TWI520343B - Double trench power semiconductor device and fabrication method thereof - Google Patents

Double trench power semiconductor device and fabrication method thereof Download PDF

Info

Publication number
TWI520343B
TWI520343B TW103128682A TW103128682A TWI520343B TW I520343 B TWI520343 B TW I520343B TW 103128682 A TW103128682 A TW 103128682A TW 103128682 A TW103128682 A TW 103128682A TW I520343 B TWI520343 B TW I520343B
Authority
TW
Taiwan
Prior art keywords
trench
power semiconductor
semiconductor device
dual
forming
Prior art date
Application number
TW103128682A
Other languages
Chinese (zh)
Other versions
TW201608722A (en
Inventor
許志維
魏拯華
李龍杰
李坤彥
黃智方
Original Assignee
敦南科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 敦南科技股份有限公司 filed Critical 敦南科技股份有限公司
Priority to TW103128682A priority Critical patent/TWI520343B/en
Priority to CN201410430829.5A priority patent/CN105405882A/en
Application granted granted Critical
Publication of TWI520343B publication Critical patent/TWI520343B/en
Publication of TW201608722A publication Critical patent/TW201608722A/en

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

雙溝槽式的功率半導體元件及其製造方法 Double-groove power semiconductor component and method of manufacturing same

本發明有關於一種半導體元件結構及其製造方法,且特別是關於一種溝槽功率半導體元件及其製造方法。 The present invention relates to a semiconductor device structure and a method of fabricating the same, and more particularly to a trench power semiconductor device and a method of fabricating the same.

相較於傳統的平面式功率半導體,其導通電流是沿著平行基材表面的走向流動,溝槽式功率半導體則是將閘極設置於溝槽內,以改變閘極通道的位置,使得導通電流沿著垂直於基材的方向流動。因而可以縮小元件尺寸,提高元件的積集度(integration)。常見的功率半導體包括金氧半導體場效應電晶體(MOSFET)、絕緣閘二極電晶體(IGBT)等。 Compared with the conventional planar power semiconductor, the on current flows along the parallel substrate surface, and the trench power semiconductor places the gate in the trench to change the position of the gate channel to make the conduction. The current flows in a direction perpendicular to the substrate. Therefore, the size of the component can be reduced, and the integration of the component can be improved. Common power semiconductors include metal oxide semiconductor field effect transistors (MOSFETs), insulated gate bipolar transistors (IGBTs), and the like.

本發明實施例提供一種雙溝槽式的功率半導體元件,包括一基材、位於所述基材內的一第一溝槽、位於所述基材內的一第二溝槽、一第一導電型的漂移區、一第一介電層、一第一閘極結構、一第二導電型的第一摻雜層以及一第一導電型的源極區。漂移區位於所述第一溝槽與所述第二溝槽之間與下方。第一介電層覆蓋所述第一溝槽的內側表面,第一閘極結構位於所述第一溝槽內。第一摻雜層位於所述漂移區內且緊鄰所述第二溝槽,其中所述第二導電型的電性與所述第一導電型的電性相反。源極區位於所述漂移區的上部分。 Embodiments of the present invention provide a dual-trench power semiconductor device including a substrate, a first trench in the substrate, a second trench in the substrate, and a first conductive The drift region of the type, a first dielectric layer, a first gate structure, a first doped layer of a second conductivity type, and a source region of a first conductivity type. A drift region is located between and below the first trench and the second trench. A first dielectric layer covers an inner side surface of the first trench, and a first gate structure is located within the first trench. A first doped layer is located in the drift region and in close proximity to the second trench, wherein electrical properties of the second conductivity type are opposite to electrical properties of the first conductivity type. A source region is located in an upper portion of the drift region.

本發明實施例提供一種雙溝槽式功率半導體元件的製造方法之製造方法,包括下列步驟:提供一基材,所述基材具有一第一 導電型的漂移區;形成一第一溝槽於所述基材內;形成一第二溝槽於所述基材內,所述漂移區位於所述第一溝槽與所述第二溝槽之間;形成一第二導電型的第一摻雜層於所述漂移區內,所述第一摻雜層緊鄰所述第二溝槽,且所述第二導電型的電性與所述第一導電型的電性相反;形成一第一介電層覆蓋所述第一溝槽的內側表面;形成一第一閘極結構於所述第一溝槽內;以及形成一第一導電型的源極區於所述漂移區的上部分。 Embodiments of the present invention provide a method of fabricating a method of fabricating a dual-trench power semiconductor device, comprising the steps of: providing a substrate, the substrate having a first a conductive drift region; forming a first trench in the substrate; forming a second trench in the substrate, the drift region being located in the first trench and the second trench Forming a first doped layer of a second conductivity type in the drift region, the first doped layer is adjacent to the second trench, and the electrical conductivity of the second conductivity type is The first conductivity type is electrically opposite; forming a first dielectric layer covering the inner surface of the first trench; forming a first gate structure in the first trench; and forming a first conductivity type The source region is in the upper portion of the drift region.

為使能更進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明的詳細說明與附圖,然而所附圖式僅提供參考與說明用,並非用來對本發明加以限制者。 For a better understanding of the features and technical aspects of the present invention, reference should be made to the accompanying drawings.

110‧‧‧基板 110‧‧‧Substrate

120‧‧‧磊晶層 120‧‧‧ epitaxial layer

130‧‧‧第一溝槽 130‧‧‧First trench

132‧‧‧第一介電層 132‧‧‧First dielectric layer

134‧‧‧第一閘極結構 134‧‧‧First gate structure

140‧‧‧第二溝槽 140‧‧‧Second trench

142‧‧‧第二介電層 142‧‧‧Second dielectric layer

144‧‧‧第二閘極結構 144‧‧‧Second gate structure

146‧‧‧虛擬閘極結構 146‧‧‧Virtual gate structure

150‧‧‧第一摻雜層 150‧‧‧First doped layer

160‧‧‧第二摻雜層 160‧‧‧Second doped layer

170‧‧‧源極區 170‧‧‧ source area

180‧‧‧源極金屬層 180‧‧‧ source metal layer

190‧‧‧汲極金屬層 190‧‧‧汲metal layer

200‧‧‧硬質遮罩 200‧‧‧hard mask

300‧‧‧光阻層 300‧‧‧ photoresist layer

圖1為本發明一實施例之雙溝槽式的功率半導體元件的剖面示意圖;圖2為本發明另一實施例之雙溝槽式的功率半導體元件的剖面示意圖;圖3A至圖3H為本發明一實施例之雙溝槽式的功率半導體元件在製造過程中的剖面示意圖;圖4A至圖4E為本發明另一實施例之雙溝槽式的功率半導體元件在製造過程中的剖面示意圖。 1 is a cross-sectional view of a dual trench power semiconductor device according to an embodiment of the present invention; and FIG. 2 is a cross-sectional view of a dual trench power semiconductor device according to another embodiment of the present invention; FIG. 3A to FIG. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 4A to FIG. 4E are schematic cross-sectional views showing a double-trench power semiconductor device according to another embodiment of the present invention in a manufacturing process. FIG.

請參圖1,圖1為本發明一實施例之雙溝槽式的功率半導體元件的剖面示意圖。功率半導體元件包括N型基板110、N型磊晶層120、第一溝槽130、第二溝槽140、第一介電層132、第一閘極結構134、虛擬閘極結構146、P型的第一摻雜層150、N型的源極區170、源極金屬層180及汲極金屬層190。基板110與形成於基板110上的磊晶層120構成功率半導體元件的基材,其中所述基材的材料例如包括碳化矽。N型基板110可作為功率半導體元件的汲極區,N型磊晶層120可作為功率半導體元件的漂移區。 第一溝槽130及第二溝槽140皆位於功率半導體元件的基材內。第一介電層132覆蓋第一溝槽130的內側表面,第一閘極結構134位於第一溝槽130內。虛擬閘極結構146位於第二溝槽140內,虛擬閘極結構146可包括填入第二溝槽140內的絕緣材料。P型的第一摻雜層150位於漂移區內且緊鄰第二溝槽140。源極區170位於漂移區的上部分。 Referring to FIG. 1, FIG. 1 is a cross-sectional view of a dual trench power semiconductor device according to an embodiment of the present invention. The power semiconductor device includes an N-type substrate 110, an N-type epitaxial layer 120, a first trench 130, a second trench 140, a first dielectric layer 132, a first gate structure 134, a dummy gate structure 146, and a P-type The first doped layer 150, the N-type source region 170, the source metal layer 180, and the drain metal layer 190. The substrate 110 and the epitaxial layer 120 formed on the substrate 110 constitute a substrate of the power semiconductor element, wherein the material of the substrate includes, for example, tantalum carbide. The N-type substrate 110 can serve as a drain region of a power semiconductor device, and the N-type epitaxial layer 120 can serve as a drift region of a power semiconductor device. The first trench 130 and the second trench 140 are both located within the substrate of the power semiconductor component. The first dielectric layer 132 covers the inner side surface of the first trench 130 , and the first gate structure 134 is located in the first trench 130 . The dummy gate structure 146 is located within the second trench 140, and the dummy gate structure 146 can include an insulating material that fills the second trench 140. The P-type first doped layer 150 is located in the drift region and in close proximity to the second trench 140. Source region 170 is located in the upper portion of the drift region.

請參圖2,圖2為本發明另一實施例之雙溝槽式的功率半導體元件的剖面示意圖。功率半導體元件包括N型基板110、N型磊晶層120、第一溝槽130、第二溝槽140、第一介電層132、第一閘極結構134、第二介電層142、第二閘極結構144、P型的第一摻雜層150、P型的第二摻雜層160、N型的源極區170、源極金屬層180及汲極金屬層190。 Referring to FIG. 2, FIG. 2 is a cross-sectional view of a dual trench power semiconductor device according to another embodiment of the present invention. The power semiconductor device includes an N-type substrate 110, an N-type epitaxial layer 120, a first trench 130, a second trench 140, a first dielectric layer 132, a first gate structure 134, a second dielectric layer 142, and a first The second gate structure 144, the P-type first doped layer 150, the P-type second doped layer 160, the N-type source region 170, the source metal layer 180, and the gate metal layer 190.

本實施之功率半導體元件不具有虛擬閘極結構,而是具有雙邊的溝槽閘極結構,其中第二介電層142覆蓋第二溝槽140的內側表面,第二閘極結構144位於第二溝槽140內。此外,本實施之功率半導體元件除了具有P型的第一摻雜層150,更包括P型的第二摻雜層,其中P型的第二摻雜層160位於漂移區內且緊鄰第一溝槽130。 The power semiconductor device of the present embodiment does not have a dummy gate structure, but has a bilateral trench gate structure in which the second dielectric layer 142 covers the inner side surface of the second trench 140, and the second gate structure 144 is located at the second Inside the trench 140. In addition, the power semiconductor device of the present embodiment further includes a P-type first doped layer 150, and further includes a P-type second doped layer, wherein the P-type second doped layer 160 is located in the drift region and adjacent to the first trench. Slot 130.

請參圖3A至圖3H,圖3A至圖3H為本發明一實施例之雙溝槽式的功率半導體元件在製造過程中的剖面示意圖。圖3A至圖3H中以N型功率半導體元件為例進行說明,但本發明實施例不限於此。本發明實施例當然也可適用於P型的功率半導體元件。 Referring to FIG. 3A to FIG. 3H, FIG. 3A to FIG. 3H are schematic cross-sectional views showing a double-trench power semiconductor device in a manufacturing process according to an embodiment of the present invention. The N-type power semiconductor device is described as an example in FIGS. 3A to 3H, but the embodiment of the present invention is not limited thereto. Embodiments of the invention are of course also applicable to P-type power semiconductor components.

如圖3A所示,首先,形成N型磊晶層120於N型基板110上,以形成製作雙溝槽式功率半導體元件的基材。於本實施例中,基材的材料例如包括碳化矽。接著,先形成第二溝槽140於磊晶層120內。接下来,如圖3B所示,可先於基材的表面形成硬質遮罩200以定義出後續形成的P型第一摻雜層的位置。然後,可透過硬質遮罩200對基材施以一斜向植入(如圖3B中的箭頭所示), 以將P型摻雜穿過第二溝槽140的側壁及底部而注入基材,高溫活化製程,使P型摻雜活化以形成P型第一摻雜層150。如圖3C所示,P型第一摻雜層150位於漂移區內且緊鄰第二溝槽140的側壁與底部。隨後,移除硬質遮罩200。值得注意的是,於本發明另一未繪示的實施例中,P型第一摻雜層150可僅緊鄰第二溝槽140的側壁及底部兩者中之一。 As shown in FIG. 3A, first, an N-type epitaxial layer 120 is formed on an N-type substrate 110 to form a substrate on which a double trench power semiconductor device is fabricated. In the present embodiment, the material of the substrate includes, for example, tantalum carbide. Next, a second trench 140 is first formed in the epitaxial layer 120. Next, as shown in FIG. 3B, a hard mask 200 may be formed prior to the surface of the substrate to define the position of the subsequently formed P-type first doped layer. Then, the substrate can be obliquely implanted through the hard mask 200 (as indicated by the arrow in FIG. 3B). The P-type dopant is implanted into the substrate through the sidewalls and the bottom of the second trench 140, and the P-type dopant is activated to form the P-type first doped layer 150. As shown in FIG. 3C, the P-type first doping layer 150 is located in the drift region and adjacent to the sidewalls and bottom of the second trench 140. Subsequently, the hard mask 200 is removed. It should be noted that in another embodiment of the present invention, the P-type first doping layer 150 may be adjacent to only one of the sidewalls and the bottom of the second trench 140.

接下来,如圖3D所示,可先於基材的表面形成具有圖案的光阻層300以定義出後續形成的N型源極區的位置。然後,可透過光阻層300對基材施以一離子植入(如圖3D中的箭頭所示),以將N型摻雜注入基材,並透過高溫活化製程,使N型摻雜活化以形成N型源極區170於漂移區120的一上部分,如圖3E所示。隨后,移除光阻層300。 Next, as shown in FIG. 3D, a patterned photoresist layer 300 may be formed prior to the surface of the substrate to define the location of the subsequently formed N-type source region. Then, the substrate can be ion-implanted through the photoresist layer 300 (as indicated by the arrow in FIG. 3D) to inject the N-type dopant into the substrate and pass through the high-temperature activation process to activate the N-type dopant. An N-type source region 170 is formed in an upper portion of the drift region 120, as shown in FIG. 3E. Subsequently, the photoresist layer 300 is removed.

值得一提的是,於本發明另一實施例中,前述用以形成P型第一摻雜層150的高溫活化製程可待上述N型摻雜之離子植入完成後,與上述用以形成N型源極區170高溫活化製程合併於同一步驟中實施。 It is to be noted that, in another embodiment of the present invention, the high temperature activation process for forming the P-type first doping layer 150 may be performed after the ion implantation of the N-type doping is completed. The N-type source region 170 high temperature activation process is combined and implemented in the same step.

