TWI521601B - Method for manufacturing polysilicon - Google Patents

Method for manufacturing polysilicon Download PDF

Info

Publication number
TWI521601B
TWI521601B TW102137171A TW102137171A TWI521601B TW I521601 B TWI521601 B TW I521601B TW 102137171 A TW102137171 A TW 102137171A TW 102137171 A TW102137171 A TW 102137171A TW I521601 B TWI521601 B TW I521601B
Authority
TW
Taiwan
Prior art keywords
laser
layer
amorphous germanium
germanium layer
solid
Prior art date
Application number
TW102137171A
Other languages
Chinese (zh)
Other versions
TW201503261A (en
Inventor
葉昱均
黃德倫
黃政仕
Original Assignee
上海和輝光電有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海和輝光電有限公司 filed Critical 上海和輝光電有限公司
Publication of TW201503261A publication Critical patent/TW201503261A/en
Application granted granted Critical
Publication of TWI521601B publication Critical patent/TWI521601B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02595Microstructure polycrystalline

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Recrystallisation Techniques (AREA)
  • Silicon Compounds (AREA)

Description

多晶矽的製造方法 Polycrystalline germanium manufacturing method

本發明涉及一種多晶矽製作方法,尤其涉及一種採用準分子雷射退火的多晶矽製作方法。 The invention relates to a method for manufacturing polycrystalline germanium, in particular to a method for producing polycrystalline germanium by using excimer laser annealing.

隨著半導體技術的廣泛應用,多晶矽的需求量越來越大。目前已經開始採用準分子雷射退火技術來生產多晶矽。 With the widespread use of semiconductor technology, the demand for polysilicon is increasing. Excimer laser annealing techniques have been used to produce polycrystalline germanium.

第1圖示例性繪示一種現有技術中採用準分子雷射退火的多晶矽製作方法的示意圖。如第1圖中所示,在現有技術中採用準分子雷射退火的多晶矽製作方法中,準分子雷射裝置120發射雷射130,照射非晶矽層110的上表面,使非晶矽層110的上表面熔化,而晶化成多晶矽。例如美國專利US5529951就採用了這種方法,其採用波長為308nm脈衝寬度為140ns到200ns的準分子(excimer)雷射照射非晶矽層的上表面,使非晶矽層的上表面熔化,從而晶化成多晶矽。 FIG. 1 exemplarily shows a schematic diagram of a prior art polycrystalline germanium fabrication method using excimer laser annealing. As shown in FIG. 1, in the prior art method for fabricating polycrystalline germanium by excimer laser annealing, the excimer laser device 120 emits a laser 130, illuminates the upper surface of the amorphous germanium layer 110, and makes an amorphous germanium layer. The upper surface of 110 melts and crystallizes into polycrystalline germanium. For example, U.S. Patent No. 5,529,951 uses this method by irradiating an upper surface of an amorphous germanium layer with an excimer laser having a pulse width of 308 nm and a pulse width of 140 ns to 200 ns to melt the upper surface of the amorphous germanium layer. Crystallized into polycrystalline germanium.

然而,在現有技術中採用準分子雷射退火的多晶矽製作方法中,雷射能量無法很快地使非晶矽層達到熔化溫 度,而需要使用多次脈衝的準分子雷射的能量,才能使非晶矽層熔化而晶化成多晶矽。而且,現有技術中採用準分子雷射退火的多晶矽製作方法中還存在的多晶矽結晶率不穩定的問題,而且需要很高的準分子雷射能量。 However, in the prior art, in the polycrystalline germanium fabrication method using excimer laser annealing, the laser energy cannot quickly bring the amorphous germanium layer to the melting temperature. Degree, and the energy of a multi-pulse excimer laser is required to melt the amorphous germanium layer and crystallize it into polycrystalline germanium. Moreover, in the prior art, the polycrystalline germanium crystallization rate which is also used in the method of producing polycrystalline germanium by excimer laser annealing is unstable, and high excimer laser energy is required.

為了解决上述技術問題之一,本發明提供一種多晶矽製作方法,包括:(步驟S11)用固態雷射裝置發射雷射來照射非晶矽層的下表面,以對所述非晶矽層進行預熱;以及(步驟S12)用準分子雷射裝置發射雷射來照射所述非晶矽層的上表面,以將所述非晶矽層晶化成多晶矽,其中所述步驟S11先於所述步驟S12一預定時間執行。 In order to solve the above problems, the present invention provides a method for fabricating polycrystalline germanium, comprising: (step S11) emitting a laser with a solid-state laser device to illuminate a lower surface of the amorphous germanium layer to pre-predict the amorphous germanium layer And (step S12) emitting a laser with a pseudo-molecular laser device to illuminate an upper surface of the amorphous germanium layer to crystallize the amorphous germanium layer into a polycrystalline germanium, wherein the step S11 precedes the step S12 is executed at a predetermined time.

其中,所述非晶矽層形成於由上到下依次由矽氧化層和透明基板重疊構成的多層之上並與所述矽氧化層具有一臨界面,並且其中,在所述步驟S11中,用所述固態雷射裝置發射雷射穿透所述透明基板和所述矽氧化層,最後到達所述非晶矽層與所述矽氧化層的所述臨界面來照射所述非晶矽層的下表面,以對所述非晶矽層進行預熱。 Wherein the amorphous germanium layer is formed on a plurality of layers which are formed by overlapping the tantalum oxide layer and the transparent substrate in order from top to bottom and have a critical plane with the tantalum oxide layer, and wherein, in the step S11, Ejecting a laser through the solid-state laser device to penetrate the transparent substrate and the tantalum oxide layer, and finally reaching the critical surface of the amorphous germanium layer and the tantalum oxide layer to illuminate the amorphous germanium layer a lower surface to preheat the amorphous germanium layer.

