therefore, the high-k dielectric layer 60 is preferably a high-k dielectric layer having a U-shaped profile. The material comprises a dielectric material having a dielectric constant greater than 4, for example selected from hafnium oxide (HfO 2 ), hafnium silicon oxide (HfSiO 4 ), hafnium silicon oxynitride. , HfSiON), aluminum oxide (Al 2 O 3 ), lanthanum oxide (La 2 O 3 ), tantalum oxide (Ta 2 O 5 ), yttrium oxide (Y 2 O 3 ) Zirconium oxide (ZrO 2 ), strontium titanate oxide (SrTiO 3 ), zirconium silicon oxide (ZrSiO 4 ), hafnium zirconium oxide (HfZrO 4 ), Strontium bismuth tantalate (SrBi 2 Ta 2 O 9 , SBT), lead zirconate titanate (PbZr x Ti 1-x O 3 , PZT), barium strontium titanate (barium strontium titanate, A group consisting of Ba x Sr 1-x TiO 3 , BST), or a combination thereof.
另外,形成高介電常數介電層60的方法包括原子層沉積(atomic layer deposition,ALD)製程或有機金屬化學氣相沉積法(metal-organic chemical vapor deposition,MOCVD),但不以此為限。此外,也可選擇性另包含一介電層(圖未示)例如氧化矽層設置於基底10與高介電常數介電層60之間。金屬閘極58可以包含一層或多層的金屬材質,例如包含一功函數金屬層(work function metal layer)62、一阻障層(barrier layer)(圖未示)以及一低電阻金屬層(圖未示)。功函數金屬層62用以調整形成的金屬閘極58之功函數,使其適用於N型電晶體(NMOS)或P型電晶體(PMOS)。若電晶體為N型電晶體,功函數金屬層62可選用功函數為3.9電子伏特(eV)~4.3 eV的金屬材料,如鋁化鈦(TiAl)、鋁化鋯(ZrAl)、鋁化鎢(WAl)、鋁化鉭(TaAl)、鋁化鉿(HfAl)或TiAlC(碳化鈦鋁)等,但不以此為限;若電晶體為P型電晶體,功函數金屬層62可選用功函數為4.8 eV~5.2 eV的金屬材料,如氮化鈦(TiN)、氮化鉭(TaN)或碳化鉭(TaC)等,但不以此為限。阻障層的材料可包含鈦(Ti)、氮化鈦(TiN)、鉭(Ta)、氮化鉭(TaN)等材料。低電阻金屬層則可選自銅(Cu)、鋁(Al)、鎢(W)、鈦鋁合金(TiAl)、鈷鎢磷化物(cobalt tungsten phosphide,CoWP)等低電阻材料或其組合。 In addition, the method of forming the high-k dielectric layer 60 includes an atomic layer deposition (ALD) process or a metal-organic chemical vapor deposition (MOCVD), but is not limited thereto. . In addition, a dielectric layer (not shown) such as a hafnium oxide layer may be selectively disposed between the substrate 10 and the high-k dielectric layer 60. The metal gate 58 may comprise one or more layers of metal material, for example, including a work function metal layer 62, a barrier layer (not shown), and a low resistance metal layer (not shown). Show). The work function metal layer 62 serves to adjust the work function of the formed metal gate 58 to be suitable for an N-type transistor (NMOS) or a P-type transistor (PMOS). If the transistor is an N-type transistor, the work function metal layer 62 may be selected from a metal material having a work function of 3.9 eV to 4.3 eV, such as titanium aluminide (TiAl), zirconium aluminide (ZrAl), and tungsten aluminide. (WAl), tantalum aluminide (TaAl), tantalum aluminide (HfAl) or TiAlC (titanium carbide), etc., but not limited thereto; if the transistor is a P-type transistor, the work function metal layer 62 may be used for work The function is 4.8 eV~5.2 eV metal materials, such as titanium nitride (TiN), tantalum nitride (TaN) or tantalum carbide (TaC), but not limited to this. The material of the barrier layer may include materials such as titanium (Ti), titanium nitride (TiN), tantalum (Ta), tantalum nitride (TaN), and the like. The low-resistance metal layer may be selected from low-resistance materials such as copper (Cu), aluminum (Al), tungsten (W), titanium aluminum alloy (TiAl), cobalt tungsten phosphide (CoWP), or a combination thereof.
如第11圖所示,接著形成一遮蓋層64於金屬閘極58上,其中遮蓋層64較佳由氧化物所構成,但不侷限於此。然後以一道微影暨蝕刻(1P1E)或兩道微影暨蝕刻(2P2E)製程於遮蓋層64及層間介電層56中形成複數個接觸洞66並暴露出第一磊晶層38及第二磊晶層44。 As shown in Fig. 11, a mask layer 64 is then formed over the metal gate 58, wherein the mask layer 64 is preferably formed of an oxide, but is not limited thereto. Then, a plurality of contact holes 66 are formed in the cover layer 64 and the interlayer dielectric layer 56 by a lithography and etching (1P1E) or two lithography and etching (2P2E) processes, and the first epitaxial layer 38 and the second are exposed. Epitaxial layer 44.
隨後如第12圖所示,於第一磊晶層38及第二磊晶層44上分別形成一矽遮蓋層68。例如為純矽或磷化矽等,而且矽遮蓋層68僅會形成於各接觸洞66內的第一磊晶層38及第二磊晶層44上。 Subsequently, as shown in FIG. 12, a germanium mask layer 68 is formed on each of the first epitaxial layer 38 and the second epitaxial layer 44. For example, pure germanium or germanium phosphide, and the germanium cap layer 68 is formed only on the first epitaxial layer 38 and the second epitaxial layer 44 in each contact hole 66.
如第13圖所示,接著進行一矽化金屬製程,例如可先填入一由鈷(Co)、鈦(Ti)及/或鎳(Ni)或鉑鎳合金(NiPt)等金屬材料所構成的金屬層(圖未示)於接觸洞66中,然後搭配進行一快速升溫退火(RTA)製程使金屬層與矽遮蓋層68反應而形成一矽化金屬層70。依據本發明之較佳實施例,進行矽化金屬製程的過程中較佳將矽遮蓋層68完全消耗完,使矽化金屬層70分別直接生長於兩個磊晶層上。 As shown in Fig. 13, a metallization process is followed, for example, a metal material such as cobalt (Co), titanium (Ti), and/or nickel (Ni) or platinum-nickel alloy (NiPt) may be first filled. A metal layer (not shown) is placed in the contact hole 66 and then subjected to a rapid thermal annealing (RTA) process to react the metal layer with the germanium cap layer 68 to form a germanium metal layer 70. In accordance with a preferred embodiment of the present invention, the germanium masking layer 68 is preferably completely consumed during the germanium metallization process, so that the germanium metallization layer 70 is directly grown on the two epitaxial layers, respectively.
隨後如第14圖所示,在各接觸洞66中形成接觸插塞72。形成接觸插塞72的方法,例如先在基底10上依序形成一阻障/黏著層(圖未示)、一晶種層(圖未示)以及一導電層(圖未示)覆蓋遮蓋層64並填入接觸洞66,其中阻障/黏著層係共形地(conformally)填入接觸洞66中,且導電層係完全填滿接觸洞66。阻障/黏著層可用來避免導電層之金屬原子擴散至周圍的遮蓋層64中以及增加導電層與遮蓋層64之間的附著力。阻障/黏著層的材料例如是鉭(Ta)、鈦(Ti)、氮化鈦(TiN)、鉭化鈦(TaN)、氮化鎢(WN)或是其任意組合例如鈦/ 氮化鈦所構成,但並不以此為限。晶種層之材料係較佳地與導電層的材料相同,導電層的材料包含各種低電阻金屬材料,例如是鋁(Al)、鈦(Ti)、鉭(Ta)、鎢(W)、鈮(Nb)、鉬(Mo)、銅(Cu)等材料,較佳是鎢或銅,最佳是鎢,以和矽化金屬層70或下方的源極/汲極區域50、52形成適當的歐姆接觸(Ohmic contact)。然後,進行一平坦化製程例如化學機械研磨(CMP)製程、蝕刻製程或是兩者的結合,去除接觸洞66以外區域之阻障/黏著層、晶種層與導電層,使剩餘的導電層之一表面與遮蓋層64之一表面共平面,至此完成複數個接觸插塞72及本發明較佳實施例之鰭狀場效電晶體的製作。 Subsequently, as shown in Fig. 14, a contact plug 72 is formed in each contact hole 66. A method of forming the contact plug 72, for example, sequentially forming a barrier/adhesive layer (not shown), a seed layer (not shown), and a conductive layer (not shown) covering the cover layer on the substrate 10. 64 is filled into the contact hole 66, wherein the barrier/adhesive layer is conformally filled into the contact hole 66, and the conductive layer completely fills the contact hole 66. The barrier/adhesive layer can be used to prevent metal atoms of the conductive layer from diffusing into the surrounding cover layer 64 and to increase adhesion between the conductive layer and the cover layer 64. The material of the barrier/adhesive layer is, for example, tantalum (Ta), titanium (Ti), titanium nitride (TiN), titanium telluride (TaN), tungsten nitride (WN) or any combination thereof such as titanium/ Titanium nitride is formed, but not limited thereto. The material of the seed layer is preferably