接下来,如圖3F所示,形成第一溝槽130於磊晶層120內,其中第一溝槽130的溝槽深度是小於第二溝槽140的溝槽深度,但本發明實施例並不以此為限。此外,第一溝槽130與第二溝槽140可分別於不同步驟中形成,或者,於同一個步驟中形成。詳細地說,可透過佈設具有所需第一溝槽130以及第二溝槽140圖案之光罩(未繪示)於基材的表面,並藉由微影以及蝕刻等製程分別以同一個或不同光罩形成第一溝槽130以及第二溝槽140。 Next, as shown in FIG. 3F, a first trench 130 is formed in the epitaxial layer 120, wherein the trench depth of the first trench 130 is smaller than the trench depth of the second trench 140, but the embodiment of the present invention Not limited to this. In addition, the first trench 130 and the second trench 140 may be formed in different steps, respectively, or in the same step. In detail, a photomask (not shown) having a pattern of the first trench 130 and the second trench 140 may be disposed on the surface of the substrate, and the same process may be performed by lithography and etching, respectively. The different masks form the first trench 130 and the second trench 140.

接下来,如圖3G所示,沿著第一溝槽130的內側表面起伏,形成第一介電層132覆盖第一溝槽130的內側表面。然後,形成第一閘極結構134於第一溝槽130內,作為本實施例的雙溝槽式功率半導體元件的第一閘極。 Next, as shown in FIG. 3G, along the inner side surface of the first trench 130, a first dielectric layer 132 is formed to cover the inner side surface of the first trench 130. Then, a first gate structure 134 is formed in the first trench 130 as the first gate of the dual trench power semiconductor device of the present embodiment.

接下来,如圖3H所示,於第二溝槽140內填入絕緣材料(例 如氧化物材料),以形成虛擬閘極結構146於第二溝槽140內,即可完成本發明一實施例具有雙溝槽的功率半導體元件。值得一提的是,為了電性隔離後續形成的電極金屬層,於形成電極金屬層的步驟之前,可先於基材表面沉積一絕緣氧化層。本發明實施例形成虛擬閘極結構146之步驟可與上述沉積絕緣氧化層的步驟於同一沉積製程中完成。 Next, as shown in FIG. 3H, an insulating material is filled in the second trench 140 (for example). As an oxide material, to form the dummy gate structure 146 in the second trench 140, a power semiconductor device having a double trench according to an embodiment of the present invention can be completed. It is worth mentioning that in order to electrically isolate the subsequently formed electrode metal layer, an insulating oxide layer may be deposited on the surface of the substrate before the step of forming the electrode metal layer. The step of forming the dummy gate structure 146 in the embodiment of the present invention may be completed in the same deposition process as the step of depositing the insulating oxide layer.

請參圖4A至圖4E,圖4A至圖4E為本發明另一實施例之雙溝槽式的功率半導體元件在製造過程中的剖面示意圖。圖4A至圖4E中以N型功率半導體元件為例進行說明,但本發明實施例不限於此。本發明實施例當然也可適用於P型的功率半導體元件。 Referring to FIG. 4A to FIG. 4E, FIG. 4A to FIG. 4E are schematic cross-sectional views showing a double-trench power semiconductor device according to another embodiment of the present invention in a manufacturing process. 4A to 4E, an N-type power semiconductor device is taken as an example, but the embodiment of the invention is not limited thereto. Embodiments of the invention are of course also applicable to P-type power semiconductor components.

如圖4A所示,首先,形成N型磊晶層120於N型基板110上,以形成製作雙溝槽式功率半導體元件的基材。於本實施例中,基材的材料例如包括碳化矽。接著,同時形成第一溝槽130及第二溝槽140於磊晶層120內,其中第一溝槽130的溝槽深度第二溝槽140的溝槽深度可大致相同,但本實施例並不以此為限。 As shown in FIG. 4A, first, an N-type epitaxial layer 120 is formed on an N-type substrate 110 to form a substrate on which a double trench power semiconductor device is fabricated. In the present embodiment, the material of the substrate includes, for example, tantalum carbide. Then, the first trench 130 and the second trench 140 are simultaneously formed in the epitaxial layer 120, wherein the trench depth of the first trench 130 may be substantially the same as the trench depth of the second trench 140, but in this embodiment Not limited to this.

接下来,如圖4B所示,可先於基材的表面形成硬質遮罩(圖未繪示)以定義出後續形成的P型第一摻雜層及P型第二摻雜層的位置。然後,可透過硬質遮罩對基材施以一斜向植入,以將P型摻雜穿過第一溝槽130的側壁與底部而注入基材,及將P型摻雜穿過第二溝槽140的側壁與底部而注入基材,並透過高溫活化製程,使P型摻雜活化以形成P型第一摻雜層150及P型第二摻雜層160。如圖所示,P型第一摻雜層150位於漂移區內且緊鄰第二溝槽140的側壁與底部,P型第二摻雜層160位於漂移區內且緊鄰第一溝槽130的側壁與底部。随后,移除硬質遮罩。值得注意的是,於本發明另一未繪示的實施例中,P型第一摻雜層150可僅緊鄰第二溝槽140的側壁及底部兩者中之一,或者,P型第二摻雜層160也可僅緊鄰第一溝槽130的側壁及底部兩者中之一。 Next, as shown in FIG. 4B, a hard mask (not shown) may be formed on the surface of the substrate to define the positions of the subsequently formed P-type first doped layer and P-type second doped layer. Then, the substrate can be obliquely implanted through the hard mask to dope P-type doping through the sidewalls and bottom of the first trench 130 to inject into the substrate, and P-type doping through the second The sidewalls and the bottom of the trench 140 are implanted into the substrate and passed through a high temperature activation process to activate the P-type dopant to form a P-type first doped layer 150 and a P-type second doped layer 160. As shown, the P-type first doped layer 150 is located in the drift region and adjacent to the sidewalls and the bottom of the second trench 140, and the P-type second doped layer 160 is located in the drift region and adjacent to the sidewall of the first trench 130. With the bottom. Subsequently, the hard mask is removed. It should be noted that, in another embodiment of the present invention, the P-type first doping layer 150 may be adjacent to only one of the sidewalls and the bottom of the second trench 140, or P-type second. The doped layer 160 may also be adjacent to only one of the sidewalls and the bottom of the first trench 130.

接下来,如圖4C所示,可藉由對基材施以一離子植入,以將 N型摻雜注入基材,並透過高溫活化製程,使具有N型摻雜活化以形成N型源極區170於漂移區120的一上部分。 Next, as shown in FIG. 4C, an ion implantation can be applied to the substrate to The N-type dopant is implanted into the substrate and passed through a high temperature activation process to activate the N-type dopant to form an N-type source region 170 in an upper portion of the drift region 120.

接下来,如圖4D所示,沿著磊晶層120的表面起伏,形成第一介電層132覆蓋第一溝槽130的內側表面,並且,形成第二介電層142覆蓋第二溝槽140的內側表面。然後,如圖4E所示,形成第一閘極結構134於第一溝槽130內,作為本實施例的雙溝槽式功率半導體元件的第一閘極,並且,形成第二閘極結構144於第二溝槽140內,作為本實施利的雙溝槽式功率半導體元件的第二閘極,即可完成本發明一實施例具有雙溝槽的功率半導體元件。 Next, as shown in FIG. 4D, along the surface of the epitaxial layer 120, the first dielectric layer 132 is formed to cover the inner surface of the first trench 130, and the second dielectric layer 142 is formed to cover the second trench. The inside surface of 140. Then, as shown in FIG. 4E, a first gate structure 134 is formed in the first trench 130 as the first gate of the dual trench power semiconductor device of the present embodiment, and a second gate structure 144 is formed. In the second trench 140, as the second gate of the dual trench power semiconductor device of the present embodiment, a power semiconductor device having a double trench according to an embodiment of the present invention can be completed.

綜上所述,本發明實施例以與源極區具有相同導電型的碳化矽材料作為載子導通的通道,可降低導通電流的電阻,且可免除對通道材料進行導電型反轉的動作。此外,本發明實施例利用第二溝槽的溝槽深度定義第一摻雜層的深度,及/或利用第一溝槽的溝槽深度定義第二摻雜層的深度,可減少第一、第二摻雜層的厚度,並可精準控制第一、第二摻雜層的厚度,以避免製程不穩定或者良率不佳的問題。於本發明一較佳實施例中,第一、第二摻雜層150、160的厚度例如大致為0.1至0.3微米。 In summary, in the embodiment of the present invention, the tantalum carbide material having the same conductivity type as the source region is used as a channel for conducting the carrier, thereby reducing the resistance of the on-current, and eliminating the action of conducting the inversion of the channel material. In addition, the embodiment of the present invention defines the depth of the first doped layer by using the trench depth of the second trench, and/or defines the depth of the second doped layer by using the trench depth of the first trench, which may reduce the first, The thickness of the second doped layer can precisely control the thickness of the first and second doped layers to avoid the problem of unstable process or poor yield. In a preferred embodiment of the invention, the thickness of the first and second doped layers 150, 160 is, for example, approximately 0.1 to 0.3 microns.

再者,本發明實施例利用閘極導電材料、介電層材料與碳化矽材料之間所形成的空乏區,可以使得雙溝槽式的功率半導體元件在沒有被施加電壓時,能夠關閉一部分的載子通道。另一方面,利用第二導電型摻雜層與第一導電型的漂移區之間的PN接面所形成的另一個空乏區,可以使得雙溝槽式的功率半導體元件在沒有被施加電壓時,能夠關閉另一部分的載子通道。透過適當設計第一溝槽與第二溝槽的間距,本發明實施例的雙溝槽式的功率半導體元件在沒有被施加電壓時,也可呈現不導通而電性關閉(Off)的狀態,進而避免元件漏電的現象發生。 Furthermore, in the embodiment of the present invention, the depletion region formed between the gate conductive material, the dielectric layer material and the tantalum carbide material can make the double trench power semiconductor component turn off a part when no voltage is applied. Carrier channel. On the other hand, by using another depletion region formed by the PN junction between the second conductivity type doping layer and the drift region of the first conductivity type, the double trench type power semiconductor device can be made without voltage applied. , can close another part of the carrier channel. By properly designing the spacing between the first trench and the second trench, the dual-trench power semiconductor device of the embodiment of the present invention can also exhibit a non-conducting and electrical off state when no voltage is applied. In turn, the phenomenon of component leakage is avoided.

如圖1所示的實施例中,在雙溝槽式的功率半導體元件被施加的電壓狀態下,載子可經由如圖1中箭頭所示的路徑,於通道 中靠近閘極的一側,自源極區流向汲極區,使雙溝槽式的功率半導體元件呈現電性開啟(On)的狀態。如圖2所示的實施例中,在雙溝槽式的功率半導體元件被施加的電壓狀態下,載子可經由如圖2中箭頭所示的路徑,於通道中遠離雙邊閘極的中間區域,自源極區流向汲極區,使雙溝槽式的功率半導體元件呈現電性開啟(On)的狀態。 In the embodiment shown in FIG. 1, in the state in which the double-trench power semiconductor component is applied, the carrier can pass through the path as indicated by the arrow in FIG. The side close to the gate flows from the source region to the drain region, so that the double-trench power semiconductor device is electrically turned on. In the embodiment shown in FIG. 2, in the state in which the double-trench power semiconductor component is applied, the carrier can be in the middle of the channel away from the bilateral gate via a path as indicated by the arrow in FIG. The self-source region flows to the drain region, so that the double-trench power semiconductor device is electrically turned on.

值得一提的是,本發明實施例的雙溝槽式功率的半導體元件可形成對稱或非對稱的結構,並且,第一溝槽與第二溝槽的溝槽深度、第一溝槽與第二溝槽之間的通道寬度可分別依據實際製程需求而設置,故本實施例並不限制。於本發明一較佳實施例中,第一溝槽的溝槽深度不小於第二溝槽的溝槽深度。 It is worth mentioning that the dual-trench power semiconductor device of the embodiment of the present invention can form a symmetric or asymmetric structure, and the trench depth, the first trench and the first trench of the first trench and the second trench The width of the channel between the two trenches can be set according to the actual process requirements, so this embodiment is not limited. In a preferred embodiment of the invention, the trench depth of the first trench is not less than the trench depth of the second trench.

以上所述僅為本發明的實施例,其並非用以限定本發明的專利保護範圍。任何熟習相像技藝者,在不脫離本發明的精神與範圍內,所作的更動及潤飾的等效替換,仍為本發明的專利保護範圍內。 The above is only an embodiment of the present invention, and is not intended to limit the scope of the invention. It is still within the scope of patent protection of the present invention to make any substitutions and modifications of the modifications made by those skilled in the art without departing from the spirit and scope of the invention.

110‧‧‧基板 110‧‧‧Substrate

120‧‧‧磊晶層 120‧‧‧ epitaxial layer

130‧‧‧第一溝槽 130‧‧‧First trench

132‧‧‧第一介電層 132‧‧‧First dielectric layer

134‧‧‧第一閘極結構 134‧‧‧First gate structure

140‧‧‧第二溝槽 140‧‧‧Second trench

146‧‧‧虛擬閘極結構 146‧‧‧Virtual gate structure

150‧‧‧第一摻雜層 150‧‧‧First doped layer

170‧‧‧源極區 170‧‧‧ source area

180‧‧‧源極金屬層 180‧‧‧ source metal layer

190‧‧‧汲極金屬層 190‧‧‧汲metal layer

Claims (16)

一種雙溝槽式的功率半導體元件,包括:一基材;一第一溝槽,位於所述基材內;一第二溝槽,位於所述基材內;一第一導電型的漂移區,位於所述第一溝槽與所述第二溝槽之間,且所述漂移區位於所述第一溝槽與所述第二溝槽下方;一第一介電層,覆蓋所述第一溝槽的內側表面;一第一閘極結構,位於所述第一溝槽內;一第二導電型的第一摻雜層,位於所述漂移區內且緊鄰所述第二溝槽,所述第二導電型的電性與所述第一導電型的電性相反;以及一第一導電型的源極區,位於所述漂移區的上部分。 A dual trench power semiconductor device comprising: a substrate; a first trench located in the substrate; a second trench located in the substrate; a drift region of the first conductivity type Between the first trench and the second trench, and the drift region is located under the first trench and the second trench; a first dielectric layer covering the first An inner side surface of a trench; a first gate structure located in the first trench; a first doped layer of a second conductivity type located in the drift region and adjacent to the second trench The electrical conductivity of the second conductivity type is opposite to the electrical conductivity of the first conductivity type; and a source region of a first conductivity type is located at an upper portion of the drift region. 如請求項第1項所述之雙溝槽式的功率半導體元件,其中該基材的材料包括碳化矽,所述第一摻雜層緊鄰所述第二溝槽的側壁及底部兩者或兩者其中之一。 The double-trench power semiconductor device of claim 1, wherein the material of the substrate comprises tantalum carbide, the first doped layer is adjacent to the sidewall and the bottom of the second trench or both One of them. 如請求項第1項所述之雙溝槽式的功率半導體元件,還包括:一虛擬閘極結構,位於所述第二溝槽內,其中所述虛擬閘極結構包括一填入所述第二溝槽內的絕緣材料。 The dual-trench power semiconductor device of claim 1, further comprising: a dummy gate structure located in the second trench, wherein the dummy gate structure includes a fill in the first The insulating material in the two trenches. 如請求項第1項所述之雙溝槽式的功率半導體元件,還包括:一第二導電型的第二摻雜層,位於所述漂移區內且緊鄰所述第一溝槽的側壁及底部兩者或兩者其中之一。 The dual-trench power semiconductor device of claim 1, further comprising: a second doped layer of a second conductivity type, located in the drift region and adjacent to a sidewall of the first trench and Bottom either or both. 如請求項第4項所述之雙溝槽式的功率半導體元件,還包括: 一第二介電層,覆蓋所述第二溝槽的內側表面;以及一第二閘極結構,位於所述第二溝槽內。 The dual-trench power semiconductor device of claim 4, further comprising: a second dielectric layer covering an inner side surface of the second trench; and a second gate structure located in the second trench. 如請求項第1項所述之雙溝槽式的功率半導體元件,其中所述第一溝槽的溝槽深度小於或等於所述第二溝槽的溝槽深度。 The dual trench power semiconductor device of claim 1, wherein the first trench has a trench depth less than or equal to a trench depth of the second trench. 一種雙溝槽式功率半導體元件的製造方法,包括:提供一基材,所述基材具有一第一導電型的漂移區;形成一第一溝槽及一第二溝槽於所述漂移區內;形成一第二導電型的第一摻雜層於所述漂移區內,所述第一摻雜層緊鄰所述第二溝槽,且所述第二導電型的電性與所述第一導電型的電性相反;形成一第一介電層以覆蓋所述第一溝槽的內側表面;形成一第一閘極結構於所述第一溝槽內;以及形成一第一導電型的源極區於所述漂移區的上部分。 A method for manufacturing a dual-trench power semiconductor device, comprising: providing a substrate having a drift region of a first conductivity type; forming a first trench and a second trench in the drift region Forming a first doped layer of a second conductivity type in the drift region, the first doped layer is adjacent to the second trench, and the electrical conductivity of the second conductivity type is An electrically conductive type is opposite in polarity; a first dielectric layer is formed to cover an inner side surface of the first trench; a first gate structure is formed in the first trench; and a first conductivity type is formed The source region is in the upper portion of the drift region. 如請求項第7項所述之雙溝槽式功率半導體元件的製造方法,其中該基材的材料包括碳化矽;及其中形成所述第一摻雜層的步驟中,更進一步包括:進行一斜向植入,以將至少一摻雜穿過所述第二溝槽的側壁及底部兩者或兩者其中之一而注入所述基材。 The method of manufacturing the double-trench power semiconductor device of claim 7, wherein the material of the substrate comprises tantalum carbide; and the step of forming the first doped layer therein further comprises: performing a The implant is obliquely implanted to inject at least one doping through one or both of the sidewalls and the bottom of the second trench. 如請求項第7項所述之雙溝槽式功率半導體元件的製造方法,更進一步包括:形成一虛擬閘極結構於所述第二溝槽內。 The method of fabricating the dual trench power semiconductor device of claim 7, further comprising: forming a dummy gate structure in the second trench. 如請求項第9項所述之雙溝槽式功率半導體元件的製造方法,其中形成所述虛擬閘極結構的步驟中,更進一步包括:於所述第二溝槽內填入一絕緣材料。 The method of manufacturing the dual trench power semiconductor device of claim 9, wherein the step of forming the dummy gate structure further comprises: filling an insulating material into the second trench. 如請求項第9項所述之雙溝槽式功率半導體元件的製造方法,其中所述第一溝槽的溝槽深度小於或等於所述第二溝槽的溝槽深度。 The method of fabricating the dual trench power semiconductor device of claim 9, wherein the trench depth of the first trench is less than or equal to the trench depth of the second trench. 如請求項第7項所述之雙溝槽式功率半導體元件的製造方法,更進一步包括:形成一第二導電型的第二摻雜層於所述漂移區內,所述第二摻雜層緊鄰所述第一溝槽。 The method for fabricating the dual-trench power semiconductor device of claim 7, further comprising: forming a second doping layer of a second conductivity type in the drift region, the second doping layer Adjacent to the first groove. 如請求項第12項所述之雙溝槽式功率半導體元件的製造方法,其中形成所述第二摻雜層的步驟中,更進一步包括:進行一斜向植入,以將至少一摻雜穿過所述第一溝槽的側壁及底部兩者或兩者其中之一而注入所述基材。 The method of manufacturing the dual-trench power semiconductor device of claim 12, wherein the step of forming the second doped layer further comprises: performing an oblique implant to do at least one doping The substrate is implanted through one or both of the sidewalls and the bottom of the first trench. 如請求項第12項所述之雙溝槽式功率半導體元件的製造方法,其中形成所述第二摻雜層的步驟與形成所述第一摻雜層的步驟同時進行。 The method of fabricating a dual trench power semiconductor device according to claim 12, wherein the step of forming the second doped layer is performed simultaneously with the step of forming the first doped layer. 如請求項第12項所述之雙溝槽式功率半導體元件的製造方法,更進一步包括:形成一第二介電層以覆蓋所述第二溝槽的內側表面;以及形成一第二閘極結構於所述第二溝槽內。 The method of fabricating the dual trench power semiconductor device of claim 12, further comprising: forming a second dielectric layer to cover an inner side surface of the second trench; and forming a second gate Structured in the second trench. 如請求項第15項所述之雙溝槽式功率半導體元件的製造方法,其中形成所述第二介電層的步驟與形成所述第一介電層的步驟同時進行,並且形成所述第二閘極結構的步驟與形成所述第一閘極結構的步驟同時進行。 The method of manufacturing the dual trench power semiconductor device of claim 15, wherein the step of forming the second dielectric layer is performed simultaneously with the step of forming the first dielectric layer, and forming the The steps of the two gate structure are performed simultaneously with the step of forming the first gate structure.
TW103128682A 2014-08-20 2014-08-20 Double trench power semiconductor device and fabrication method thereof TWI520343B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW103128682A TWI520343B (en) 2014-08-20 2014-08-20 Double trench power semiconductor device and fabrication method thereof
CN201410430829.5A CN105405882A (en) 2014-08-20 2014-08-28 Double-groove type power semiconductor element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103128682A TWI520343B (en) 2014-08-20 2014-08-20 Double trench power semiconductor device and fabrication method thereof

Publications (2)

Publication Number Publication Date
TWI520343B true TWI520343B (en) 2016-02-01
TW201608722A TW201608722A (en) 2016-03-01

Family

ID=55471264

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103128682A TWI520343B (en) 2014-08-20 2014-08-20 Double trench power semiconductor device and fabrication method thereof

Country Status (2)

Country Link
CN (1) CN105405882A (en)
TW (1) TWI520343B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344759A (en) * 2005-06-08 2006-12-21 Sharp Corp Trench type mosfet and its fabrication process
JP2008084995A (en) * 2006-09-26 2008-04-10 Sharp Corp High breakdown voltage trench mos transistor and manufacturing method thereof
US8878292B2 (en) * 2008-03-02 2014-11-04 Alpha And Omega Semiconductor Incorporated Self-aligned slotted accumulation-mode field effect transistor (AccuFET) structure and method
CN102683403B (en) * 2012-04-24 2015-05-27 电子科技大学 Trench gate charge storage type insulated gate bipolar transistor (IGBT)

Also Published As

Publication number Publication date
TW201608722A (en) 2016-03-01
CN105405882A (en) 2016-03-16

Similar Documents

Publication Publication Date Title
TWI605596B (en) Insulated gate switching device and method for manufacturing the same
JP6788953B2 (en) A semiconductor device having a dual parallel channel structure and a method for manufacturing the semiconductor device.
TWI407564B (en) Power semiconductor with trench bottom poly and fabrication method thereof
JP6266975B2 (en) Insulated gate semiconductor device manufacturing method and insulated gate semiconductor device
JP2012169384A (en) Silicon carbide semiconductor device and method of manufacturing the same
JP2011060930A (en) Semiconductor apparatus, and method of manufacturing the same
TWI565053B (en) High voltage semiconductor device and method of manufacturing the same
JP6996302B2 (en) Nitride semiconductor device and its manufacturing method
JP2013058575A (en) Semiconductor device and manufacturing method of the same
JP2011204808A (en) Semiconductor device and method of manufacturing the same
US20160149029A1 (en) Semiconductor device and method for manufacturing semiconductor device
US20160172436A1 (en) Semiconductor device, termination structure and method of forming the same
JP5971218B2 (en) Semiconductor device
JP2019021871A5 (en)
JP2016192479A (en) Semiconductor device and method for manufacturing the same
WO2014083771A1 (en) Semiconductor element and method for manufacturing same
JP2006108217A (en) Silicon carbide semiconductor device
TW201511135A (en) Method of manufacturing semiconductor device
KR20160032654A (en) Semiconductor device and method for manufacturing the same
TWI524525B (en) Power transistor having a drain at the top and forming method thereof
US20150194424A1 (en) Semiconductor device and method for manufacturing the same
TWI520343B (en) Double trench power semiconductor device and fabrication method thereof
JP6029330B2 (en) Semiconductor device and manufacturing method thereof
KR101063567B1 (en) Mos device and the manufacturing method thereof
JP2012160601A (en) Manufacturing method of semiconductor device