其中,所述非晶矽層形成於由上到下依次由矽氧化層、氮化矽層和透明基板重疊構成的多層之上並與所述矽氧化層具有一臨界面,並且其中,在所述步驟S11中,用所述固態雷射裝置發射雷射穿透所述透明基板、所述氮化矽層和所述矽氧化層,最後到達所述非晶矽層與所述矽氧化層的所述臨界面來照射所述非晶矽層的下表面,以對所 述非晶矽層進行預熱。 Wherein the amorphous germanium layer is formed on a plurality of layers which are formed by superposing a tantalum oxide layer, a tantalum nitride layer and a transparent substrate in order from top to bottom and have a critical plane with the tantalum oxide layer, and wherein In step S11, the solid-state laser device emits a laser to penetrate the transparent substrate, the tantalum nitride layer and the tantalum oxide layer, and finally reaches the amorphous germanium layer and the tantalum oxide layer. The critical surface irradiates the lower surface of the amorphous germanium layer to The amorphous germanium layer is preheated.

其中,所述固態雷射裝置發射的雷射的波長為532nm。 Wherein, the laser emitted by the solid-state laser device has a wavelength of 532 nm.

其中,所述固態雷射裝置發射的雷射的光束尺寸為所述準分子雷射裝置發射的雷射的光束尺寸的1.5倍。 Wherein the laser beam emitted by the solid-state laser device has a beam size 1.5 times that of the laser beam emitted by the excimer laser device.

其中,所述固態雷射裝置發射的雷射為雷射脈衝或連續雷射。 Wherein the laser emitted by the solid state laser device is a laser pulse or a continuous laser.

本發明還提供了一種多晶矽製作方法,包括:(步驟S11’)用固態雷射裝置發射雷射來照射非晶矽層的下表面,以對所述非晶矽層進行加熱;以及(步驟S12’)用準分子雷射裝置發射雷射來照射所述非晶矽層的上表面,以將所述非晶矽層晶化成多晶矽,其中所述步驟S11’與所述步驟S12’同時執行。 The present invention also provides a method for fabricating polysilicon, comprising: (step S11') emitting a laser with a solid-state laser device to illuminate a lower surface of the amorphous germanium layer to heat the amorphous germanium layer; and (step S12) ') emitting a laser with an excimer laser device to illuminate the upper surface of the amorphous germanium layer to crystallize the amorphous germanium layer into a polycrystalline germanium, wherein the step S11' is performed simultaneously with the step S12'.

其中,所述非晶矽層形成於由上到下依次由矽氧化層和透明基板重疊構成的多層之上並與所述矽氧化層具有一臨界面,並且其中,在所述步驟S11’中,用所述固態雷射裝置發射雷射穿透所述透明基板和所述矽氧化層,最後到達所述非晶矽層與所述矽氧化層的所述臨界面來照射所述非晶矽層的下表面,以對所述非晶矽層進行加熱。 Wherein the amorphous germanium layer is formed on a plurality of layers which are formed by overlapping the tantalum oxide layer and the transparent substrate in order from top to bottom and have a critical plane with the tantalum oxide layer, and wherein, in the step S11' Ejecting a laser through the solid-state laser device to penetrate the transparent substrate and the tantalum oxide layer, and finally reaching the critical surface of the amorphous germanium layer and the tantalum oxide layer to illuminate the amorphous germanium The lower surface of the layer is used to heat the amorphous germanium layer.

其中,所述非晶矽層形成於由上到下依次由矽氧化層、氮化矽層和透明基板重疊構成的多層之上並與所述矽氧化層具有一臨界面,並且其中,在所述步驟S11’中,用所述固態雷射裝置發射雷射穿透所述透明基板、所述氮化矽層和所述矽氧化層,最後到達所述非晶矽層與所述矽氧 化層的所述臨界面來照射所述非晶矽層的下表面,以對所述非晶矽層進行加熱。 Wherein the amorphous germanium layer is formed on a plurality of layers which are formed by superposing a tantalum oxide layer, a tantalum nitride layer and a transparent substrate in order from top to bottom and have a critical plane with the tantalum oxide layer, and wherein In step S11', the solid-state laser device emits a laser to penetrate the transparent substrate, the tantalum nitride layer and the tantalum oxide layer, and finally reaches the amorphous germanium layer and the germanium oxide layer. The critical surface of the layer is irradiated to the lower surface of the amorphous germanium layer to heat the amorphous germanium layer.

其中,所述固態雷射裝置發射的雷射的波長為532nm。 Wherein, the laser emitted by the solid-state laser device has a wavelength of 532 nm.

其中,所述固態雷射裝置發射的雷射的光束尺寸為所述準分子雷射裝置發射的雷射的光束尺寸的1.5倍。 Wherein the laser beam emitted by the solid-state laser device has a beam size 1.5 times that of the laser beam emitted by the excimer laser device.

其中,所述固態雷射裝置發射的雷射為雷射脈衝或連續雷射。 Wherein the laser emitted by the solid state laser device is a laser pulse or a continuous laser.

本發明借助於固態雷射裝置發射雷射來照射非晶矽層的下表面,並用準分子雷射裝置發射雷射來照射非晶矽層的上表面,不但能夠縮短非晶矽熔化而晶化成多晶矽的時間,從而有效提高多晶矽的產量,而且,由於降低了非晶矽的熔化和晶化時的溫度梯度,從而能夠有效增加多晶矽的結晶率並改善多晶矽的結晶質量,另外,還可以減少昂貴的準分子雷射裝置的發射次數,從而延長準分子雷射裝置的使用壽命,進一步降低成本。 The invention emits a laser by means of a solid-state laser device to illuminate the lower surface of the amorphous germanium layer, and emits a laser with a pseudo-molecular laser device to illuminate the upper surface of the amorphous germanium layer, which can shorten the melting of the amorphous germanium and crystallize into The time of polycrystalline germanium is effective to increase the yield of polycrystalline germanium. Moreover, since the temperature gradient of melting and crystallization of amorphous germanium is lowered, the crystallinity of polycrystalline germanium can be effectively increased and the crystal quality of polycrystalline germanium can be improved, and in addition, the cost can be reduced. The number of launches of the excimer laser device, thereby extending the service life of the excimer laser device and further reducing the cost.

110、210、310、410‧‧‧非晶矽層 110, 210, 310, 410‧‧‧ amorphous layer

120、220、320、420‧‧‧準分子雷射裝置 120, 220, 320, 420‧‧ ‧ excimer laser devices

130、230、250、330、350、430、450‧‧‧雷射 130, 230, 250, 330, 350, 430, 450 ‧ ‧ laser

240、340、440‧‧‧固態雷射裝置 240, 340, 440‧‧‧ solid state laser devices

360、460‧‧‧矽氧化層 360, 460‧‧‧矽 oxide layer

370、470‧‧‧透明基板 370, 470‧‧‧ Transparent substrate

480‧‧‧氮化矽層 480‧‧‧ nitride layer

S11、S12、S11'、S12'‧‧‧步驟 S11, S12, S11', S12'‧‧‧ steps

下面將參照所附附圖來描述本發明的實施例,其中:第1圖示例性繪示了一種現有技術中採用準分子雷射退火的多晶矽製作方法的示意圖;第2圖示例性繪示了根據本發明的第一實施例的採用準分子雷射退火的多晶矽製作方法的示意圖;第3圖示例性繪示了根據本發明的第二實施例的採 用準分子雷射退火的多晶矽製作方法的示意圖;第4圖示例性繪示了根據本發明的第三實施例的採用準分子雷射退火的多晶矽製作方法的示意圖;第5圖示例性繪示了根據本發明的一個實施例的採用準分子雷射退火的多晶矽製作方法的流程圖;以及第6圖示例性繪示了根據本發明的另一個實施例的採用準分子雷射退火的多晶矽製作方法的流程圖。 Embodiments of the present invention will be described below with reference to the accompanying drawings in which: FIG. 1 exemplarily illustrates a schematic diagram of a prior art polycrystalline germanium fabrication method using excimer laser annealing; FIG. 2 is an exemplary drawing A schematic diagram showing a method of fabricating a polysilicon using excimer laser annealing according to a first embodiment of the present invention; and FIG. 3 exemplarily showing a second embodiment according to the present invention Schematic diagram of a method for fabricating a polycrystalline germanium by excimer laser annealing; FIG. 4 is a view schematically showing a method of fabricating a polycrystalline germanium using excimer laser annealing according to a third embodiment of the present invention; A flow chart illustrating a method of fabricating a polysilicon using excimer laser annealing in accordance with one embodiment of the present invention; and FIG. 6 exemplarily illustrating the use of excimer laser annealing in accordance with another embodiment of the present invention A flow chart of a method for making a polysilicon.

下面將結合第2圖至第6圖詳細描述本發明,其中相同的附圖標記表示相同或相似的設備、物質或步驟。 The invention will be described in detail below with reference to Figures 2 through 6, wherein like reference numerals refer to the same or similar devices, materials or steps.

第2圖示例性繪示了根據本發明的第一實施例的採用準分子雷射退火的多晶矽製作方法的示意圖。如第2圖中所示,與第1圖中所示的現有技術中的採用準分子雷射退火的多晶矽製作方法不同,本發明除了用準分子雷射裝置220發射雷射230來照射非晶矽層210的上表面之外,還用固態雷射裝置240發射雷射250來照射非晶矽層210的下表面,以對非晶矽層210進行預熱或輔助加熱,從而有利於將非晶矽層210的熔化而晶化成多晶矽。 Fig. 2 is a view schematically showing a method of fabricating a polycrystalline germanium using excimer laser annealing according to a first embodiment of the present invention. As shown in FIG. 2, unlike the prior art polycrystalline germanium fabrication method using excimer laser annealing shown in FIG. 1, the present invention emits laser 230 to emit amorphous light by using excimer laser device 220. In addition to the upper surface of the ruthenium layer 210, a laser 250 is emitted by the solid-state laser device 240 to illuminate the lower surface of the amorphous ruthenium layer 210 to preheat or assist the amorphous ruthenium layer 210, thereby facilitating the non- The wafer layer 210 is melted to crystallize into polycrystalline germanium.

其中,用固態雷射裝置240發射雷射250的發射功率和用準分子雷射裝置220發射雷射230的發射功率的選取可以根據非晶矽層210具體的如加工面積、厚度、材質等材料參數、以及所使用的準分子雷射裝置220和固態雷射裝置240具體的如功率、波長、脈衝參數等而定。 Wherein, the emission power of the laser 250 emitted by the solid-state laser device 240 and the emission power of the laser 230 emitted by the excimer laser device 220 may be selected according to materials such as processing area, thickness, material, etc. of the amorphous germanium layer 210. The parameters, as well as the excimer laser device 220 and solid state laser device 240 used, are specific, such as power, wavelength, pulse parameters, and the like.

其中,用固態雷射裝置240發射雷射250來照射非 晶矽層210的下表面可以先於用準分子雷射裝置220發射雷射230來照射非晶矽層210的上表面一預定時間。該預定時間的選取可以根據非晶矽層210具體的如加工面積、厚度、材質等材料參數、以及所使用的準分子雷射裝置220和固態雷射裝置240具體的如功率、波長、脈衝參數等而定。 Wherein, the solid laser device 240 is used to emit the laser 250 to illuminate the non- The lower surface of the wafer layer 210 may be irradiated with the laser 230 by the excimer laser device 220 to illuminate the upper surface of the amorphous germanium layer 210 for a predetermined period of time. The predetermined time may be selected according to specific parameters such as processing area, thickness, material, and the like of the amorphous germanium layer 210, and the excimer laser device 220 and the solid-state laser device 240 used, such as power, wavelength, and pulse parameters. It depends on the same.

其中,用固態雷射裝置240發射雷射250來照射非晶矽210層的下表面可以與用準分子雷射裝置220發射雷射230來照射非晶矽層210的上表面同時進行。 Wherein, the emission of the laser 250 by the solid-state laser device 240 to illuminate the lower surface of the amorphous germanium 210 layer can be performed simultaneously with the emission of the laser 230 by the excimer laser device 220 to illuminate the upper surface of the amorphous germanium layer 210.

其中,固態雷射裝置240是比較廉價的固態雷射裝置,例如能夠發射的雷射250的波長為532nm。 Among them, the solid-state laser device 240 is a relatively inexpensive solid-state laser device, for example, the wavelength of the laser 250 that can be emitted is 532 nm.

其中,為了進一步改善非晶矽層210的受熱效果,例如,固態雷射裝置240發射的雷射250的光束尺寸可以為準分子雷射裝置220發射的雷射230的光束尺寸的1.5倍。例如,如果光束截面是圓形或橢圓形,則光束尺寸是半徑或半軸的尺寸,如果光束截面是矩形,則光束尺寸是長度和寬度。 In order to further improve the heating effect of the amorphous germanium layer 210, for example, the laser light emitted by the solid-state laser device 240 may have a beam size 1.5 times that of the laser 230 emitted by the excimer laser device 220. For example, if the beam section is circular or elliptical, the beam size is the radius or half-axis dimension, and if the beam section is rectangular, the beam size is length and width.

其中,固態雷射裝置240發射的雷射250可以為雷射脈衝或連續雷射。 The laser 250 emitted by the solid state laser device 240 may be a laser pulse or a continuous laser.

本發明借助於固態雷射裝置發射雷射來照射非晶矽層的下表面,並用準分子雷射裝置發射雷射來照射非晶矽層的上表面,不但能夠縮短非晶矽熔化而晶化成多晶矽的時間,從而有效提高多晶矽的產量,而且,由於降低了非晶矽的熔化和晶化時的溫度梯度,從而能夠有效增加多 晶矽的結晶率並改善多晶矽的結晶質量,另外,還可以減少昂貴的準分子雷射裝置的發射次數,從而延長準分子雷射裝置的使用壽命,進一步降低成本。 The invention emits a laser by means of a solid-state laser device to illuminate the lower surface of the amorphous germanium layer, and emits a laser with a pseudo-molecular laser device to illuminate the upper surface of the amorphous germanium layer, which can shorten the melting of the amorphous germanium and crystallize into The time of polycrystalline germanium is effective to increase the yield of polycrystalline germanium, and it can effectively increase the temperature gradient due to the melting and crystallization of amorphous germanium. The crystallinity of the germanium increases the crystal quality of the polycrystalline germanium. In addition, the number of times of emission of the expensive excimer laser device can be reduced, thereby prolonging the service life of the excimer laser device and further reducing the cost.

第3圖示例性繪示了根據本發明的第二實施例的採用準分子雷射退火的多晶矽製作方法的示意圖。如第3圖中所示,與第2圖的不同之處在於,第3圖中的非晶矽層310可以是形成於由上到下依次由矽氧化層(SiOx)360和透明基板370重疊構成的多層之上,並與矽氧化層360具有一臨界面。其中,用固態雷射裝置340發射雷射350穿透透明基板370和矽氧化層360,最後到達非晶矽層310與矽氧化層360的臨界面來照射非晶矽層310的下表面,以對非晶矽層310進行預熱或輔助加熱。由於用固態雷射裝置340發射的雷射350可以透過透明基板370和矽氧化層360,因此,不影響本發明的實施效果。 Fig. 3 is a view schematically showing a method of fabricating a polycrystalline germanium using excimer laser annealing according to a second embodiment of the present invention. As shown in FIG. 3, the difference from FIG. 2 is that the amorphous germanium layer 310 in FIG. 3 may be formed by sequentially overlapping the tantalum oxide layer (SiOx) 360 and the transparent substrate 370 from top to bottom. It is formed on a plurality of layers and has a critical surface with the tantalum oxide layer 360. Wherein, the laser 350 is emitted by the solid-state laser device 340 to penetrate the transparent substrate 370 and the tantalum oxide layer 360, and finally reaches the critical surface of the amorphous germanium layer 310 and the tantalum oxide layer 360 to illuminate the lower surface of the amorphous germanium layer 310. The amorphous germanium layer 310 is preheated or assisted in heating. Since the laser 350 emitted by the solid-state laser device 340 can pass through the transparent substrate 370 and the tantalum oxide layer 360, the effect of the present invention is not affected.

第4圖示例性繪示了根據本發明的第三實施例的採用準分子雷射退火的多晶矽製作方法的示意圖。如第4圖中所示,與第2圖的不同之處在於,第4圖中的非晶矽層410可以是形成於由上到下依次由矽氧化層(SiOx)460、氮化矽層(SiN)480和透明基板470重疊構成的多層之上,並與矽氧化層460具有一臨界面。其中,用固態雷射裝置440發射雷射450穿透透明基板470、氮化矽層480和矽氧化層460,最後到達非晶矽層410與矽氧化層460的臨界面來照射非晶矽層410的下表面,以對非晶矽層進行410預熱。由於用固態雷射裝置440發射的雷射450可以透過透 明基板470、氮化矽層480和矽氧化層460,因此,不影響本發明的實施效果。 Fig. 4 is a view schematically showing a method of fabricating a polycrystalline germanium using excimer laser annealing according to a third embodiment of the present invention. As shown in FIG. 4, the difference from FIG. 2 is that the amorphous germanium layer 410 in FIG. 4 may be formed by a tantalum oxide layer (SiOx) 460 and a tantalum nitride layer in this order from top to bottom. The (SiN) 480 and the transparent substrate 470 are overlaid on the plurality of layers and have a critical plane with the tantalum oxide layer 460. Wherein, the laser 450 is emitted by the solid-state laser device 440 to penetrate the transparent substrate 470, the tantalum nitride layer 480 and the tantalum oxide layer 460, and finally reaches the critical surface of the amorphous germanium layer 410 and the tantalum oxide layer 460 to illuminate the amorphous germanium layer. The lower surface of 410 is preheated 410 for the amorphous germanium layer. Since the laser 450 emitted by the solid state laser device 440 can pass through The substrate 470, the tantalum nitride layer 480, and the tantalum oxide layer 460 are thus not affected by the effects of the present invention.

結合第2圖至第4圖,第5圖示例性繪示了根據本發明的一個實施例的採用準分子雷射退火的多晶矽製作方法的流程圖。如第5圖中所示,本實施例的多晶矽製作方法包括:首先,執行步驟S11,用固態雷射裝置發射雷射來照射非晶矽層的下表面,以對非晶矽層進行預熱。 In conjunction with FIGS. 2 through 4, FIG. 5 exemplarily illustrates a flow chart of a method of fabricating a polysilicon using excimer laser annealing in accordance with an embodiment of the present invention. As shown in FIG. 5, the polysilicon manufacturing method of the present embodiment includes: first, performing step S11, irradiating a laser with a solid-state laser device to illuminate a lower surface of the amorphous germanium layer, and preheating the amorphous germanium layer. .

在一預定時間之後,執行步驟S12,用準分子雷射裝置發射雷射來照射非晶矽層的上表面,以將非晶矽層晶化成多晶矽。 After a predetermined time, step S12 is performed to emit a laser with a pseudo-molecular laser device to illuminate the upper surface of the amorphous germanium layer to crystallize the amorphous germanium layer into polycrystalline germanium.

其中,用固態雷射裝置發射雷射的發射功率和用準分子雷射裝置發射雷射的發射功率的選取可以根據非晶矽層具體的如加工面積、厚度、材質等材料參數、以及所使用的準分子雷射裝置和固態雷射裝置具體的如功率、波長、脈衝參數等而定。 Wherein, the emission power of the laser emitted by the solid-state laser device and the emission power of the laser emitted by the excimer laser device may be selected according to specific parameters such as processing area, thickness, material, and the like of the amorphous germanium layer. Excimer laser devices and solid state laser devices are specifically determined by power, wavelength, pulse parameters, and the like.

其中,預定時間的選取可以根據非晶矽層具體的如加工面積、厚度、材質等材料參數、以及所使用的準分子雷射裝置和固態雷射裝置具體的如功率、波長、脈衝參數等而定。 Wherein, the predetermined time may be selected according to specific parameters such as processing area, thickness, material and the like of the amorphous germanium layer, and the specific excimer laser device and solid-state laser device used, such as power, wavelength, pulse parameters, etc. set.

其中,固態雷射裝置是比較廉價的固態雷射裝置,例如能夠發射的雷射的波長為532nm。 Among them, the solid-state laser device is a relatively inexpensive solid-state laser device, for example, the wavelength of the laser that can be emitted is 532 nm.

其中,為了進一步改善非晶矽層的受熱效果,例如,固態雷射裝置發射的雷射的光束尺寸可以為準分子雷 射裝置發射的雷射的光束尺寸的1.5倍。例如,如果光束截面是圓形或橢圓形,則光束尺寸是半徑或半軸的尺寸,如果光束截面是矩形,則光束尺寸是長度和寬度。 Wherein, in order to further improve the heating effect of the amorphous germanium layer, for example, the beam size of the laser emitted by the solid-state laser device may be an excimer mine The laser beam emitted by the launching device is 1.5 times the beam size. For example, if the beam section is circular or elliptical, the beam size is the radius or half-axis dimension, and if the beam section is rectangular, the beam size is length and width.

其中,固態雷射裝置發射的雷射可以為雷射脈衝或連續雷射。 Wherein, the laser emitted by the solid state laser device may be a laser pulse or a continuous laser.

第6圖示例性繪示了根據本發明的另一個實施例的採用準分子雷射退火的多晶矽製作方法的流程圖。如第6圖中所示,本實施例的多晶矽製作方法包括:執行步驟S11’,用固態雷射裝置發射雷射來照射非晶矽層的下表面,以對非晶矽層進行加熱,同時,執行步驟S12’,用準分子雷射裝置發射雷射來照射非晶矽層的上表面,以將非晶矽層晶化成多晶矽。 Figure 6 is a flow chart exemplarily illustrating a method of fabricating a polysilicon using excimer laser annealing in accordance with another embodiment of the present invention. As shown in FIG. 6, the polysilicon manufacturing method of the present embodiment includes: performing step S11' to emit a laser by a solid-state laser device to illuminate a lower surface of the amorphous germanium layer to heat the amorphous germanium layer while Step S12' is performed to emit a laser with a pseudo-molecular laser device to illuminate the upper surface of the amorphous germanium layer to crystallize the amorphous germanium layer into polycrystalline germanium.

其中,用固態雷射裝置發射雷射的發射功率和用準分子雷射裝置發射雷射的發射功率的選取可以根據非晶矽層具體的如加工面積、厚度、材質等材料參數、以及所使用的準分子雷射裝置和固態雷射裝置具體的如功率、波長、脈衝參數等而定。 Wherein, the emission power of the laser emitted by the solid-state laser device and the emission power of the laser emitted by the excimer laser device may be selected according to specific parameters such as processing area, thickness, material, and the like of the amorphous germanium layer. Excimer laser devices and solid state laser devices are specifically determined by power, wavelength, pulse parameters, and the like.

其中,固態雷射裝置是比較廉價的固態雷射裝置,例如能夠發射的雷射的波長為532nm。 Among them, the solid-state laser device is a relatively inexpensive solid-state laser device, for example, the wavelength of the laser that can be emitted is 532 nm.

其中,為了進一步改善非晶矽層的受熱效果,例如,固態雷射裝置發射的雷射的光束尺寸可以為準分子雷射裝置發射的雷射的光束尺寸的1.5倍。例如,如果光束截面是圓形或橢圓形,則光束尺寸是半徑或半軸的尺寸,如果光束截面是矩形,則光束尺寸是長度和寬度。 In order to further improve the heating effect of the amorphous germanium layer, for example, the laser beam emitted by the solid-state laser device may have a beam size 1.5 times that of the laser beam emitted by the excimer laser device. For example, if the beam section is circular or elliptical, the beam size is the radius or half-axis dimension, and if the beam section is rectangular, the beam size is length and width.

其中,固態雷射裝置發射的雷射為雷射脈衝或連續雷射。 Among them, the laser emitted by the solid-state laser device is a laser pulse or a continuous laser.

本發明借助於固態雷射裝置發射雷射來照射非晶矽層的下表面,並用準分子雷射裝置發射雷射來照射非晶矽層的上表面,不但能夠縮短非晶矽熔化而晶化成多晶矽的時間,從而有效提高多晶矽的產量,而且,由於降低了非晶矽的熔化和晶化時的溫度梯度,從而能夠有效增加多晶矽的結晶率並改善多晶矽的結晶質量,另外,還可以減少昂貴的準分子雷射裝置的發射次數,從而延長準分子雷射裝置的使用壽命,進一步降低成本。 The invention emits a laser by means of a solid-state laser device to illuminate the lower surface of the amorphous germanium layer, and emits a laser with a pseudo-molecular laser device to illuminate the upper surface of the amorphous germanium layer, which can shorten the melting of the amorphous germanium and crystallize into The time of polycrystalline germanium is effective to increase the yield of polycrystalline germanium. Moreover, since the temperature gradient of melting and crystallization of amorphous germanium is lowered, the crystallinity of polycrystalline germanium can be effectively increased and the crystal quality of polycrystalline germanium can be improved, and in addition, the cost can be reduced. The number of launches of the excimer laser device, thereby extending the service life of the excimer laser device and further reducing the cost.

雖然已參照典型實施例描述了本發明,但應當理解,所用的術語是說明和示例性、而非限制性的術語。由於本發明能夠以多種形式具體實施,所以應當理解,上述實施例不限於任何前述的細節,而應在隨附申請專利範圍所限定的範圍內廣泛地解釋,因此落入申請專利範圍或其等同範圍內的全部變化和改型都應為隨附申請專利範圍所涵蓋。 While the invention has been described with respect to the preferred embodiments, the embodiments Since the present invention can be embodied in a variety of forms, it should be understood that the above-described embodiments are not limited to the details of the foregoing, but are to be construed broadly within the scope of the appended claims, All changes and modifications within the scope are intended to be covered by the accompanying claims.

S11、S12‧‧‧步驟 S11, S12‧‧‧ steps

Claims (12)

一種多晶矽的製造方法,包括:(步驟S11)用固態雷射裝置發射雷射來照射非晶矽層的下表面,以對該非晶矽層進行預熱;以及(步驟S12)用準分子雷射裝置發射雷射來照射該非晶矽層的上表面,以將該非晶矽層晶化成多晶矽,其中該步驟S11先於該步驟S12一預定時間執行。 A method for manufacturing a polycrystalline silicon, comprising: (Step S11) emitting a laser with a solid-state laser device to illuminate a lower surface of the amorphous germanium layer to preheat the amorphous germanium layer; and (step S12) using a pseudo-molecular laser The device emits a laser to illuminate the upper surface of the amorphous germanium layer to crystallize the amorphous germanium layer into polycrystalline germanium, wherein the step S11 is performed before the step S12 for a predetermined time. 如請求項1所述的多晶矽製造方法,其中該非晶矽層形成於由上到下依次由矽氧化層和透明基板重疊構成的多層之上並與該矽氧化層具有一臨界面,並且其中,在該步驟S11中,用該固態雷射裝置發射雷射穿透該透明基板和該矽氧化層,最後到達該非晶矽層與該矽氧化層的該臨界面來照射該非晶矽層的下表面,以對該非晶矽層進行預熱。 The polycrystalline silicon germanium manufacturing method according to claim 1, wherein the amorphous germanium layer is formed on a plurality of layers which are formed by superposing a tantalum oxide layer and a transparent substrate in order from top to bottom and has a critical plane with the tantalum oxide layer, and wherein In the step S11, the solid laser device emits a laser to penetrate the transparent substrate and the tantalum oxide layer, and finally reaches the amorphous germanium layer and the critical surface of the tantalum oxide layer to illuminate the lower surface of the amorphous germanium layer. To preheat the amorphous germanium layer. 如請求項1所述的多晶矽製造方法,其中該非晶矽層形成於由上到下依次由矽氧化層、氮化矽層和透明基板重疊構成的多層之上並與該矽氧化層具有一臨界面,並且其中,在該步驟S11中,用該固態雷射裝置發射雷射穿透該透明基板、該氮化矽層和該矽氧化層,最後到達該非晶矽層與該矽氧化層的該臨界面來照射該非晶矽層的下表面,以對該非晶矽層進行預熱。 The polycrystalline silicon germanium manufacturing method according to claim 1, wherein the amorphous germanium layer is formed on a plurality of layers which are formed by superposing a tantalum oxide layer, a tantalum nitride layer and a transparent substrate in order from top to bottom and have a critical relationship with the tantalum oxide layer. And wherein, in the step S11, the solid laser device is used to emit a laser beam that penetrates the transparent substrate, the tantalum nitride layer and the tantalum oxide layer, and finally reaches the amorphous germanium layer and the tantalum oxide layer. A critical surface is used to illuminate the lower surface of the amorphous germanium layer to preheat the amorphous germanium layer. 如請求項1至3中任何一項所述的多晶矽製造方法,其中,該固態雷射裝置發射的雷射的波長為523、532nm。 The method of manufacturing a polysilicon according to any one of claims 1 to 3, wherein the laser emitted by the solid-state laser device has a wavelength of 523 and 532 nm. 如請求項4所述的多晶矽製造方法,其中該固態雷射裝置發射的雷射的光束尺寸為該準分子雷射裝置發射的雷射的光束尺寸的1倍到1.5倍。 The method of manufacturing a polysilicon according to claim 4, wherein the laser beam emitted by the solid-state laser device has a beam size that is one to 1.5 times the beam size of the laser emitted by the excimer laser device. 如請求項4所述的多晶矽製造方法,其中該固態雷射裝置發射的雷射為雷射脈衝或連續雷射。 The method of manufacturing a polysilicon according to claim 4, wherein the laser emitted by the solid-state laser device is a laser pulse or a continuous laser. 一種多晶矽的製造方法,包括:(步驟S11’)用固態雷射裝置發射雷射來照射非晶矽層的下表面,以對該非晶矽層進行加熱;以及(步驟S12’)用準分子雷射裝置發射雷射來照射該非晶矽層的上表面,以將該非晶矽層晶化成多晶矽,其中該步驟S11’與該步驟S12’同時執行。 A method for manufacturing a polycrystalline silicon, comprising: (Step S11') emitting a laser with a solid-state laser device to illuminate a lower surface of the amorphous germanium layer to heat the amorphous germanium layer; and (step S12') using a pseudo-molecular thunder The emitting device emits a laser to illuminate the upper surface of the amorphous germanium layer to crystallize the amorphous germanium layer into a polycrystalline germanium, wherein the step S11' is performed simultaneously with the step S12'. 如請求項7所述的多晶矽製造方法,其中該非晶矽層形成於由上到下依次由矽氧化層和透明基板重疊構成的多層之上並與該矽氧化層具有一臨界面,並且其中,在該步驟S11’中,用該固態雷射裝置發射雷射穿透該透明基板和該矽氧化層,最後到達該非晶矽層與該矽氧化層的該臨界面來照射該非晶矽層的下表面,以對該非晶矽層進行加熱。 The polycrystalline silicon germanium manufacturing method according to claim 7, wherein the amorphous germanium layer is formed on a plurality of layers which are formed by superposing a tantalum oxide layer and a transparent substrate in order from top to bottom and has a critical plane with the tantalum oxide layer, and wherein In the step S11', the solid laser device emits a laser to penetrate the transparent substrate and the tantalum oxide layer, and finally reaches the amorphous germanium layer and the critical surface of the tantalum oxide layer to illuminate the amorphous germanium layer. The surface is heated to the amorphous germanium layer. 如請求項7所述的多晶矽製造方法,其中,該非晶矽層形成於由上到下依次由矽氧化層、氮化矽層和透明基板重疊構成的多層之上並與該矽氧化層具有一臨界面,並且其中,在該步驟S11’中,用該固態雷射裝置發射雷射穿透該透明基板、該氮化矽層和該矽氧化層,最後到達該非晶矽層與該矽氧化層的 該臨界面來照射該非晶矽層的下表面,以對該非晶矽層進行加熱。 The polycrystalline germanium manufacturing method according to claim 7, wherein the amorphous germanium layer is formed on a plurality of layers which are formed by superposing a tantalum oxide layer, a tantalum nitride layer, and a transparent substrate in order from top to bottom, and have a layer with the tantalum oxide layer. a critical plane, and wherein, in the step S11', the solid laser device emits a laser to penetrate the transparent substrate, the tantalum nitride layer and the tantalum oxide layer, and finally reaches the amorphous germanium layer and the tantalum oxide layer of The critical surface irradiates the lower surface of the amorphous germanium layer to heat the amorphous germanium layer. 如請求項7至9中任何一項所述的多晶矽製造方法,其中該固態雷射裝置發射的雷射的波長為523nm、532nm。 The method of manufacturing a polysilicon according to any one of claims 7 to 9, wherein the laser emitted by the solid-state laser device has a wavelength of 523 nm and 532 nm. 如請求項10所述的製造方法,其中該固態雷射裝置發射的雷射的光束尺寸為該準分子雷射裝置發射的雷射的光束尺寸的1倍到1.5倍。 The manufacturing method of claim 10, wherein the laser beam emitted by the solid-state laser device has a beam size that is one to 1.5 times the beam size of the laser emitted by the excimer laser device. 如請求項11中任何一項所述的多晶矽製造方法,其中該固態雷射裝置發射的雷射為雷射脈衝或連續雷射。 The method of manufacturing a polysilicon according to any one of claims 1 to 11, wherein the laser emitted by the solid-state laser device is a laser pulse or a continuous laser.
TW102137171A 2013-07-04 2013-10-15 Method for manufacturing polysilicon TWI521601B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310280262.3A CN104282539A (en) 2013-07-04 2013-07-04 Polycrystalline silicon manufacturing method

Publications (2)

Publication Number Publication Date
TW201503261A TW201503261A (en) 2015-01-16
TWI521601B true TWI521601B (en) 2016-02-11

Family

ID=52257323

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102137171A TWI521601B (en) 2013-07-04 2013-10-15 Method for manufacturing polysilicon

Country Status (3)

Country Link
JP (1) JP2015015471A (en)
CN (1) CN104282539A (en)
TW (1) TWI521601B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105489487A (en) 2016-01-14 2016-04-13 京东方科技集团股份有限公司 Preparing method of low-temperature polysilicon film, preparing method of low-temperature polysilicon film transistor, and laser crystallization device
CN106328497B (en) * 2016-10-28 2020-05-19 昆山国显光电有限公司 Low-temperature polycrystalline silicon film, preparation method thereof and display device
CN115415181B (en) * 2022-07-28 2024-04-23 中国电子科技集团公司第二十九研究所 Countersunk rivet cam type screening tool and use method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4919530B2 (en) * 1999-08-18 2012-04-18 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US6451631B1 (en) * 2000-08-10 2002-09-17 Hitachi America, Ltd. Thin film crystal growth by laser annealing
JP2002217125A (en) * 2001-01-23 2002-08-02 Sumitomo Heavy Ind Ltd Surface treatment apparatus and its method
JP4364611B2 (en) * 2002-11-29 2009-11-18 株式会社半導体エネルギー研究所 Method for manufacturing crystalline semiconductor film
US7547866B2 (en) * 2004-04-28 2009-06-16 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and method for manufacturing semiconductor device including an autofocusing mechanism using the same
TW200841474A (en) * 2007-04-13 2008-10-16 Chunghwa Picture Tubes Ltd Method for fabricating thin film transistors
JP4481347B2 (en) * 2009-04-24 2010-06-16 シャープ株式会社 Polycrystalline semiconductor film forming method, semiconductor device manufacturing method, and semiconductor device manufacturing apparatus

Also Published As

Publication number Publication date
TW201503261A (en) 2015-01-16
CN104282539A (en) 2015-01-14
JP2015015471A (en) 2015-01-22

Similar Documents

Publication Publication Date Title
JP4864596B2 (en) Method for producing polycrystalline silicon thin film and method for producing thin film transistor using this method
JP2009135448A5 (en)
EP1912252A1 (en) Polysilicon thin film transistor and method of fabricating the same
JP2009135453A5 (en)
TWI521601B (en) Method for manufacturing polysilicon
KR101015844B1 (en) Thin Film Transistor, The Fabricating Method of The Same and Organic Light Emitted Desplay Device Comprising The Same
JP5084185B2 (en) Manufacturing method of semiconductor thin film
JP5299950B2 (en) Semiconductor manufacturing method
JP5918160B2 (en) Gettering semiconductor wafer and manufacturing method thereof
KR102201923B1 (en) Method for forming polysilicon
JP2008270243A (en) Manufacturing method of semiconductor device
JP4165305B2 (en) Crystalline semiconductor material manufacturing method and semiconductor device manufacturing method
WO2016155149A1 (en) Preparation method for polycrystalline silicon thin film, semiconductor device, display substrate and display device
TWI467659B (en) Fabricating method of crystalline film and fabricating apparatus of the same
JP2012507878A (en) Method and apparatus for heating a layer of plate-like material by priming and luminous flux
JP2014175651A (en) Method for forming polycrystalline silicon by high-energy radiation
JP5235462B2 (en) Laser processing method and semiconductor device
JP2005276944A (en) Semiconductor device, and device and method for manufacturing the same
JP2003224070A5 (en)
CN111095482A (en) Method for treating target material
JP2007207896A (en) Laser beam projection mask, laser processing method using same, laser processing apparatus
JP2003163164A (en) Crystalline semiconductor film and its forming method
JP2004158584A (en) Apparatus for manufacturing polycrystalline silicon film, manufacturing method by using the same, and semiconductor device
WO2012081474A1 (en) Method for forming crystalline semiconductor film
JP2014060184A (en) Method of forming low temperature polysilicon film and method of manufacturing thin film transistor

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees