TWI525236B - Dredging vessel and method for loading the dredging vessel with dredged material - Google Patents
Dredging vessel and method for loading the dredging vessel with dredged material Download PDFInfo
- Publication number
- TWI525236B TWI525236B TW099112623A TW99112623A TWI525236B TW I525236 B TWI525236 B TW I525236B TW 099112623 A TW099112623 A TW 099112623A TW 99112623 A TW99112623 A TW 99112623A TW I525236 B TWI525236 B TW I525236B
- Authority
- TW
- Taiwan
- Prior art keywords
- overflow
- mixture
- water
- cabin
- dredger
- Prior art date
Links
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F7/00—Equipment for conveying or separating excavated material
- E02F7/06—Delivery chutes or screening plants or mixing plants mounted on dredgers or excavators
- E02F7/065—Delivery chutes or screening plants or mixing plants mounted on dredgers or excavators mounted on a floating dredger
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/88—Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/88—Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
- E02F3/8833—Floating installations
- E02F3/8841—Floating installations wherein at least a part of the soil-shifting equipment is mounted on a ladder or boom
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/88—Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
- E02F3/8833—Floating installations
- E02F3/885—Floating installations self propelled, e.g. ship
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/88—Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
- E02F3/90—Component parts, e.g. arrangement or adaptation of pumps
- E02F3/902—Component parts, e.g. arrangement or adaptation of pumps for modifying the concentration of the dredged material, e.g. relief valves preventing the clogging of the suction pipe
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/88—Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
- E02F3/90—Component parts, e.g. arrangement or adaptation of pumps
- E02F3/907—Measuring or control devices, e.g. control units, detection means or sensors
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F7/00—Equipment for conveying or separating excavated material
- E02F7/04—Loading devices mounted on a dredger or an excavator hopper dredgers, also equipment for unloading the hopper
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Mechanical Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Treatment Of Sludge (AREA)
- Underground Or Underwater Handling Of Building Materials (AREA)
Description
本發明關於一種用於以挖掘材料裝載挖泥船的方法。本發明同樣地關於一種挖泥船,其特別裝備用於進行本發明的方法。The present invention relates to a method for loading a dredger with excavated material. The invention likewise relates to a dredger which is particularly equipped for carrying out the method of the invention.
在用像是例如拖曳吸入式挖泥船的挖泥船進行挖掘期間,挖掘材料以及水的混合物係以已知的方式透過一個拖拉頭被吸上來,該拖拉頭係被連接到一個吸入導管以及移動越過水底,以及該挖掘材料係透過一個入口而被運載到挖泥船的船艙(或泥艙)之中,直到完全填滿船艙為止。船艙的最大填充高度是由一個溢流口的高度位置所決定的,該溢流口係存在於挖泥船的船艙之中且與水形成開放的連接,例如透過挖泥船的底側。During excavation with a dredger such as a towed dredger, the excavation material and the mixture of water are sucked up in a known manner through a drag head that is connected to a suction duct and Moving over the bottom of the water, and the excavated material is carried through an inlet into the cabin (or mud chamber) of the dredger until it is completely filled. The maximum fill height of the hold is determined by the height position of an overflow that is present in the cabin of the dredger and forms an open connection with the water, for example through the underside of the dredger.
收集在船艙之中的較重的挖掘材料微粒將會在一段時間之後沉澱,以及因此在船艙之中形成多多少少緊密擠壓的較粗微粒的沉澱層,此沉澱層係隨著挖角的進行而增加高度。在沉澱層的頂部上會形成在水中自由漂流的大致上較細微粒的非沉澱層。在已知方法中,溢流口放置在最高位置之中,用以使得可以將船艙以最大的可能填充以及用以避免非沉澱的微粒透過溢流口再次進入水中。非沉澱的微粒透過溢流口再次進入水中是必須要避免的,這是因為水變得混濁的機會係增加太多。這樣在該位置的植物群以及動物群有不利的影響。The heavier excavation material particles collected in the cabin will settle after a period of time, and thus a more or less densely packed precipitate of coarser particles will be formed in the cabin, which will proceed with the excavation And increase the height. A non-precipitating layer of substantially finer particles that float freely in the water is formed on top of the precipitated layer. In the known method, the overflow opening is placed in the highest position so that the cabin can be filled with the greatest possible possibility and to prevent non-precipitated particles from re-entering the water through the overflow opening. Non-precipitated particles must be avoided when they enter the water again through the overflow port, because the chance of water becoming turbid is increased too much. This has an adverse effect on the flora and fauna at this location.
被吸上來的挖掘材料/水混合物的位準一達到溢流口的上方側邊,混合物就會透過溢流口回到水中。然而,在溢流期間,由於較重微粒的數目的增加,同時較細微粒以及水的混合物係通過該溢流口而消失,挖泥船的吃水仍然可能會增加。在該已知方法中,溢流口係繼續保持在最高位置中一陣子,直到拖曳吸入式泥艙的挖泥船已經達到其最大可容許的吃水(亦稱為挖掘記號)為止。從這一刻起,該挖掘記號係藉著選擇性地降低溢流口保持固定。挖掘係在沒有進一步的材料淨沉澱的時候結束。相同量的材料接著隨著被增加到船艙而通過溢流口消失。視例如水流而定,透過溢流口進入水中的挖掘材料/水混合物可以再次沉澱(落回到水底)、沖蝕(落回到水底上以及接著被水流運載離開)及/或運送(被水流運載離開而沒有沉澱)。如上文描述的,必須要確保水的混濁度不被容許增加得太多。The level of the excavated material/water mixture that is sucked up reaches the upper side of the overflow port, and the mixture returns to the water through the overflow port. However, during the overflow, the draught of the dredger may still increase due to an increase in the number of heavier particles while the mixture of finer particles and water disappears through the overflow. In this known method, the overflow port continues to remain in the highest position for a while until the dredger that towed the suction mud tank has reached its maximum allowable draft (also known as the excavation mark). From this moment on, the excavation mark remains fixed by selectively reducing the overflow. The excavation system ends when there is no further net precipitation of the material. The same amount of material then disappears through the overflow as it is added to the cabin. Depending on, for example, the flow of water, the excavated material/water mixture entering the water through the overflow can be re-precipitated (falling back to the bottom of the water), eroded (falling back onto the water and then carried away by the water stream) and/or transported (by the water stream) Carry away without precipitation). As described above, it must be ensured that the turbidity of the water is not allowed to increase too much.