the same as the material of the conductive layer, and the material of the conductive layer comprises various low-resistance metal materials such as aluminum (Al), titanium (Ti), tantalum (Ta), tungsten (W), tantalum. Materials such as (Nb), molybdenum (Mo), copper (Cu), preferably tungsten or copper, preferably tungsten, form appropriate ohms with the deuterated metal layer 70 or the source/drain regions 50, 52 below. Contact (Ohmic contact). Then, a planarization process such as a chemical mechanical polishing (CMP) process, an etching process, or a combination of the two is performed to remove the barrier/adhesion layer, the seed layer and the conductive layer in the region other than the contact hole 66, so that the remaining conductive layer One of the surfaces is coplanar with one of the surfaces of the cover layer 64, thus completing the fabrication of the plurality of contact plugs 72 and the fin field effect transistor of the preferred embodiment of the present invention.
綜上所述,本發明主要將形成矽遮蓋層的時間點由原本形成磊晶層後以及完成側壁子的製作前移到接觸洞形成後及矽化金屬層完成前。藉由改變形成矽遮蓋層的時間點,本發明除了可避免於多晶矽閘極表面產生凸塊,並可同時改善製作矽化金屬層過程中所產生的侵蝕及矽化鎳導通等問題。 In summary, the present invention mainly focuses on the formation of the germanium cap layer from the original formation of the epitaxial layer and the completion of the fabrication of the sidewalls to the formation of the contact holes and before the completion of the germanium metal layer. By changing the time point at which the germanium mask layer is formed, the present invention can avoid the occurrence of bumps on the surface of the polysilicon gate, and can simultaneously improve the erosion generated during the process of fabricating the germanium metal layer and the conduction of the nickel halide.
10‧‧‧基底 10‧‧‧Base
12‧‧‧第一鰭狀結構 12‧‧‧First fin structure
14‧‧‧第二鰭狀結構 14‧‧‧Second fin structure
16‧‧‧絕緣層 16‧‧‧Insulation
18‧‧‧PMOS電晶體區 18‧‧‧ PMOS transistor area
20‧‧‧NMOS電晶體區 20‧‧‧ NMOS transistor area
36‧‧‧第一側壁子 36‧‧‧First side wall
38‧‧‧第一磊晶層 38‧‧‧First epitaxial layer
42‧‧‧第一側壁子 42‧‧‧First side wall
44‧‧‧第二磊晶層 44‧‧‧Second epilayer
46‧‧‧第二側壁子 46‧‧‧Second side wall
50‧‧‧源極/汲極區域 50‧‧‧Source/bungee area
52‧‧‧源極/汲極區域 52‧‧‧Source/bungee area
54‧‧‧接觸洞蝕刻停止層 54‧‧‧Contact hole etch stop layer
56‧‧‧層間介電層 56‧‧‧Interlayer dielectric layer
58‧‧‧金屬閘極 58‧‧‧Metal gate
60‧‧‧高介電常數介電層 60‧‧‧High dielectric constant dielectric layer
62‧‧‧功函數金屬層 62‧‧‧Work function metal layer
64‧‧‧遮蓋層 64‧‧‧ Covering layer
70‧‧‧矽化金屬層 70‧‧‧Deuterated metal layer
72‧‧‧接觸插塞 72‧‧‧Contact plug
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102122404A TWI612666B (en) | 2013-06-24 | 2013-06-24 | Method for fabricating finfet transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102122404A TWI612666B (en) | 2013-06-24 | 2013-06-24 | Method for fabricating finfet transistor |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201501299A TW201501299A (en) | 2015-01-01 |
TWI612666B true TWI612666B (en) | 2018-01-21 |
Family
ID=52718054
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102122404A TWI612666B (en) | 2013-06-24 | 2013-06-24 | Method for fabricating finfet transistor |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI612666B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI809930B (en) * | 2022-04-19 | 2023-07-21 | 南亞科技股份有限公司 | Semiconductor device with liner structure |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10164032B2 (en) | 2016-06-17 | 2018-12-25 | Taiwan Semiconductor Manufacturing Company, Ltd. | Self-aligned contact and manufacturing method thereof |
US10854459B2 (en) | 2017-09-28 | 2020-12-01 | Taiwan Semiconductor Manufacturing Co., Ltd. | Gate structure passivating species drive-in method and structure formed thereby |
US10468258B1 (en) | 2018-06-12 | 2019-11-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Passivator for gate dielectric |
US11462626B2 (en) | 2019-10-29 | 2022-10-04 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device and method of manufacture |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090206406A1 (en) * | 2008-02-15 | 2009-08-20 | Willy Rachmady | Multi-gate device having a t-shaped gate structure |
US20120001171A1 (en) * | 2006-10-18 | 2012-01-05 | Translucent Inc. | Semiconductor Structures with Rare-earths |
US20120032275A1 (en) * | 2010-08-03 | 2012-02-09 | International Business Machines Corporation | Metal semiconductor alloy structure for low contact resistance |
-
2013
- 2013-06-24 TW TW102122404A patent/TWI612666B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120001171A1 (en) * | 2006-10-18 | 2012-01-05 | Translucent Inc. | Semiconductor Structures with Rare-earths |
US20090206406A1 (en) * | 2008-02-15 | 2009-08-20 | Willy Rachmady | Multi-gate device having a t-shaped gate structure |
US20120032275A1 (en) * | 2010-08-03 | 2012-02-09 | International Business Machines Corporation | Metal semiconductor alloy structure for low contact resistance |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI809930B (en) * | 2022-04-19 | 2023-07-21 | 南亞科技股份有限公司 | Semiconductor device with liner structure |
Also Published As
Publication number | Publication date |
---|---|
TW201501299A (en) | 2015-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8765546B1 (en) | Method for fabricating fin-shaped field-effect transistor | |
US9685337B2 (en) | Method for fabricating semiconductor device | |
CN113659004B (en) | Semiconductor element and manufacturing method thereof | |
US10020230B2 (en) | FinFETs with multiple threshold voltages | |
US8981487B2 (en) | Fin-shaped field-effect transistor (FinFET) | |
TWI722073B (en) | Semiconductor device and method for fabricating the same | |
TWI641135B (en) | Finfet transistor with epitaxial structures | |
US20160104673A1 (en) | Fin-shaped field-effect transistor with a germanium epitaxial cap and a method for fabricating the same | |
KR20190024625A (en) | Semiconductor device and method | |
US20150118836A1 (en) | Method of fabricating semiconductor device | |
CN116705613A (en) | Semiconductor element and manufacturing method thereof | |
TW201905974A (en) | Semiconductor component and manufacturing method thereof | |
US11908749B2 (en) | Method of metal gate formation and structures formed by the same | |
US20140363935A1 (en) | Semiconductor process | |
TWI729181B (en) | Semiconductor device and method for fabricating the same | |
TWI761529B (en) | Semiconductor device and method for fabricating the same | |
TWI804632B (en) | Semiconductor device and method for fabricating the same | |
CN106158857B (en) | Semiconductor element and manufacturing method thereof | |
TW201725628A (en) | Semiconductor device and method for fabricating the same | |
TWI612666B (en) | Method for fabricating finfet transistor | |
TWI776911B (en) | Semiconductor device and method for fabricating the same | |
CN109545747B (en) | Semiconductor element and manufacturing method thereof |