雖然已知方法係以最大的挖掘效率運送,特別是無法可以立刻受到控制的沉澱在船艙之中的挖掘材料的品質係有待增進。Although the known methods are carried out with maximum excavation efficiency, in particular the quality of the excavated material that cannot be immediately controlled to be deposited in the cabin needs to be improved.
本發明為了其目的是要提供一種用於以挖掘材料裝載挖泥船的方法,該方法並沒有這樣的以及其他的缺點,或是有較少程度的缺點。另一項目的是要提供一種挖泥船,,其被特別裝配用於該改良的方法。The present invention has been made in an effort to provide a method for loading a dredger with excavated material which does not have such and other disadvantages, or which has a lesser degree of disadvantage. Another project is to provide a dredger that is specifically equipped for this improved method.
這項目的係根據本發明藉著提供一種在一個船艙之中用挖掘材料裝載挖泥船的方法而達成,該船艙係為了這項目的而提供並且具有一個高度可調整的溢流口,其中挖掘材料/水混合物係透過一個入口而被運載到船艙之中,以及因為較重的挖掘材料微粒的沉澱在其中形成沉澱層,以及其中在沉澱層上方的溢流口的高度位置係被調整到在填充船艙期間所測量到之一個控制變數的數值。已經發現到,藉著界定適當的控制變數,沉澱在船艙中之挖掘材料的品質可以被有利地影響。此可以如下所述地了解。與已知方法相反的,在根據本發明的方法之中,在開始挖掘時,溢流口將不會放置在最高位置之中,而是被放置在一個下方位置之中。挖掘材料混合物,以及特別是較細部分的挖掘材料混合物(由於較重的部分沉澱)將會藉此在開始挖掘之後,在一個相當早期的階段透過溢流口溢流出來。已經發現的是,藉著調整溢流口的高度位置,透過溢流口溢流出來之挖掘材料混合物的平均微粒尺寸可能會受到影響,以及因此亦影響繼續留在船艙後方中之被挖掘混合物的平均微粒尺寸。比起在已知方法的情況,用這種方式獲得的沉澱材料具有受到較好控制的微粒尺寸分佈,特別是有較高的平均微粒尺寸及/或較窄的微粒尺寸的分佈。如此的材料具有改良的品質。本發明的方法具有的額外優點是,在船艙之中的挖掘材料及/或溢流的挖掘材料的污染程度可以受到影響。溢流口的高度位置較佳地被設定在控制變數的瞬間數值。This item is achieved according to the invention by providing a method of loading a dredger with excavated material in a cabin provided for this purpose and having a highly adjustable overflow port in which excavation The material/water mixture is carried into the cabin through an inlet, and because the precipitation of heavier excavation material particles forms a sediment layer therein, and the height position of the overflow port above the sediment layer is adjusted to The value of one of the control variables measured during the filling of the cabin. It has been found that by defining appropriate control variables, the quality of the excavated material deposited in the cabin can be advantageously influenced. This can be understood as follows. Contrary to known methods, in the method according to the invention, at the beginning of the excavation, the overflow opening will not be placed in the highest position but in a lower position. The excavation material mixture, and in particular the finer portion of the excavation material mixture (due to the heavier partial precipitation), will then overflow through the overflow at a relatively early stage after the excavation has begun. It has been found that by adjusting the height position of the overflow, the average particle size of the excavation material mixture overflowing through the overflow may be affected, and thus also affecting the excavated mixture remaining in the rear of the cabin. Average particle size. The precipitated material obtained in this way has a well-controlled particle size distribution, in particular a higher average particle size and/or a narrower particle size distribution than in the case of known methods. Such materials have improved quality. The method of the present invention has the additional advantage that the degree of contamination of the excavating material and/or overflowing excavated material in the cabin can be affected. The height position of the overflow port is preferably set at an instantaneous value of the control variable.
該方法的一項較佳實施例的特徵在於,在沉澱層上方的溢流口之高度位置可以調整,使得控制變數的測量數值繼續保持大致上不變。這項實施例容許可以獲得繼續留在船艙後方的挖掘材料具有預定所需的平均微粒尺寸。A preferred embodiment of the method is characterized in that the height position of the overflow opening above the sedimentation layer can be adjusted such that the measured value of the control variable continues to remain substantially constant. This embodiment allows for the acquisition of excavation material remaining behind the cabin with a predetermined desired average particle size.
用於使用在根據本發明方法中之特別適當的控制變數包含有介於入口與溢流口之間之在沉澱層上方非沉澱之挖掘材料/水混合物的平均水平速度。已經發現到,此控制變數對於透過溢流口溢流出來之挖掘材料混合物口的平均微粒尺寸有很高的敏感度,以及因此對於繼續留在船艙後方之沉澱挖掘材料的平均微粒尺寸也有很高的敏感度。在沉澱層上方之溢流口高度位置固定的情況中,發現到例如在較高的平均水平速度下,較高平均微粒尺寸的挖掘材料混合物係透過溢流口被沖走。在船艙中非沉澱挖掘材料/水混合物的典型平均水平速度總計在1 m/sec的大小。然而,本發明並不被限制於如此的速度。在船艙中非沉澱挖掘材料/水混合物的平均水平速度平均水平速度較佳地可以在0.1到5 m/sec的範圍之內、較佳地在0.3到3 m/sec的範圍之內、以及最佳地在0.5到1.5 m/sec的範圍之內調整。A control variable for the use of a particularly suitable method in the method according to the invention comprises an average horizontal velocity of the excavating material/water mixture which is non-precipitated above the sediment layer between the inlet and the overflow. It has been found that this control variable is highly sensitive to the average particle size of the excavation material mixture overflowing through the overflow, and therefore the average particle size of the deposited excavation material remaining behind the cabin is also very high. Sensitivity. In the case where the overflow height above the sedimentation layer is fixed, it is found that, for example, at a higher average horizontal velocity, the higher average particle size of the excavation material mixture is washed away through the overflow. The typical average horizontal velocity of the non-precipitated excavating material/water mixture in the cabin is a total of 1 m/sec. However, the invention is not limited to such speed. The average horizontal velocity average horizontal velocity of the non-precipitated excavating material/water mixture in the cabin may preferably be in the range of 0.1 to 5 m/sec, preferably in the range of 0.3 to 3 m/sec, and most The ground is adjusted within the range of 0.5 to 1.5 m/sec.
本發明係基於了解到,透過入口被運載到船艙之中的挖掘材料微粒將會部份地沉積(沉澱)以及形成一個沉澱層,以及受到在沉澱層上方所產生的水流強度將會部份地沖蝕(落下回到沉澱層上以及接著被水流運走)及/或將會被運走(被水流運載離開到溢流口而沒有沉澱)。The present invention is based on the insight that particles of excavated material carried into the cabin through the inlet will be partially deposited (precipitated) and form a sedimentary layer, and the intensity of the water stream generated above the sediment layer will be partially Erosion (falling back onto the sediment layer and then being transported away by the water stream) and/or will be carried away (carryed by the water stream leaving the overflow port without precipitation).
在非沉澱混合物之沉澱層上方從入口流到溢流口的水平速度流動可以藉著測量被吸上來的混合物的進入流率以及將其除以泥艙寬度以及非沉澱混合物的高度用簡單的方式決定。此水平速度較佳地與在被吸上來混合物中的固體微粒的平均落下速度相比較。此落下速度可以容易地以實驗的方式決定,例如藉著沉澱的測量。原理上以這種方式來決定是哪些微粒將會通過溢流口流出以及哪些微粒將會沉澱在設定高度處(或混合物的水平速度)是可能的。The horizontal velocity flow from the inlet to the overflow above the precipitation layer of the non-precipitating mixture can be measured in a simple manner by measuring the incoming flow rate of the adsorbed mixture and dividing it by the width of the mud chamber and the height of the non-precipitating mixture. Decide. This horizontal velocity is preferably compared to the average drop velocity of the solid particles in the mixture being sucked up. This drop speed can be easily determined experimentally, for example by precipitation. In principle, it is possible to determine in this way which particles will flow out through the overflow and which particles will settle at the set height (or the horizontal velocity of the mixture).
根據本發明,平均水平速度<較佳地係由以下公式界定:According to the invention, the average horizontal velocity < is preferably defined by the following formula:
其中Q為在入口位置處測量到的挖掘材料/水混合物的流率,B為船艙寬度以及h為沉澱層上方之溢流口的高度位置。在入口位置處的流率Q可以藉著在例如入口中結合流量計而用已知方式測量出來。流率Q可以藉著調整挖泥泵而受到控制,該泵係從水底抽吸挖掘材料/水混合物。Where Q is the flow rate of the excavated material/water mixture measured at the inlet location, B is the cabin width and h is the height position of the overflow above the sedimentation layer. The flow rate Q at the inlet location can be measured in a known manner by incorporating a flow meter in, for example, the inlet. The flow rate Q can be controlled by adjusting the dredging pump that draws the excavating material/water mixture from the bottom of the water.
根據本發明方法的另一項較佳實施例的特徵在於,沉澱層上方溢流口的高度位置h係被調整到大致上固定的數值,以及流率Q係被調整成使得平均水平速度<可以獲得所需數值。流率Q可以藉著將測量到的流率Q的回饋提供到從水底抽吸挖掘材料/水混合物之挖泥泵的控制裝置而被調整。A further preferred embodiment of the method according to the invention is characterized in that the height position h of the overflow opening above the sedimentation layer is adjusted to a substantially fixed value, and the flow rate Q is adjusted such that the average horizontal speed < can Get the value you want. The flow rate Q can be adjusted by providing feedback of the measured flow rate Q to the control device of the dredging pump that extracts the excavating material/water mixture from the bottom.
根據本發明方法的一項選擇較佳實施例的特徵在於,流率Q係被調整到大致上固定的數值(藉著泵的控制),以及沉澱層上方溢流口的高度位置h係被調整成使得平均水平速度<取得所需的數值。A preferred embodiment of the method according to the invention is characterized in that the flow rate Q is adjusted to a substantially fixed value (by pump control) and the height position h of the overflow above the sedimentation layer is adjusted The average horizontal speed is <take the desired value.
根據本發明,在根據本發明的方法中,溢流口大體上沒有在開始挖泥時被放置在最高位置中,而是放在溢流口的一個最低位置。溢流口的最低位置係對應於船艙的一個低裝載係數,較佳地是25%、更佳地是20%、又更佳地的15%、又再較佳地是10%以及最佳地是5%。將很明白的是,溢流口的最低位置較佳地將不會低於挖泥船外側的水平面,這是因為否則的話外側的水可能會流到船艙之中。According to the invention, in the method according to the invention, the overflow opening is substantially not placed in the highest position when the dredging is started, but is placed at a lowest position of the overflow opening. The lowest position of the overflow corresponds to a low loading factor of the cabin, preferably 25%, more preferably 20%, still more preferably 15%, still more preferably 10% and optimally It is 5%. It will be appreciated that the lowest position of the overflow port will preferably not be lower than the level of the outside of the dredger, since otherwise the outside water may flow into the cabin.
因為挖掘材料中的污染物大體上主要黏結於較細的微粒,例如黏結於具有<63 μm之尺寸的微粒,並且這些污染物較佳地根據本發明係透過溢流口而被排出,挖掘材料的沉澱層包含有較少的污染物。本發明方法的另一項優點是,較佳地被排出的較小微粒大體上能夠更加容易地與水流一起運走,使得它們不會沉澱,而是相反地與藉著沖蝕及/或運送而與水流一起被運走。本發明的方法提供了調整透過溢流口被排出之挖掘材料微粒尺寸的選擇,使得如此的沖蝕及/或運送能夠考慮到在該位置處的水流強度而發生。在具有強大水流的區域中,將大體上可能的是經由溢流口排出平均較大的微粒尺寸,而這不會產生令人無法接受的混濁度的增加。在水流弱的區域中,溢流口高度較佳地將被設定成使得平均較小微粒尺寸的挖掘材料係經由溢流口被排出。Since the contaminants in the excavating material are substantially mainly bonded to the finer particles, for example, to particles having a size of <63 μm, and these contaminants are preferably discharged according to the present invention through the overflow port, the excavating material The precipitated layer contains less contaminants. Another advantage of the method of the present invention is that the smaller particles that are preferably discharged are generally more easily transported away with the water stream so that they do not precipitate, but instead are eroded and/or transported by It is transported away with the water stream. The method of the present invention provides the option of adjusting the size of the excavated material particles that are expelled through the overflow port such that such erosion and/or transport can occur in view of the intensity of the water flow at that location. In areas with strong water flow, it will generally be possible to discharge an average larger particle size through the overflow, which does not result in an unacceptable increase in turbidity. In areas where the water flow is weak, the overflow height will preferably be set such that the average smaller particle size of the excavated material is discharged through the overflow.
在該方法的一項較佳實施例之中,在開始挖泥之前,船艙係用水裝填到在最低位置中溢流口的位準。挖掘材料/水混合物因此將會在開始挖泥開始之後幾乎經由溢流溢流出來。In a preferred embodiment of the method, the cabin is filled with water to the level of the overflow in the lowest position prior to the commencement of dredging. The excavating material/water mixture will therefore overflow almost through the overflow after the start of the dredging.
在根據本發明的方法中有利的是,控制變數與沉澱層高度有關,以及溢流口係保持在沉澱層上方,以及更佳地保持在沉澱層上方的大致上固定的高度處。在這樣變化形式之中,溢流口如同與沉澱層的高度共同位移,藉以具有受控制之微粒尺寸分佈的混合物將繼續保持在船艙之後。該固定高度視在該位置處的條件而定,並且如果需要的話,可以用實驗的方式決定。亦可能的是基於理論的考量而達到固定高度的適當數值。沉澱層的高度可以用許多方式來測量。最簡單的方法是藉著測量挖泥船的吃水及/或使用一個量油尺。然而也可能的是應用其他方法。It is advantageous in the method according to the invention that the control variable is related to the height of the precipitation layer, and that the overflow port remains above the precipitation layer, and more preferably at a substantially fixed height above the precipitation layer. In such a variation, the overflow is displaced as if it were in conjunction with the height of the sediment layer, whereby the mixture having a controlled particle size distribution will continue to remain behind the cabin. The fixed height depends on the conditions at that location and can be determined experimentally if desired. It is also possible to reach an appropriate value for a fixed height based on theoretical considerations. The height of the precipitated layer can be measured in a number of ways. The easiest way is by measuring the dredger's draught and/or using a dipstick. However, it is also possible to apply other methods.
該方法的又另外的較佳實施例具有以下特點,控制變數係與接近溢流口之溢流之混合物的微粒尺寸分佈有關。挖掘材料/水混合物的微粒尺寸分佈可以用不同的方式決定。適當的方法包括藉著照相或攝影的濃度測量、藉著篩濾所取的樣本的微粒分佈之決定及/或沉積規模、x射線消光測量、一種或多種波長的光線消光測量及/或藉由聲波的作用。Still another preferred embodiment of the method has the feature that the control variable is related to the particle size distribution of the mixture of overflows near the overflow. The particle size distribution of the excavating material/water mixture can be determined in different ways. Suitable methods include concentration measurement by photography or photography, determination of particle distribution of samples taken by screening, and/or deposition scale, x-ray extinction measurement, light extinction measurement of one or more wavelengths, and/or by The role of sound waves.
根據本發明的方法較佳地特徵在於控制變數係與與接近溢流口之溢流混合物的密度有關。該密度可以用所屬技術領域中具有通常知識者已知的方式來測量,例如藉著一種消光測量。在如此的測量之中,一個放射源係放置在混合物流的一側上。放置在混合物流另一側上的一個(-偵測器係測量通過混合物的輻射量。所檢測到的(-輻射係視介於放射源與偵測計算器之間之固體微粒的量而定。用於以這樣的方法測量密度的裝置係商業上可獲得的,例如從比利時Vilvoorde的Berthold Technologies N.V.。The method according to the invention is preferably characterized in that the control variable is related to the density of the overflow mixture close to the overflow. This density can be measured in a manner known to those of ordinary skill in the art, for example by an extinction measurement. In such a measurement, a source is placed on one side of the mixture stream. One placed on the other side of the mixture flow (the detector measures the amount of radiation passing through the mixture. The detected (-radiation depends on the amount of solid particles between the source and the detection calculator) Devices for measuring density in such a manner are commercially available, for example from Berthold Technologies NV, Vilvoorde, Belgium.
在一項特別有利的方法中,接近溢流口之溢流混合物的混濁度係應用為控制變數。該混濁度也可以輕易地藉著如上文所簡短描述的密度測量的作用而測量到。因為移除淤泥所產生的混濁具有很大的生態影響。由於混濁,較少的光線可以穿透到水底。存在於水底的植物群及動物群因此有較少的發展機會。在挖泥操作中的一項非常普通的要求是,在挖泥期間的混濁度不可以上升到每公升1000 mg以上。根據目前的較佳變化形式的方法提供了調整溢流口高度的選擇,使得混濁度(增加)繼續保持低於預定的所需數值。In a particularly advantageous method, the turbidity of the overflow mixture close to the overflow is applied as a control variable. This turbidity can also be easily measured by the effect of the density measurement as briefly described above. Because the turbidity caused by the removal of sludge has a great ecological impact. Due to turbidity, less light can penetrate the bottom of the water. Flora and fauna that exist in the bottom of the water therefore have fewer opportunities for development. A very common requirement in dredging operations is that the turbidity during dredging cannot rise above 1000 mg per liter. The method according to the presently preferred variant provides the option of adjusting the height of the overflow such that the turbidity (increase) continues to remain below a predetermined desired value.
將會很明白的是,同樣可能的是應用以上所敘述之控制變數的組合當做控制變數。溢流口的位置可以例如因此藉著沉澱層高度而以第一近似值決定,其中對於此第一近似值的校正係受到另一項控制變數之數值的管制,例如,像是在入口以及溢流口處測量到的混合物密度。It will be appreciated that it is equally possible to apply the combination of control variables described above as control variables. The position of the overflow opening can thus be determined, for example, by a first approximation by the height of the sedimentation layer, wherein the correction for this first approximation is governed by the value of another control variable, for example, at the inlet and the overflow. The density of the mixture measured.
為了甚至較好地控制溢流混合物的微粒尺寸分佈,以及因此亦控制沉澱混合物的微粒尺寸分佈,溢流口較佳地設有一個具有預定網眼寬度的過濾器,較佳地用於流出混合物之微粒尺寸分佈的取樣目的。In order to even better control the particle size distribution of the overflow mixture, and thus also the particle size distribution of the precipitation mixture, the overflow port is preferably provided with a filter having a predetermined mesh width, preferably for effluent mixture The sampling purpose of the particle size distribution.
本發明同樣地關於一種適用於進行根據本發明方法的挖泥船。特別提供的是一種設有一個船艙的挖泥船,該船艙具有高度可調整的溢流口,用於以一種挖掘材料/水混合物裝載,其中該挖泥船進一步設有用於測量一個控制變數的機構,以及設有一個控制裝置,其調整受到所測量到之控制變數數值之管制的溢流口高度位置。根據本發明挖泥船的優點已經在上文中參照本發明的方法詳細闡述,且因此將不會在此處重複。The invention likewise relates to a dredger suitable for carrying out the method according to the invention. Particularly provided is a dredger having a cabin having a height-adjustable overflow for loading with a digging material/water mixture, wherein the dredger is further provided for measuring a control variable The mechanism, and a control device that adjusts the height of the overflow port that is governed by the measured value of the control variable. The advantages of the dredger according to the invention have been explained in detail above with reference to the method of the invention and will therefore not be repeated here.
在根據本發明挖泥船的一項較佳的變化形式中,測量機構係選自包含有以下的群組:用於測量沉澱層高度的機構、用於測量介於入口與溢流口之間之非沉澱混合物的平均水平速度之機構、用於測量接近入口之被吸起來之混合物的微粒尺寸分佈及/或接近溢流口之溢流混合物之微粒尺寸分佈的機構、用於測量接近入口之被吸起來之混合物的密度及/或接近溢流口之溢流混合物之密度的機構、用於測量接近溢流口之溢流混合物及/或在水中之混濁度的機構、或是以上所敘述之測量機構的組合。In a preferred variant of the dredger according to the invention, the measuring mechanism is selected from the group consisting of: a mechanism for measuring the height of the sediment layer, for measuring between the inlet and the overflow a mechanism for the average horizontal velocity of the non-precipitating mixture, a particle size distribution for measuring the particle size distribution of the sucked mixture near the inlet, and/or a particle size distribution of the overflow mixture close to the overflow port, for measuring proximity to the inlet a mechanism for the density of the mixture to be aspirated and/or the density of the overflow mixture close to the overflow, a means for measuring the overflow mixture close to the overflow and/or a turbidity in the water, or as described above A combination of measuring mechanisms.
關於挖泥船的一項特別有利之較佳變化形式,其測量機構包含有一個密度計,該密度計係配置在溢流混合物流入溢流口中的位置處。With regard to a particularly advantageous preferred variant of the dredger, the measuring mechanism comprises a densitometer arranged at a position where the overflow mixture flows into the overflow opening.
根據本發明的拖曳吸入式泥艙挖泥船包含有一船1,其具有一個船艙2以及一個吸取導管,該吸取導管係從一個進出於船艙2的裝載管3所建構成的;一個泵4;以及一個吸入管5,該吸入管5可以繞著一軸30相對於船1進行樞轉並且在其底端處具有一個拖拉頭6,當船1在箭頭9方向中航行時,該拖拉頭6係被拖過在水7中的底部8上方,並且例如砂子的底部材料16係與水7一起當做懸浮物經由吸入管5從底部被吸上來且運載到船艙2之中。拖拉頭6設有一個罩板12,其可以藉著一個液壓汽缸13的作用相對於拖拉頭6繞著一個軸桿11樞轉。The towed-type mud tank dredger according to the present invention comprises a ship 1 having a cabin 2 and a suction duct constructed from a loading pipe 3 entering and leaving the cabin 2; a pump 4; And a suction pipe 5 pivotable about a shaft 30 relative to the vessel 1 and having a trailing head 6 at its bottom end, the trailing head 6 being when the vessel 1 is sailing in the direction of arrow 9 It is pulled over the bottom 8 in the water 7, and the bottom material 16 of the sand, for example, is taken up with the water 7 as a suspension from the bottom via the suction pipe 5 and carried into the cabin 2. The trailing head 6 is provided with a cover panel 12 which is pivotable about a shaft 11 with respect to the trailing head 6 by the action of a hydraulic cylinder 13.
船艙2係適用於接收藉著泵4的作用通過導管5被吸上來的水底材料以及水的混合物。在一段時間之後,存在於船艙2之中的混合物將會沉澱並且在其中形成一個沉澱層20,該沉澱層20具有一個相對於船艙2底部的高度40。存在於沉澱層20上的是一個層21包含有水性懸浮非沉澱的底部材料。該層21的高度41係藉著一個高度可調整的溢流口10的高度位置所決定的,該溢流口10具有圓錐形上方外部端部14。溢流口10具有一個開放的下方外部端部15,在箭頭31的方向中沿著該下方外部端部15溢流的混合物可以在箭頭32的方向中經由拖曳吸入式泥艙挖泥船的底側被運載到水7。The cabin 2 is adapted to receive a mixture of subsea material and water that is drawn through the conduit 5 by the action of the pump 4. After a period of time, the mixture present in the cabin 2 will precipitate and form a precipitation layer 20 therein, the precipitation layer 20 having a height 40 relative to the bottom of the cabin 2. Present on the precipitation layer 20 is a layer 21 comprising an aqueous suspension non-precipitating bottom material. The height 41 of the layer 21 is determined by the height position of a height-adjustable overflow opening 10 having a conical upper outer end 14. The overflow opening 10 has an open lower outer end 15 in which the mixture overflowing in the direction of the arrow 31 along the lower outer end 15 can be dragged in the direction of arrow 32 via the bottom of the towed mud tank dredger The side is carried to the water 7.
圖1所示之根據本發明拖曳吸入式泥艙挖泥船的變化形式進一步設有用於測量一個控制變數的機構,溢流口10之高度位置的數值係受到該控制變數的管制而被調整。該測量機構包含有一個第一密度計25,其係配置在入口或是裝載管3附近以及在該處測量被吸上來之混合物的密度。一個本身已知的流量計28配置在大致上相同的位置處。此係測量出被吸上來的水的流率,非沉澱部分21的平均水平速度可以從該流率決定。該密度計包含有一個可以從比利時Vilvoorde的Berthold Technologies N.V.獲得的放射性濃度計。一個相同類型的第二密度計26係配置在溢流口10的位置處且測量溢流混合物的密度。如果需要的話,一個第三密度計27可以配置在水中位於拖曳吸入式泥艙挖泥船附近,以便於能夠測量溢流混合物或是圍繞的水的混濁度。來自於上文提及之測量機構的訊號係儲存在一個中央電腦(未顯示於圖中)中,此電腦形成拖曳吸入式泥艙挖泥船之控制設備的一部分。The variant of the towed-type mud tank dredger according to the invention shown in Fig. 1 is further provided with means for measuring a control variable, the value of the height position of the overflow opening 10 being adjusted by the control variable. The measuring mechanism comprises a first densitometer 25 which is arranged near the inlet or the loading tube 3 and at which the density of the sucked mixture is measured. A flow meter 28 known per se is arranged at substantially the same position. This measures the flow rate of the sucked water, and the average horizontal velocity of the non-precipitated portion 21 can be determined from the flow rate. The densitometer contains a radioactive concentration meter available from Berthold Technologies N.V. of Vilvoorde, Belgium. A second densitometer 26 of the same type is disposed at the location of the overflow port 10 and measures the density of the overflow mixture. If desired, a third densitometer 27 can be placed in the water adjacent to the towed suction mud dredger to facilitate measurement of the turbidity of the overflow mixture or surrounding water. The signals from the measuring mechanisms mentioned above are stored in a central computer (not shown) which forms part of the control equipment for the towed suction mud dredger.
在較佳的方法中,以上描述的拖曳吸入式泥艙挖泥船係被用來挖掘存在於水底中或是在水底8上的材料。在該方法中,水底材料以及水的混合物係經由連接到吸入管5且移動於水底8上的拖拉頭6被吸上來,並且係經由入口或是吸入管3被運送到船艙2之中。在較佳方法中,溢流口10係在開使該方法時設置在最低位置處。此係較佳地對應於大約為10%(以m3為整體可獲得的負載)的船艙2的裝載係數。在圖1之中,溢流口10的最低位置係概略地由溢流口10頂側100指示出來。在此位置100處,相當大量的被吸上來的混合物將會在箭頭31的方向中被運載通過在箭頭32方向中的溢流口10而到水7中。此溢流物係特別由被吸上來之混合物的較細微形成的,這是因為較粗的部分已經在重力的影響下移動到位準100下方,並且繼續保持在船艙2後方當做沉澱層20。在挖泥期間,沉澱層20的高度40將會逐漸增加。在所示的變型之中,溢流口10的高度位置係受到沉澱層20之高度40的管制而被調整,這使得溢流口10可以保持在沉澱層20上方之大致上固定的高度處。此係意味著在大部分的挖泥期間,該高度41將具有固定的數值。精確的數值取決於在該位置上的條件並且其總計為例如0.75 m。如果流量計28所測量的吸出流率保持固定的話,非沉澱部分21的平均水平速度將因此也會是大致上固定的。In a preferred method, the towed-type mud tank dredger described above is used to excavate materials present in the bottom of the water or on the bottom 8. In this method, the mixture of the underwater material and the water is sucked up via the tractor 6 connected to the suction pipe 5 and moved on the water bottom 8, and is carried into the cabin 2 via the inlet or the suction pipe 3. In the preferred method, the overflow port 10 is placed at the lowest position when the method is opened. This preferably corresponds to a cabin-based load factor is about 10% (m 3 can be obtained as a whole load) 2. In Figure 1, the lowest position of the overflow port 10 is schematically indicated by the top side 100 of the overflow port 10. At this position 100, a substantial amount of the sucked mixture will be carried through the overflow 10 in the direction of arrow 32 into the water 7 in the direction of arrow 31. This overflow is particularly finely formed by the mixture being sucked up because the thicker portion has moved below the level 100 under the influence of gravity and continues to remain behind the cabin 2 as the sediment layer 20. During the dredging, the height 40 of the precipitation layer 20 will gradually increase. In the variant shown, the height position of the overflow opening 10 is adjusted by the height 40 of the precipitation layer 20, which allows the overflow opening 10 to remain at a substantially fixed height above the precipitation layer 20. This means that the height 41 will have a fixed value during most dredging. The exact value depends on the conditions at this position and it totals for example 0.75 m. If the aspiration flow rate measured by the flow meter 28 remains fixed, the average horizontal velocity of the non-precipitated portion 21 will therefore also be substantially fixed.
因為沉澱層20的高度40係隨著時間增加,溢流口10的高度也會上升,直到溢流口10達到最高位置101為止。當拖曳吸入式泥艙挖泥船已經達到其最大的可容許吃水或是挖掘記號時,係達到最高位置101。這種情況係顯示於圖1之中。Since the height 40 of the sediment layer 20 increases with time, the height of the overflow port 10 also rises until the overflow port 10 reaches the highest position 101. When the towed mud tank dredger has reached its maximum allowable draught or excavation mark, it reaches the highest position 101. This situation is shown in Figure 1.
本發明的方法特別適用於挖掘用於城市區域的接到海中或其他大型延伸的水的進接通道,及/或用於挖掘砂子,更佳地為細砂,以及最佳地是含有砂子的細淤泥。砂子具有65%體積的大於63 μm的微粒以及50%體積的小於2的微粒。細砂具有具有體積介於5-15%之間細粒尺寸在2到63 μm之間的微粒。比起已知方法的情況,使用本發明的方法,更多的底部材料,以及特別是其較細的部分可以經由溢流口以低泥艙負載係數流回到水中。這種所謂的攪拌程序可以用本發明的方法而受到很好的控制,這係關於針對水的混濁度所設定需求方面的一項很大的優點。溢流的較細部分可以被在進入通道中的水流運載離開挖泥操作的位置而到達例如海中。除此之外,沉澱在船艙之中的材料具有較高的品質,使得其可以被有利地使用於砂的供應以及類似者,選擇的是在緊接著挖掘位置的附近。The method of the invention is particularly suitable for excavating access passages for receiving water or other large extended water in urban areas, and/or for excavating sand, more preferably fine sand, and optimally containing sand. Fine silt. The sand has 65% by volume of particles larger than 63 μm and 50% by volume of particles smaller than 2. The fine sand has particles having a volume between 5 and 15% and a fine particle size of between 2 and 63 μm. Using the method of the present invention, more of the bottom material, and in particular its thinner portion, can flow back into the water with a low mud tank loading factor via the overflow port, as compared to the known methods. This so-called agitation procedure can be well controlled by the method of the present invention, which is a great advantage in terms of setting requirements for the turbidity of water. The thinner portion of the overflow can be carried, for example, into the sea by the flow of water entering the passage away from the location of the dredging operation. In addition to this, the material deposited in the cabin has a higher quality, so that it can be advantageously used for the supply of sand and the like, in the vicinity of the excavation position.
圖2概略地顯示出使用本發明的方法以及挖泥船獲得的挖掘材料混合物的微粒尺寸分佈(50)。所獲得的微粒尺寸分佈係與使用已知方法所獲得的挖掘材料混合物之微粒尺寸分佈(51)相比較。在所示的圖中,重量百分比(52)係相對於微粒尺寸(53)繪示出來。藉著在挖掘期間容許供應的微粒尺寸分佈(51)的一部分(54)經由溢流口(10)溢流出來,可以獲得的微粒尺寸分佈(50)不僅具有較窄的分佈,而且還具有比供應微粒的尺寸分佈(56)更大的平均微粒尺寸(55)。Figure 2 shows diagrammatically the particle size distribution (50) of the excavation material mixture obtained using the method of the invention and the dredger. The particle size distribution obtained is compared to the particle size distribution (51) of the excavation material mixture obtained using known methods. In the figures shown, the weight percentage (52) is plotted against the particle size (53). By overflowing a portion (54) of the particle size distribution (51) allowed to be supplied during excavation through the overflow port (10), the particle size distribution (50) obtainable not only has a narrow distribution but also has a ratio The size distribution of the supplied particles (56) is larger than the average particle size (55).
本發明並不限制於以上描述的示範性實施例,並且只要它們落入隨附申請專利範圍的範圍之內,它們可以進行修改。The present invention is not limited to the above-described exemplary embodiments, and they may be modified as long as they fall within the scope of the appended claims.
1‧‧‧挖泥船 1‧‧‧ dredger
2‧‧‧船艙 2‧‧‧ cabin
3‧‧‧裝載管 3‧‧‧Loading tube
4‧‧‧泵 4‧‧‧ pump
5‧‧‧吸入管/導管 5‧‧‧Inhalation tube/catheter
6‧‧‧拖拉頭 6‧‧‧ drag head
7‧‧‧水 7‧‧‧ water
8‧‧‧底部 8‧‧‧ bottom
9‧‧‧箭頭 9‧‧‧ arrow
10‧‧‧溢流口 10‧‧‧Overflow
11‧‧‧軸桿 11‧‧‧ shaft
12‧‧‧罩板 12‧‧‧ hood
13‧‧‧液壓汽缸 13‧‧‧Hydraulic cylinder
14‧‧‧上方外部端部 14‧‧‧ upper outer end
15‧‧‧下方外部端部 15‧‧‧ below the outer end
16‧‧‧底部材料 16‧‧‧Bottom material
20‧‧‧沉澱層 20‧‧‧ Precipitate
21‧‧‧層/非沉澱部分 21‧‧‧ layer/non-precipitated part
25‧‧‧第一密度計 25‧‧‧First Density Meter
26‧‧‧第二密度計 26‧‧‧Second Densitometer
27‧‧‧第三密度計 27‧‧‧ Third Density Meter
28‧‧‧流量計 28‧‧‧ Flowmeter
30‧‧‧主軸 30‧‧‧ Spindle
31‧‧‧箭頭 31‧‧‧ arrow
32‧‧‧箭頭 32‧‧‧ arrow
40‧‧‧高度 40‧‧‧ Height
41‧‧‧高度 41‧‧‧ Height
50‧‧‧使用本發明方法以及挖泥船獲得之挖掘材料混合物的微粒尺寸分佈 50‧‧‧Particle size distribution of excavated material mixtures obtained by the method of the invention and by dredger
51‧‧‧使用已知方法獲得之挖掘材料混合物的微粒尺寸分佈 51‧‧‧Particle size distribution of excavated material mixtures obtained by known methods
52‧‧‧重量百分比 52‧‧‧% by weight
53‧‧‧微粒尺寸 53‧‧‧Particle size
54‧‧‧供應微粒尺寸分佈51的一部分 54‧‧‧ Part of the supply particle size distribution 51
55‧‧‧平均微粒尺寸 55‧‧‧Average particle size
56‧‧‧供應的微粒尺寸分佈 56‧‧‧Supply particle size distribution
100‧‧‧溢流口頂側的位準 100‧‧‧ level on the top side of the overflow
101‧‧‧最高位置 101‧‧‧ highest position
本發明現在將進一步用以下圖式以及較佳實例的描述為基礎來加以闡明,而本發明並不限制於此等圖式及實例。在圖式中:The invention will now be further elucidated on the basis of the following drawings and description of the preferred examples, and the invention is not limited to the drawings and examples. In the schema:
圖1顯示出根據本發明挖泥船的概略側視圖;以及Figure 1 shows a schematic side view of a dredger according to the present invention;
圖2概略地顯示出可以用本發明的方法以及挖泥船獲得之挖掘材料混合物的微粒尺寸分佈,其係與用已知方法獲得之挖掘材料混合物的微粒尺寸分佈相比較。Figure 2 shows diagrammatically the particle size distribution of the excavation material mixture obtainable by the method of the invention and the dredger, as compared to the particle size distribution of the excavation material mixture obtained by known methods.
1‧‧‧挖泥船 1‧‧‧ dredger
2‧‧‧船艙 2‧‧‧ cabin
3‧‧‧裝載管 3‧‧‧Loading tube
4‧‧‧泵 4‧‧‧ pump
5‧‧‧吸入管/導管 5‧‧‧Inhalation tube/catheter
6‧‧‧拖拉頭 6‧‧‧ drag head
7‧‧‧水 7‧‧‧ water
8‧‧‧底部 8‧‧‧ bottom
9‧‧‧箭頭 9‧‧‧ arrow
10‧‧‧溢流口 10‧‧‧Overflow
11‧‧‧軸桿 11‧‧‧ shaft
12‧‧‧罩板 12‧‧‧ hood
13‧‧‧液壓汽缸 13‧‧‧Hydraulic cylinder
14‧‧‧上方外部端部 14‧‧‧ upper outer end
15‧‧‧下方外部端部 15‧‧‧ below the outer end
16‧‧‧底部材料 16‧‧‧Bottom material
20‧‧‧沉澱層 20‧‧‧ Precipitate
21‧‧‧層/非沉澱部分 21‧‧‧ layer/non-precipitated part
25‧‧‧第一密度計 25‧‧‧First Density Meter
26‧‧‧第二密度計 26‧‧‧Second Densitometer
27‧‧‧第三密度計 27‧‧‧ Third Density Meter
28‧‧‧流量計 28‧‧‧ Flowmeter
30‧‧‧主軸 30‧‧‧ Spindle
31‧‧‧箭頭 31‧‧‧ arrow
32‧‧‧箭頭 32‧‧‧ arrow
40‧‧‧高度 40‧‧‧ Height
41‧‧‧高度 41‧‧‧ Height
Claims (12)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE2009/0253A BE1018577A4 (en) | 2009-04-22 | 2009-04-22 | Dredging vehicle and method for loading the dredging vehicle with dredging spoil. |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201114987A TW201114987A (en) | 2011-05-01 |
TWI525236B true TWI525236B (en) | 2016-03-11 |
Family
ID=41165700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW099112623A TWI525236B (en) | 2009-04-22 | 2010-04-22 | Dredging vessel and method for loading the dredging vessel with dredged material |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP2422019B1 (en) |
AR (1) | AR076993A1 (en) |
AU (1) | AU2010240899B2 (en) |
BE (1) | BE1018577A4 (en) |
TW (1) | TWI525236B (en) |
WO (1) | WO2010122093A1 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL2008273C2 (en) * | 2012-02-10 | 2013-08-14 | Ihc Holland Ie Bv | Overflow device for a vessel. |
NL2013004B1 (en) * | 2014-06-16 | 2016-07-05 | Ihc Holland Ie Bv | Filter overflow device. |
NL2013368B1 (en) * | 2014-08-26 | 2016-09-26 | Ihc Holland Ie Bv | Adjustable overflow system. |
NL2014509B1 (en) * | 2015-03-24 | 2017-01-19 | Ihc Holland Ie Bv | Overflow system. |
RU2603810C1 (en) * | 2015-09-21 | 2016-11-27 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Астраханский государственный университет" (Астраханский государственный университет) | Vessel for transportation of soil during dredging |
CN107012901B (en) * | 2016-01-28 | 2019-05-10 | 宋文华 | Dredging managing and control system |
EP3333327A1 (en) * | 2016-12-10 | 2018-06-13 | Imotec Holding B.V. | Autonomous dredging vehicle for dredging a dam reservoir |
RU2705457C2 (en) * | 2017-11-01 | 2019-11-07 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Астраханский государственный университет" | Floating facility for soil transportation during production of dredging works |
AU2019225774B2 (en) * | 2018-02-22 | 2021-10-28 | Michael Detering | Device for a sediment transfer in waters, and also a method for a transfer of sediment in waters |
CN109610539B (en) * | 2018-11-30 | 2020-12-25 | 中船重工中南装备有限责任公司 | Track chassis cutter-suction type dredging robot with self-deviation correction function |
CN112049174A (en) * | 2020-09-16 | 2020-12-08 | 沙群 | Decontamination cleaning device for aquaculture |
NL2029628B1 (en) * | 2021-11-04 | 2023-06-02 | Ihc Holland Ie Bv | Discharging system for a hopper |
CN117027810B (en) * | 2023-09-28 | 2024-03-12 | 长沙矿冶研究院有限责任公司 | Rotary jet type deep sea polymetallic nodule collecting apparatus |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB671172A (en) * | 1949-05-04 | 1952-04-30 | Aannemersbedrijf Voorheen T De | Vessel for transporting mud or similar water-bearing matter |
NL163288C (en) * | 1968-11-01 | 1980-08-15 | Ihc Holland Nv | HOPPER VESSEL. |
GB1244558A (en) * | 1969-05-13 | 1971-09-02 | Hollandsche Aanneming Mij N V | Self-propelled hopper dredgers and method of operation |
US3957009A (en) * | 1974-10-25 | 1976-05-18 | James Di Perna | Ship ballast, oil and water separation system |
US4172617A (en) * | 1975-11-12 | 1979-10-30 | Ingenieursbureau voor Systemem en Octrooien "Spanstaal" B.V. | Suction dredger vessel and method of loading the hold of the same |
NL164109C (en) * | 1977-06-08 | 1980-11-17 | Ballast Nedam Groep Nv | DREDGER. |
NL165527B (en) * | 1977-07-12 | 1980-11-17 | Spanstaal | SUCTION DREDGING VESSEL AND METHOD FOR LOADING A SUCTION DREDGING VESSEL. |
DE2755125A1 (en) * | 1977-12-10 | 1979-06-13 | Cassella Ag | METHODS FOR REMOVING SLUDGE FROM AQUATIC AQUATIC ENVIRONMENT |
NL8001034A (en) * | 1980-02-20 | 1981-09-16 | Ihc Holland Nv | DEVICE AND METHOD FOR DETERMINING THE HUB LOADING OF A HOPPER. |
BE1005478A3 (en) * | 1991-10-30 | 1993-08-03 | Dredging Int | Procedure and equipment for selective removal of contaminated anduncontaminated dredged material |
-
2009
- 2009-04-22 BE BE2009/0253A patent/BE1018577A4/en active
-
2010
- 2010-04-22 EP EP20100714310 patent/EP2422019B1/en not_active Not-in-force
- 2010-04-22 AU AU2010240899A patent/AU2010240899B2/en not_active Ceased
- 2010-04-22 WO PCT/EP2010/055329 patent/WO2010122093A1/en active Application Filing
- 2010-04-22 AR ARP100101344 patent/AR076993A1/en not_active Application Discontinuation
- 2010-04-22 TW TW099112623A patent/TWI525236B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
EP2422019A1 (en) | 2012-02-29 |
AR076993A1 (en) | 2011-07-27 |
EP2422019B1 (en) | 2013-04-03 |
WO2010122093A1 (en) | 2010-10-28 |
AU2010240899A1 (en) | 2011-11-17 |
TW201114987A (en) | 2011-05-01 |
BE1018577A4 (en) | 2011-04-05 |
AU2010240899B2 (en) | 2016-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI525236B (en) | Dredging vessel and method for loading the dredging vessel with dredged material | |
CN106605027B (en) | For the adjustable overflow system of hopper-type dredger and relevant ship and method | |
JP2008259943A (en) | Apparatus for treating earth and sand slurry | |
Nakai | Turbidity generated by dredging projects | |
CN105143561B (en) | Measurement device, related ship and method | |
JPS59659B2 (en) | dredger | |
WO2024125204A1 (en) | Method for filtration and drainage of mud entering hopper of trailing suction hopper dredger and implementation device therefor | |
AU2015278351B2 (en) | Filter overflow device | |
WO2002057551A1 (en) | Method for hydraulic subsea dredging | |
JP5988206B2 (en) | Thin layer method | |
CN107630505A (en) | A kind of device for dragging dregs removes silt mechanism and use, except silt method | |
NL2013770B1 (en) | Hopper dredger with flocculant injection system. | |
KR101968738B1 (en) | Screen and filtration complex non point pollutants treatments | |
JP2017002534A (en) | System and method for recovering bottom mud | |
CN207650076U (en) | A kind of permeability of rock massf detection device | |
JP4082269B2 (en) | Reservoir sand discharging method and sand discharging device | |
JP5100705B2 (en) | Sediment flow transfer equipment | |
JP2003002285A (en) | Dredger | |
JP4367898B2 (en) | Disposal of dam sediment | |
CN109459338A (en) | The precipitating remove device and its measurement method of float layer in a kind of river sludge | |
CN116356910A (en) | Method for filtering and draining slurry in drag suction dredger cabin and implementation device thereof | |
Doering et al. | A unique hydraulic dredge to remove organic sediment from a water supply reservoir | |
KR101048641B1 (en) | Method for processing dredged soil, conteminated water and waste water, and processing system using the same | |
CN109364571A (en) | It is a kind of to reduce in dredging overflow to the device and method of water pollution | |
JPH01180255A (en) | Classifier for dredged sediment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |